1
|
Smith KH, Mackey JE, Wenzlick M, Thomas B, Siefert NS. Critical mineral source potential from oil & gas produced waters in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172573. [PMID: 38641103 DOI: 10.1016/j.scitotenv.2024.172573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The volume of produced water, a by-product of oil & gas operations and other energy processes, has been growing across the United States (U.S.) along with the need to manage or recycle this wastewater. Produced water contains many naturally occurring elements of varying concentrations, including critical minerals which are essential to the clean energy transition. However, the current understanding of critical mineral concentrations in produced water and the associated volumes across the U.S. is limited. This study has assessed available databases and literature to gain insight into the presence and concentration of five high priority critical minerals, namely cobalt, lithium, magnesium, manganese, and nickel. The U.S. Geological Survey's National Produced Waters Geochemical Database was the main data source used for determining average critical mineral concentrations in produced water from the major oil and gas reservoirs in the U.S. The volumes of produced water for these major reservoirs were coupled with these concentrations to provide insights into where critical minerals are likely to have high abundance and therefore more recovery options. The analysis indicated the highest recovery potential for lithium and magnesium from produced water in the Permian basin and the Marcellus shale region. However, these assessments should be considered conservative due to the limited availability of reliable concentration data. It is expected more critical mineral recovery options could emerge with comprehensive characterization data from more recent and representative sources of produced water.
Collapse
Affiliation(s)
- Kathryn H Smith
- National Energy Technology Laboratory, Pittsburgh, PA 15236, USA; Carbon Capture Scientific, Pittsburgh, PA 15236, USA
| | - Justin E Mackey
- National Energy Technology Laboratory, Pittsburgh, PA 15236, USA; NETL Support Contractor, Pittsburgh, PA 15236, USA
| | - Madison Wenzlick
- National Energy Technology Laboratory, Albany, OR 97321, USA; NETL Support Contractor, Albany, OR 97321, USA
| | - Burt Thomas
- National Energy Technology Laboratory, Albany, OR 97321, USA
| | | |
Collapse
|
2
|
Zhou Z, Wu F, Tong Y, Zhang S, Li L, Cheng F, Zhang B, Zeng X, Yu Z, You J. Toxicity and chemical characterization of shale gas wastewater discharged to the receiving water: Evidence from toxicity identification evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169510. [PMID: 38154638 DOI: 10.1016/j.scitotenv.2023.169510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Flowback and produced water (FPW) generated from shale gas extraction is a complex mixture consisting of injected drilling fluid, deep formation water, and byproducts of downhole reactions. Limited knowledge is available regarding the impact of discharged FPW on surface water in China. With the development of shale gas exploitation, this emphasizes an urgent need for comprehensive assessments and stringent regulations to ensure the safe disposal of shale gas extraction-related wastewater. Herein, we explored potential impacts of treated shale gas wastewater discharged into a local river in southwest China through toxicity identification evaluation (TIE). Results revealed that organics and particulates significantly contributed to the overall toxicity of the treated FPW wastewater. Through target and suspect chemical analyses, various categories of organic contaminants were detected, including alkanes, aromatic hydrocarbons, biocides, phenols, and phthalates. Furthermore, non-target analysis uncovered the presence of surfactant-related contaminants in tissues of exposed organisms, but their contribution to the observed toxicity was unclear due to the lack of effect data for these compounds. Higher toxicity was found at the discharge point compared with upstream sites; however, the toxicity was rapidly mitigated due to dilution in the receiving river, posing little impact on downstream areas. Our study highlighted the importance of monitoring toxicity and water quality of FPW effluent even though dilution could be a viable approach when the water volume in the discharge was small.
Collapse
Affiliation(s)
- Zhimin Zhou
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Fan Wu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Yujun Tong
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Shaoqiong Zhang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Liang Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Fei Cheng
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Biao Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jing You
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Yang Y, Tian L, Shu J, Wu Q, Liu B. Potential hazards of typical small molecular organic matters in shale gas wastewater for wheat irrigation: 2-butoxyethanol and dimethylbenzylamine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122729. [PMID: 37858699 DOI: 10.1016/j.envpol.2023.122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
2-butoxyethanol (BE) and dimethylbenzylamine (DMBA) are small molecular organic compounds commonly found in shale gas wastewater (SGW) and environmental samples, yet their environmental risks in exposure and irrigation reuse have not been thoroughly studied. From the perspectives of physicochemical properties and toxicity, seven groups of irrigation treatment were designed for wheat irrigation according to the concentration gradient. Overall, wheat growth was normal, but higher DMBA concentrations resulted in more severe growth inhibition. The absorption of BE by various tissues of wheat was positively correlated with its concentration, while the absorption of DMBA by wheat stems showed the same trend. Interestingly, there was no significant difference in the absorption of DMBA by wheat grains in different groups. The detection results of nutritional and heavy metal elements in wheat tissues showed that the presence of organic compounds changed the relative sensitivity of wheat leaves and grains to some elements (such as Mg, Mn, Mo, etc.) enrichment. The Cd and Pb contents of wheat grains in all groups complied with national safety standards, but the As or Cr concentration in wheat grains treated with BE or DMBA exceeded the limits in some cases. Transcriptome sequencing, GO annotation, and KEGG enrichment analysis revealed similar gene functions and metabolic pathways enriched by BE and DMBA. The safe and sustainable agricultural reuse of SGW still has great potential as a promising water resources management strategy.
Collapse
Affiliation(s)
- Yushun Yang
- State Key Laboratory of Hydraulics & Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan, 644000, PR China
| | - Lun Tian
- State Key Laboratory of Hydraulics & Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan, 644000, PR China
| | - Jingyu Shu
- State Key Laboratory of Hydraulics & Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan, 644000, PR China
| | - Qidong Wu
- State Key Laboratory of Hydraulics & Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan, 644000, PR China
| | - Baicang Liu
- State Key Laboratory of Hydraulics & Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan, 644000, PR China.
| |
Collapse
|
4
|
Peng S, Li Z, Zhang D, Lu P, Zhou S. Changes in community structure and microbiological risks in a small stream after receiving treated shale gas wastewater for two years. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122799. [PMID: 37918774 DOI: 10.1016/j.envpol.2023.122799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Discharge of treated shale gas wastewater is becoming prevalent in the Sichuan Basin in China, and the resulting potential environmental impacts have raised concern. In this study, the responses of microbial community in the receiving water to discharge of treated shale gas wastewater were assessed during a two-year study period, covering two wet seasons and one dry season. The results showed that the discharge of treated shale gas wastewater had no significant effects on alpha diversity in the two wet seasons, but had significant effects in the dry season after 15 months of discharge. Obvious changes in microbial community structure were observed in all three seasons at the downstream sites near the wastewater outfall, as compared to the control site. Multimetric indices indicated that the impacts of wastewater discharge on microbial ecosystem occurred with the extension of the discharge period. Moreover, special attention was given to the microbiological risks associated with antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and pathogenic antibiotic resistant bacteria (PARBs) in the dry season in sediments of the receiving water. At downstream sites near the outfall, five subtypes of ARGs and seven VFGs showed a significant increase in relative abundance. Forty-two PARBs carrying ARGs and VFGs were detected, and three PARBs (Pseudomonas aeruginosa, Pseudomonas stutzeri and Pseudomonas fluorescens) increased obviously in relative abundance at the downstream site near the outfall. In conclusion, long-term wastewater discharge had effects on the microbial community, and limited microbiological risks existed in the receiving waters.
Collapse
Affiliation(s)
- Shuchan Peng
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Zhiqiang Li
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Daijun Zhang
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Peili Lu
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Shangbo Zhou
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
5
|
Stewart CB, Lowes HM, Mehler WT, Snihur KN, Flynn SL, Alessi DS, Blewett TA. Spatial and temporal variation in toxicity and inorganic composition of hydraulic fracturing flowback and produced water. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132490. [PMID: 37703728 DOI: 10.1016/j.jhazmat.2023.132490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Hydraulic fracturing for oil and gas extraction produces large volumes of wastewater, termed flowback and produced water (FPW), that are highly saline and contain a variety of organic and inorganic contaminants. In the present study, FPW samples from ten hydraulically fractured wells, across two geologic formations were collected at various timepoints. Samples were analyzed to determine spatial and temporal variation in their inorganic composition. Results indicate that FPW composition varied both between formations and within a single formation, with large compositional changes occurring over short distances. Temporally, all wells showed a time-dependent increase in inorganic elements, with total dissolved solids increasing by up to 200,000 mg/L over time, primarily due to elements associated with salinity (Cl, Na, Ca, Mg, K). Toxicological analysis of a subset of the FPW samples showed median lethal concentrations (LC50) of FPW to the aquatic invertebrate Daphnia magna were highly variable, with the LC50 values ranging from 1.16% to 13.7% FPW. Acute toxicity of FPW significantly correlated with salinity, indicating salinity is a primary driver of FPW toxicity, however organic components also contributed to toxicity. This study provides insight into spatiotemporal variability of FPW composition and illustrates the difficulty in predicting aquatic risk associated with FPW.
Collapse
Affiliation(s)
- Connor B Stewart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Hannah M Lowes
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - W Tyler Mehler
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Katherine N Snihur
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Shannon L Flynn
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada; School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Abraham DG, Liberatore HK, Aziz MT, Burnett DB, Cizmas LH, Richardson SD. Impacts of hydraulic fracturing wastewater from oil and gas industries on drinking water: Quantification of 69 disinfection by-products and calculated toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163344. [PMID: 37030373 DOI: 10.1016/j.scitotenv.2023.163344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Oil and gas production generates large amounts of brine wastewater called "produced water" with various geogenic and synthetic contaminants. These brines are generally used in hydraulic fracturing operations to stimulate production. They are characterized by elevated halide levels, particularly geogenic bromide and iodide. Such salt concentrations in produced water may be as high as thousands of mg/L of bromide and tens of mg/L of iodide. Large volumes of produced water are stored, transported, reused in production operations, and ultimately disposed of by deep well injection into saline aquifers. Improper disposal may potentially contaminate shallow freshwater aquifers and impact drinking water sources. Because conventional produced water treatment typically does not remove halides, produced water contamination of groundwater aquifers may cause the formation of brominated and iodinated disinfection by-products (I-DBPs) at municipal water treatment plants. These compounds are of interest because of their higher toxicity relative to their chlorinated counterparts. This study reports a comprehensive analysis of 69 regulated and priority unregulated DBPs in simulated drinking waters fortified with 1 % (v/v) oil and gas wastewater. Impacted waters produced 1.3×-5× higher levels of total DBPs compared to river water after chlorination and chloramination. Individual DBP levels ranged from (<0.1-122 μg/L). Overall, chlorinated waters formed highest levels, including trihalomethanes that would exceed the U.S. EPA regulatory limit of 80 μg/L. Chloraminated waters had more I-DBP formation and highest levels of haloacetamides (23 μg/L) in impacted water. Calculated cytotoxicity and genotoxicity were higher for impacted waters treated with chlorine and chloramine than corresponding treated river waters. Chloraminated impacted waters had the highest calculated cytotoxicity, likely due to higher levels of more toxic I-DBPs and haloacetamides. These findings demonstrate that oil and gas wastewater if discharged to surface waters could adversely impact downstream drinking water supplies and potentially affect public health.
