1
|
Hesketh H, Baas J, Lahive E, Robinson AG, Spurgeon DJ, Heard MS. Comparative temporal response of toxicity for the neonicotinoid clothianidin and organophosphate dimethoate insecticides in two species of solitary bee (Osmia bicornis and Osmia cornuta). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117812. [PMID: 39908869 DOI: 10.1016/j.ecoenv.2025.117812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Solitary bees provide essential pollination services. Concerns for the decline of these wild bee species have led to calls for their inclusion in pesticide risk assessment. Solitary bees differ from honey bees in their physiology and ecology and this may affect how they respond to pesticide exposure. Here we investigate the life-time toxicity of two insecticides, the organophosphate dimethoate and neonicotinoid clothianidin, for two mason bee species, Osmia bicornis and O. cornuta using a toxicokinetic/toxicodynamic stochastic death model taken from Dynamic Energy Budget (DEBtox) theory. Both species showed concentration and exposure duration dependent effects for each chemical. LC50 values estimated from the model parameters at 48 h were ≥ 14 fold and 6 fold those at 480 h for dimethoate and clothianidin respectively. Survival modelling indicated greater sensitivity in O. bicornis than for O. cornuta to dimethoate, whilst for clothianidin, O. cornuta females but not males, were more sensitive than both sexes of O. bicornis. These sensitivity differences were not related to body size. Toxicokinetic and toxicodynamic traits derived from modelling indicated lower elimination rates in O. bicornis and higher killing rates for O. cornuta females for dimethoate and lower elimination rates for clothianidin in O. cornuta females that were related to sensitivity. This study shows the near life-time testing is possible for solitary bees and that combining adult life-time toxicity tests with toxicokinetic/toxicodynamic modelling provides a more mechanistic understanding of pesticide effects in solitary bee species.
Collapse
Affiliation(s)
- Helen Hesketh
- UK Centre for Ecology & Hydrology, MacLean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB, United Kingdom.
| | - Jan Baas
- UK Centre for Ecology & Hydrology, MacLean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB, United Kingdom; Environmental Sciences Group, Wageningen University and Research, PO box 47, Wageningen 6700 AA, the Netherlands
| | - Elma Lahive
- UK Centre for Ecology & Hydrology, MacLean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB, United Kingdom
| | - Alexander G Robinson
- UK Centre for Ecology & Hydrology, MacLean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB, United Kingdom
| | - David J Spurgeon
- UK Centre for Ecology & Hydrology, MacLean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB, United Kingdom
| | - Matthew S Heard
- UK Centre for Ecology & Hydrology, MacLean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB, United Kingdom; National Trust, Heelis, Kemble Drive, Swindon SN2 2NA, United Kingdom
| |
Collapse
|
2
|
Haberle I, Moore AP, Forbes VE, Brain RA, Hornbach DJ, Galic N, Vaugeois M. Comparing freshwater mussel responses to stress using life-history and Dynamic Energy Budget theory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177664. [PMID: 39579882 DOI: 10.1016/j.scitotenv.2024.177664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Freshwater mussels are experiencing severe population declines, affecting their critical role in freshwater ecosystems. A thorough assessment of threats posed by various stressors is needed; however, the large number of species to be considered and significant data gaps, especially for listed species, hinder the process. We combined a traits-based approach to represent multiple species grouped into three life-history categories - Equilibrium, Opportunistic, and Periodic - with the Dynamic Energy Budget modeling principles to capture the physiological mechanisms driving individual-level responses. We used the DEB model to simulate individual life cycles and explore relationships between underlying energetics and emerging individual traits of 47 freshwater mussel species and the common toxicity test surrogate, the Eastern oyster (Crassostrea virginica), under control and stressed conditions. Stress was introduced via physiological modes of action related to four key metabolic pathways: energy assimilation, maintenance, growth, and reproduction. We recorded maximum length, age at maturity, and fecundity and compared these endpoints and their stress-induced changes among life-history categories. The life-history differences among freshwater mussels directly emerged from underlying energetics, with high assimilation and maintenance supporting opportunistic traits. Stress imposed on energy assimilation had the strongest effect on all life-history traits, and a 25 % reduction in assimilation rate resulted in an average 25 % and 60 % decrease in maximum length and fecundity, respectively, and a 24 % increase in age at maturity. Equilibrium species suffered the greatest negative effects overall, indicating that this life-history strategy might be the most susceptible to stressors. The Eastern oyster displayed extreme opportunism in its life-history traits, but its responses to stress were generally within the range observed for freshwater mussels. The study provides a much-needed general understanding of stress responses across freshwater mussel life-history categories and contributes to the foundation for developing life-history-driven population models.
