1
|
Schönrath I, Schmidtkunz C, Küpper K, Weber T, Leng G, Kolossa-Gehring M. Exposure of young German adults to the anti-dandruff agent climbazole from 2002 to 2022: Analysis of specific biomarkers in urinary samples. CHEMOSPHERE 2024:143611. [PMID: 39447771 DOI: 10.1016/j.chemosphere.2024.143611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The fungicide climbazole is mainly used as an anti-dandruff (AD) agent in cosmetics, such as shampoos or other hair care products. Consequently, an exposure of the general population seems likely because many people suffer from dandruff. We have analyzed urine samples from the German Environmental Specimen Bank (ESB) for two specific climbazole biomarkers, namely (OH)2-climbazole and cx-OH-climbazole, in samples collected in the years 2002, 2007, 2012, 2017 and 2022. (OH)2-Climbazole was determined diastereoselectively, hence three analytes are discussed ((OH)2-climbazole 1, (OH)2-climbazole 2 and cx-OH-climbazole). The study population consisted of 300 students (150 male, 150 female) aged between 20 and 29 at the time of sampling from Halle/Saale in Germany. Most samples under scrutiny did not contain any climbazole metabolites in levels above the limit of quantification (LOQ, 0.5 μg/L for either analyte), only in 16 samples at least one analyte could be quantitated. Even the sample with the highest metabolite concentrations (10.23 μg/L (OH)2-climbazole and 2.53 μg/L cx-OH-climbazole) barely reached the urinary concentrations found in an excretion kinetics study after the typical application of a climbazole-containing shampoo in three volunteers. As a result, estimated daily intakes (max. 1.8 μg/kg bw/d) lay below the subchronic NOAEL (15 mg/kg bw/d) and NOEL (5 mg/kg bw/d) by a factor of more than 8300 and 2700, respectively. The evaluation of the climbazole burden of the general population gives valuable insights for the authorities on the effect of legal restrictions.
Collapse
Affiliation(s)
- Isabell Schönrath
- Currenta GmbH & Co. OHG, Institute of Biomonitoring, 51368 Leverkusen, Germany.
| | | | - Katja Küpper
- Currenta GmbH & Co. OHG, Institute of Biomonitoring, 51368 Leverkusen, Germany
| | - Till Weber
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany.
| | - Gabriele Leng
- Currenta GmbH & Co. OHG, Institute of Biomonitoring, 51368 Leverkusen, Germany.
| | | |
Collapse
|
2
|
Dimitrakopoulou ME, Karvounis M, Marinos G, Theodorakopoulou Z, Aloizou E, Petsangourakis G, Papakonstantinou M, Stoitsis G. Comprehensive analysis of PFAS presence from environment to plate. NPJ Sci Food 2024; 8:80. [PMID: 39369000 PMCID: PMC11455986 DOI: 10.1038/s41538-024-00319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose an emerging environmental risk impacting food products and ecosystems. This study analyzes over 150,000 entries from food safety authorities and scientific publications from 2017 onwards. Our findings show that fish & seafood, and biota have the highest PFAS concentrations due to environmental contamination and bioaccumulation. Surface water samples also frequently contain PFAS, raising concerns about long-term ecological and human health effects. Comprehensive strategies are essential to mitigate these risks.
Collapse
|
3
|
Medina H, Farmer C. Current Challenges in Monitoring Low Contaminant Levels of Per- and Polyfluoroalkyl Substances in Water Matrices in the Field. TOXICS 2024; 12:610. [PMID: 39195712 PMCID: PMC11358922 DOI: 10.3390/toxics12080610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
The Environmental Protection Agency (EPA) of the United States recently released the first-ever federal regulation on per- and polyfluoroalkyl substances (PFASs) for drinking water. While this represents an important landmark, it also brings about compliance challenges to the stakeholders in the drinking water industry as well as concerns to the general public. In this work, we address some of the most important challenges associated with measuring low concentrations of PFASs in drinking water in the field in real drinking water matrices. First, we review the "continuous monitoring for compliance" process laid out by the EPA and some of the associated hurdles. The process requires measuring, with some frequency, low concentrations (e.g., below 2 ppt or 2 ng/L) of targeted PFASs, in the presence of many other co-contaminants and in various conditions. Currently, this task can only (and it is expected to) be accomplished using specific protocols that rely on expensive, specialized, and laboratory-scale instrumentation, which adds time and increases cost. To potentially reduce the burden, portable, high-fidelity, low-cost, real-time PFAS sensors are desirable; however, the path to commercialization of some of the most promising technologies is confronted with many challenges, as well, and they are still at infant stages. Here, we provide insights related to those challenges based on results from ab initio and machine learning studies. These challenges are mainly due to the large amount and diversity of PFAS molecules and their multifunctional behaviors that depend strongly on the conditions of the media. The impetus of this work is to present relevant and timely insights to researchers and developers to accelerate the development of suitable PFAS monitoring systems. In addition, this work attempts to provide water system stakeholders, technicians, and even regulators guidelines to improve their strategies, which could ultimately translate in better services to the public.
Collapse
Affiliation(s)
- Hector Medina
- School of Engineering, Liberty University, Lynchburg, VA 24515, USA
| | | |
Collapse
|
4
|
Zanni S, Cammalleri V, D'Agostino L, Protano C, Vitali M. Occurrence of pharmaceutical residues in drinking water: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34544-8. [PMID: 39103588 DOI: 10.1007/s11356-024-34544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
The aim of the present paper was to give a complete picture on the drinking water contamination by pharmaceutical residues all over the world. For this purpose, a systematic review was carried out for identifying all available research reporting original data resulting by sampling campaign and analysis of "real" drinking water samples to detect pharmaceutical residues. The investigated databases were PubMed, Scopus, and Web of Science. A total of 124 studies were included; among these, 33 did not find target analytes (all below the limit of detection), while the remaining 91 studies reported the presence for one or more compounds, in concentrations ranging from a few units to a few tens of nanograms. The majority of the studies were performed in Europe and the most represented categories were nonsteroidal anti-inflammatory drugs and analgesics. The most common analytical approach used is the preparation and analysis of the samples by solid-phase extraction and chromatography coupled to mass spectrometry. The main implications resulting from our review are the need for (a) further studies aimed to allow more accurate environmental, wildlife, and human health risk assessments and (b) developing integrated policies promoting less environmentally persistent drugs, the reduction of pharmaceuticals in livestock breeding, and the update of wastewater and drinking water treatment plants for a better removal of drugs and their metabolites.
Collapse
Affiliation(s)
- Stefano Zanni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy
| | - Vincenzo Cammalleri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy
| | - Ludovica D'Agostino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy.
| |
Collapse
|
5
|
Peinador RI, H P PT, Calvo JI. Innovative application of Nile Red (NR)-based dye for direct detection of micro and nanoplastics (MNPs) in diverse aquatic environments. CHEMOSPHERE 2024; 362:142609. [PMID: 38878980 DOI: 10.1016/j.chemosphere.2024.142609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
This paper presents the results of a research aimed at establishing a novel method for the detection of primary and secondary micro- and nanoplastics (MNPs), by using the fluorescence properties of the dye Nile Red-n-heptane (NR-H). The method has been applied to the detection of laboratory degraded polymers (Polystyrene, PS and Polyethylene Terephthalate, PET) as well as traceable latex microspheres in aqueous environments, showing a remarkable detection capacity and avoiding the prior extraction or processing of MNPs in natural samples, with significant time savings compared to conventional methods. The study has been carried out on various types of water, including samples from wastewater treatment plants, boreholes, seawater and synthesized seawater. The effectiveness of the staining process was evaluated by scanning electron microscopy (SEM), dynamic light scattering (DLS) and optical microscopy. As a result, a novel standardizable protocol for the rapid detection of MNPs has been established, with the potential to improve environmental protection through fast in-situ detection and identification of plastic contaminants. The limitations of the protocol in the quantification of MNPs have also been identified and further studies are proposed to overcome these limitations.
Collapse
Affiliation(s)
- R I Peinador
- Institut de la Filtration et des Techniques Séparatives (IFTS), Rue Marcel Pagnol, 47510 Foulayronnes, France.
| | - Phuong Thanh H P
- Institut de la Filtration et des Techniques Séparatives (IFTS), Rue Marcel Pagnol, 47510 Foulayronnes, France
| | - Jose I Calvo
- Departamento de Física Aplicada, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 57, 34004 Palencia, Spain; Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47071, Valladolid, Spain
| |
Collapse
|
6
|
Gálvez-Blanca V, Edo C, González-Pleiter M, Fernández-Piñas F, Leganés F, Rosal R. Microplastics and non-natural cellulosic particles in Spanish bottled drinking water. Sci Rep 2024; 14:11089. [PMID: 38750101 PMCID: PMC11096351 DOI: 10.1038/s41598-024-62075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
This investigation explored the presence of microplastics (MPs) and artificial cellulosic particles (ACPs) in commercial water marketed in single use 1.5 L poly(ethylene terephthalate) bottles. In this work we determined a mass concentration of 1.61 (1.10-2.88) µg/L and 1.04 (0.43-1.82) µg/L for MPs and ACPs respectively in five top-selling brands from the Spanish bottled water market. Most MPs consisted of white and transparent polyester and polyethylene particles, while most ACPs were cellulosic fibers likely originating from textiles. The median size of MPs and ACPs was 93 µm (interquartile range 76-130 µm) and 77 µm (interquartile range 60-96 µm), respectively. Particle mass size distributions were fitted to a logistic function, enabling comparisons with other studies. The estimated daily intake of MPs due to the consumption of bottled water falls within the 4-18 ng kg-1 day-1 range, meaning that exposure to plastics through bottled water probably represents a negligible risk to human health. However, it's worth noting that the concentration of plastic found was much higher than that recorded for tap water, which supports the argument in favour of municipal drinking water.