Collapse
Affiliation(s)
- Dallas G Abraham
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Hannah K Liberatore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Md Tareq Aziz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - David B Burnett
- Department of Petroleum Engineering, (Ret.) Texas A&M University, College Station, TX 77843, United States
| | - Leslie H Cizmas
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States.
| |
Collapse
|
7
|
Hernandez-Becerra N, Cliffe L, Xiu W, Boothman C, Lloyd JR, Nixon SL. New microbiological insights from the Bowland shale highlight heterogeneity of the hydraulically fractured shale microbiome. ENVIRONMENTAL MICROBIOME 2023; 18:14. [PMID: 36855215 PMCID: PMC9972762 DOI: 10.1186/s40793-023-00465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hydraulically fractured shales offer a window into the deep biosphere, where hydraulic fracturing creates new microbial ecosystems kilometers beneath the surface of the Earth. Studying the microbial communities from flowback fluids that are assumed to inhabit these environments provides insights into their ecophysiology, and in particular their ability to survive in these extreme environments as well as their influence on site operation e.g. via problematic biofouling processes and/or biocorrosion. Over the past decade, research on fractured shale microbiology has focused on wells in North America, with a few additional reported studies conducted in China. To extend the knowledge in this area, we characterized the geochemistry and microbial ecology of two exploratory shale gas wells in the Bowland Shale, UK. We then employed a meta-analysis approach to compare geochemical and 16S rRNA gene sequencing data from our study site with previously published research from geographically distinct formations spanning China, Canada and the USA. RESULTS Our findings revealed that fluids recovered from exploratory wells in the Bowland are characterized by moderate salinity and high microbial diversity. The microbial community was dominated by lineages known to degrade hydrocarbons, including members of Shewanellaceae, Marinobacteraceae, Halomonadaceae and Pseudomonadaceae. Moreover, UK fractured shale communities lacked the usually dominant Halanaerobium lineages. From our meta-analysis, we infer that chloride concentrations play a dominant role in controlling microbial community composition. Spatio-temporal trends were also apparent, with different shale formations giving rise to communities of distinct diversity and composition. CONCLUSIONS These findings highlight an unexpected level of compositional heterogeneity across fractured shale formations, which is not only relevant to inform management practices but also provides insight into the ability of diverse microbial consortia to tolerate the extreme conditions characteristic of the engineered deep subsurface.
Collapse
Affiliation(s)
- Natali Hernandez-Becerra
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Lisa Cliffe
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Wei Xiu
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, China
| | - Christopher Boothman
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Jonathan R Lloyd
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Sophie L Nixon
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK.
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
| |
Collapse
|
8
|
Wang XS, Liu YL, Li M, Song H, Huang X, Gao Z, Zhang J, Cui CW, Liu BC, Ma J, Wang L. Occurrence of Iodophenols in Aquatic Environments and the Deiodination of Organic Iodine with Ferrate(VI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16104-16114. [PMID: 36322125 DOI: 10.1021/acs.est.2c00857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Toxic and odorous iodophenols are commonly identified as disinfection by-products (DBPs) in drinking water. Herein, ng/L levels of iodophenols were identified in river water, wastewater treatment plant effluent, and medical wastewater, with the simultaneous identification of μg/L to mg/L levels of iodide (I-) and total organic iodine (TOI). Oxidation experiment suggested that the I-, TOI, and iodophenols could be oxidized by ferrate [Fe(VI)], and more than 97% of TOI had been transformed into stable and nontoxic IO3-. Fe(VI) initially cleaved the C-I bond of iodophenols and led to the deiodination of iodophenols. The resulted I- was swiftly oxidized into HOI and IO3-, with the intermediate phenolic products be further oxidized into lower molecular weight products. The Gibbs free energy change (ΔG) of the overall reaction was negative, indicating that the deiodination of iodophenols by Fe(VI) was spontaneous. In the disinfection of iodine-containing river water, ng/L levels of iodophenols and chloro-iodophenols formed in the reaction with NaClO/NH2Cl, while Fe(VI) preoxidation was effective for inhibiting the formation of iodinated DBPs. Fe(VI) exhibited multiple functions for oxidizing organic iodine, abating their acute toxicity/cytotoxicity and controlling the formation of iodinated DBPs for the treatment of iodide/organic iodine-containing waters.
Collapse
Affiliation(s)
- Xian-Shi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Yu-Lei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Mu Li
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen518000, China
| | - Heng Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing210044, China
| | - Zhi Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Jing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Chong-Wei Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Bai-Cang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu610207, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| |
Collapse
|
9
|
Wang S, Adekunle A, Raghavan V. Bioelectrochemical systems-based metal removal and recovery from wastewater and polluted soil: Key factors, development, and perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115333. [PMID: 35617867 DOI: 10.1016/j.jenvman.2022.115333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BES) are considered efficient and sustainable technologies for bioenergy generation and simultaneously removal/recovery metal (loid)s from soil and wastewater. However, several current challenges of BES-based metal removal and recovery, especially concentrating target metals from complex contaminated wastewater or soil and their economic feasibility of engineering applications. This review summarized the applications of BES-based metal removal and recovery systems from wastewater and contaminated soil and evaluated their performances on electricity generation and metal removal/recovery efficiency. In addition, an in depth review of several key parameters (BES configurations, electrodes, catalysts, metal concentration, pH value, substrate categories, etc.) of BES-based metal removal and recovery was carried out to facilitate a deep understanding of their development and to suggest strategies for scaling up their specific application fields. Finally, the future intervention on multifunctional BES to improve their performances of mental removal and recovery were revealed.
Collapse
Affiliation(s)
- Shuyao Wang
- Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Ademola Adekunle
- National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada.
| | - Vijaya Raghavan
- Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
10
|
Produced Water Treatment and Valorization: A Techno-Economical Review. ENERGIES 2022. [DOI: 10.3390/en15134619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, environmental concerns have urged companies in the energy sector to modify their industrial activities to facilitate greater environmental stewardship. For example, the practice of unconventional oil and gas extraction has drawn the ire of regulators and various environmental groups due to its reliance on millions of barrels of fresh water—which is generally drawn from natural sources and public water supplies—for hydraulic fracturing well stimulation. Additionally, this process generates two substantial waste streams, which are collectively characterized as flowback and produced water. Whereas flowback water is comprised of various chemical additives that are used during hydraulic fracturing; produced water is a complex mixture of microbiota, inorganic and organic constituents derived from the petroliferous strata. This review will discuss the obstacles of managing and treating flowback and produced waters, concentrating on the hardest constituents to remove by current technologies and their effect on the environment if left untreated. Additionally, this work will address the opportunities associated with repurposing produced water for various applications as an alternative to subsurface injection, which has a number of environmental concerns. This review also uses lithium to evaluate the feasibility of extracting valuable metals from produced water using commercially available technologies.
Collapse
|
11
|
Characterizing Various Produced Waters from Shale Energy Extraction within the Context of Reuse. ENERGIES 2022. [DOI: 10.3390/en15134521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Environmental concerns with unconventional oil and gas development are frequently centered on elevated water usage and the induction of seismic events during waste disposal. Reuse of produced water for subsequent production well stimulation can effectively address these concerns, but the variability among such samples must be well understood. Twenty-four samples of wastewater from unconventional oil and gas development were collected from south and west Texas to assess their variability and feasibility for direct reuse. Bulk metrics were collected, including total organic carbon, total nitrogen, as well as total dissolved and suspended solids. The profiles of pertinent inorganic constituents were also evaluated. Variations were not only seen between regions but also among samples collected from the same region. For example, the average total organic carbon for Eagle Ford samples collected was 700 ± 500 mg/L, while samples collected from the Permian Basin featured an average total organic carbon concentration of 600 ± 900 mg/L. The Permian Basin total organic carbon ranged from 38 to 2600 mg/L. The total dissolved solids levels had the same variability between regions, with an average value for Eagle Ford of 20,000 ± 10,000 mg/L and a Permian Basin value of 150,000 ± 40,000 mg/L. However, samples were more reproducible within a given region. Collectively, the data indicate that the direct reuse of raw produced water for subsequent production well development without treatment is not feasible based on the reported reuse thresholds. Unconventional development wastewater samples from the Permian Basin were also compared to produced water values from conventional oil and gas wells in the same region, as reported by the United States Geological Survey. Samples collected in the Permian Basin consistently demonstrated lower ionic strength compared to conventional produced water data.
Collapse
|
12
|
Chen F, Wang K, Luo M, Bu T, Yuan X, Du G, Wu H. Treatment and recycling of acidic fracturing flowback fluid. ENVIRONMENTAL TECHNOLOGY 2022; 43:2310-2318. [PMID: 33461424 DOI: 10.1080/09593330.2021.1876171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Acidic fracturing flowback fluid (AFFF) has the characteristics of low pH value, high chemical oxygen demand (COD), high corrosiveness and complex components. Surface discharge without treatment may contaminate the environment. However, wastewater treatment after centralized transportation has potential safety risks and requires high costs. In this study, we confirmed that calcium and magnesium could affect cross-linking property of fracturing fluid prepared by flowback fluid, and conducted a three-step process, two-stage filtration, chemical precipitation, and flocculation precipitation, on AFFF. After treatment, we made new hydraulic fracturing fluid using the treated acidic flowback fluid as base fluid and compared the quality of the new hydraulic fracturing fluid to the ones used freshwater as base fluid. The results showed when concentration of sodium carbonate, polyaluminium chloride (PAC), polyacrylamide (PAM) were 145, 1000, and 20 mg/L respectively, the treatment result was optimal. After treatment, the oil content of AFFF decreased from 7400 to 26.53 mg/L and suspended solids (SS) from 650 to 18.24 mg/L, and the removal rate of high-valence metal ions was more than 99%. The rheological properties and viscoelasticity of new fracturing fluid prepared by the treated AFFF were similar to the ones prepared by freshwater, which met the requirements of high temperature and shear resistance for ultra-deep wells.