Collapse
Affiliation(s)
- Ines Haberle
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA.
| | - Adrian P Moore
- Department of Ecology, Evolution, and Behavior, College of Biological Sciences, University of Minnesota, St. Paul, MN, USA
| | - Valery E Forbes
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA; Department of Ecology, Evolution, and Behavior, College of Biological Sciences, University of Minnesota, St. Paul, MN, USA
| | - Richard A Brain
- Syngenta Crop Protection LLC, Greensboro, North Carolina, USA
| | - Daniel J Hornbach
- Department of Environmental Studies, Macalester College, St. Paul, MN, USA
| | - Nika Galic
- Syngenta Crop Protection LLC, Greensboro, North Carolina, USA
| | - Maxime Vaugeois
- Department of Ecology, Evolution, and Behavior, College of Biological Sciences, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
3
|
Dong S, Liu X, Zhu B, Liu D, Shan H, Wang F. Bioremediation potential of the hard clam Mercenaria mercenaria as an intensive shrimp aquaculture pond polyculture condidate. WATER RESEARCH 2024; 255:121552. [PMID: 38564899 DOI: 10.1016/j.watres.2024.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Polyculture practices are important for achieving sustainable aquaculture development. Recently, hard clams polyculture in intensive shrimp ponds has been encouraged because bivalves can consume excess nutrients in aquaculture systems and sequester carbon. To evaluate the bioremediation potential of hard clams polyculture in intensive shrimp ponds, this study built an assessment model based on individual growth models and estimated the potential for nitrogen and phosphorus removal as well as CO2 fixation by hard clams. Firstly, key parameters required for model construction were obtained through field surveys and physiological experiments. Subsequently, an individual growth model for the hard clam Mercenaria mercenaria was developed based on the Dynamic Energy Budget (DEB) theory. Fitting of the growth data indicated that the model accurately replicated the growth patterns of hard clams, with relative root mean square errors of 9.87 % for shell length and 5.02 % for dry tissue weight. Finally, the assessment model for the bioremediation potential of hard clams demonstrated that, over 110 days in the intensive shrimp mariculture pond, the net removal of nitrogen and phosphorus by hard clams were 3.68 kg ha-1 and 0.81 kg ha-1, respectively, and CO2 fixation was 507.00 kg ha-1. These findings suggested that the DEB model is an effective tool for evaluating bivalve ecological remediation potential and can aid in selecting species for sustainable polyculture.
Collapse
Affiliation(s)
- Shipeng Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Xubo Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Boshan Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Dapeng Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Hongwei Shan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Fang Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
4
|
Sample BE, Johnson MS, Hull RN, Kapustka L, Landis WG, Murphy CA, Sorensen M, Mann G, Gust KA, Mayfield DB, Ludwigs JD, Munns WR. Key challenges and developments in wildlife ecological risk assessment: Problem formulation. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:658-673. [PMID: 36325881 PMCID: PMC10656671 DOI: 10.1002/ieam.4710] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Problem formulation (PF) is a critical initial step in planning risk assessments for chemical exposures to wildlife, used either explicitly or implicitly in various jurisdictions to include registration of new pesticides, evaluation of new and existing chemicals released to the environment, and characterization of impact when chemical releases have occurred. Despite improvements in our understanding of the environment, ecology, and biological sciences, few risk assessments have used this information to enhance their value and predictive capabilities. In addition to advances in organism-level mechanisms and methods, there have been substantive developments that focus on population- and systems-level processes. Although most of the advances have been recognized as being state-of-the-science for two decades or more, there is scant evidence that they have been incorporated into wildlife risk assessment or risk assessment in general. In this article, we identify opportunities to consider elevating the relevance of wildlife risk assessments by focusing on elements of the PF stage of risk assessment, especially in the construction of conceptual models and selection of assessment endpoints that target population- and system-level endpoints. Doing so will remain consistent with four established steps of existing guidance: (1) establish clear protection goals early in the process; (2) consider how data collection using new methods will affect decisions, given all possibilities, and develop a decision plan a priori; (3) engage all relevant stakeholders in creating a robust, holistic conceptual model that incorporates plausible stressors that could affect the targets defined in the protection goals; and (4) embrace the need for iteration throughout the PF steps (recognizing that multiple passes may be required before agreeing on a feasible plan for the rest of the risk assessment). Integr Environ Assess Manag 2024;20:658-673. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
| | - Mark S. Johnson
- US Army Public Health Center, Aberdeen Proving Ground, MD, USA