Collapse
Affiliation(s)
- Virginia Gálvez-Blanca
- Department of Chemical Engineering, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain
| | - Carlos Edo
- Department of Chemical Engineering, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Francisca Fernández-Piñas
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C. Darwin 2, 28049, Madrid, Spain
| | - Francisco Leganés
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C. Darwin 2, 28049, Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
7
|
Vosough M, Schmidt TC, Renner G. Non-target screening in water analysis: recent trends of data evaluation, quality assurance, and their future perspectives. Anal Bioanal Chem 2024; 416:2125-2136. [PMID: 38300263 PMCID: PMC10951028 DOI: 10.1007/s00216-024-05153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/02/2024]
Abstract
This trend article provides an overview of recent advancements in Non-Target Screening (NTS) for water quality assessment, focusing on new methods in data evaluation, qualification, quantification, and quality assurance (QA/QC). It highlights the evolution in NTS data processing, where open-source platforms address challenges in result comparability and data complexity. Advanced chemometrics and machine learning (ML) are pivotal for trend identification and correlation analysis, with a growing emphasis on automated workflows and robust classification models. The article also discusses the rigorous QA/QC measures essential in NTS, such as internal standards, batch effect monitoring, and matrix effect assessment. It examines the progress in quantitative NTS (qNTS), noting advancements in ionization efficiency-based quantification and predictive modeling despite challenges in sample variability and analytical standards. Selected studies illustrate NTS's role in water analysis, combining high-resolution mass spectrometry with chromatographic techniques for enhanced chemical exposure assessment. The article addresses chemical identification and prioritization challenges, highlighting the integration of database searches and computational tools for efficiency. Finally, the article outlines the future research needs in NTS, including establishing comprehensive guidelines, improving QA/QC measures, and reporting results. It underscores the potential to integrate multivariate chemometrics, AI/ML tools, and multi-way methods into NTS workflows and combine various data sources to understand ecosystem health and protection comprehensively.
Collapse
Affiliation(s)
- Maryam Vosough
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, North Rhine-Westphalia, Germany.
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, Essen, 45141, North Rhine-Westphalia, Germany.
- Department of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, North Rhine-Westphalia, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, Essen, 45141, North Rhine-Westphalia, Germany
- IWW Water Centre, Moritzstr. 26, Mülheim an der Ruhr, 45476, North Rhine-Westphalia, Germany
| | - Gerrit Renner
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, North Rhine-Westphalia, Germany.
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, Essen, 45141, North Rhine-Westphalia, Germany.
| |
Collapse
|
8
|
Roustaei F, Baghdadi M, Marjani A, Alimoradi M. Spectrophotometric determination of phenol impurity in phenoxyethanol and phenol index of drinking water and municipal wastewater effluent after salting-out assisted liquid phase microextraction (SA-LPME). Heliyon 2024; 10:e27143. [PMID: 38455586 PMCID: PMC10918212 DOI: 10.1016/j.heliyon.2024.e27143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/22/2023] [Accepted: 02/25/2024] [Indexed: 03/09/2024] Open
Abstract
In this study, a novel and convenient analytical method based on salting-out-assisted liquid phase microextraction (SA-LPME) has been developed. A spectrophotometric technique was employed to quantify the concentration of phenol in drinking water and treated wastewater, as well as the phenol impurity in 2-phenoxyethanol (PE). To accomplish this, a solution containing dissolved PE was supplemented with 4-aminoantipyrine (4-AAP) and hexacyanoferrate. Subsequently, NaCl was added to induce the formation of a two-phase system, consisting of fine droplets of PE as an extractant phase in the aqueous phase. The resulting red derivative was then extracted into the extractant phase and separated through centrifugation. Finally, the absorbance of the extracted derivative was measured at 520 nm. The Response Surface Methodology (RSM) based on the Box-Behnken Design (BBD) was employed to optimize the influential factors, namely 4-Aminoantipyrine (4-AAP), buffer (pH = 10), hexacyanoferrate, and NaCl. By utilizing the optimal conditions (buffer: 50 μL, 4-AAP (1% w/v): 80 μL, hexacyanoferrate (10% w/v): 65 μL, and NaCl: 0.7 g per 10 mL of the sample), the limit of detection was determined to be 0.7 ng mL-1 and 0.22 μg g-1 for water and PE samples, respectively. The relative standard deviation (RSD) and correlation of determination (r2) obtained fell within the range of 2.4-6.8% and 0.9983-0.9994, respectively. Moreover, an enrichment factor of 65 was achieved for a sample volume of 10 mL. The phenol concentration in two PE samples (PE-1, PE-2), provided by a pharmaceutical company (Pars Sadra Fanavar, Iran), were determined to be 0.83 ± 0.05 μg g-1 and 2.70 ± 0.14 μg g-1, respectively. Additionally, the phenol index in drinking water and treated municipal wastewater was found to be 3.60 ± 1.06 ng mL-1 and 4.60 ± 1.17 ng mL-1, respectively. These mentioned samples were spiked in order to evaluate the potential influence of the matrix. The relative recoveries from PE-1, PE-2 samples, drinking water, and treated municipal wastewater samples were measured as 104.5%, 97.5%, 101.6%, and 107.8%, respectively, indicating no matrix effect.
Collapse
Affiliation(s)
- Farideh Roustaei
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Arak Branch, Arak, Iran
| | - Majid Baghdadi
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Arak Branch, Arak, Iran
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, P.O. Box: 1417853111, Tehran, Iran
| | - Azam Marjani
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Arak Branch, Arak, Iran
| | - Mohammad Alimoradi
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Arak Branch, Arak, Iran
| |
Collapse
|
9
|
Fischer K, Abdul Latif A, Griebel J, Prager A, Shayestehpour O, Zahn S, Schulze A. Immobilization of Bi 2WO 6 on Polymer Membranes for Photocatalytic Removal of Micropollutants from Water - A Stable and Visible Light Active Alternative. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300198. [PMID: 38486926 PMCID: PMC10935888 DOI: 10.1002/gch2.202300198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/26/2024] [Indexed: 03/17/2024]
Abstract
In this work, bismuth tungstate Bi2WO6 is immobilized on polymer membranes to photocatalytically remove micropollutants from water as an alternative to titanium dioxide TiO2. A synthesis method for Bi2WO6 preparation and its immobilization on a polymer membrane is developed. Bi2WO6 is characterized using X-ray diffraction and UV-vis reflectance spectroscopy, while the membrane undergoes analysis through scanning electron microscopy, X-ray photoelectron spectroscopy, and degradation experiments. The density of states calculations for TiO2 and Bi2WO6, along with PVDF reactions with potential reactive species, are investigated by density functional theory. The generation of hydroxyl radicals OH• is investigated via the reaction of coumarin to umbelliferone via fluorescence probe detection and electron paramagnetic resonance. Increasing reactant concentration enhances Bi2WO6 crystallinity. Under UV light at pH 7 and 11, the Bi2WO6 membrane completely degrades propranolol in 3 and 1 h, respectively, remaining stable and reusable for over 10 cycles (30 h). Active under visible light with a bandgap of 2.91 eV, the Bi2WO6 membrane demonstrates superior stability compared to a TiO2 membrane during a 7-day exposure to UV light as Bi2WO6 does not generate OH• radicals. The Bi2WO6 membrane is an alternative for water pollutant degradation due to its visible light activity and long-term stability.
Collapse
Affiliation(s)
- Kristina Fischer
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Amira Abdul Latif
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Jan Griebel
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Andrea Prager
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Omid Shayestehpour
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Stefan Zahn
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Agnes Schulze
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| |
Collapse
|
10
|
Li Q, Wang L, Jia Y, Yang M, Zhang H, Hu J. Nontargeted Analysis Reveals a Broad Range of Bioactive Pollutants in Drinking Water by Estrogen Receptor Affinity-Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21327-21336. [PMID: 38059695 DOI: 10.1021/acs.est.3c05060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Exposure to environmental endocrine-disrupting chemicals (EDCs) can cause extensive health issues. However, specific EDCs remain elusive. This work aimed at performing nontargeted identification of estrogen receptor α (ERα)-active compounds using an ERα protein affinity assay combined with high-resolution mass spectrometry in the source and drinking water sampled from major rivers in China. Fifty-one potential ERα-active compounds across 13 categories were identified. For the first time, diisodecyl phenyl phosphate was found to have antiestrogenic activity, and three chemicals (galaxolidone, bensulfuron methyl, and UV234) were plausible ERα ligands. Among the 51 identified compounds, 12 were detected in the aquatic environment for the first time, and the concentration of N-phenyl-2-naphthylamine, a widely used antioxidant in rubber products, was up to 1469 and 1190 ng/L in source and drinking water, respectively. This study demonstrated the widespread presence of known and unknown ERα estrogenic and antiestrogenic pollutants in the major rivers that serve as key sources of drinking water in China and the low removal efficiency of these chemicals in drinking water treatment plants.
Collapse
Affiliation(s)
- Qiang Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lei Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yingting Jia
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haifeng Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
12
|
Russo C, Nugnes R, Orlo E, di Matteo A, De Felice B, Montanino C, Lavorgna M, Isidori M. Diclofenac eco-geno-toxicity in freshwater algae, rotifers and crustaceans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122251. [PMID: 37506803 DOI: 10.1016/j.envpol.2023.122251] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
This study assessed the eco-genotoxic impact of diclofenac (DCF) in sentinel species of the freshwater ecosystem. DCF residues are found in freshwater from few ng/L to tens of μg/L due to the inability of conventional wastewater treatment plants to ensure removal efficiency of the drug. An ample body of literature reports on the acute toxicity of DCF in non-target organisms without addressing potential chronic long-term effects on organisms at actual, environmental concentrations. Herein, assessment for acute and chronic toxicity was performed on organisms in vivo exposed to DCF, specifically on the green alga Raphidocelis subcapitata, the rotifer Brachionus calyciflorus and the crustacean Ceriodaphnia dubia. Furthermore, potential DNA damage and expression of antioxidant genes (MnSOD, Cu/ZnSOD and CAT) were evaluated in crustacean neonates. The toxicological risk of DCF was assessed as well as its. GENOTOXIC RISK: The acute toxicity was observed at concentrations far from those of environmental concern. Rotifers and crustaceans were much more chronically sensitive than the algae to DCF, observing besides, the median effect concentrations at tens of μg/L. In crustaceans, DNA damage was noted at units of μg/L, revealing concentrations of environmental concern. The dysregulated activity of SOD and CAT also showed the ability of DCF to provoke oxidative stress. On assessment of environmental risk, the chronic Risk Quotient (RQ) was above the threshold value of 1. Nevertheless, the genotoxic RQ was significantly greater than the chronic RQ, thus, the need of regulatory bodies to acknowledge the genotoxic impact as an environmental risk factor. To our knowledge, this study is the first investigation to perform environmental genotoxic risk assessment of DCF.