Collapse
Affiliation(s)
- Fu Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Kuntai Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Mina Luo
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Tao Bu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Xuefang Yuan
- Research Institutes of Petroleum Engineering, PetroChina Tarim Oilfield Company, Korla, People's Republic of China
| | - Guoyong Du
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Hongjun Wu
- Research Institutes of Petroleum Engineering, PetroChina Tarim Oilfield Company, Korla, People's Republic of China
| |
Collapse
|
13
|
Jiang W, Xu X, Hall R, Zhang Y, Carroll KC, Ramos F, Engle MA, Lin L, Wang H, Sayer M, Xu P. Characterization of produced water and surrounding surface water in the Permian Basin, the United States. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128409. [PMID: 35149501 DOI: 10.1016/j.jhazmat.2022.128409] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
A thorough understanding of produced water (PW) quality is critical to advance the knowledge and tools for effective PW management, treatment, risk assessment, and feasibility for beneficial reuse outside the oil and gas industry. This study provides the first step to better understand PW quality to develop beneficial reuse programs that are protective of human health and the environment. In total, 46 PW samples from unconventional operations in the Permian Basin and ten surface water samples from the Pecos River in New Mexico were collected for quantitative target analyses of more than 300 constituents. Water quality analyses of Pecos River samples could provide context and baseline information for the potential discharge and reuse of treated PW in this area. Temporal PW and river water quality changes were monitored for eight months in 2020. PW samples had total dissolved solids (TDS) concentrations ranging from 100,800-201,500 mg/L. Various mineral salts, metals, oil and grease, volatile and semi-volatile organic compounds, radionuclides, ammonia, hydraulic fracturing additives, and per- and polyfluoroalkyl substances were detected at different concentrations. Chemical characterization of organic compounds found in Pecos River water showed no evidence of PW origin. Isometric log-ratio Na-Cl-Br analysis showed the salinity in the Pecos River samples appeared to be linked to an increase in natural shallow brine inputs. This study outlines baseline analytical information to advance PW research by describing PW and surrounding surface water quality in the Permian Basin that will assist in determining management strategies, treatment methods, potential beneficial reuse applications, and potential environmental impacts specific to intended beneficial use of treated PW.
Collapse
Affiliation(s)
- Wenbin Jiang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Xuesong Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Ryan Hall
- NGL Partners LP, Santa Fe, NM 87501, United States
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Kenneth C Carroll
- Department of Plant and Environmental Science, New Mexico State University, Las Cruces, NM, United States
| | - Frank Ramos
- Department of Geological Sciences, New Mexico State University, Las Cruces, NM 88003, United States
| | - Mark A Engle
- Department of Earth, Environmental and Resource Sciences, The University of Texas at El Paso, El Paso, TX 79968, United States
| | - Lu Lin
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Huiyao Wang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | | | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States.
| |
Collapse
|
14
|
Nikolopoulou V, Aalizadeh R, Nika MC, Thomaidis NS. TrendProbe: Time profile analysis of emerging contaminants by LC-HRMS non-target screening and deep learning convolutional neural network. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128194. [PMID: 35033918 DOI: 10.1016/j.jhazmat.2021.128194] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Peak prioritization is one of the key steps in non-target screening of environmental samples to direct the identification efforts to relevant and important features. Occurrence of chemicals is sometimes a function of time and their presence in consecutive days (trend) reveals important aspects such as discharges from agricultural, industrial or domestic activities. This study presents a validated computational framework based on deep learning conventional neural network to classify trends of chemicals over 30 consecutive days of sampling in two sampling sites (upstream and downstream of a river). From trend analysis and factor analysis, the chemicals could be classified into periodic, spill, increasing, decreasing and false trend. The developed method was validated with list of 42 reference standards (target screening) and applied to samples. 25 compounds were selected by the deep learning and identified via non-target screening. Three classes of surfactants were identified for the first time in river water and two of them were never reported in the literature. Overall, 21 new homologous series of the newly identified surfactants were tentatively identified. The aquatic toxicity of the identified compounds was estimated by in silico tools and a few compounds along with their homologous series showed potential risk to aquatic environment.
Collapse
Affiliation(s)
- Varvara Nikolopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
15
|
Jiang W, Pokharel B, Lin L, Cao H, Carroll KC, Zhang Y, Galdeano C, Musale DA, Ghurye GL, Xu P. Analysis and prediction of produced water quantity and quality in the Permian Basin using machine learning techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149693. [PMID: 34467907 DOI: 10.1016/j.scitotenv.2021.149693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Appropriate produced water (PW) management is critical for oil and gas industry. Understanding PW quantity and quality trends for one well or all similar wells in one region would significantly assist operators, regulators, and water treatment/disposal companies in optimizing PW management. In this research, historical PW quantity and quality data in the New Mexico portion (NM) of the Permian Basin from 1995 to 2019 was collected, pre-processed, and analyzed to understand the distribution, trend and characteristics of PW production for potential beneficial use. Various machine learning algorithms were applied to predict PW quantity for different types of oil and gas wells. Both linear and non-linear regression approaches were used to conduct the analysis. The prediction results from five-fold cross-validation showed that the Random Forest Regression model reported high prediction accuracy. The AutoRegressive Integrated Moving Average model showed good results for predicting PW volume in time series. The water quality analysis results showed that the PW samples from the Delaware and Artesia Formations (mostly from conventional wells) had the highest and the lowest average total dissolved solids concentrations of 194,535 mg/L and 100,036 mg/L, respectively. This study is the first research that comprehensively analyzed and predicted PW quantity and quality in the NM-Permian Basin. The results can be used to develop a geospatial metrics analysis or facilitate system modeling to identify the potential opportunities and challenges of PW management alternatives within and outside oil and gas industry. The machine learning techniques developed in this study are generic and can be applied to other basins to predict PW quantity and quality.
Collapse
Affiliation(s)
- Wenbin Jiang
- Dept. of Civil Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Beepana Pokharel
- Dept. of Computer Science, New Mexico State University, Las Cruces, NM, United States
| | - Lu Lin
- Dept. of Civil Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Huiping Cao
- Dept. of Computer Science, New Mexico State University, Las Cruces, NM, United States
| | - Kenneth C Carroll
- Dept. of Plant and Environmental Science, New Mexico State University, Las Cruces, NM, United States
| | - Yanyan Zhang
- Dept. of Civil Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Carlos Galdeano
- ExxonMobil Upstream Research Company, Research & Technology Development-Unconventionals, Spring, TX 77389, United States
| | - Deepak A Musale
- ExxonMobil Upstream Research Company, Research & Technology Development-Unconventionals, Spring, TX 77389, United States
| | - Ganesh L Ghurye
- ExxonMobil Upstream Research Company, Research & Technology Development-Unconventionals, Spring, TX 77389, United States
| | - Pei Xu
- Dept. of Civil Engineering, New Mexico State University, Las Cruces, NM, United States.
| |
Collapse
|
16
|
Khan HJ, Spielman-Sun E, Jew AD, Bargar J, Kovscek A, Druhan JL. A Critical Review of the Physicochemical Impacts of Water Chemistry on Shale in Hydraulic Fracturing Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1377-1394. [PMID: 33428391 DOI: 10.1021/acs.est.0c04901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hydraulic fracturing of unconventional hydrocarbon resources involves the sequential injection of a high-pressure, particle-laden fluid with varying pH's to make commercial production viable in low permeability rocks. This process both requires and produces extraordinary volumes of water. The water used for hydraulic fracturing is typically fresh, whereas "flowback" water is typically saline with a variety of additives which complicate safe disposal. As production operations continue to expand, there is an increasing interest in treating and reusing this high-salinity produced water for further fracturing. Here we review the relevant transport and geochemical properties of shales, and critically analyze the impact of water chemistry (including produced water) on these properties. We discuss five major geochemical mechanisms that are prominently involved in the temporal and spatial evolution of fractures during the stimulation and production phase: shale softening, mineral dissolution, mineral precipitation, fines migration, and wettability alteration. A higher salinity fluid creates both benefits and complications in controlling these mechanisms. For example, higher salinity fluid inhibits clay dispersion, but simultaneously requires more additives to achieve appropriate viscosity for proppant emplacement. In total this review highlights the nuances of enhanced hydrogeochemical shale stimulation in relation to the choice of fracturing fluid chemistry.
Collapse
Affiliation(s)
- Hasan Javed Khan
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Eleanor Spielman-Sun
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Adam D Jew
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - John Bargar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Anthony Kovscek
- Department of Energy Resource Engineering, Stanford University, Stanford, California 94305, United States
| | - Jennifer L Druhan
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
A Critical Review of Analytical Methods for Comprehensive Characterization of Produced Water. WATER 2021. [DOI: 10.3390/w13020183] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Produced water is the largest waste stream associated with oil and gas production. It has a complex matrix composed of native constituents from geologic formation, chemical additives from fracturing fluids, and ubiquitous bacteria. Characterization of produced water is critical to monitor field operation, control processes, evaluate appropriate management practices and treatment effectiveness, and assess potential risks to public health and environment during the use of treated water. There is a limited understanding of produced water composition due to the inherent complexity and lack of reliable and standardized analytical methods. A comprehensive description of current analytical techniques for produced water characterization, including both standard and research methods, is discussed in this review. Multi-tiered analytical procedures are proposed, including field sampling; sample preservation; pretreatment techniques; basic water quality measurements; organic, inorganic, and radioactive materials analysis; and biological characterization. The challenges, knowledge gaps, and research needs for developing advanced analytical methods for produced water characterization, including target and nontarget analyses of unknown chemicals, are discussed.