| | - Ruth N. Hull
- Gary D. Williams & Associates Inc., Campbellville, Ontario, Canada
| | | | | | | | | | - Gary Mann
- Azimuth Consulting Group Inc., Vancouver, British Columbia, Canada
| | - Kurt A. Gust
- Research Development and Engineering Center, Engineer Research and Development Center, US Army Corps of Engineers, MS, Vicksburg, USA
| | | | | | | |
Collapse
|
5
|
Santos N, Oliveira M, Domingues I. Influence of exposure scenario on the sensitivity to caffeine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122808-122821. [PMID: 37978123 PMCID: PMC10724325 DOI: 10.1007/s11356-023-30945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The chorion acts as a protective barrier, restricting some chemical absorption into the embryo and the surrounding fluids. In this sense, larvae may only have direct contact with some chemicals after dechorionation. This study aimed to evaluate the effects of caffeine (CAF) (0, 13, 20, 44, 67, and 100 mg.L-1) under different exposure scenarios (embryos with chorion or embryos/larvae already hatched) and rank the stage sensitivity. Thus, three scenarios were investigated: from 2 to 120 hours post fertilization (hpf) (5 days of exposure- 5dE), from 72 to 120 hpf (2dE), and from 96 to 120 hpf (1dE). Heart rate (48 hpf) and energy reserves (120 hpf) were measured in the 5dE scenario, and behavior and acetylcholinesterase (AChE) activity were evaluated at 120 hpf in all scenarios (5dE, 2dE, and 1dE). At 120 hpf, some of the fish was transferred to clean medium for a 10 days depuration period (10dPE). Behavior and AChE activity were assessed after this period. In the 5dE scenario, CAF increased heartbeat (13, 20, and 30 mg.L-1) and reduced carbohydrates (67, and 100 mg.L-1), while inhibiting AChE activity (100 mg.L-1) in the 5dE, 2dE, and 1dE scenarios. CAF reduced the total distance moved in the 5dE (67, and 100 mg.L-1), 2dE (20, 30, 44, 67, and 100 mg.L-1), and 1dE fish (67, and 100 mg.L-1) and increased erratic movements. Based on the lowest observed effect concentration (LOEC) for total distance moved (20 mg.L-1) and higher inhibition of AChE activity (100 mg.L-1) (65%), 2dE fish appear to be more sensitive to CAF. After 10dPE, a recovery in behavior was detected in all scenarios (5dE, 2dE, and 1dE). AChE activity remained inhibited in the 2dE scenario while increasing in the 1dE scenario. This study demonstrated that the presence of the chorion is an important factor for the analysis of CAF toxicity. After the loss of the chorion, organisms show greater sensitivity to CAF and can be used to evaluate the toxicity of various substances, including nanomaterials or chemicals with low capacity to cross the chorion. Therefore, the use of hatched embryos in toxicity tests is suggested, as they allow a shorter and less expensive exposure scenario that provides similar outcome as the conventional scenario.
Collapse
Affiliation(s)
- Niedja Santos
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
6
|
Dorne JLCM, Cortiñas‐Abrahantes J, Spyropoulos F, Darney K, Lautz L, Louisse J, Kass GEN, Carnesecchi E, Liem AKD, Tarazona JV, Billat P, Beaudoin R, Zeman F, Bodin C, Smith A, Nathanail A, Di Nicola MR, Kleiner J, Terron A, Parra‐Morte JM, Verloo D, Robinson T. TKPlate 1.0: An Open-access platform for toxicokinetic and toxicodynamic modelling of chemicals to implement new approach methodologies in chemical risk assessment. EFSA J 2023; 21:e211101. [PMID: 38027439 PMCID: PMC10644227 DOI: 10.2903/j.efsa.2023.e211101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
This publication is linked to the following EFSA Supporting Publications articles: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2023.EN-8441/full, http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2023.EN-8440/full, http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2023.EN-8437/full.
Collapse
|
7
|
Nicola MRD, Cattaneo I, Nathanail AV, Carnesecchi E, Astuto MC, Steinbach M, Williams AJ, Charles S, Gestin O, Lopes C, Lamonica D, Tarazona JV, Dorne JLCM. The use of new approach methodologies for the environmental risk assessment of food and feed chemicals. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 31:1-8. [PMID: 36741274 PMCID: PMC9890323 DOI: 10.1016/j.coesh.2022.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
New Approach Methodologies (NAMs) provide tools for supporting both human and environmental risk assessment (HRA and ERA). This short review provides recent insights regarding the use of NAMs in ERA of food and feed chemicals. We highlight the usefulness of tiered methods supporting weight-of-evidence approaches in relation to problem formulation (i.e., data availability, time, and resource availability). In silico models, including quantitative structure activity relationship models, support filling data gaps when no chemical property or ecotoxicological data are available, and biologically-based models (e.g., toxicokinetic-toxicodynamic models, dynamic energy models, physiologically-based models and species sensitivity distributions) are applicable in more data rich situations, including landscape-based modelling approaches. Particular attention is given to provide practical examples to apply the approaches described in real-world settings. We conclude with future perspectives, with regards to the need for addressing complex challenges such as chemical mixtures and multiple stressors in a wide range of organisms and ecosystems.