Collapse
Affiliation(s)
- Chiara Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Roberta Nugnes
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Elena Orlo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Angela di Matteo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Bruna De Felice
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Concetta Montanino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Margherita Lavorgna
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy.
| | - Marina Isidori
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| |
Collapse
|
13
|
Neale PA, Melvin SD, Hancock M, Leusch FDL. ECHIDNA (Emerging CHemIcals Database for National Awareness): a framework to prioritise contaminants of emerging concern in water. JOURNAL OF WATER AND HEALTH 2023; 21:1357-1368. [PMID: 37756201 PMCID: wh_2023_190 DOI: 10.2166/wh.2023.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The widespread presence of contaminants of emerging concern (CEC) in surface waters, treated wastewater and drinking water is an ongoing issue for the water industry. The absence of regulatory guidance and limited occurrence, toxicity and removal data are defining criteria of CEC and make it difficult to prioritise which CEC pose the greatest risk. The online Emerging CHemIcals Database for National Awareness (ECHIDNA) aims to classify and prioritise CEC based on their potential risk, with the information presented in an easily accessible and intuitive manner. A candidate list of almost 1,800 potential CEC, including pesticides, pharmaceuticals and industrial compounds, was compiled using both Australian and international resources. These were ranked based on in silico assessment of their persistent, bioaccumulative and toxic (PBT) properties, as well as potential chronic toxicity hazard, yielding 247 CEC for further prioritisation. Risk Quotients (RQ) identified between 5 and 87 CEC posing a risk to human and ecosystem health, respectively, across drinking water, surface water, treated wastewater and raw wastewater. While the ability of the water industry to effectively prioritise CEC is limited by candidate identification and data availability, ECHIDNA can provide valuable information for better decision-making surrounding CEC management.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia E-mail:
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia
| | - Marty Hancock
- Water Research Australia Limited, Adelaide, SA 5000, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
14
|
Nováková P, Švecová H, Bořík A, Grabic R. Novel nontarget LC-HRMS-based approaches for evaluation of drinking water treatment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:739. [PMID: 37233798 DOI: 10.1007/s10661-023-11348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
A conventional evaluation methodology for drinking water pollution focuses on analysing hundreds of compounds, usually by liquid chromatography-tandem mass spectrometry. High-resolution mass spectrometry allows comprehensive evaluation of all detected signals (compounds) based on their elemental composition, intensity, and numbers. We combined target analysis of 192 emerging micropollutants with nontarget (NT) full-scan/MS/MS methods to describe the impact of treatment steps in detail and assess drinking water treatment efficiency without compound identification. The removal efficiency based on target analytes ranged from - 143 to 97%, depending on the treatment section, technologies, and season. The same effect calculated for all signals detected in raw water by the NT method ranged between 19 and 65%. Ozonation increased the removal of micropollutants from the raw water but simultaneously caused the formation of new compounds. Moreover, ozonation byproducts showed higher persistence than products formed during other types of treatment. We evaluated chlorinated and brominated organics detected by specific isotopic patterns within the developed workflow. These compounds indicated anthropogenic raw water pollution but also potential treatment byproducts. We could match some of these compounds with libraries available in the software. We can conclude that passive sampling combined with nontargeted analysis shows to be a promising approach for water treatment control, especially for long-term monitoring of changes in technology lines because passive sampling dramatically reduces the number of samples and provides time-weighted average information for 2 to 4 weeks.
Collapse
Affiliation(s)
- Petra Nováková
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Helena Švecová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Adam Bořík
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Roman Grabic
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
15
|
Thakur S, Mohiuddin I, Singh R, Kaur V. Selective quantification of diclofenac from groundwater and pharmaceutical samples by magnetic molecularly imprinted polymer-based sorbent coupled with the HPLC-PDA detection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27431-1. [PMID: 37156956 DOI: 10.1007/s11356-023-27431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Diclofenac (DCF) is a pharmaceutical contaminant of water bodies and therefore, improvement of analytical techniques for its removal and quantitation is one of the current interests of analysts. Herein, DCF selective magnetic molecularly imprinted polymer (MMIP) has been fabricated and characterized by Fourier transform-infrared spectroscopy, thermogravimetric analysis, vibrating scanning magnetometer, scanning electron microscopy, high-resolution transmission electron microscope, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller analyzer. Furthermore, the protocol for the quantification of DCF using MMIP-HPLC-PDA combo has been optimized by investigating the effect of the amount of MMIP, type and volume of eluent, and variation of pH. The optimized protocol suggested a method detection limit of 0.042 ng mL-1 and linearity of results in the range 0.1-100 ng mL-1 (R2 = 0.99). The fabricated material offered recovery of DCF up to 96.38-99.46% from groundwater and pharmaceutical samples with a relative standard deviation of <4%. In addition, the material was found selective and sensitive for DCF among its analogous drugs like mefenamic acid, ketoprofen, fenofibrate, aspirin, ibuprofen, and naproxen.
Collapse
Affiliation(s)
- Sahil Thakur
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
- Department of Chemistry, DAV College, Sector 10, Chandigarh, 160011, India
| | - Irshad Mohiuddin
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India.
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh, 160011, India
| | - Varinder Kaur
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| |
Collapse
|
16
|
Gálvez-Blanca V, Edo C, González-Pleiter M, Albentosa M, Bayo J, Beiras R, Fernández-Piñas F, Gago J, Gómez M, Gonzalez-Cascon R, Hernández-Borges J, Landaburu-Aguirre J, Martínez I, Muniategui-Lorenzo S, Romera-Castillo C, Rosal R. Occurrence and size distribution study of microplastics in household water from different cities in continental Spain and the Canary Islands. WATER RESEARCH 2023; 238:120044. [PMID: 37156103 DOI: 10.1016/j.watres.2023.120044] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
The purpose of this study was to investigate the occurrence of microplastics (MPs) in drinking water in Spain by comparing tap water from different locations using common sampling and identification procedures. We sampled tap water from 24 points in 8 different locations from continental Spain and the Canary Islands by means of 25 μm opening size steel filters coupled to household connections. All particles were measured and spectroscopically characterized including not only MPs but also particles consisting of natural materials with evidence of industrial processing, such as dyed natural fibres, referred insofar as artificial particles (APs). The average concentration of MPs was 12.5 ± 4.9 MPs/m3 and that of anthropogenic particles 32.2 ± 12.5 APs/m3. The main synthetic polymers detected were polyamide, polyester, and polypropylene, with lower counts of other polymers including the biopolymer poly(lactic acid). Particle size and mass distributions were parameterized by means of power law distributions, which allowed performing estimations of the concentration of smaller particles provided the same scaling parameter of the power law applies. The calculated total mass concentration of the identified MPs was 45.5 ng/L. The observed size distribution of MPs allowed an estimation for the concentration of nanoplastics (< 1 µm) well below the ng/L range; higher concentrations are not consistent with scale invariant fractal fragmentation. Our findings showed that MPs in the drinking water sampled in this work do not represent a significant way of exposure to MPs and would probably pose a negligible risk for human health.
Collapse
Affiliation(s)
- Virginia Gálvez-Blanca
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Carlos Edo
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Marina Albentosa
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - Javier Bayo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44, E-30203, Cartagena, Spain
| | - Ricardo Beiras
- entro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, Vigo, Galicia, Spain
| | - Francisca Fernández-Piñas
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid. C Darwin 2, 28049 Madrid, Spain
| | - Jesús Gago
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - May Gómez
- Grupo de Ecofisiología de Organismos Marinos (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Rosario Gonzalez-Cascon
- Department of Environment, National Institute for Agriculture and Food Research and Technology (INIA), 28040 Madrid, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, Spain
| | | | - Ico Martínez
- Grupo de Ecofisiología de Organismos Marinos (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Soledad Muniategui-Lorenzo
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. A Coruña 15071, Spain
| | - Cristina Romera-Castillo
- Instituto de Ciencias del Mar-CSIC, Paseo Maritimo de la Barceloneta, 37, 08003, Barcelona, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
17
|
Huang Z, Liu P, Chen H, Lin X, Zhou Y, Xing Y, Lee HK. Electrospun fluorinated carbon nanotubes/silk fibroin composite nanofibers for the analysis of perfluoroalkyl and polyfluoroalkyl substances. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130955. [PMID: 36860042 DOI: 10.1016/j.jhazmat.2023.130955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/07/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Assessment of the exposure risk of perfluoroalkyl and polyfluoroalkyl substances (PFASs) has been of public concern for many years. However, it is a challenging undertaking because of the trace levels of these contaminants in the environment and biological systems. In this work, fluorinated carbon nanotubes/silk fibroin (F-CNTs/SF) nanofibers were for the first time synthesized by electrospinning and evaluated as a new adsorbent in pipette tip-solid-phase extraction to enrich PFASs. The addition of F-CNTs increased the mechanical strength and toughness of the SF nanofibers, thus improving the durability of composite nanofibers. The proteophilicity of silk fibroin formed the basis of the good affinity of this material with PFASs. The adsorption behaviors of PFASs on the F-CNTs/SF were investigated by adsorption isotherm experiments to understand the mechanism of extraction. With analysis using ultrahigh performance liquid chromatography-Orbitrap high-resolution mass spectrometric, low limits of detection (0.006-0.090 μg L-1) and enrichment factors of 13-48 were obtained. Meanwhile, the developed method was successfully applied to the detection of wastewater and human placenta samples. This work provides a new idea for the design of novel adsorbents with proteins integrated in polymer nanostructures, a potential routine and practical monitoring technique for PFASs in environmental and biological samples.
Collapse
Affiliation(s)
- Zhenzhen Huang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Peng Liu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Huijun Chen
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Xia Lin
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yan Zhou
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yudong Xing
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
18
|
Schurer R, de Ridder DJ, Schippers JC, Hijnen WAM, Vredenbregt L, van der Wal A. Advanced drinking water production by 1 kDa hollow fiber nanofiltration - Biological activated carbon filtration (HFNF - BACF) enhances biological stability and reduces micropollutant levels compared with conventional surface water treatment. CHEMOSPHERE 2023; 321:138049. [PMID: 36746252 DOI: 10.1016/j.chemosphere.2023.138049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
This study comprehensively investigates the quality of drinking water produced by novel advanced treatment encompassing 1 kDa hollow fiber nanofiltration (HFNF) - Biological Activated Carbon Filtration (BACF) from (reservoir) surface water, and compares this with drinking water after conventional 'CSF' pretreatment (coagulation - flocculation - sedimentation - media filtration - UV-disinfection) - BACF. The objective of HFNF - BACF treatment is to enhance the drinking water's quality in increased biological stability, reduced concentrations of organic micropollutants (OMP), and improvement in other chemical-physical parameters, whilst maintaining sufficient hardness to avoid subsequent remineralization. For this study a large suite of quality parameters was extensively monitored in pilot plants during nearly two years, enabling the incorporation of seasonal effects. HFNF - BACF treatment accomplished a similarly high level of biological stability as regrowth-free drinking waters (total organic carbon (DOC) 0.6 mg/L, assimilable organic carbon (AOC) 4 μg/L Ac-C and <1 μg/L biopolymer-C, total microbial growth potential (MGP) as BPC14 50 ng d/L and as BGP 170 × 103 cells/mL), unlike the conventional treatment (1.9 mg/L, 10 μg/L, 9 μg/L, 130 ng d/L and 170 × 103 cells/mL, respectively) where regrowth occurred in its distribution network. Average OMP removal, including perfluoro-alkyl substances (PFAS), by HFNF - BACF (54%) was higher than conventional treatment (37%). This improvement was mainly attributable to rejection in the HFNF membrane step, indicating that the DOC concentration after HFNF pretreatment was not yet sufficiently low to eliminate competitive adsorption and/or preloading in the BACF (confirmed by laboratory experiments). The advanced treatment also performed better in turbidity, particulates and most trace metals. Importantly, hardness retention by HFNF was only moderate, rendering remineralization unnecessary. Overall, this study demonstrates the superior performance in water quality of advanced HFNF - BACF treatment compared to conventional treatment.