Collapse
|
18
|
Shariq L, McLaughlin MC, Rehberg RA, Miller H, Blotevogel J, Borch T. Irrigation of wheat with select hydraulic fracturing chemicals: Evaluating plant uptake and growth impacts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 273:116402. [PMID: 33482460 DOI: 10.1016/j.envpol.2020.116402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Oilfield flowback and produced water (FPW) is a waste stream that may offer an alternative source of water for multiple beneficial uses. One practice gaining interest in several semi-arid states is the reuse of FPW for agricultural irrigation. However, it is unknown if the reuse of FPW on edible crops could increase health risks from ingestion of exposed food, or impact crop growth. A greenhouse experiment was conducted using wheat (Triticum aestivum) to investigate the uptake potential of select hydraulic fracturing additives known to be associated with health risks. The selected chemicals included acrylamide, didecyldimethylammonium chloride (DDAC), diethanolamine, and tetramethylammonium chloride (TMAC). Mature wheat grain was extracted and analyzed by liquid chromatography-triple quadrupole mass spectrometry (LC-QQQ) to quantify chemical uptake. Plant development observations were also documented to evaluate impacts of the chemicals on crop yield. Analytical results indicated that TMAC and diethanolamine had significantly higher uptake into both wheat grain and stems than control plants which were not exposed to the four chemicals under investigation. Acrylamide was measured in statistically higher concentrations in the stems only, while DDAC was not detected in grain or stems. Growth impacts included lodging in treated wheat plants due to increased stem height and grain weight, potentially resulting from increased nitrogen application. While analytical results show that uptake of select hydraulic fracturing chemicals in wheat grain and stems is measurable, reuse of FPW for irrigation in real world scenarios would likely result in less uptake because water would be subject to natural degradation, and often treatment and dilution practices. Nonetheless, based on the outstanding data gaps associated with this research topic, chemical specific treatment and regulatory safeguards are still recommended.
Collapse
Affiliation(s)
- Linsey Shariq
- Civil and Environmental Engineering Department, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Molly C McLaughlin
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO 80523, USA
| | - Rachelle A Rehberg
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA
| | - Hannah Miller
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, USA
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO 80523, USA
| | - Thomas Borch
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO 80523, USA; Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA; Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|
19
|
Shelton JL, Barnhart EP, Ruppert L, Jubb AM, Blondes MS, DeVera CA. Repetitive Sampling and Control Threshold Improve 16S rRNA Gene Sequencing Results From Produced Waters Associated With Hydraulically Fractured Shale. Front Microbiol 2020; 11:536978. [PMID: 33042049 PMCID: PMC7518088 DOI: 10.3389/fmicb.2020.536978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/21/2020] [Indexed: 11/13/2022] Open
Abstract
Sequencing microbial DNA from deep subsurface environments is complicated by a number of issues ranging from contamination to non-reproducible results. Many samples obtained from these environments - which are of great interest due to the potential to stimulate microbial methane generation - contain low biomass. Therefore, samples from these environments are difficult to study as sequencing results can be easily impacted by contamination. In this case, the low amount of sample biomass may be effectively swamped by the contaminating DNA and generate misleading results. Additionally, performing field work in these environments can be difficult, as researchers generally have limited access to and time on site. Therefore, optimizing a sampling plan to produce the best results while collecting the greatest number of samples over a short period of time is ideal. This study aimed to recommend an adequate sampling plan for field researchers obtaining microbial biomass for 16S rRNA gene sequencing, applicable specifically to low biomass oil and gas-producing environments. Forty-nine different samples were collected by filtering specific volumes of produced water from a hydraulically fractured well producing from the Niobrara Shale. Water was collected in two different sampling events 24 h apart. Four to five samples were collected from 11 specific volumes. These samples along with eight different blanks were submitted for analysis. DNA was extracted from each sample, and quantitative polymerase chain reaction (qPCR) and 16S rRNA Illumina MiSeq gene sequencing were performed to determine relative concentrations of biomass and microbial community composition, respectively. The qPCR results varied across sampled volumes, while no discernible trend correlated contamination to volume of water filtered. This suggests that collecting a larger volume of sample may not result in larger biomass concentrations or better representation of a sampled environment. Researchers could prioritize collecting many low volume samples over few high-volume samples. Our results suggest that there also may be variability in the concentration of microbial communities present in produced waters over short (i.e., hours) time scales, which warrants further investigation. Submission of multiple blanks is also vital to determining how contamination or low biomass effects may influence a sample set collected from an unknown environment.
Collapse
Affiliation(s)
- Jenna L Shelton
- Eastern Energy Resources Science Center, U.S. Geological Survey, Sacramento, CA, United States
| | - Elliott P Barnhart
- Wyoming-Montana Water Science Center, U.S. Geological Survey, Helena, MT, United States.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Leslie Ruppert
- Eastern Energy Resources Science Center, U.S. Geological Survey, Reston, VA, United States
| | - Aaron M Jubb
- Eastern Energy Resources Science Center, U.S. Geological Survey, Reston, VA, United States
| | - Madalyn S Blondes
- Eastern Energy Resources Science Center, U.S. Geological Survey, Reston, VA, United States
| | - Christina A DeVera
- Eastern Energy Resources Science Center, U.S. Geological Survey, Reston, VA, United States
| |
Collapse
|
20
|
Acharya SM, Chakraborty R, Tringe SG. Emerging Trends in Biological Treatment of Wastewater From Unconventional Oil and Gas Extraction. Front Microbiol 2020; 11:569019. [PMID: 33013800 PMCID: PMC7509137 DOI: 10.3389/fmicb.2020.569019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 01/16/2023] Open
Abstract
Unconventional oil and gas exploration generates an enormous quantity of wastewater, commonly referred to as flowback and produced water (FPW). Limited freshwater resources and stringent disposal regulations have provided impetus for FPW reuse. Organic and inorganic compounds released from the shale/brine formation, microbial activity, and residual chemicals added during hydraulic fracturing bestow a unique as well as temporally varying chemical composition to this wastewater. Studies indicate that many of the compounds found in FPW are amenable to biological degradation, indicating biological treatment may be a viable option for FPW processing and reuse. This review discusses commonly characterized contaminants and current knowledge on their biodegradability, including the enzymes and organisms involved. Further, a perspective on recent novel hybrid biological treatments and application of knowledge gained from omics studies in improving these treatments is explored.
Collapse
Affiliation(s)
- Shwetha M Acharya
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Romy Chakraborty
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Susannah G Tringe
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
21
|
Miller H, Dias K, Hare H, Borton MA, Blotevogel J, Danforth C, Wrighton KC, Ippolito JA, Borch T. Reusing oil and gas produced water for agricultural irrigation: Effects on soil health and the soil microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137888. [PMID: 32208259 DOI: 10.1016/j.scitotenv.2020.137888] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Produced water (PW) is a major waste-product of oil and gas production that some consider a viable agricultural irrigation water source. However, the presence of petroleum hydrocarbons, toxic metals and potentially high salinity of PW may be deleterious for soil health. Thus, we irrigated wheat with minimally treated PW to investigate effects on soil health, wheat growth, and the soil microbiome. Irrigation treatments included control irrigation water (IW), 1% and 5% PW dilutions (1% PW, 5% PW), and a saltwater solution with salinity equivalent to the 5% PW dilution (SW). Wheat was irrigated three times a week, for a total of 2.1 L per pot by harvest. During wheat growth, we measured plant physiological parameters, soil electrical conductivity, as well as profiled soil microbial diversity by performing 16S ribosomal ribonucleic acid (rRNA) gene analysis. Soil health parameters were measured after harvest, including chemical, biological, physical, and nutrient properties that were used to calculate an overall soil health index (SQI). SQI analysis revealed that the SW and 5% PW treatments had significantly reduced soil health as compared to the control. Furthermore, the 16S rRNA gene analysis showed that the microbial community membership and structure was significantly different between irrigation treatments, highlighting shifts in the soil microbiome which may impact soil biochemical cycling. Both the SW- and 5% PW-treated wheat had reduced yields as compared to the control. Our results indicate that irrigating wheat with minimally treated PW may result in yield decreases, as well as reducing both overall soil health and soil microbial community diversity. Future large-scale field studies are needed to determine the long-term soil health effects of PW on different soil types and crops.
Collapse
Affiliation(s)
- Hannah Miller
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Kandis Dias
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Hannah Hare
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Cloelle Danforth
- Environmental Defense Fund, Boulder, CO 80302, United States of America
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - James A Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Thomas Borch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States of America; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States of America; Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States of America.
| |
Collapse
|
22
|
McLaughlin MC, Blotevogel J, Watson RA, Schell B, Blewett TA, Folkerts EJ, Goss GG, Truong L, Tanguay RL, Argueso JL, Borch T. Mutagenicity assessment downstream of oil and gas produced water discharges intended for agricultural beneficial reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136944. [PMID: 32014773 PMCID: PMC7243347 DOI: 10.1016/j.scitotenv.2020.136944] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 05/08/2023]
Abstract
Produced water is the largest waste stream associated with oil and gas operations. This complex fluid contains petroleum hydrocarbons, heavy metals, salts, naturally occurring radioactive materials and any remaining chemical additives. In the United States, west of the 98th meridian, the federal National Pollutant Discharge Elimination System (NPDES) exemption allows release of produced water for agricultural beneficial reuse. The goal of this study was to quantify mutagenicity of a produced water NPDES release and discharge stream. We used four mutation assays in budding yeast cells that provide rate estimates for copy number variation (CNV) duplications and deletions, as well as forward and reversion point mutations. Higher mutation rates were observed at the discharge and decreased with distance downstream, which correlated with the concentrations of known carcinogens detected in the stream (e.g., benzene, radium), described in a companion study. Mutation rate increases were most prominent for CNV duplications and were higher than mutations observed in mixtures of known toxic compounds. Additionally, the samples were evaluated for acute toxicity in Daphnia magna and developmental toxicity in zebrafish. Acute toxicity was minimal, and no developmental toxicity was observed. This study illustrates that chemical analysis alone (McLaughlin et al., 2020) is insufficient for characterizing the risk of produced water NPDES releases and that a thorough evaluation of chronic toxicity is necessary to fully assess produced water for beneficial reuse.