Collapse
Affiliation(s)
- Matteo Riccardo Di Nicola
- IRCCS San Raffaele Hospital, Unit of Dermatology, Milan, Italy
- Asociación Herpetológica Española, Madrid, Spain
| | | | | | | | | | | | - Antony John Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, NC, USA
| | - Sandrine Charles
- University of Lyon, University Lyon 1, UMR CNRS 5558, Villeurbanne, France
| | - Ophélia Gestin
- University of Lyon, University Lyon 1, UMR CNRS 5558, Villeurbanne, France
- INRAE, Riverly, Ecotoxicology, Lyon, France
- University of La Rochelle, UMRi 7266, La Rochelle, France
| | - Christelle Lopes
- University of Lyon, University Lyon 1, UMR CNRS 5558, Villeurbanne, France
| | - Dominique Lamonica
- University of Lyon, University Lyon 1, UMR CNRS 5558, Villeurbanne, France
| | - Jose Vicente Tarazona
- Spanish National Environmental Health Centre, Instituto de Salud Carlos III, Ministry of Science and Innovation, 28220 Majadahonda, Madrid, Spain
| | | |
Collapse
|
8
|
Singer A, Nickisch D, Gergs A. Joint survival modelling for multiple species exposed to toxicants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159266. [PMID: 36228790 DOI: 10.1016/j.scitotenv.2022.159266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
In environmental risk assessment (ERA), the multitude of compounds and taxa demands cross-species extrapolation to cover the variability in sensitivity to toxicants. However, only the impact of a single compound to a single species is addressed by the general unified threshold model of survival (GUTS). The reduced GUTS is the recommended model to analyse lethal toxic effects in regulatory aquatic ERA. GUTS considers toxicokinetics and toxicodynamics. Two toxicodynamic approaches are considered: Stochastic death (SD) assumes that survival decreases with an increasing internalized amount of the toxicant. Individual tolerance (IT) assumes that individuals vary in their tolerance to toxic exposure. Existing theory suggests that the product of the threshold zw and killing rate bw (both SD toxicodynamic parameters) are constant across species or compounds if receptors and target sites are shared. We extend that theory and show that the shape parameter β of the loglogistic threshold distribution in IT is also constant. To verify the predicted relationships, we conducted three tests using toxicity studies for eight arthropods exposed to the insecticide flupyradifurone. We confirmed previous verifications of the relation- between SD parameters, and the newly established relation for the IT parameter β. We enhanced GUTS to jointly model survival for multiple species with shared receptors and pathways by incorporating the relations among toxicodynamic parameters described above. The joint GUTS exploits the shared parameter relations and therefore constrains parameter uncertainty for each of the separate species. Particularly for IT, the joint GUTS more precisely predicted risk to the separate species than the standard single species GUTS under environmentally realistic exposure. We suggest that joint GUTS modelling can improve cross-species extrapolation in regulatory ERA by increasing the reliability of risk estimates and reducing animal testing. Furthermore, the shared toxicodynamic response provides potential to reduce complexity of ecosystem models.
Collapse
Affiliation(s)
| | - Dirk Nickisch
- RIFCON GmbH, Goldbeckstraße 13, 69493 Hirschberg, Germany.
| | - André Gergs
- Bayer AG, Crop Science Division, Alfred-Nobel Straße 50, 40789 Monheim, Germany.
| |
Collapse
|
9
|
Bart S, Jager T, Short S, Robinson A, Sleep D, Pereira MG, Spurgeon DJ, Ashauer R. Modelling the effects of the pyrethroid insecticide cypermethrin on the life cycle of the soil dwelling annelid Enchytraeus crypticus, an original experimental design to calibrate a DEB-TKTD model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114499. [PMID: 36610295 DOI: 10.1016/j.ecoenv.2023.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/05/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The Dynamic Energy Budget theory (DEB) enables ecotoxicologists to model the effects of chemical stressors on organism life cycles through the coupling of toxicokinetic-toxicodynamic (TK-TD) models. While good progress has been made in the application of DEB-TKTD models for aquatic organisms, applications for soil fauna are scarce, due to the lack of dedicated experimental designs suitable for collecting the required time series effect data. Enchytraeids (Annelida: Clitellata) are model organisms in soil ecology and ecotoxicology. They are recognised as indicators of biological activity in soil, and chemical stress in terrestrial ecosystems. Despite this, the application of DEB-TKTD models to investigate the impact of chemicals has not yet been tested on this family. Here we assessed the impact of the pyrethroid insecticide cypermethrin on the life cycle of Enchytraeus crypticus. We developed an original experimental design to collect the data required for the calibration of a DEB-TKTD model for this species. E. crypticus presented a slow initial growth phase that has been successfully simulated with the addition of a size-dependent food limitation for juveniles in the DEB model. The DEB-TKTD model simulations successfully agreed with the data for all endpoints and treatments over time. The highlighted physiological mode of action (pMoA) for cypermethrin was an increase of the growth energy cost. The threshold for effects on survival was estimated at 73.14 mg kg- 1, and the threshold for effects on energy budget (i.e., sublethal effects) at 19.21 mg kg- 1. This study demonstrates that DEB-TKTD models can be successfully applied to E. crypticus as a representative soil species, and may improve the ecological risk assessment for terrestrial ecosystems, and our mechanistic understanding of chemical effects on non-target species.
Collapse
Affiliation(s)
- Sylvain Bart
- Department of Environment and Geography, University of York, York YO10 5NG, UK; UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK; MO-ECO2 (Modelling and Data Analyses for Ecology and Ecotoxicology), Paris, France.