Collapse
Affiliation(s)
- R Schurer
- Evides Water Company, PO Box 4472, 3006 AL, Rotterdam, the Netherlands; Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands; IHE Delft Institute for Water Education, Environmental Engineering and Water Technology Department, Westvest 7, 2611 AX, Delft, the Netherlands.
| | - D J de Ridder
- Evides Water Company, PO Box 4472, 3006 AL, Rotterdam, the Netherlands
| | - J C Schippers
- IHE Delft Institute for Water Education, Environmental Engineering and Water Technology Department, Westvest 7, 2611 AX, Delft, the Netherlands
| | - W A M Hijnen
- Evides Water Company, PO Box 4472, 3006 AL, Rotterdam, the Netherlands
| | - L Vredenbregt
- Pentair X-Flow, PO Box 741, 7500 AS, Enschede, the Netherlands
| | - A van der Wal
- Evides Water Company, PO Box 4472, 3006 AL, Rotterdam, the Netherlands; Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| |
Collapse
|
19
|
do Nascimento RF, de Carvalho Filho JAA, Napoleão DC, Ribeiro BG, da Silva Pereira Cabral JJ, de Paiva ALR. Presence Of Non-Steroidal Anti-Inflammatories In Brazilian Semiarid Waters. WATER, AIR, AND SOIL POLLUTION 2023; 234:225. [PMID: 37008655 PMCID: PMC10038380 DOI: 10.1007/s11270-023-06239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) act as antipyretics, analgesics and anti-inflammatories. Among them, diclofenac and ibuprofen are the most consumed drugs worldwide. During the COVID-19 pandemic, some NSAIDs, such as dipyrone and paracetamol, have been used to alleviate the symptoms of the disease, causing an increase in the concentrations of these drugs in water. However, due to the low concentration of these compounds in drinking water and groundwater, few studies have been carried out on the subject, especially in Brazil. Thus, this study aimed to evaluate the contamination of the surface water, groundwater, and water treated with diclofenac, dipyrone, ibuprofen, and paracetamol at 3 cities (Orocó, Santa Maria da Boa Vista and Petrolândia) in the Brazilian semiarid region, in addition to analyzing the removal of these drugs by conventional water treatment (coagulation, flocculation, sedimentation, filtration and disinfection) in stations to each city. All drugs analyzed were detected in surface and treated waters. In groundwater, only dipyrone was not found. Dipyrone was seen in surface water with a maximum concentration of 1858.02 μg.L-1, followed by ibuprofen (785.28 μg.L-1), diclofenac (759.06 μg.L-1) and paracetamol (533.64 μg.L-1). The high concentrations derive from the increased consumption of these substances during the COVID-19 pandemic. During the conventional water treatment, the maximum removal of diclofenac, dipyrone, ibuprofen and paracetamol was 22.42%; 3.00%; 32.74%; and 1.58%, respectively, which confirms the inefficiency of this treatment in removing drugs. The variation in removal rate of the analyzed drugs is due to the difference in the hydrophobicity of the compounds.
Collapse
Affiliation(s)
- Raquel Ferreira do Nascimento
- Department of Civil and Environmental Engineering (DECIV), Federal University of Pernambuco (UFPE), Av. da Arquitetura, s/n. Cidade Universitária, Recife, Pernambuco 50740-550 Brazil
| | - José Adson Andrade de Carvalho Filho
- Department of Civil and Environmental Engineering (DECIV), Federal University of Pernambuco (UFPE), Av. da Arquitetura, s/n. Cidade Universitária, Recife, Pernambuco 50740-550 Brazil
| | - Daniella Carla Napoleão
- Department of Chemical Engineering (DEQ), Federal University of Pernambuco (UFPE), Av. dos Economistas, s/n. Cidade Universitária, Recife, Pernambuco 50740-590 Brazil
| | - Beatriz Galdino Ribeiro
- Department of Chemical Engineering (DEQ), Federal University of Pernambuco (UFPE), Av. dos Economistas, s/n. Cidade Universitária, Recife, Pernambuco 50740-590 Brazil
| | - Jaime Joaquim da Silva Pereira Cabral
- Department of Civil and Environmental Engineering (DECIV), Federal University of Pernambuco (UFPE), Av. da Arquitetura, s/n. Cidade Universitária, Recife, Pernambuco 50740-550 Brazil
| | - Anderson Luiz Ribeiro de Paiva
- Department of Civil and Environmental Engineering (DECIV), Federal University of Pernambuco (UFPE), Av. da Arquitetura, s/n. Cidade Universitária, Recife, Pernambuco 50740-550 Brazil
| |
Collapse
|
20
|
Collard M, Camenzuli L, Lyon D, Saunders D, Vallotton N, Curtis-Jackson P. Persistence and Mobility (defined as organic‑carbon partitioning) do not correlate to the detection of substances found in surface and groundwater: Criticism of the regulatory concept of Persistent and mobile substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161228. [PMID: 36586701 DOI: 10.1016/j.scitotenv.2022.161228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The Chemical Strategy for Sustainability (CSS) includes actions to ensure the protection of drinking water resources from chemical pollution. To proactively identify potential pollutants, the German Environment Agency (UBA) proposed the Persistent and Mobile (PM) concept according to which Persistence (criteria of REACH Annex XIII) and Mobility (log Koc < 4) would be proxies for a substance's degradation potential and transport velocity, two processes believed to drive the potential for contamination of surface and groundwater as drinking water sources. Two studies identified hundreds of PM substances while three subsequent studies have selected some of these substances for monitoring in surface, ground- and/or drinking water to support the concept. In the present work, the Persistence of the aforementioned substances was reassessed based on all experimental data publicly available. Depending on the exact study examined, it was found that 15 % to 40 % of the substances were erroneously concluded as P. The reinterpretation of the data indicates that a PM substance does not have a higher likelihood to be detected in surface or groundwater than a non-PM substance. In addition, the PM properties do not have any influence on the level of contamination. Twenty-six to 75 % of the substances selected because they were identified as PM were not found in surface or ground water despite being selected for their high emission pattern. Regulations based primarily on the PM concept, like the CLP and possibly REACH and UN-GHS, are unlikely to appropriately identify substances of concern for drinking water sources. It is more likely that chemical presence in surface and groundwater is driven by emission patterns or local factors. The development of specific exposure models would better contribute to the protection of drinking water resources and consumers.
Collapse
Affiliation(s)
| | | | - Delina Lyon
- Concawe, Boulevard du Souverain 165, B-1160 Brussels, Belgium.
| | | | | | | |
Collapse
|
21
|
Rutten SB, Junker MA, Leal LH, de Vos WM, Lammertink RG, de Grooth J. Influence of dominant salts on the removal of trace micropollutants by Hollow Fiber Nanofiltration membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
22
|
Neale PA, Escher BI, de Baat ML, Enault J, Leusch FDL. Effect-Based Trigger Values Are Essential for the Uptake of Effect-Based Methods in Water Safety Planning. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:714-726. [PMID: 36524849 DOI: 10.1002/etc.5544] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Effect-based methods (EBMs) using in vitro bioassays and well plate-based in vivo assays are recommended for water quality monitoring because they can capture the mixture effects of the many chemicals present in water. Many in vitro bioassays are highly sensitive, so an effect in a bioassay does not necessarily indicate poor chemical water quality. Consequently, effect-based trigger values (EBTs) have been introduced to differentiate between acceptable and unacceptable chemical water quality and are required for the wider acceptance of EBMs by the water sector and regulatory bodies. These EBTs have been derived for both drinking water and surface water to protect human and ecological health, respectively, and are available for assays indicative of specific receptor-mediated effects, as well as assays indicative of adaptive stress responses, apical effects, and receptor-mediated effects triggered by many chemicals. An overview of currently available EBTs is provided, and a simple approach is proposed to predict interim EBTs for assays currently without an EBT based on the effect concentration of the assay reference compound. There was good agreement between EBTs predicted using this simplistic approach and EBTs from the literature derived using more robust methods. Finally, an interpretation framework that outlines the steps to take if the effect of a sample exceeds the EBT was developed to help facilitate the uptake of EBMs in routine water quality monitoring and water safety planning for drinking water production. Environ Toxicol Chem 2023;42:714-726. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| | - Beate I Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
- Department of Cell Toxicology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Milo L de Baat
- KWR Water Research Institute, Nieuwegein, The Netherlands
| | | | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
23
|
Bradley PM, Romanok KM, Smalling KL, Focazio MJ, Evans N, Fitzpatrick SC, Givens CE, Gordon SE, Gray JL, Green EM, Griffin DW, Hladik ML, Kanagy LK, Lisle JT, Loftin KA, Blaine McCleskey R, Medlock-Kakaley EK, Navas-Acien A, Roth DA, South P, Weis CP. Bottled water contaminant exposures and potential human effects. ENVIRONMENT INTERNATIONAL 2023; 171:107701. [PMID: 36542998 PMCID: PMC10123854 DOI: 10.1016/j.envint.2022.107701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bottled water (BW) consumption in the United States and globally has increased amidst heightened concern about environmental contaminant exposures and health risks in drinking water supplies, despite a paucity of directly comparable, environmentally-relevant contaminant exposure data for BW. This study provides insight into exposures and cumulative risks to human health from inorganic/organic/microbial contaminants in BW. METHODS BW from 30 total domestic US (23) and imported (7) sources, including purified tapwater (7) and spring water (23), were analyzed for 3 field parameters, 53 inorganics, 465 organics, 14 microbial metrics, and in vitro estrogen receptor (ER) bioactivity. Health-benchmark-weighted cumulative hazard indices and ratios of organic-contaminant in vitro exposure-activity cutoffs were assessed for detected regulated and unregulated inorganic and organic contaminants. RESULTS 48 inorganics and 45 organics were detected in sampled BW. No enforceable chemical quality standards were exceeded, but several inorganic and organic contaminants with maximum contaminant level goal(s) (MCLG) of zero (no known safe level of exposure to vulnerable sub-populations) were detected. Among these, arsenic, lead, and uranium were detected in 67 %, 17 %, and 57 % of BW, respectively, almost exclusively in spring-sourced samples not treated by advanced filtration. Organic MCLG exceedances included frequent detections of disinfection byproducts (DBP) in tapwater-sourced BW and sporadic detections of DBP and volatile organic chemicals in BW sourced from tapwater and springs. Precautionary health-based screening levels were exceeded frequently and attributed primarily to DBP in tapwater-sourced BW and co-occurring inorganic and organic contaminants in spring-sourced BW. CONCLUSION The results indicate that simultaneous exposures to multiple drinking-water contaminants of potential human-health concern are common in BW. Improved understandings of human exposures based on more environmentally realistic and directly comparable point-of-use exposure characterizations, like this BW study, are essential to public health because drinking water is a biological necessity and, consequently, a high-vulnerability vector for human contaminant exposures.