Collapse
Affiliation(s)
- Molly C McLaughlin
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO 80523, USA
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO 80523, USA.
| | - Ruth A Watson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Baylee Schell
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States; Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Alberta T6G 2R3, Canada
| | - Erik J Folkerts
- Department of Biological Sciences, University of Alberta, Alberta T6G 2R3, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Alberta T6G 2R3, Canada; National Institute for Nanotechnology, Edmonton, Alberta T6G 2M9, Canada
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States.
| | - Thomas Borch
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO 80523, USA; Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA; Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|
23
|
Conrad CL, Ben Yin Y, Hanna T, Atkinson AJ, Alvarez PJJ, Tekavec TN, Reynolds MA, Wong MS. Fit-for-purpose treatment goals for produced waters in shale oil and gas fields. WATER RESEARCH 2020; 173:115467. [PMID: 32006805 DOI: 10.1016/j.watres.2020.115467] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/07/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Hydraulic fracturing (HF), or "fracking," is the driving force behind the "shale gas revolution," completely transforming the United States energy industry over the last two decades. HF requires that 4-6 million gallons per well (15,000-23,000 m3/well) of water be pumped underground to stimulate the release of entrapped hydrocarbons from unconventional (i.e., shale or carbonate) formations. Estimated U.S. produced water volumes exceed 150 billion gallons/year across the industry from unconventional wells alone and are projected to grow for at least another two decades. Concerns over the environmental impact from accidental or incidental release of produced water from HF wells ("U-PW"), along with evolving regulatory and economic drivers, has spurred great interest in technological innovation to enhance U-PW recycling and reuse. In this review, we analyze U-PW quantity and composition based on the latest U.S. Geographical Survey data, identify key contamination metrics useful in tracking water quality improvement in the context of HF operations, and suggest "fit-for-purpose treatment" to enhance cost-effective regulatory compliance, water recovery/reuse, and resource valorization. Drawing on industrial practice and technoeconomic constraints, we further assess the challenges associated with U-PW treatment for onshore U.S. operations. Presented are opportunities for targeted end-uses of treated U-PW. We highlight emerging technologies that may enhance cost-effective U-PW management as HF activities grow and evolve in the coming decades.
Collapse
Affiliation(s)
- Christian L Conrad
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX, 77005, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, United States
| | - Y Ben Yin
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX, 77005, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, United States
| | - Ty Hanna
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX, 77005, United States; Apache Corporation, Houston, TX, 77056, United States
| | - Ariel J Atkinson
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX, 77005, United States; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, United States
| | - Pedro J J Alvarez
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX, 77005, United States; Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, United States
| | - Thomas N Tekavec
- Shell Exploration and Production Company, Houston, TX, 77079, United States
| | - Michael A Reynolds
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX, 77005, United States; Shell Exploration and Production Company, Houston, TX, 77079, United States.
| | - Michael S Wong
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX, 77005, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, United States; Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, United States; Department of Chemistry, Rice University, Houston, TX, 77005, United States; Department of Materials Science & Nanoengineering, Rice University, Houston, TX, 77005, United States.
| |
Collapse
|
24
|
McLaughlin MC, Borch T, McDevitt B, Warner NR, Blotevogel J. Water quality assessment downstream of oil and gas produced water discharges intended for beneficial reuse in arid regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136607. [PMID: 31955100 DOI: 10.1016/j.scitotenv.2020.136607] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 05/23/2023]
Abstract
Produced water (PW) is the largest waste stream associated with oil and gas extraction and contains organics, salts, metals and radioactive materials. In the United States, west of the 98th meridian, the National Pollutant Discharge Elimination System exemption allows for release of PW to surface waters for agricultural beneficial reuse if it is "of good enough quality". Due to the complex and variable composition of PW, the downstream impacts of these releases are not fully understood. In this study, a detailed chemical analysis was conducted on a stream composed of PW released for agricultural beneficial reuse. Over 50 geogenic and anthropogenic organic chemicals not specified in the effluent limits were detected at the discharge including hydrocarbons, halogenated compounds, and surfactants. Most were removed within 15 km of the discharge due to volatilization, biodegradation, and sorption to sediment. Inorganics detected at the discharge were within regulatory effluent limits. While some inorganic species (i.e., strontium, barium and radium) decreased in concentration downstream due to co-precipitation, concentrations of many inorganic species including sodium, sulfate and boron increased due to water evaporation. Consequently, downstream water quality changes need to be considered to adequately evaluate the potential impact of discharged PW. Regulatory health thresholds for humans, livestock, and aquatic species for most chemical species present at the discharge are still lacking. As a result, toxicity tests are necessary to determine the potential health impacts to downstream users.
Collapse
Affiliation(s)
- Molly C McLaughlin
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO 80523, USA
| | - Thomas Borch
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO 80523, USA; Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA; Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, USA.
| | - Bonnie McDevitt
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nathaniel R Warner
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|
25
|
Faber AH, Annevelink MPJA, Schot PP, Baken KA, Schriks M, Emke E, de Voogt P, van Wezel AP. Chemical and bioassay assessment of waters related to hydraulic fracturing at a tight gas production site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:636-646. [PMID: 31301504 DOI: 10.1016/j.scitotenv.2019.06.354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 06/10/2023]
Abstract
Publicly available chemical assessments of hydraulic fracturing related waters are generally based on shale gas practices in the U.S. There is a lack of information on hydraulic fracturing related gas development from EU countries and more generally on other types of extractions. This research fills this knowledge gap by presenting chemical and bioassay assessments of hydraulic fracturing related waters from a tight gas development in the Netherlands. Fracturing fluid, flowback water and groundwater from surrounding aquifers before and after the actual fracturing were analysed by means of high resolution liquid chromatography tandem mass spectrometry, the Ames test and three chemical activated luciferase gene expression bioassays aimed at determining genotoxicity, oxidative stress response and polyaromatic hydrocarbon contamination. After sample enrichment a higher number of peaks can be found in both fracturing fluid and flowback samples. No clear differences in chemical composition were shown in the groundwater samples before and after hydraulic fracturing. Preliminary environmental fate data of the tentatively identified chemicals points towards persistence in water. Clear genotoxic and oxidative stress responses were found in the fracturing fluid and flowback samples. A preliminary suspect screening resulted in 25 and 36 matches in positive and negative ionisation respectively with the 338 possible suspect candidates on the list. Extensive measures relating to the handling, transport and treatment of hydraulic fracturing related waters are currently in place within the Dutch context. The results of the present study provide a scientific justification for such measures taken to avoid adverse environmental and human health impacts.
Collapse
Affiliation(s)
- Ann-Hélène Faber
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands; KWR Watercycle Research Institute, Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | - Mark P J A Annevelink
- KWR Watercycle Research Institute, Nieuwegein, the Netherlands; Department of Environmental Science, Radboud University Nijmegen, the Netherlands
| | - Paul P Schot
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | - Kirsten A Baken
- KWR Watercycle Research Institute, Nieuwegein, the Netherlands
| | - Merijn Schriks
- KWR Watercycle Research Institute, Nieuwegein, the Netherlands
| | - Erik Emke
- KWR Watercycle Research Institute, Nieuwegein, the Netherlands
| | - Pim de Voogt
- KWR Watercycle Research Institute, Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Annemarie P van Wezel
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands; KWR Watercycle Research Institute, Nieuwegein, the Netherlands
| |
Collapse
|
26
|
Wang H, Lu L, Chen X, Bian Y, Ren ZJ. Geochemical and microbial characterizations of flowback and produced water in three shale oil and gas plays in the central and western United States. WATER RESEARCH 2019; 164:114942. [PMID: 31401327 DOI: 10.1016/j.watres.2019.114942] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Limited understanding of wastewater streams produced from shale oil and gas wells impedes best practices of wastewater treatment and reuse. This study provides a comprehensive and comparative analysis of flowback and produced water from three major and newly developed shale plays (the Bakken shale, North Dakota; the Barnett shale, Texas; and the Denver-Julesburg (DJ) basin, Colorado) in central and western United States. Geochemical features that included more than 10 water quality parameters, dissolved organic matter, as well as microbial community structures were characterized and compared. Results showed that wastewater from Bakken and Barnett shales has extremely high salinity (∼295 g/L total dissolved solids (TDS)) and low organic concentration (80-252 mg/L dissolved organic carbon (DOC)). In contrast, DJ basin showed an opposite trend with low TDS (∼30 g/L) and high organic content (644 mg/L DOC). Excitation-emission matrix (EEM) fluorescence spectra demonstrated that more humic acid and fluvic acid-like organics with higher aromaticity existed in Bakken wastewater than that in Barnett and DJ basin. Microbial communities of Bakken samples were dominated by Fe (III)-reducing bacteria Geobacter, lactic acid bacteria Lactococcus and Enterococcus, and Bradyrhizobium, while DJ basin water showed higher abundance of Rhodococcus, Thermovirga, and sulfate reducing bacteria Thermotoga and Petrotoga. All these bacteria are capable of hydrocarbon degradation. Hydrogenotrophic methanogens dominated the archaeal communities in all samples.
Collapse
Affiliation(s)
- Huan Wang
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, United States; Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, United States.
| | - Lu Lu
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, United States.
| | - Xi Chen
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, United States.
| | - Yanhong Bian
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, United States.
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, United States; Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, United States.
| |
Collapse
|
27
|
McAdams BC, Carter KE, Blotevogel J, Borch T, Hakala JA. In situ transformation of hydraulic fracturing surfactants from well injection to produced water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1777-1786. [PMID: 31588952 DOI: 10.1039/c9em00153k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemical changes to hydraulic fracturing fluids (HFFs) within fractured unconventional reservoirs may affect hydrocarbon recovery and, in turn, the environmental impact of unconventional oil and gas development. Ethoxylated alcohol surfactants, which include alkyl ethoxylates (AEOs) and polyethylene glycols (PEGs), are often present in HFF as solvents, non-emulsifiers, and corrosion inhibitors. We present detailed analysis of polyethoxylates in HFF at the time of injection into three hydraulically fractured Marcellus Shale wells and in the produced water returning to the surface. Despite the addition of AEOs to the injection fluid during almost all stages, they were rarely detected in the produced water. Conversely, while PEGs were nearly absent in the injection fluid, they were the dominant constituents in the produced water. Similar numbers of ethoxylate units support downhole transformation of AEOs to PEGs through central cleavage of the ethoxylate chain from the alkyl group. We also observed a decrease in the average ethoxylate (EO) number of the PEG-EOs in the produced water over time, consistent with biodegradation during production. Our results elucidate an overlooked surfactant transformation pathway that may affect the efficacy of HFF to maximize oil and gas recovery from unconventional shale reservoirs.