| | | | - Stephen Short
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK
| | - Alex Robinson
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK
| | - Darren Sleep
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - M Glória Pereira
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | | | - Roman Ashauer
- Department of Environment and Geography, University of York, York YO10 5NG, UK; Syngenta Crop Protection AG, Basel 4058, Switzerland
| |
Collapse
|
10
|
Jager T, Goussen B, Gergs A. Using the standard DEB animal model for toxicokinetic-toxicodynamic analysis. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Carroll J, Frøysa HG, Vikebø F, Broch OJ, Howell D, Nepstad R, Augustine S, Skeie GM, Bockwoldt M. An annual profile of the impacts of simulated oil spills on the Northeast Arctic cod and haddock fisheries. MARINE POLLUTION BULLETIN 2022; 184:114207. [PMID: 36228407 DOI: 10.1016/j.marpolbul.2022.114207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
We simulate the combined natural and pollutant-induced survival of early life stages of NEA cod and haddock, and the impact on the adult populations in response to the time of a major oil spill in a single year. Our simulations reveal how dynamic ocean processes, controlling both oil transport and fate and the frequency of interactions of oil with drifting fish eggs and larvae, mediate the magnitude of population losses due to an oil spill. The largest impacts on fish early life stages occurred for spills initiated in Feb-Mar, concomitant with the initial rise in marine productivity and the earliest phase of the spawning season. The reproductive health of the adult fish populations was maintained in all scenarios. The study demonstrates the application of a simulation system that provides managers with information for the planning of development activities and for the protection of fisheries resources from potential impacts.
Collapse
Affiliation(s)
- JoLynn Carroll
- Akvaplan-niva, FRAM-High North Research Centre for Climate and the Environment, Hjalmar Johansens Gate 14, 9007 Tromsø, Norway; Research Centre for Arctic Petroleum Exploration (ARCEx), Department of Geosciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway.
| | - Håvard G Frøysa
- Institute of Marine Research, Box 1870, Nordnes, 5817 Bergen, Norway
| | - Frode Vikebø
- Institute of Marine Research, Box 1870, Nordnes, 5817 Bergen, Norway
| | | | - Daniel Howell
- Institute of Marine Research, Box 1870, Nordnes, 5817 Bergen, Norway
| | | | - Starrlight Augustine
- Akvaplan-niva, FRAM-High North Research Centre for Climate and the Environment, Hjalmar Johansens Gate 14, 9007 Tromsø, Norway
| | - Geir Morten Skeie
- Akvaplan-niva, FRAM-High North Research Centre for Climate and the Environment, Hjalmar Johansens Gate 14, 9007 Tromsø, Norway
| | - Mathias Bockwoldt
- Research Centre for Arctic Petroleum Exploration (ARCEx), Department of Geosciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
12
|
Toropov AA, Di Nicola MR, Toropova AP, Roncaglioni A, Carnesecchi E, Kramer NI, Williams AJ, Ortiz-Santaliestra ME, Benfenati E, Dorne JLCM. A regression-based QSAR-model to predict acute toxicity of aromatic chemicals in tadpoles of the Japanese brown frog (Rana japonica): Calibration, validation, and future developments to support risk assessment of chemicals in amphibians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154795. [PMID: 35341855 PMCID: PMC9535814 DOI: 10.1016/j.scitotenv.2022.154795] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 04/15/2023]
Abstract
Amphibian populations are undergoing a global decline worldwide. Such decline has been attributed to their unique physiology, ecology, and exposure to multiple stressors including chemicals, temperature, and biological hazards such as fungi of the Batrachochytrium genus, viruses such as Ranavirus, and habitat reduction. There are limited toxicity data for chemicals available for amphibians and few quantitative structure-activity relationship (QSAR) models have been developed and are publicly available. Such QSARs provide important tools to assess the toxicity of chemicals particularly in a data poor context. QSARs provide important tools to assess the toxicity of chemicals particularly when no toxicological data are available. This manuscript provides a description and validation of a regression-based QSAR model to predict, in a quantitative manner, acute lethal toxicity of aromatic chemicals in tadpoles of the Japanese brown frog (Rana japonica). QSAR models for acute median lethal molar concentrations (LC50-12 h) of waterborne chemicals using the Monte Carlo method were developed. The statistical characteristics of the QSARs were described as average values obtained from five random distributions into training and validation sets. Predictions from the model gave satisfactory results for the overall training set (R2 = 0.72 and RMSE = 0.33) and were even more robust for the validation set (R2 = 0.96 and RMSE = 0.11). Further development of QSAR models in amphibians, particularly for other life stages and species, are discussed.
Collapse
Affiliation(s)
- Andrey A Toropov
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy.
| | - Matteo R Di Nicola
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; Toxicology Division, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands.
| | - Alla P Toropova
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy.
| | - Alessandra Roncaglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy.
| | - Edoardo Carnesecchi
- Institute of Risk Assessment, Utrecht University, PO Box 80177, 3508 TD Utrecht, the Netherlands; Evidence Management Unit, European Food Safety Authority (EFSA), Via Carlo Magno 1A, 43126 Parma, Italy.
| | - Nynke I Kramer
- Toxicology Division, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands; Institute of Risk Assessment, Utrecht University, PO Box 80177, 3508 TD Utrecht, the Netherlands.
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, Durham, USA.