Collapse
Affiliation(s)
| | | | | | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | - Emily M Green
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | - John T Lisle
- U.S. Geological Survey, Saint Petersburg, Florida, USA
| | | | | | | | | | | | - Paul South
- U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Christopher P Weis
- National Institute of Environmental Health Sciences/NIH, Bethesda, MD, USA
| |
Collapse
|
24
|
Abdelraheem E, Wise J, Murphy C, Jiang W. Triple-stage Quadrupole Mass Spectrometer to Determine Ubiquitously Present Per- and Polyfluorinated Alkyl Substances in Drinking Water at Part Per Trillion Levels Using Solid Phase Extraction Approach. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:32. [PMID: 36583746 DOI: 10.1007/s00128-022-03686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
An accurate analytical method was developed to determine selected per- and polyfluorinated alkyl substances (PFAS) at the level of parts per trillion (ppt or ng/L) in drinking water. The method included a concentration step using solid phase extraction (SPE) approach in combination with a liquid chromatography-tandem mass spectrometry system (LC-MS/MS). This method was optimized and validated for the common PFAS contaminants in drinking water. An initial demonstration of capability was established with an acceptable initial calibration, minimum reporting limit (MRL), limit of detection (LOD), initial demonstration of low system background, and initial demonstration of precision (IDP). Isotopically labeled internal standards were used for quantification. Surrogate standards were used to monitor method performance. The current method will help in better understanding of PFAS crisis by providing an efficient measurement of PFAS in water. In this study, the recoveries of four surrogates were between 84 and 113%, and calculated limit of detection (DL) and minimum reporting limits (MRL) were generally 1.0-3.0 and 5-10 ng/L, respectively.
Collapse
Affiliation(s)
- Ehab Abdelraheem
- Center for PFAS Research, Michigan State University, 48910, Lansing, MI, USA
- Department of Fisheries and Wildlife, Michigan State University, 48824, East Lansing, MI, USA
| | - John Wise
- Center for PFAS Research, Michigan State University, 48910, Lansing, MI, USA
- Department of Entomology, Michigan State University, 48824, East Lansing, MI, USA
| | - Cheryl Murphy
- Center for PFAS Research, Michigan State University, 48910, Lansing, MI, USA
- Department of Fisheries and Wildlife, Michigan State University, 48824, East Lansing, MI, USA
| | - Wayne Jiang
- Center for PFAS Research, Michigan State University, 48910, Lansing, MI, USA.
- Department of Entomology, Michigan State University, 48824, East Lansing, MI, USA.
| |
Collapse
|
25
|
Arp HPH, Hale SE. Assessing the Persistence and Mobility of Organic Substances to Protect Freshwater Resources. ACS ENVIRONMENTAL AU 2022; 2:482-509. [PMID: 36411866 PMCID: PMC9673533 DOI: 10.1021/acsenvironau.2c00024] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 04/28/2023]
Abstract
Persistent and mobile organic substances are those with the highest propensity to be widely distributed in groundwater and thereby, when emitted at low-levels, to contaminate drinking water extraction points and freshwater environments. To prevent such contamination, the European Commission is in the process of introducing new hazard classes for persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances within its key chemical regulations CLP and REACH. The assessment of persistence in these regulations will likely be based on simulated half-life, t 1/2, thresholds; the assessment of mobility will likely be based on organic carbon-water distribution coefficient, K OC, thresholds. This study reviews the use of t 1/2 and K OC to describe persistence and mobility, considering the theory, history, suitability, data limitations, estimation methods, and alternative parameters. For this purpose, t 1/2, K OC, and alternative parameters were compiled for substances registered under REACH, known transformation products, and substances detected in wastewater treatment plant effluent, surface water, bank filtrate, groundwater, raw water, and drinking water. Experimental t 1/2 values were rare and only available for 2.2% of the 14 203 unique chemicals identified. K OC data were only available for a fifth of the substances. Therefore, the usage of alternative screening parameters was investigated to predict t 1/2 and K OC values, to assist weight-of-evidence based PMT/vPvM hazard assessments. Even when considering screening parameters, for 41% of substances, PMT/vPvM assessments could not be made due to data gaps; for 23% of substances, PMT/vPvM assessments were ambiguous. Further effort is needed to close these substantial data gaps. However, when data is available, the use of t 1/2 and K OC is considered fit-for-purpose for defining PMT/vPvM thresholds. Using currently discussed threshold values, between 1.9 and 2.6% of REACH registered substances were identified as PMT/vPvM. Among the REACH registered substances detected in drinking water sources, 24-30% were PMT/vPvM substances.
Collapse
Affiliation(s)
- Hans Peter H. Arp
- Norwegian
Geotechnical Institute (NGI), P.O. Box
3930, Ullevål Stadion, NO-0806 Oslo, Norway
- Department
of Chemistry, Norwegian University of Science
and Technology (NTNU), NO-7491 Trondheim, Norway
- . Tel: +47 950 20 667
| | - Sarah E. Hale
- Norwegian
Geotechnical Institute (NGI), P.O. Box
3930, Ullevål Stadion, NO-0806 Oslo, Norway
| |
Collapse
|
26
|
Castaño Osorio S, Biesheuvel PM, Spruijt E, Dykstra JE, van der Wal A. Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: considerations and challenges. WATER RESEARCH 2022; 225:119130. [PMID: 36240724 DOI: 10.1016/j.watres.2022.119130] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Organic micropollutants (OMPs) in drinking water constitute a potential risk to human health; therefore, effective removal of these pollutants is required. Nanofiltration (NF) and reverse osmosis (RO) are promising membrane-based technologies to remove OMPs. In NF and RO, the rejection of OMPs depends on the properties and characteristics of the membrane, the solute, and the solution. In this review, we discuss how these properties can be included in models to study and predict the rejection of OMPs. Initially, an OMP classification is proposed to capture the relevant properties of 58 OMPs. Following the methodology described in this study, more and new OMPs can be easily included in this classification. The classification aims to increase the comprehension and mechanistic understanding of OMP removal. Based on the physicochemical principles used to classify the 58 OMPs, it is expected that other OMPs in the same groups will be similarly rejected. From this classification, we present an overview of the rejection mechanisms involved in the removal of specific OMP groups. For instance, we discuss the removal of OMPs classified as perfluoroalkyl substances (e.g., perfluorooctanoic acid, PFOA). These substances are highly relevant due to their human toxicity at extremely low concentration as well as their persistence and omnipresence in the environment. Finally, we discuss how the rejection of OMPs can be predicted by describing both the membrane-solution interface and calculating the transport of solutes inside the membrane. We illustrate the importance and impact of different rejection mechanisms and interfacial phenomena on OMP removal and propose an extended Nernst-Plank equation to calculate the transport of solutes across the membrane due to convection, diffusion, and electromigration. Finally, we show how the theory discussed in this review leads to improved predictions of OMP rejection by the membranes.
Collapse
Affiliation(s)
- S Castaño Osorio
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911 MA, the Netherlands; Environmental Technology, Wageningen University & Research, P.O. Box 17, Wageningen 6700 AA, the Netherlands
| | - P M Biesheuvel
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911 MA, the Netherlands
| | - E Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, the Netherlands
| | - J E Dykstra
- Environmental Technology, Wageningen University & Research, P.O. Box 17, Wageningen 6700 AA, the Netherlands.
| | - A van der Wal
- Environmental Technology, Wageningen University & Research, P.O. Box 17, Wageningen 6700 AA, the Netherlands; Evides Water Company, P.O. Box 4472, Rotterdam 3006 AL, the Netherlands.
| |
Collapse
|
27
|
Sörengård M, Bergström S, McCleaf P, Wiberg K, Ahrens L. Long-distance transport of per- and polyfluoroalkyl substances (PFAS) in a Swedish drinking water aquifer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119981. [PMID: 35988673 DOI: 10.1016/j.envpol.2022.119981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Use of per- and polyfluoroalkyl substance (PFAS)-containing aqueous film-forming foams (AFFF) at firefighting training sites (FFTS) has been linked to PFAS contamination of drinking water. This study investigated PFAS transport and distribution in an urban groundwater aquifer used for drinking water production that has been affected by PFAS-containing AFFF. Soil, sediment, surface water and drinking water were sampled. In soil (n = 12) at a FFTS with high perfluorooctane sulfonate (PFOS) content (87% of ∑PFAS), the ∑PFAS concentration (n = 26) ranged from below detection limit to 560 ng g-1 dry weight. In groundwater (n = 28), the ∑PFAS concentration near a military airbase FFTS reached 1000 ng L-1. Principal component analysis (PCA) identified the military FFTS as the main source of PFAS contamination in drinking water wellfields >10 km down-gradient. Groundwater samples taken close to the military FFTS site showed no ∑PFAS concentration change between 2013 and 2021, while a location further down-gradient showed a transitory 99.6% decrease. Correlation analysis on PFAS composition profile indicated that this decrease was likely caused by dilution from an adjacent conflating aquifer. ∑PFAS concentration reached 15 ng L-1 (PFOS 47% and PFHxS 41% of ∑PFAS) in surface river water (n = 6) and ranged between 1 ng L-1 and 8 ng L-1 (PFHxS 73% and PFBS 17% of ∑PFAS) in drinking water (n = 4). Drinking water had lower PFAS concentrations than the wellfields due to PFAS removal at the water treatment plant. This demonstrates the importance of monitoring PFAS concentrations throughout a groundwater aquifer, to better understand variations in transport from contamination sources and resulting impacts on PFAS concentrations in drinking water extraction areas.