Collapse
Affiliation(s)
- Brandon C McAdams
- National Energy Technology Laboratory, United States Department of Energy, 626 Cochrans Mill Road, Pittsburgh, Pennsylvania 15236, USA.
| | | | | | | | | |
Collapse
|
28
|
Sun C, Zhang Y, Alessi DS, Martin JW. Nontarget profiling of organic compounds in a temporal series of hydraulic fracturing flowback and produced waters. ENVIRONMENT INTERNATIONAL 2019; 131:104944. [PMID: 31284105 DOI: 10.1016/j.envint.2019.104944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Hydraulic fracturing (HF) flowback and produced water (FPW) can be toxic to aquatic life but its chemical content is largely unknown, variable and complex. Seven FPW samples were collected from a HF operation in the Duvernay Formation (Alberta, Canada) over 30 days of flowback and characterized by a nontarget workflow based on high performance liquid chromatography - high resolution mass spectrometry (HRMS). A modified Kendrick mass defect plot and MS/MS spectral interpretation revealed seven series of homologues composed of ethylene oxide (i.e. -CH2CH2O-), among which a series of aldehydes was proposed as degradation products of polyethylene glycols, and two series of alkyl ethoxylate carboxylates could be proprietary HF additives. Many other ions were confidently assigned a formula by accurate mass measurement and were subsequently prioritized for identification by matching to records in ChemSpider and the US EPA's CompTox Chemistry Dashboard. Quaternary ammonium compounds, amine oxides, organophosphorous compounds, phthalate diesters and hydroxyquinoline were identified with high confidence by MS/MS spectra (Level 3), matching to reference spectra in MassBank (Level 2) or to authentic standards (Level 1). Temporal trends showed that most of the compounds declined in abundance over the first nine days of flowback, except for phthalate diesters and hydroxyquinoline that were still observed on Day 30 and had disappearance half-lives of 61 and 91 days, respectively. All the compounds followed first-order disappearance kinetics in flowback, except for polyoxygenated acids which followed second-order kinetics. This analysis and the workflow, based largely on public on-line databases, enabled profiling of complex organic compounds in HF-FPW, and will likely be useful for further understanding the toxicity and chemical fate of HF-FPW.
Collapse
Affiliation(s)
- Chenxing Sun
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton AB T6G 2G3, Canada
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton AB T6G 2G3, Canada
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton AB T6G 2E3, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton AB T6G 2G3, Canada; Department of Environmental Sciences and Analytical Chemistry, Stockholm University, Stockholm 10691, Sweden.
| |
Collapse
|
29
|
Liden T, Carlton DD, Miyazaki S, Otoyo T, Schug KA. Comparison of the degree of fouling at various flux rates and modes of operation using forward osmosis for remediation of produced water from unconventional oil and gas development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:73-80. [PMID: 31026645 DOI: 10.1016/j.scitotenv.2019.04.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Driven by increased energy demands and technological advancements, the energy landscape of the United States has been changed by the expansion of unconventional oil and gas extraction. Unconventional development requires well stimulation, which uses millions of gallons of water per well and generates billions of gallons of wastewater annually. The waste matrix, referred to as produced water, has proven to be challenging to treat due to the complex physical, chemical, and biological composition, which can change over the lifetime of a production well. Here, forward osmosis was used as a remediation technique to extract fresh water from produced water procured from the Permian Basin region of west Texas. These data examine the durability of thin-film hollow-fiber membranes by determining how quickly the membranes irreversibly fouled at various flux rates during two modes of operation: a) active layer in contact with the draw solution (AL-DS); and b) active layer in contact with the feed solution (AL-FS). Membranes used in AL-DS mode fouled faster than their counterparts used in AL-FS mode. Additionally, membranes used with higher flux rates fouled more quickly than those used under low flux conditions. Ultimately, it was determined that produced water will require pretreatment prior to being concentrated using forward osmosis.
Collapse
Affiliation(s)
- Tiffany Liden
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA
| | - Doug D Carlton
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA; Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Shinji Miyazaki
- Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka 416-8501, Japan
| | - Takehiko Otoyo
- Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka 416-8501, Japan
| | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA; Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
30
|
Pretreatment Techniques for Produced Water with Subsequent Forward Osmosis Remediation. WATER 2019. [DOI: 10.3390/w11071437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Unconventional oil and gas extraction is on the rise across the United States and comprises an integral component in meeting the nation’s energy needs. The primary by-product of this industrious process is produced water, which is a challenging matrix to remediate because of its complex physical and chemical composition. Forward osmosis is a viable option to treat high-salinity produced water; however, fouling has been an issue. This study aimed to treat produced water before using forward osmosis as a remediation option. Trials consisted of a series of five experiments in order to evaluate the performance of the membrane. Samples were treated by centrifugation, activated carbon, filtration, ferric chloride, as well as coagulants and a polymer. It can be concluded that forward osmosis can be used to extract water from high-salinity oil field brines and produced water, and that pretreating the produced water decreased the tendency for fouling. The pretreatment with the overall best performance was activated carbon, which also yielded the lowest total organic carbon concentrations of 1.9 mg/L. During remediation trials using produced water pretreated with activated carbon as the feed solution, there was a 14% decrease in flux over the course of the 7 h trials. The membrane performance was restored after washing.
Collapse
|
31
|
Guyader ME, Warren LD, Green E, Butt C, Ivosev G, Kiesling RL, Schoenfuss HL, Higgins CP. Prioritizing potential endocrine active high resolution mass spectrometry (HRMS) features in Minnesota lakewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:814-825. [PMID: 30921715 DOI: 10.1016/j.scitotenv.2019.02.448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/08/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Liquid chromatography high-resolution mass spectrometry (LC-HRMS) shows great potential for expanding our understanding of relevant unknown chemical components present within complex environmental mixtures. This study identified potentially endocrine active components within Minnesota lakewater by prioritizing LC-HRMS features uniquely present at sunfish spawning habitats where male fish showed signs of estrogen agonism. Porewater samples from four locations within the same lake were analyzed using liquid chromatography quadrupole time of flight mass spectrometry (LC-QToF/MS) with positive (ESI+) and negative (ESI-) electrospray ionization. Plasma vitellogenin concentrations of captured male sunfish was used to designate sites as either endocrine active (ACT; 2 sites) or reference (REF; 2 sites). Assuming unique chemical presence at active sites contributed to endocrine activity, features at significantly higher intensities (p-value < 0.05, t-value > t-critical, log-fold change > 0.1; equal variance t-test of log2 transformed data) in ACT sites were then compiled into a suspect search list for feature identification. Adducts and isotopes of prioritized features were deprioritized using pattern recognizing algorithms using mass, retention time, and intensity. Feature identities were reported according to established confidence metrics using spectral libraries and elemental composition algorithms. This LC-HRMS approach identified a number of features omitted by targeted analysis with higher relative abundances in ACT sites, including plant essential oils, fatty acids, and mycotoxins. Multivariate analysis determined whether features were either present at both sites (AB) or unique to individual ACT sites (A or B). Detection frequency across datasets indicated bias in feature prioritization influenced by the chosen sampling method and sample acquisition mode. The majority of features prioritized by this workflow remain tentatively identified or unidentified masses of interest, reflective of current limitations in shared spectral libraries for soft ionization analyses. Strategies similar to this workflow have the potential to reduce bias in database-driven toxicological prioritization frameworks.
Collapse
|
32
|
Hanson AJ, Luek JL, Tummings SS, McLaughlin MC, Blotevogel J, Mouser PJ. High total dissolved solids in shale gas wastewater inhibit biodegradation of alkyl and nonylphenol ethoxylate surfactants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:1094-1103. [PMID: 31018450 DOI: 10.1016/j.scitotenv.2019.03.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Hydraulic fracturing fluids are injected into unconventional oil and gas systems to stimulate hydrocarbon production, returning to the surface in flowback and produced waters containing a complex mixture of xenobiotic additives and geogenic compounds. Nonionic polyethoxylates are commonly added surfactants that act as weatherizers, emulsifiers, wetting agents, and corrosion inhibitors in hydraulic fracturing fluid formulations. Understanding the biodegradability of these ubiquitous additives is critical for produced water pre-treatment prior to reuse and for improving treatment trains for external beneficial reuse. The objective of this study was to determine the effect of produced water total dissolved solids (TDS) from an unconventional natural gas well on the aerobic biodegradation of alkyl ethoxylate and nonylphenol ethoxylate surfactants. Changes in surfactant concentrations, speciation and metabolites, as well as microbial community composition and activity were quantified over a 75-day aerobic incubation period. Alkyl ethoxylates (AEOs) were degraded faster than nonylphenol ethoxylates (NPEOs), and both compound classes and bulk organic carbon biodegraded slower in TDS treatments (10 g L-1, 40 g L-1) as compared to controls. Short-chain ethoxylates were more rapidly biodegraded than longer-chain ethoxylates, and changes in the relative abundance of metabolites including acetone, alcohols, and carboxylate and aldehyde intermediates of alkyl units indicated metabolic pathways may shift in the presence of higher produced water TDS. Our key finding that polyethoxylated alcohol surfactant additives are less labile at high TDS has important implications for produced water management, as these fluids are increasingly recycled for beneficial reuse in hydraulic fracturing fluids and other purposes.
Collapse
Affiliation(s)
- Andrea J Hanson
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States; Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824, United States
| | - Jenna L Luek
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824, United States
| | - Shantal S Tummings
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Molly C McLaughlin
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Paula J Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824, United States.
| |
Collapse
|
33
|
Liden T, Carlton DD, Miyazaki S, Otoyo T, Schug KA. Forward osmosis remediation of high salinity Permian Basin produced water from unconventional oil and gas development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:82-90. [PMID: 30408671 DOI: 10.1016/j.scitotenv.2018.10.325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
Unconventional oil and gas operations are on the rise, and they are an integral component to meeting the nation's energy needs. Produced water is the primary by-product of oil and gas operations, and it has proven challenging to treat to date. The aim of this study was to evaluate the feasibility of using forward osmosis with thin-film composite hollow fiber membranes as a remediation option for produced water with high total dissolved solids levels from the Permian Basin. Trials consisted of a series of 5 experiments in order to evaluate the performance of the membrane. Three PW samples, each from different locations, were used to conduct the series of experiments and compare the performance of the membranes on samples with TDS levels ranging from 16,000 to 210,000 mg/L. It was concluded that forward osmosis can be used to extract water from high salinity oil field brines and PW. Flux decreased over the course of the trials due to a combination of membrane fouling, concentration polarization, and temperature fluctuations. The flux of the PW was similar to the flux measured for the PW mimic with small difference due to the influence of activity on the osmotic pressure. The flux was also influenced by temperature and the linear velocity of the feed solution and draw solution.