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) UCLM-CSIC-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy.
| | - Jean-Lou C M Dorne
- Methodology and Scientific Support Unit, European Food Safety Authority (EFSA), Via Carlo Magno 1A, 43126 Parma, Italy.
| |
Collapse
|
13
|
Hano T, Ito K, Ito M, Takashima K, Somiya R, Takai Y, Oshima Y, Ohkubo N. Molting enhances internal concentrations of fipronil and thereby decreases survival of two estuarine resident marine crustaceans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106172. [PMID: 35468410 DOI: 10.1016/j.aquatox.2022.106172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
In aquatic arthropods, molting is a pivotal physiological process for normal development, but it may also expose them to higher risks from xenobiotics, because the organism may take up additional water during that time. This study aimed to assess the effects of molting on bioconcentration and survival after 96-h exposure to insecticide fipronil with or without oxygenase (CYP450s) inhibitor piperonyl butoxide (PBO) of two estuarine resident marine crustacean species: the sand shrimp Crangon uritai and the kuruma prawn Penaeus japonicus, with 96-h LC50 value of fipronil = 2.0 µg/L and 0.2 µg/L, respectively. Two graded concentrations included group high (H) (equivalent to the 96-h LC50 values) and low (L) (one-tenth of the H group concentration). Molting and survival were individually checked, and internal concentrations of fipronil and its metabolites (fipronil desulfinyl, fipronil sulfide, fipronil sulfone) were measured. The results showed that, only fipronil and fipronil sulfone were detected from organism, and that internal concentrations of these insecticides in molted specimens were higher than those of unmolted ones but comparable with those of dead ones. Accordingly, mortality was more frequent in molted specimens than those that were unmolted. Furthermore, involvement of oxygenase and higher lethal body burden threshold may confer higher tolerance to fipronil in sand shrimp than in the kuruma prawn. This study is the first to demonstrate that the body-residue-based approach is useful for deciphering the causal factors underlying fipronil toxicity, but highlights the need to consider physiological factors in arthropods, which influence and lie beyond body burden, molting and drug metabolism.
Collapse
Affiliation(s)
- Takeshi Hano
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan.
| | - Katsutoshi Ito
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Mana Ito
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Kei Takashima
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, 1611 Tanbara-chou Ikeda, Saijyo, Ehime 791-0508, Japan
| | - Rei Somiya
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Yuki Takai
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuyuki Ohkubo
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| |
Collapse
|
14
|
Croll JC, de Roos AM. The regulating effect of growth plasticity on the dynamics of structured populations. THEOR ECOL-NETH 2022. [DOI: 10.1007/s12080-022-00529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractPlasticity is the extent to which life history processes such as growth and reproduction depend on the environment. Plasticity in individual growth varies widely between taxa. Nonetheless, little is known about the effect of plasticity in individual growth on the ecological dynamics of populations. In this article, we analyse a physiologically structured population model of a consumer population in which the individual growth rate can be varied between entirely plastic to entirely non-plastic. We derive this population level model from a dynamic energy budget model to ensure an accurate energetic coupling between ingestion, somatic maintenance, growth and reproduction within an individual. We show that the consumer population is either limited by adult fecundity or juvenile survival up to maturation, depending on the level of growth plasticity and the non-plastic individual growth rate. Under these two regimes, we also find two different types of population cycles which again arise due to fluctuation in, respectively, juvenile growth rate or adult fecundity. In the end, our model not only provides insight into the effects of growth plasticity on population dynamics, but also provides a link between the dynamics found in age- and size-structured models.
Collapse
|
15
|
Astuto MC, Di Nicola MR, Tarazona JV, Rortais A, Devos Y, Liem AKD, Kass GEN, Bastaki M, Schoonjans R, Maggiore A, Charles S, Ratier A, Lopes C, Gestin O, Robinson T, Williams A, Kramer N, Carnesecchi E, Dorne JLCM. In Silico Methods for Environmental Risk Assessment: Principles, Tiered Approaches, Applications, and Future Perspectives. Methods Mol Biol 2022; 2425:589-636. [PMID: 35188648 DOI: 10.1007/978-1-0716-1960-5_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This chapter aims to introduce the reader to the basic principles of environmental risk assessment of chemicals and highlights the usefulness of tiered approaches within weight of evidence approaches in relation to problem formulation i.e., data availability, time and resource availability. In silico models are then introduced and include quantitative structure-activity relationship (QSAR) models, which support filling data gaps when no chemical property or ecotoxicological data are available. In addition, biologically-based models can be applied in more data rich situations and these include generic or species-specific models such as toxicokinetic-toxicodynamic models, dynamic energy budget models, physiologically based models, and models for ecosystem hazard assessment i.e. species sensitivity distributions and ultimately for landscape assessment i.e. landscape-based modeling approaches. Throughout this chapter, particular attention is given to provide practical examples supporting the application of such in silico models in real-world settings. Future perspectives are discussed to address environmental risk assessment in a more holistic manner particularly for relevant complex questions, such as the risk assessment of multiple stressors and the development of harmonized approaches to ultimately quantify the relative contribution and impact of single chemicals, multiple chemicals and multiple stressors on living organisms.