Collapse
Affiliation(s)
- Mattias Sörengård
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden
| | - Sofia Bergström
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden
| | - Philip McCleaf
- Uppsala Water and Waste Ltd., P.O. Box 1444, SE-751 44, Uppsala, Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
28
|
Assessment of the Effects of Triticonazole on Soil and Human Health. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196554. [PMID: 36235091 PMCID: PMC9572687 DOI: 10.3390/molecules27196554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Triticonazole is a fungicide used to control diseases in numerous plants. The commercial product is a racemate containing (R)- and (S)-triticonazole and its residues have been found in vegetables, fruits, and drinking water. This study considered the effects of triticonazole on soil microorganisms and enzymes and human health by taking into account the enantiomeric structure when applicable. An experimental method was applied for assessing the effects of triticonazole on soil microorganisms and enzymes, and the effects of the stereoisomers on soil enzymes and human health were assessed using a computational approach. There were decreases in dehydrogenase and phosphatase activities and an increase in urease activity when barley and wheat seeds treated with various doses of triticonazole were sown in chernozem soil. At least 21 days were necessary for the enzymes to recover the activities. This was consistent with the diminution of the total number of soil microorganisms in the 14 days after sowing. Both stereoisomers were able to bind to human plasma proteins and were potentially inhibitors of human cytochromes, revealing cardiotoxicity and low endocrine disruption potential. As distinct effects, (R)-TTZ caused skin sensitization, carcinogenicity, and respiratory toxicity. There were no significant differences in the interaction energies of the stereoisomers and soil enzymes, but (S)-TTZ exposed higher interaction energies with plasma proteins and human cytochromes.
Collapse
|
29
|
A Review of Sulfate Radical-Based and Singlet Oxygen-Based Advanced Oxidation Technologies: Recent Advances and Prospects. Catalysts 2022. [DOI: 10.3390/catal12101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, advanced oxidation process (AOPs) based on sulfate radical (SO4●−) and singlet oxygen (1O2) has attracted a lot of attention because of its characteristics of rapid reaction, efficient treatment, safety and stability, and easy operation. SO4●− and 1O2 mainly comes from the activation reaction of peroxymonosulfate (PMS) or persulfate (PS), which represent the oxidation reactions involving radicals and non-radicals, respectively. The degradation effects of target pollutants will be different due to the type of oxidant, reaction system, activation methods, operating conditions, and other factors. In this paper, according to the characteristics of PMS and PS, the activation methods and mechanisms in these oxidation processes, respectively dominated by SO4●− and 1O2, are systematically introduced. The research progress of PMS and PS activation for the degradation of organic pollutants in recent years is reviewed, and the existing problems and future research directions are pointed out. It is expected to provide ideas for further research and practical application of advanced oxidation processes dominated by SO4●− and 1O2.
Collapse
|
30
|
Zawadzki P. Visible Light-Driven Advanced Oxidation Processes to Remove Emerging Contaminants from Water and Wastewater: a Review. WATER, AIR, AND SOIL POLLUTION 2022; 233:374. [PMID: 36090740 PMCID: PMC9440748 DOI: 10.1007/s11270-022-05831-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The scientific data review shows that advanced oxidation processes based on the hydroxyl or sulfate radicals are of great interest among the currently conventional water and wastewater treatment methods. Different advanced treatment processes such as photocatalysis, Fenton's reagent, ozonation, and persulfate-based processes were investigated to degrade contaminants of emerging concern (CECs) such as pesticides, personal care products, pharmaceuticals, disinfectants, dyes, and estrogenic substances. This article presents a general overview of visible light-driven advanced oxidation processes for the removal of chlorfenvinphos (organophosphorus insecticide), methylene blue (azo dye), and diclofenac (non-steroidal anti-inflammatory drug). The following visible light-driven treatment methods were reviewed: photocatalysis, sulfate radical oxidation, and photoelectrocatalysis. Visible light, among other sources of energy, is a renewable energy source and an excellent substitute for ultraviolet radiation used in advanced oxidation processes. It creates a high application potential for solar-assisted advanced oxidation processes in water and wastewater technology. Despite numerous publications of advanced oxidation processes (AOPs), more extensive research is needed to investigate the mechanisms of contaminant degradation in the presence of visible light. Therefore, this paper provides an important source of information on the degradation mechanism of emerging contaminants. An important aspect in the work is the analysis of process parameters affecting the degradation process. The initial concentration of CECs, pH, reaction time, and catalyst dosage are discussed and analyzed. Based on a comprehensive survey of previous studies, opportunities for applications of AOPs are presented, highlighting the need for further efforts to address dominant barriers to knowledge acquisition.
Collapse
Affiliation(s)
- Piotr Zawadzki
- Department of Water Protection, Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
| |
Collapse
|
31
|
Taylor AC, Mills GA, Gravell A, Kerwick M, Fones GR. Pesticide fate during drinking water treatment determined through passive sampling combined with suspect screening and multivariate statistical analysis. WATER RESEARCH 2022; 222:118865. [PMID: 35868101 DOI: 10.1016/j.watres.2022.118865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Emerging contaminants such as polar pesticides pose a potential risk to human health due to their presence in drinking water. However, their occurrence and fate in drinking water treatment plants is poorly understood. In this study we use passive sampling coupled to suspect screening and multivariate analysis to describe pesticide fate throughout the treatment stream of an operational drinking water treatment plant. ChemcatcherÒ passive sampling devices were deployed at sites (n = 6) positioned at all stages of the treatment stream during consecutive deployments (n = 20) over a twelve-month period. Sample extracts (n = 120) were analysed using high-resolution liquid chromatography-quadrupole-time-of-flight mass spectrometry and compounds identified against a commercially available database. A total of 58 pesticides and transformation products from different classes were detected. Statistical analysis of the qualitative screening data was performed to identify clusters of pesticides with similar fate during ozonation, granular activated carbon (GAC) filtration, and chlorination. The performance of each treatment process was investigated. Adsorption to GAC media was found to account for the greatest proportion of pesticide attenuation (average removal of 70% based on detection frequency), however, operational performance varied for certain pesticides during periods of episodic and sustained pollution. GAC breakthrough occurred for 21 compounds detected in the GAC filtrate. Eleven pesticides were found to occur in potable water following treatment. We developed a management plan containing controls, triggers, and responses, for five pesticides and a metabolite (atrazine, atrazine desethyl, DEET, dichlorobenzamide, metazachlor, and propyzamide) prioritised based on their current and future risk to treated water quality.
Collapse
Affiliation(s)
- Adam C Taylor
- School of the Environment, Geography and Geosciences, University of Portsmouth, Burnaby Road, Portsmouth PO1 3QL, United Kingdom
| | - Graham A Mills
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Anthony Gravell
- Natural Resources Wales, Faraday Building, Swansea University, Singleton Campus, Swansea SA2 8PP, United Kingdom
| | - Mark Kerwick
- Southern Water Services, Southern House, Yeoman Road, Worthing, West Sussex BN13 3NX, United Kingdom
| | - Gary R Fones
- School of the Environment, Geography and Geosciences, University of Portsmouth, Burnaby Road, Portsmouth PO1 3QL, United Kingdom.
| |
Collapse
|
32
|
Ambriz-Mexicano I, González-Juárez S, Ruiz-Ordaz N, Galíndez-Mayer J, Santoyo-Tepole F, Juárez-Ramírez C, Galar-Martínez M. Integrated adsorption and biological removal of the emerging contaminants ibuprofen, naproxen, atrazine, diazinon, and carbaryl in a horizontal tubular bioreactor. Bioprocess Biosyst Eng 2022; 45:1547-1557. [PMID: 35953615 DOI: 10.1007/s00449-022-02764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Abstract
Groundwater and surface water bodies may have contaminants from urban, industrial, or agricultural wastewater, including emerging contaminants (ECs) or micropollutants (MPs). Frequently, they are not efficiently removed by microbial action due to their minimal concentration in water and the low microbiota affinity for complex compounds. This work developed a process allowing the adsorption of contaminants and their simultaneous biodegradation using horizontal tubular fixed-bed biofilm reactors (HTR). Each HTR has two zones: an equalizer-aerator of the incoming liquid flow and a fixed bed zone. This zone was packed with a mixed support material consisting of granular bio-activated carbon (Bio-GAC) and porous material that increases the bed permeability, thus decreasing the pressure drop. Five microbial communities were acclimated and immobilized in granular activated carbon (GAC) to obtain different specialized Bio-GAC particles able to remove the micropollutants ibuprofen, naproxen, atrazine, carbaryl, and diazinon. The Bio-GAC particles were transferred to HTRs continuously run in microaerophilia at several MPs loading rates. Under these conditions, the removal efficiencies of MPs, except atrazine and carbaryl, were around 100.
Collapse
Affiliation(s)
| | | | - Nora Ruiz-Ordaz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico, México.
| | | | | | | | | |
Collapse
|
33
|
Koronaiou LA, Nannou C, Xanthopoulou N, Seretoudi G, Bikiaris D, Lambropoulou DA. High-resolution mass spectrometry-based strategies for the target analysis and suspect screening of per- and polyfluoroalkyl substances in aqueous matrices. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
From monitoring to treatment, how to improve water quality: The pharmaceuticals case. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
35
|
Dürig W, Alygizakis NA, Wiberg K, Ahrens L. Application of a novel prioritisation strategy using non-target screening for evaluation of temporal trends (1969-2017) of contaminants of emerging concern (CECs) in archived lynx muscle tissue samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153035. [PMID: 35026275 DOI: 10.1016/j.scitotenv.2022.153035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Most environmental monitoring studies of contaminants of emerging concern (CECs) focus on aquatic species and target specific classes of CECs. Even with wide-scope target screening methods, relevant CECs may be missed. In this study, non-target screening (NTS) was used for tentative identification of potential CECs in muscle tissue of the terrestrial top predator Eurasian lynx (Lynx lynx). Temporal trend analysis was applied as a prioritisation tool for archived samples, using univariate statistical tests (Mann-Kendall and Spearman rank). Pooled lynx muscle tissue collected from 1969 to 2017 was analysed with an eight-point time series using a previously validated screening workflow. Following peak detection, peak alignment, and blank subtraction, 12,941 features were considered for statistical analysis. Prioritisation by time-trend analysis detected 104 and 61 features with statistically significant increasing and decreasing trends, respectively. Following probable molecular formula assignment and elucidation with MetFrag, two compounds with increasing trends, and one with a decreasing trend, were tentatively identified. These results show that, despite low expected concentration levels and high matrix effects in terrestrial species, it is possible to prioritise CECs in archived lynx samples using NTS and univariate statistical approaches.
Collapse
Affiliation(s)
- Wiebke Dürig
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Nikiforos A Alygizakis
- Environmental Institute, Okruzná 784/42, 97241 Koš, Slovak Republic; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Greece.