Collapse
Affiliation(s)
- Tiffany Liden
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA
| | - Doug D Carlton
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA; Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Shinji Miyazaki
- Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka 416-8501, Japan
| | - Takehiko Otoyo
- Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka 416-8501, Japan
| | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA; Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
34
|
Rogers JD, Thurman EM, Ferrer I, Rosenblum JS, Evans MV, Mouser PJ, Ryan JN. Degradation of polyethylene glycols and polypropylene glycols in microcosms simulating a spill of produced water in shallow groundwater. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:256-268. [PMID: 30318550 DOI: 10.1039/c8em00291f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polyethylene glycols (PEGs) and polypropylene glycols (PPGs) are frequently used in hydraulic fracturing fluids and have been detected in water returning to the surface from hydraulically fractured oil and gas wells in multiple basins. We identified degradation pathways and kinetics for PEGs and PPGs under conditions simulating a spill of produced water to shallow groundwater. Sediment-groundwater microcosm experiments were conducted using four produced water samples from two Denver-Julesburg Basin wells at early and late production. High-resolution mass spectrometry was used to identify the formation of mono- and di-carboxylated PEGs and mono-carboxylated PPGs, which are products of PEG and PPG biodegradation, respectively. Under oxic conditions, first-order half-lives were more rapid for PEGs (<0.4-1.1 d) compared to PPGs (2.5-14 d). PEG and PPG degradation corresponded to increased relative abundance of primary alcohol dehydrogenase genes predicted from metagenome analysis of the 16S rRNA gene. Further degradation was not observed under anoxic conditions. Our results provide insight into the differences between the degradation rates and pathways of PEGs and PPGs, which may be utilized to better characterize shallow groundwater contamination following a release of produced water.
Collapse
Affiliation(s)
- Jessica D Rogers
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, 607 UCB, Boulder, CO 80309, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Stringfellow WT, Camarillo MK. Flowback verses first-flush: new information on the geochemistry of produced water from mandatory reporting. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:370-383. [PMID: 30520488 DOI: 10.1039/c8em00351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Unconventional oil and gas development uses the subsurface injection of large amounts of a variety of industrial chemicals, and there are concerns about the return of these chemical to the surface with water produced with oil and gas from stimulated wells. Produced water, including any flowback of injected fluids, must be managed so as to protect human health and the environment, and understanding the chemistry of produced water from stimulated wells is necessary to ensure the safe management of produced water. In 2014, California instituted mandatory reporting for all well stimulations, including sampling produced water two times and comprehensive chemical characterization of fluids injected and fluids recovered from stimulated wells. In this study, we analyzed data from mandatory reporting with the objective of closing previously identified data gaps concerning oil-field chemical practices and the nature of flowback and produced water from stimulated wells. It was found that the plug-flow conceptual model of flowback developed in shale formations, where salinity increases over time as produced water is extracted, was not appropriate for characterizing produced water from unconventional wells in these oil reservoirs, which are predominately diatomite and sandstones. In these formations stimulation caused a "first-flush" phenomena, where salts and metals were initially high and then decreased in concentration over time, as more produced water was extracted. Although widely applied to meet regulatory requirements, total carbohydrate measurement was not found to be a good chemical indicator of hydraulic fracturing flowback. Mandatory reporting closed data-gaps concerning chemical use, provided new information on acid treatments, and allowed more detailed analysis of hydraulic fracturing practices, including comparison of water use by geological formation.
Collapse
Affiliation(s)
- William T Stringfellow
- Ecological Engineering Research Program, School of Engineering & Computer Science, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | | |
Collapse
|
36
|
Nell M, Helbling DE. Exploring matrix effects and quantifying organic additives in hydraulic fracturing associated fluids using liquid chromatography electrospray ionization mass spectrometry. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:195-205. [PMID: 29790879 DOI: 10.1039/c8em00135a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydraulic fracturing (HF) operations utilize millions of gallons of water amended with chemical additives including biocides, corrosion inhibitors, and surfactants. Fluids injected into the subsurface return to the surface as wastewaters, which contain a complex mixture of additives, transformation products, and geogenic chemical constituents. Quantitative analytical methods are needed to evaluate wastewater disposal alternatives or to conduct adequate exposure assessments. However, our narrow understanding of how matrix effects change the ionization efficiency of target analytes limits the quantitative analysis of polar to semi-polar HF additives by means of liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS). To address this limitation, we explored the ways in which matrix chemistry influences the ionization of seventeen priority HF additives with a modified standard addition approach. We then used the data to quantify HF additives in HF-associated fluids. Our results demonstrate that HF additives generally exhibit suppressed ionization in HF-associated fluids, though HF additives that predominantly form sodiated adducts exhibit significantly enhanced ionization in produced water samples, which is largely the result of adduct shifting. In a preliminary screening, we identified glutaraldehyde and 2-butoxyethanol along with homologues of benzalkonium chloride (ADBAC), polyethylene glycol (PEG), and polypropylene glycol (PPG) in HF-associated fluids. We then used matrix recovery factors to provide the first quantitative measurements of individual homologues of ADBAC, PEG, and PPG in HF-associated fluids ranging from mg L-1 levels in hydraulic fracturing fluid to low μg L-1 levels in PW samples. Our approach is generalizable across sample types and shale formations and yields important data to evaluate wastewater disposal alternatives or implement exposure assessments.
Collapse
Affiliation(s)
- Marika Nell
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, USA.
| | | |
Collapse
|
37
|
Luek JL, Harir M, Schmitt-Kopplin P, Mouser PJ, Gonsior M. Organic sulfur fingerprint indicates continued injection fluid signature 10 months after hydraulic fracturing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:206-213. [PMID: 30303509 DOI: 10.1039/c8em00331a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydraulic fracturing requires the injection of large volumes of fluid to extract oil and gas from low permeability unconventional resources (e.g., shale, coalbed methane), resulting in the production of large volumes of highly complex and variable waste fluids. Shale gas fluid samples were collected from two hydraulically fractured wells in Morgantown, WV, USA at the Marcellus Shale Energy and Environment Laboratory (MSEEL) and analyzed using ultrahigh resolution mass spectrometry to investigate the dissolved organic sulfur (DOS) pool. Using a non-targeted approach, ions assigned DOS formulas were analyzed to identify dominant DOS classes, describe their temporal trends and their implications, and describe the molecular characteristics of the larger DOS pool. The average molecular weight of organic sulfur compounds in flowback decreased and was lowest in produced waters. The dominant DOS classes were putatively assigned to alcohol sulfate and alcohol ethoxysulfate surfactants, likely injected as fracturing fluid additives, on the basis of exact mass and homolog distribution matching. This DOS signature was identifiable 10 months after the initial injection of hydraulic fracturing fluid, and an absence of genes that code for alcohol ethoxysulfate degrading proteins (e.g., sulfatases) in the shale well genomes and metagenomes support that these additives are not readily degraded biologically and may continue to act as a chemical signature of the injected fluid. Understanding the diversity, lability, and fate of organic sulfur compounds in shale wells is important for engineering productive wells and preventing gas souring as well as understanding the consequences of unintended fluid release to the environment. The diversity of DOS, particularly more polar compounds, needs further investigation to determine if the identified characteristics and temporal patterns are unique to the analyzed wells or represent broader patterns found in other formations and under other operating conditions.
Collapse
Affiliation(s)
- Jenna L Luek
- University of New Hampshire, Department of Civil and Environmental Engineering, Durham, NH 03825, USA.
| | | | | | | | | |
Collapse
|
38
|
Water Availability Assessment of Shale Gas Production in the Weiyuan Play, China. SUSTAINABILITY 2019. [DOI: 10.3390/su11030940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Innovations and improvements in hydraulic fracturing and horizontal well technologies have contributed to the success of the shale gas industry; however, the industry is also challenged by freshwater use and environmental health issues, and this makes precise quantification of water consumption important. The objective of this study was to better understand water sustainability and availability of the projected shale gas from 2018 to 2030 in the Weiyuan play, China. The water footprint framework was used to quantify the potential water use and environmental impacts on different time scales. The results showed that the water use per well ranged from 11,300 to 60,660 m3, with a median of 36,014 m3, totaling ~ 3.44 Mm3 for 97 wells. Yearly evaluation results showed that the gray water footprint was the main contributor and accounted for 83.82% to 96.76%, which was dependent on the different treatment percentage scenario. The monthly environmental impact results indicated that the annual streamflow statistics were more likely to prevent water withdrawal. Water quality issues may be alleviated through recycling and retreatment measures that improve current waste water management strategies. Resource regulators should manage their water resources by matching water demand to water availability or replenishment.
Collapse
|
39
|
Kose Mutlu B, Ozgun H, Ersahin ME, Kaya R, Eliduzgun S, Altinbas M, Kinaci C, Koyuncu I. Impact of salinity on the population dynamics of microorganisms in a membrane bioreactor treating produced water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1080-1089. [PMID: 30235594 DOI: 10.1016/j.scitotenv.2018.07.386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/11/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Biomass characteristics may change subject to a salinity increase when treating high strength wastewater. In this study, the impact of salinity in a membrane bioreactor (MBR) was investigated for the treatment of produced water (PW). MBR was operated as a pre-treatment prior to nanofiltration (NF) and reverse osmosis (RO). Mixed PW, that was originated from different oil, gas, and oil-gas wells, were subjected to pre-treatment for 146 days including three different operational phases: Low-salinity (~10 mS/cm), gradual increased salinity (10-40 mS/cm) and high salinity (~40 mS/cm). The results of this study showed that microorganisms could adapt using real wastewater and treat PW up to a certain level of the salinity. At high salinity levels of PW, the floc structure started to be disrupted and membrane fouling was accelerated. PCR-DGGE analysis confirmed the changes in microbial communities' composition in relation with high salinity. The results of the final treatment experiments presented that NF and RO treatment produced high-quality effluents that could be suitable for reuse.