Collapse
Affiliation(s)
| | | | | | - A Rortais
- European Food Safety Authority, Parma, Italy
| | - Yann Devos
- European Food Safety Authority, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | - Antony Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, NC, USA
| | - Nynke Kramer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Edoardo Carnesecchi
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
16
|
Schuijt LM, Peng FJ, van den Berg SJP, Dingemans MML, Van den Brink PJ. (Eco)toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: Facts, challenges, and future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148776. [PMID: 34328937 DOI: 10.1016/j.scitotenv.2021.148776] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Monitoring of chemicals in the aquatic environment by chemical analysis alone cannot completely assess and predict the effects of chemicals on aquatic species and ecosystems. This is primarily because of the increasing number of (unknown) chemical stressors and mixture effects present in the environment. In addition, the ability of ecological indices to identify underlying stressors causing negative ecological effects is limited. Therefore, additional complementary methods are needed that can address the biological effects in a direct manner and provide a link to chemical exposure, i.e. (eco)toxicological tests. (Eco)toxicological tests are defined as test systems that expose biological components (cells, individuals, populations, communities) to (environmental mixtures of) chemicals to register biological effects. These tests measure responses at the sub-organismal (biomarkers and in vitro bioassays), whole-organismal, population, or community level. We performed a literature search to obtain a state-of-the-art overview of ecotoxicological tests available for assessing impacts of chemicals to aquatic biota and to reveal datagaps. In total, we included 509 biomarkers, 207 in vitro bioassays, 422 tests measuring biological effects at the whole-organismal level, and 78 tests at the population- community- and ecosystem-level. Tests at the whole-organismal level and biomarkers were most abundant for invertebrates and fish, whilst in vitro bioassays are mostly based on mammalian cell lines. Tests at the community- and ecosystem-level were almost missing for organisms other than microorganisms and algae. In addition, we provide an overview of the various extrapolation challenges faced in using data from these tests and suggest some forward looking perspectives. Although extrapolating the measured responses to relevant protection goals remains challenging, the combination of ecotoxicological experiments and models is key for a more comprehensive assessment of the effects of chemical stressors to aquatic ecosystems.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Feng-Jiao Peng
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Milou M L Dingemans
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
17
|
Spagnoletti FN, Kronberg F, Spedalieri C, Munarriz E, Giacometti R. Protein corona on biogenic silver nanoparticles provides higher stability and protects cells from toxicity in comparison to chemical nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113434. [PMID: 34400389 DOI: 10.1016/j.jenvman.2021.113434] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The development of environmentally friendly new procedures for the synthesis of metallic nanoparticles is one of the main goals of nanotechnology. Proteins and enzymes from plants, filamentous fungi, yeast, and bacteria to produce nanoparticles are both valuable and viable alternatives to conventional synthesis of nanomaterials due to their high efficiency and the low cost to scale up and generate large quantities. The aim of this work is to compare biogenic silver nanoparticles (AgNPs) obtained from cell-free filtrates from the fungus Macrophomina phaseolina to conventional chemical AgNPs, in biocidal activity and toxicity. Our results show that bio-AgNPs displayed similar bactericidal activity than chemical AgNPs, but less toxicity in the model organism Caenorhabditis elegans. We employed biochemical and proteomic techniques to profile the unique surface chemistry of the capping in the bio-AgNPs and therefore to identify the proteins involved in their synthesis and stability. These results not only suggest that the proteins involved in the synthesis of the nanoparticles and corona formation in the bio-AgNPs are responsible for keeping the silver core preserved making them more stable in time, but also masking and protecting eukaryotic cells from metal toxicity.
Collapse
Affiliation(s)
- Federico N Spagnoletti
- CONICET-Consejo Nacional de Investigaciones Científicas / Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Avda. San Martín 4453, C1417DSE, Buenos Aires, Argentina; Cátedra de Microbiología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia Kronberg
- CONICET-Consejo Nacional de Investigaciones Científicas / Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Avda. San Martín 4453, C1417DSE, Buenos Aires, Argentina; Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Spedalieri
- Humboldt Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Eliana Munarriz
- CONICET-Consejo Nacional de Investigaciones Científicas / Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Avda. San Martín 4453, C1417DSE, Buenos Aires, Argentina; Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Romina Giacometti
- CONICET-Consejo Nacional de Investigaciones Científicas / Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Avda. San Martín 4453, C1417DSE, Buenos Aires, Argentina; Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
18
|
OpenCYP: An open source database exploring human variability in activities and frequencies of polymophisms for major cytochrome P-450 isoforms across world populations. Toxicol Lett 2021; 350:267-282. [PMID: 34352333 DOI: 10.1016/j.toxlet.2021.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
The open source database "OpenCYP database" has been developed based on the results of extensive literature searches from the peer-reviewed literature. OpenCYP provides data on human variability on baseline of activities and polymophism frequencies for selected cytochrome P-450 isoforms (CYP1A2, CYP2A6, CYP2D6, CYP3A4/3A5 and CYP3A7) in healthy adult populations from world populations. CYP enzymatic activities were generally expressed as the metabolic ratio (MR) between an unchanged probe drug and its metabolite(s) in urine or plasma measured in healthy adults. Data on other age groups were very limited and fragmented, constituting an important data gap. Quantitative comparisons were often hampered by the different experimental conditions used. However, variability was quite limited for CYP1A2, using caffeine as a probe substrate, with a symmetrical distribution of metabolic activity values. For CYP3A4, human variability was dependent on the probe substrate itself with low variability when data considering the dextromethorphan/demethilathed metabolite MR were used and large variability when the urinary 6β-hydroxycortisol/cortisol ratio was used. The largest variability in CYP activity was shown for CYP2D6 activity, after oral dosing of dextromethorphan, for which genetic polymorphisms are well characterised and constitute a significant source of variability. It is foreseen that the OpenCYP database can contribute to promising tools to support the further development of QIVIVE and PBK models for human risk assessment of chemicals particularly when combined with information on isoform-specific content in cells using proteomic approaches.