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
36
|
Li X, Jie B, Lin H, Deng Z, Qian J, Yang Y, Zhang X. Application of sulfate radicals-based advanced oxidation technology in degradation of trace organic contaminants (TrOCs): Recent advances and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114664. [PMID: 35149402 DOI: 10.1016/j.jenvman.2022.114664] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The large amount of trace organic contaminants (TrOCs) in wastewater has caused serious impacts on human health. In the past few years, Sulfate radical (SO4•-) based advanced oxidation processes (SR-AOPs) are widely recognized for their high removal rates of recalcitrant TrOCs from water. Peroxymonosulfate (PMS) and persulfate (PS) are stable and non-toxic strong oxidizing oxidants and can act as excellent SO4•- precursors. Compared with hydroxyl radicals(·OH)-based methods, SR-AOPs have a series of advantages, such as long half-life and wide pH range, the oxidation capacity of SO4•- approaches or even exceeds that of ·OH under suitable conditions. In this review, we present the progress of activating PS/PMS to remove TrOCs by different methods. These methods include activation by transition metal, ultrasound, UV, etc. Possible activation mechanisms and influencing factors such as pH during the activation are discussed. Finally, future activation studies of PS/PMS are summarized and prospected. This review summarizes previous experiences and presents the current status of SR-AOPs application for TrOCs removal. Misconceptions in research are avoided and a research basis for the removal of TrOCs is provided.
Collapse
Affiliation(s)
- Xingyu Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Borui Jie
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Huidong Lin
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhongpei Deng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junyao Qian
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yiqiong Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
37
|
Synthetic Musk Fragrances in Water Systems and Their Impact on Microbial Communities. WATER 2022. [DOI: 10.3390/w14050692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The presence of emerging contaminants in aquatic systems and their potential effects on ecosystems have sparked the interest of the scientific community with a consequent increase in their report. Moreover, the presence of emerging contaminants in the environment should be assessed through the “One-Health” approach since all the living organisms are exposed to those contaminants at some point and several works already reported their impact on ecological interactions. There are a wide variety of concerning emerging contaminants in water sources, such as pharmaceuticals, personal care products, house-care products, nanomaterials, fire-retardants, and all the vast number of different compounds of indispensable use in routine tasks. Synthetic musks are examples of fragrances used in the formulation of personal and/or house-care products, which may potentially cause significant ecotoxicological concerns. However, there is little-to-no information regarding the effect of synthetic musks on microbial communities. This study reviews the presence of musk fragrances in drinking water and their impact on aquatic microbial communities, with a focus on the role of biofilms in aquatic systems. Moreover, this review highlights the research needed for a better understating of the impact of non-pharmaceutical contaminants in microbial populations and public health.
Collapse
|
38
|
Dürig W, Alygizakis NA, Menger F, Golovko O, Wiberg K, Ahrens L. Novel prioritisation strategies for evaluation of temporal trends in archived white-tailed sea eagle muscle tissue in non-target screening. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127331. [PMID: 34879552 DOI: 10.1016/j.jhazmat.2021.127331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Environmental monitoring studies based on target analysis capture only a small fraction of contaminants of emerging concern (CECs) and miss pollutants potentially harmful to wildlife. Environmental specimen banks, with their archived samples, provide opportunities to identify new CECs by temporal trend analysis and non-target screening. In this study, archived white-tailed sea eagle (Haliaeetus albicilla) muscle tissue was analysed by non-targeted high-resolution mass spectrometry. Univariate statistical tests (Mann-Kendall and Spearman rank) for temporal trend analysis were applied as prioritisation methods. A workflow for non-target data was developed and validated using an artificial time series spiked at five levels with gradient concentrations of selected CECs (n = 243). Pooled eagle muscle tissues collected 1965-2017 were then investigated with an eight-point time series using the validated screening workflow. Following peak detection, peak alignment, and blank subtraction, 14 409 features were considered for statistical analysis. Prioritisation by time-trend analysis detected 207 features with increasing trends. Following unequivocal molecular formula assignment to prioritised features and further elucidation with MetFrag and EU Massbank, 13 compounds were tentatively identified, of which four were of anthropogenic origin. These results show that it is possible to prioritise new CECs in archived biological samples using univariate statistical approaches.
Collapse
Affiliation(s)
- Wiebke Dürig
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Nikiforos A Alygizakis
- Environmental Institute, Okruzná 784/42, 97241 Koš, Slovak Republic; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Greece.
| | - Frank Menger
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
39
|
Jia S, Marques Dos Santos M, Li C, Snyder SA. Recent advances in mass spectrometry analytical techniques for per- and polyfluoroalkyl substances (PFAS). Anal Bioanal Chem 2022; 414:2795-2807. [PMID: 35132477 DOI: 10.1007/s00216-022-03905-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 11/29/2022]
Abstract
The ubiquitous presence of per- and polyfluoroalkyl substances (PFAS) in various environments has led to increasing concern, and these chemicals have been confirmed as global contaminants. Following the chemical regulatory restrictions imposed, PFAS alternatives that are presumed to be less toxic have been manufactured to replace the traditional ones in the market. However, owing to the original release and alternative usage, continuous accumulation of PFAS has been reported in environmental and human samples, with uncertain consequences for ecosystem and human health. It is crucial to promote and improve existing analytical techniques to facilitate the detection of trace amounts of PFAS in diverse environmental matrices. This review summarizes analytical methods that have been applied to and advanced for targeted detection and suspect screening of PFAS, which mainly include (i) sampling and sample preparation methods for various environment matrices and organisms, and quality assurance/quality control during the analysis process, and (ii) quantitative methods for targeted analysis and automated suspect screening strategies for non-targeted PFAS analysis, together with their applications, advantages, shortcomings, and need for new method development.
Collapse
Affiliation(s)
- Shenglan Jia
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Mauricius Marques Dos Santos
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Caixia Li
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Shane A Snyder
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.
| |
Collapse
|
40
|
Lee XJ, Ong HC, Ooi J, Yu KL, Tham TC, Chen WH, Ok YS. Engineered macroalgal and microalgal adsorbents: Synthesis routes and adsorptive performance on hazardous water contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126921. [PMID: 34523506 DOI: 10.1016/j.jhazmat.2021.126921] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/30/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Colourants, micropollutants and heavy metals are regarded as the most notorious hazardous contaminants found in rivers, oceans and sewage treatment plants, with detrimental impacts on human health and environment. In recent development, algal biomass showed great potential for the synthesis of engineered algal adsorbents suitable for the adsorptive management of various pollutants. This review presents comprehensive investigations on the engineered synthesis routes focusing mainly on mechanical, thermochemical and activation processes to produce algal adsorbents. The adsorptive performances of engineered algal adsorbents are assessed in accordance with different categories of hazardous pollutants as well as in terms of their experimental and modelled adsorption capacities. Due to the unique physicochemical properties of macroalgae and microalgae in their adsorbent forms, the adsorption of hazardous pollutants was found to be highly effective, which involved different mechanisms such as physisorption, chemisorption, ion-exchange, complexation and others depending on the types of pollutants. Overall, both macroalgae and microalgae not only can be tailored into different forms of adsorbents based on the applications, their adsorption capacities are also far more superior compared to the conventional adsorbents.
Collapse
Affiliation(s)
- Xin Jiat Lee
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Energy Sciences (ENERGY), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hwai Chyuan Ong
- Centre for Green Technology, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia.
| | - Jecksin Ooi
- Department of Chemical & Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, No.1, Cheras Lumpur, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Kai Ling Yu
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Thing Chai Tham
- Axcel Campus, No. 11, The Cube, Jalan Puteri 7/15, Bandar Puteri, 47100 Puchong, Selangor, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
41
|
Heo DG, Lee DC, Kwon YM, Seol MJ, Sung Moon J, Min Chung S, Kim JH. Simultaneous Determination of Perfluorooctanoic Acid and Perfluorooctanesulfonic Acid in Korean Sera Using LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1192:123138. [DOI: 10.1016/j.jchromb.2022.123138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
|
42
|
Ultratrace analysis of per- and polyfluoroalkyl substances in drinking water using ice concentration linked with extractive stirrer and high performance liquid chromatography - tandem mass spectrometry. J Chromatogr A 2021; 1659:462493. [PMID: 34706316 DOI: 10.1016/j.chroma.2021.462493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022]
Abstract
Detection of drinking water contaminants is vital to the protection of human health. One group of contaminants that have recently generated serious concerns over health risks are per- and polyfluoroalkyl substances (PFAS). These compounds are very bio-persistent, leading to their detection in all types of water sources, including drinking water. While analysis of drinking water for PFAS is important, it is currently arduous to detect ultratrace levels of these contaminants. Specifically, current ultratrace PFAS analysis methods are difficult, costly, require large sample volumes, and consume relatively large volumes of organic solvent. In the present work, an analytical method using Ice Concentration Linked with Extractive Stirrer (ICECLES) and high performance liquid chromatography-tandem quadrupole mass spectrometry (HPLC-MS/MS), was developed and validated to provide simple and ultratrace analysis of drinking water for 14 PFAS. The method featured a relatively low sample volume requirement (10 mL), automated extraction, minimal matrix effects, and minimal organic solvent use (i.e., the method requires only 50 µL of methanol per sample). The method produced a wide linear range of 0.5 to 500 ng/L, ultratrace limits of detection (0.05 to 0.3 ng/L), and good accuracy and precision (i.e., 87 to 108% accuracy and ≤19% relative standard deviation as a measure of precision). This method was tested on drinking water samples from across the United States and detected at least one PFAS compound in 52 of the 53 drinking water samples tested. Perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) were detected in 89, 96, and 77% of the samples tested with maximum concentrations of 268 ng/L for PFHxA, 213 ng/L for PFOA, and 75.7 ng/L for PFHpA. Additionally, perfluorononanoic acid, perfluorodecanoic acid, and perfluoroheptanoic acid were each detected in at least one drinking water sample at concentrations > 20 ng/L. The availability of the method presented here allows ultratrace detection of PFAS while circumventing many of the disadvantages of current methods.
Collapse
|
43
|
Gupta S, Gomaa H, Ray MB. Performance characterization of a hybrid adsorptive-photocatalytic (APC) oscillatory membrane reactor for micropollutant removal. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
K.T V, Ram Achar R, Siriger S. A review on emerging micropollutants: sources, environmental concentration and toxicity. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.04.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Every minute, the environment is filled with pollutants of various types, including physical, chemical, and biological. A new threat has emerged in recent years due to human activity, which is of significant concern. These pollutants are not like conventional pollutants but can alter the physiology of living things, and hence these are named emerging pollutants. The pollutant sources include crop protection chemicals, personal care products, antimicrobial mixtures, active pharmaceutical ingredients (API). These compounds are biologically crucial because their minute quantity can also disrupt an individual's endocrine system, and hence they are also called endocrine disruptors. This current work reviews many aspects, including source, problems, and legislative solutions that have been farmed to cope with the current situation of emerging micropollutants.