Collapse
Affiliation(s)
- Borte Kose Mutlu
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, 34469, Maslak, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| | - Hale Ozgun
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, 34469, Maslak, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Mustafa Evren Ersahin
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, 34469, Maslak, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Recep Kaya
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, 34469, Maslak, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Selvihan Eliduzgun
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, 34469, Maslak, Istanbul, Turkey
| | - Mahmut Altinbas
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, 34469, Maslak, Istanbul, Turkey
| | - Cumali Kinaci
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, 34469, Maslak, Istanbul, Turkey
| | - Ismail Koyuncu
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, 34469, Maslak, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| |
Collapse
|
40
|
Zhang X, Zhang D, Huang Y, Zhang K, Lu P. Simultaneous removal of organic matter and iron from hydraulic fracturing flowback water through sulfur cycling in a microbial fuel cell. WATER RESEARCH 2018; 147:461-471. [PMID: 30343202 DOI: 10.1016/j.watres.2018.10.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/17/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
The high volume of flowback water (FW) generated during shale gas exploitation is highly saline, and contains complex organics, iron, heavy metals, and sulfate, thereby posing a significant challenge for the environmental management of the unconventional natural gas industry. Herein, the treatment of FW in a sulfur-cycle-mediated microbial fuel cell (MFC) is reported. Simultaneous removal efficiency for chemical oxygen demand (COD) and total iron from a synthetic FW was achieved, at 72 ± 7% and 90.6 ± 8.7%, respectively, with power generation of 2667 ± 529 mW/m3 in a closed-circuit MFC (CC-MFC). However, much lower iron removal (38.5 ± 4.5%) occurred in the open-circuit MFC (OC-MFC), where the generated FeS fine did not precipitate because of sulfide supersaturation. Enrichment of both sulfur-oxidizing bacteria (SOB), namely Helicobacteraceae in the anolyte and the electricity-producing bacteria, namely Desulfuromonadales on the anode likely accelerated the sulfur cycle through the biological and bioelectrochemical oxidation of sulfide in the anodic chamber, and effectively increased the molar ratio of total iron to sulfide, thus alleviating sulfide supersaturation in the closed circuitry. Enrichment of SOB in the anolyte might be attributed to the formation of FeS electricity wire and likely contributed to the stable high power generation. Bacteroidetes, Firmicutes, Proteobacteria, and Chloroflexi enriched in the anodic chamber were responsible for degrading complex organics in the FW. The treatment of real FW in the sulfur-cycle-mediated MFC also achieved high efficiency. This research provides a promising approach for the treatment of wastewater containing organic matters, heavy metals, and sulfate by using a sulfur-cycle-mediated MFC.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China.
| | - Yongkui Huang
- Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Kai Zhang
- Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
41
|
Oetjen K, Blotevogel J, Borch T, Ranville JF, Higgins CP. Simulation of a hydraulic fracturing wastewater surface spill on agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:229-234. [PMID: 30029106 DOI: 10.1016/j.scitotenv.2018.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Hydraulic fracturing wastewaters (HFWWs) contain synthetic organic components and metal ions derived from the formation waters. The risk of spills of HFWW that could impact soil quality and water resources is of great concern. The ability of synthetic components, such as surfactants, in HFWW to be transported through soil and to mobilize metals in soil was examined using column experiments. A spill of HFWW was simulated in bench scale soil column experiments that used an agricultural soil and simulated seven 10-year rain events representing a total of one year's worth of precipitation for Weld County, Colorado. Although no surfactants or their transformation products were found in leachate samples, copper, lead, and iron were mobilized at environmentally relevant concentrations. In general, after the initial spill event, metal concentrations increased until the fourth rain event before decreasing. Results from this study suggest that transport of metals was caused by the high concentrations of salts present in HFWW. This is the first study utilizing authentic HFWWs to investigate the transport of surfactants and their effect on metal mobilization. Importantly, a significant decrease in the water infiltration rate of the soil was observed, leading to the point where water was unable to percolate through due to increasing salinity, potentially having a severe impact on crop production.
Collapse
Affiliation(s)
- Karl Oetjen
- Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Thomas Borch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - James F Ranville
- Department of Chemistry, Colorado School of Mines, Golden, CO 80402, USA
| | - Christopher P Higgins
- Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA.
| |
Collapse
|
42
|
Hull NM, Rosenblum JS, Robertson CE, Harris JK, Linden KG. Succession of toxicity and microbiota in hydraulic fracturing flowback and produced water in the Denver-Julesburg Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:183-192. [PMID: 29981518 DOI: 10.1016/j.scitotenv.2018.06.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 05/25/2023]
Abstract
Hydraulic fracturing flowback and produced water (FPW) samples were analyzed for toxicity and microbiome characterization over 220 days for a horizontally drilled well in the Denver-Julesberg (DJ) Basin in Colorado. Cytotoxicity, mutagenicity, and estrogenicity of FPW were measured via the BioLuminescence Inhibition Assay (BLIA), Ames II mutagenicity assay (AMES), and Yeast Estrogen Screen (YES). Raw FPW stimulated bacteria in BLIA, but were cytotoxic to yeast in YES. Filtered FPW stimulated cell growth in both BLIA and YES. Concentrating 25× by solid phase extraction (SPE) revealed significant toxicity throughout well production by BLIA, toxicity during the first 55 days of flowback by YES, and mutagenicity by AMES. The selective pressures of fracturing conditions (including toxicity) affected bacterial and archaeal communities, which were characterized by 16S rRNA gene V4V5 region sequencing. Conditions selected for thermophilic, anaerobic, halophilic bacteria and methanogenic archaea from the groundwater used for fracturing fluid, and from the native shale community. Trends in toxicity echoed the microbial community, which indicated distinct stages of early flowback water, a transition stage, and produced water. Biota in another sampled DJ Basin horizontal well resembled similarly aged samples from this well. However, microbial signatures were unique compared to samples from DJ Basin vertical wells, and wells from other basins. These data can inform treatability, reuse, and management decisions specific to the DJ Basin to minimize adverse environmental health and well production outcomes.
Collapse
Affiliation(s)
- Natalie M Hull
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, Boulder, CO 80303, USA.
| | - James S Rosenblum
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, Boulder, CO 80303, USA.
| | - Charles E Robertson
- University of Colorado School of Medicine, Anschutz Campus, Division of Infectious Disease, Aurora, CO 80405, USA.
| | - J Kirk Harris
- University of Colorado School of Medicine, Anschutz Campus, Department of Pediatrics, Aurora, CO 80405, USA.
| | - Karl G Linden
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, Boulder, CO 80303, USA.
| |
Collapse
|
43
|
Liden T, Santos IC, Hildenbrand ZL, Schug KA. Treatment modalities for the reuse of produced waste from oil and gas development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:107-118. [PMID: 29936154 DOI: 10.1016/j.scitotenv.2018.05.386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 05/27/2023]
Abstract
Unconventional oil and gas development is achieved through a series of sub-processes, which utilize large amounts of water, proppant, and chemical additives to retrieve sequestered hydrocarbons from low permeability petroliferous strata. As a result, a large amount of wastewater is produced, which is traditionally disposed of via subsurface injection into non-productive stratum throughout the country. However, this method of waste management has been linked to the induction of seismic events in a number of regions across North America, calling into question the environmental stewardship and sustainability of subsurface waste disposal. Advancements in water treatment technologies have improved the efficacy and financial viability of produced water recycling for beneficial reuse in the oil and gas sector. This review will cover the various treatment options that are currently being utilized in shale energy basins to remove organic, inorganic, and biological constituents, as well as some emerging technologies that are designed to remove pertinent contaminants that would otherwise preclude the reuse of produced water for production well stimulation.
Collapse
Affiliation(s)
- Tiffany Liden
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA
| | - Inês C Santos
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA; Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Zacariah L Hildenbrand
- Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, USA; Inform Environmental, LLC, 6060 N. Central Expressway, Suite 500, Dallas, TX 75206, USA.
| | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA; Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
44
|
Davarpanah A. Feasible analysis of reusing flowback produced water in the operational performances of oil reservoirs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35387-35395. [PMID: 30343374 DOI: 10.1007/s11356-018-3506-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Water reuse is considered one of the most efficient and optimum ways in petroleum industries to address the water scarcity problem. The effluents which are made by the petroleum operations are supposed to be one of the hazardous materials when they are discharged to the environment. The objective of this study is to measure the volume of the required water for the operational performances of the studied oil field. To do this, the necessary water and the volume of provided treated water for the waterflooding, tertiary flooding, and hydraulic fracturing procedures are appropriately measured and by the utilization of photo-Fenton/flotation are administered to remove the oil droplets. According to the observational measurements, it is clarified that hydraulic fracturing has supplied approximately 93% of its required water by the treatment of flowback water and it virtually eliminated the necessity of fresh water from local or domestic water resources. Moreover, the total freshwater that has been saved in this oil field is investigated about 80% of the total required water for their performances. Consequently, the lower need of fresh water from local resources would reduce the unnecessary expenses to provide this volume of water and would save fresh water for about 2750 inhabitants for 1 year to overcome the issue of water scarcity in the world.
Collapse
Affiliation(s)
- Afshin Davarpanah
- Department of Petroleum Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| |
Collapse
|
45
|
Hildenbrand ZL, Santos IC, Liden T, Carlton DD, Varona-Torres E, Martin MS, Reyes ML, Mulla SR, Schug KA. Characterizing variable biogeochemical changes during the treatment of produced oilfield waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1519-1529. [PMID: 29710650 DOI: 10.1016/j.scitotenv.2018.03.388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
At the forefront of the discussions about climate change and energy independence has been the process of hydraulic fracturing, which utilizes large amounts of water, proppants, and chemical additives to stimulate sequestered hydrocarbons from impermeable subsurface strata. This process also produces large amounts of heterogeneous flowback and formation waters, the subsurface disposal of which has most recently been linked to the induction of anthropogenic earthquakes. As such, the management of these waste streams has provided a newfound impetus to explore recycling alternatives to reduce the reliance on subsurface disposal and fresh water resources. However, the biogeochemical characteristics of produced oilfield waste render its recycling and reutilization for production well stimulation a substantial challenge. Here we present a comprehensive analysis of produced waste from the Eagle Ford shale region before, during, and after treatment through adjustable separation, flocculation, and disinfection technologies. The collection of bulk measurements revealed significant reductions in suspended and dissolved constituents that could otherwise preclude untreated produced water from being utilized for production well stimulation. Additionally, a significant step-wise reduction in pertinent scaling and well-fouling elements was observed, in conjunction with notable fluctuations in the microbiomes of highly variable produced waters. Collectively, these data provide insight into the efficacies of available water treatment modalities within the shale energy sector, which is currently challenged with improving the environmental stewardship of produced water management.
Collapse
Affiliation(s)
- Zacariah L Hildenbrand
- Affiliate of the Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, United States; Inform Environmental, LLC, Dallas, TX 75206, United States.
| | - Inês C Santos
- Affiliate of the Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, United States; Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Tiffany Liden
- Affiliate of the Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, United States; Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Doug D Carlton
- Affiliate of the Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, United States; Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Emmanuel Varona-Torres
- Affiliate of the Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, United States; Inform Environmental, LLC, Dallas, TX 75206, United States
| | - Misty S Martin
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Michelle L Reyes
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Safwan R Mulla
- Affiliate of the Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Kevin A Schug
- Affiliate of the Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, United States; Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States.
| |
Collapse
|