Collapse
Affiliation(s)
- Vadiraj K.T
- Department of Environmental Science, JSS Academy of Higher Education and Research, Mysore, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru-570 015, Karnataka, India
| | - Sindhuja Siriger
- Department of Studies in Environmental Science, University of Mysore, Mysuru, India
| |
Collapse
|
45
|
Perin M, Dallegrave A, Suchecki Barnet L, Zanchetti Meneghini L, de Araújo Gomes A, Pizzolato TM. Pharmaceuticals, pesticides and metals/metalloids in Lake Guaíba in Southern Brazil: Spatial and temporal evaluation and a chemometrics approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148561. [PMID: 34175608 DOI: 10.1016/j.scitotenv.2021.148561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 05/06/2023]
Abstract
Compiling and reporting data related to the presence of pharmaceuticals and pesticides are crucial means of assessing the risk those chemicals pose to human health and environment. Data sets from different sources were combined using a data fusion approach to produce a spatial and temporal variation of contaminants presents in water from Lake Guaíba (29°55'-30°24' S; 51°01'-51°20' W). Lake Guaíba is a 496 km2 water body situated in the geological depression of Rio Grande do Sul State, Brazil; that is fed by several rivers from the metropolitan area, the 5th largest metro area in Brazil, with approximately 5 million inhabitants. Analytical methodology to quantify pharmaceuticals and pesticides by LC-QTOF-MS and GC-MS/MS was validated for 41 pharmaceutical and 62 pesticides. Furthermore, 27 chemical elements were analyzed by ICP-MS, and physical chemical parameters were determined using established methodologies. All validation parameters were in accordance with the National Institute of Metrology, Standardization, and Industrial Quality. Thirty-five water samples were analyzed from January to August 2019, and 15 pharmaceuticals and 25 pesticides were present in concentrations ranging from 6.00 ng L-1 to 580.00 ng L-1. Twenty-seven elements were analyzed during the same period, and 18 were present in concentrations ranging from 0.2 μg L-1 to 7060 μg L-1. Samples were tagged according to the points and months of collection to identify temporal and spatial patterns. The main findings show that the compounds are distributed throughout the studied area without an apparent regular pattern, suggesting that events in a specific point affect the entire ecosystem. Conversely, temporal variations were well defined, as samples were grouped according to the climatic conditions of the months of collection. Considering the calculated quotient risks, atrazine, cyproconazole, diuron, and simazine showed the highest risk levels for algae; acetaminophen, diclofenac, and ibuprofen showed the highest risk levels for aquatics invertebrates.
Collapse
Affiliation(s)
- Maurício Perin
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Alexsandro Dallegrave
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Lucas Suchecki Barnet
- Laboratório Federal de Defesa Agropecuária - LFDA, Ministério da Agricultura, Pecuária e Abastecimento do Brasil, Estrada da Ponta Grossa 3036, 91780-580 Porto Alegre, RS, Brazil
| | - Leonardo Zanchetti Meneghini
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Adriano de Araújo Gomes
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Tânia Mara Pizzolato
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
46
|
Mamba FB, Mbuli BS, Ramontja J. Recent Advances in Biopolymeric Membranes towards the Removal of Emerging Organic Pollutants from Water. MEMBRANES 2021; 11:798. [PMID: 34832027 PMCID: PMC8619572 DOI: 10.3390/membranes11110798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022]
Abstract
Herein, this paper details a comprehensive review on the biopolymeric membrane applications in micropollutants' removal from wastewater. As such, the implications of utilising non-biodegradable membrane materials are outlined. In comparison, considerations on the concept of utilising nanostructured biodegradable polymeric membranes are also outlined. Such biodegradable polymers under considerations include biopolymers-derived cellulose and carrageenan. The advantages of these biopolymer materials include renewability, biocompatibility, biodegradability, and cost-effectiveness when compared to non-biodegradable polymers. The modifications of the biopolymeric membranes were also deliberated in detail. This included the utilisation of cellulose as matrix support for nanomaterials. Furthermore, attention towards the recent advances on using nanofillers towards the stabilisation and enhancement of biopolymeric membrane performances towards organic contaminants removal. It was noted that most of the biopolymeric membrane applications focused on organic dyes (methyl blue, Congo red, azo dyes), crude oil, hexane, and pharmaceutical chemicals such as tetracycline. However, more studies should be dedicated towards emerging pollutants such as micropollutants. The biopolymeric membrane performances such as rejection capabilities, fouling resistance, and water permeability properties were also outlined.
Collapse
Affiliation(s)
- Feziwe B. Mamba
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| | - Bhekani S. Mbuli
- DST/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Johannesburg 2028, South Africa
| | - James Ramontja
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
47
|
Chen B, Yang Z, Qu X, Zheng S, Yin D, Fu H. Screening and Discrimination of Perfluoroalkyl Substances in Aqueous Solution Using a Luminescent Metal-Organic Framework Sensor Array. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47706-47716. [PMID: 34605622 DOI: 10.1021/acsami.1c15528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The extensive production and large-scale use of perfluoroalkyl substances (PFASs) have raised their presence in aquatic environments worldwide. Thus, the facile and reliable screening of PFASs in aqueous systems is of great significance. Herein, we designed a novel fluorescent sensor array for the rapid screening and discrimination of multiple PFASs in water. The sensor array comprised three highly stable zirconium porphyrinic luminescent metal-organic frameworks (i.e., PCNs) with different topological structures. The sensing mechanism was based on the static fluorescence quenching of PCNs by PFASs upon their adsorptive interactions. The fluorescence response patterns were characteristic for each PFAS because of their different adsorption affinities toward different PCNs. Through the interpretation of response patterns by statistical methods, the proposed PCN array successfully discriminated six different kinds of PFASs, each PFAS at different concentrations and PFAS mixtures at different molar ratios. The practicability of this array was further verified by effectively discriminating PFASs in two real water samples. Remarkably, the PCN sensors exhibited a very short response time toward PFASs (within 10 s) due to the ordered pore structure allowing fast PFAS diffusion. This study not only provides a facile method for rapid PFAS screening in waters but also broadens the application of luminescent metal-organic frameworks and array techniques in sensing fields.
Collapse
Affiliation(s)
- Beining Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Zhengshuang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| |
Collapse
|
48
|
Warner W, Zeman-Kuhnert S, Heim C, Nachtigall S, Licha T. Seasonal and spatial dynamics of selected pesticides and nutrients in a small lake catchment - Implications for agile monitoring strategies. CHEMOSPHERE 2021; 281:130736. [PMID: 34020198 DOI: 10.1016/j.chemosphere.2021.130736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Intensive anthropogenic pressure such as high inputs of nutrients and pesticides severely threaten most European water bodies. Small catchments ≤10 km2 are not monitored under the Water Framework Directive but play an important role in freshwater ecosystems. The high complexity in seasonal and spatial dynamics require more than a one-size-fits-all approach in water quality monitoring. Often located in rural areas with a high agricultural activity, small catchments often carry high amounts of nutrients, pesticides and their transformation products affecting drinking water resources. With a low-cost approach of a monthly sampling campaign over the course of one year combined with meaningful indicators for potential pollution sources within the catchment this study could elucidate catchment dynamics and two hotspots for pesticides and nutrients. Two different groups of pesticides were observed (I) pesticides on long-term use which were applied in high amounts over the last decades (e.g., chloridazon and its transformation products) and (II) pesticides on short-term use, newly introduced into the market. Especially transformation products of pesticides from group (I) together with nitrate showed a steady release from two fields into the receiving water bodies over the year, probably being stored in the soil layers over the years of application slowly leaching out. Pesticides from group (II) showed a strong seasonality, released from another hotspot area probably due to run-off shortly after application. Streamlining this knowledge into targeted measures and an agile monitoring strategy for the respective catchments may allow a sustainable improvement of water quality and a better ecosystem protection.
Collapse
Affiliation(s)
- Wiebke Warner
- Institute of Geology, Mineralogy & Geophysics, Dept. Hydrogeochemistry, Ruhr-Universität Bochum, Germany.
| | | | - Christine Heim
- Institute for Geology and Mineralogy, University of Cologne, Germany
| | - Solveig Nachtigall
- Institute of Biology and Environmental Sciences, Carl-von-Ossietzky University Oldenburg, Germany
| | - Tobias Licha
- Institute of Geology, Mineralogy & Geophysics, Dept. Hydrogeochemistry, Ruhr-Universität Bochum, Germany
| |
Collapse
|
49
|
Bradley PM, Padilla IY, Romanok KM, Smalling KL, Focazio MJ, Breitmeyer SE, Cardon MC, Conley JM, Evans N, Givens CE, Gray JL, Gray LE, Hartig PC, Higgins CP, Hladik ML, Iwanowicz LR, Lane RF, Loftin KA, McCleskey RB, McDonough CA, Medlock-Kakaley E, Meppelink S, Weis CP, Wilson VS. Pilot-scale expanded assessment of inorganic and organic tapwater exposures and predicted effects in Puerto Rico, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147721. [PMID: 34134358 PMCID: PMC8504685 DOI: 10.1016/j.scitotenv.2021.147721] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 05/10/2023]
Abstract
A pilot-scale expanded target assessment of mixtures of inorganic and organic contaminants in point-of-consumption drinking water (tapwater, TW) was conducted in Puerto Rico (PR) to continue to inform TW exposures and corresponding estimations of cumulative human-health risks across the US. In August 2018, a spatial synoptic pilot assessment of than 524 organic and 37 inorganic chemicals was conducted in 14 locations (7 home; 7 commercial) across PR. A follow-up 3-day temporal assessment of TW variability was conducted in December 2018 at two of the synoptic locations (1 home, 1 commercial) and included daily pre- and post-flush samples. Concentrations of regulated and unregulated TW contaminants were used to calculate cumulative in vitro bioactivity ratios and Hazard Indices (HI) based on existing human-health benchmarks. Synoptic results confirmed that human exposures to inorganic and organic contaminant mixtures, which are rarely monitored together in drinking water at the point of consumption, occurred across PR and consisted of elevated concentrations of inorganic contaminants (e.g., lead, copper), disinfection byproducts (DBP), and to a lesser extent per/polyfluoroalkyl substances (PFAS) and phthalates. Exceedances of human-health benchmarks in every synoptic TW sample support further investigation of the potential cumulative risk to vulnerable populations in PR and emphasize the importance of continued broad characterization of drinking-water exposures at the tap with analytical capabilities that better represent the complexity of both inorganic and organic contaminant mixtures known to occur in ambient source waters. Such health-based monitoring data are essential to support public engagement in source water sustainability and treatment and to inform consumer point-of-use treatment decision making in PR and throughout the US.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mary C Cardon
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | - L Earl Gray
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | - Christopher P Weis
- National Institute of Environmental Health Sciences/National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
50
|
The upsurge of photocatalysts in antibiotic micropollutants treatment: Materials design, recovery, toxicity and bioanalysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|