Collapse
|
19
|
van den Berg SJP, Maltby L, Sinclair T, Liang R, van den Brink PJ. Cross-species extrapolation of chemical sensitivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141800. [PMID: 33207462 DOI: 10.1016/j.scitotenv.2020.141800] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Ecosystems are usually populated by many species. Each of these species carries the potential to show a different sensitivity towards all of the numerous chemical compounds that can be present in their environment. Since experimentally testing all possible species-chemical combinations is impossible, the ecological risk assessment of chemicals largely depends on cross-species extrapolation approaches. This review overviews currently existing cross-species extrapolation methodologies, and discusses i) how species sensitivity could be described, ii) which predictors might be useful for explaining differences in species sensitivity, and iii) which statistical considerations are important. We argue that risk assessment can benefit most from modelling approaches when sensitivity is described based on ecologically relevant and robust effects. Additionally, specific attention should be paid to heterogeneity of the training data (e.g. exposure duration, pH, temperature), since this strongly influences the reliability of the resulting models. Regarding which predictors are useful for explaining differences in species sensitivity, we review interspecies-correlation, relatedness-based, traits-based, and genomic-based extrapolation methods, describing the amount of mechanistic information the predictors contain, the amount of input data the models require, and the extent to which the different methods provide protection for ecological entities. We develop a conceptual framework, incorporating the strengths of each of the methods described. Finally, the discussion of statistical considerations reveals that regardless of the method used, statistically significant models can be found, although the usefulness, applicability, and understanding of these models varies considerably. We therefore recommend publication of scientific code along with scientific studies to simultaneously clarify modelling choices and enable elaboration on existing work. In general, this review specifies the data requirements of different cross-species extrapolation methods, aiming to make regulators and publishers more aware that access to raw- and meta-data needs to be improved to make future cross-species extrapolation efforts successful, enabling their integration into the regulatory environment.
Collapse
Affiliation(s)
- Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | - Lorraine Maltby
- Department of Animal and Plant Sciences, The University of Sheffield, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Tom Sinclair
- Department of Animal and Plant Sciences, The University of Sheffield, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Ruoyu Liang
- Department of Animal and Plant Sciences, The University of Sheffield, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Paul J van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
20
|
Dai W, Holmstrup M, Slotsbo S, Ke X, Li Z, Gao M, Wu L. Compartmentation and effects of lead (Pb) in the collembolan, Folsomia candida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43638-43645. [PMID: 32737783 DOI: 10.1007/s11356-020-10300-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The impact of soil lead (Pb) pollution on survival, growth, and reproduction of the collembolan, Folsomia candida, and Pb compartmentation in its gut and remaining body parts were studied by exposing animals to laboratory-spiked soil. The survival, growth, and reproduction of F. candida were significantly reduced by increasing soil Pb concentration. The LC50 values of survival based on total and CaCl2-extractable Pb concentration in soil were 2562 mg kg-1 and 351 mg kg-1, respectively. The EC50 values of reproduction were 1244 mg kg-1 and 48 mg kg-1, respectively. The Pb concentration in whole body, gut, and remaining body parts was significantly increased with the increase of soil Pb concentration and followed an exponential increase when the soil Pb concentration was equal to or above a threshold (1000 mg kg-1 for whole body and remaining body part, 500 mg kg-1 for gut). Below this threshold, these relationships were linear. The Pb concentration in the gut was higher than whole body and remaining body part of F. candida, and the threshold of internal Pb concentration at which F. candida can compensate was in the range 7-13 mg Pb kg-1 dry animal (corresponding to soil Pb concentration 500-1000 mg Pb kg-1 dry soil). The results indicate that reproduction of F. candida was a more sensitive indicator of lead toxicity than survival and growth. Pb was mainly accumulated in the gut of F. candida. We discuss the internal Pb concentration as an indicator of adverse effects in the risk assessment of soil Pb pollution.
Collapse
Affiliation(s)
- Wencai Dai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Department of Bioscience, Section of Terrestrial Ecology, Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Martin Holmstrup
- Department of Bioscience, Section of Terrestrial Ecology, Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark
| | - Stine Slotsbo
- Department of Bioscience, Section of Terrestrial Ecology, Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark
| | - Xin Ke
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhu Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ming Gao
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
21
|
Sherborne N, Galic N, Ashauer R. Sublethal effect modelling for environmental risk assessment of chemicals: Problem definition, model variants, application and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141027. [PMID: 32758729 DOI: 10.1016/j.scitotenv.2020.141027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Bioenergetic models, and specifically dynamic energy budget (DEB) theory, are gathering a great deal of interest as a tool to predict the effects of realistically variable exposure to toxicants over time on an individual animal. Here we use aquatic ecological risk assessment (ERA) as the context for a review of the different model variants within DEB and the closely related DEBkiss theory (incl. reserves, ageing, size & maturity, starvation). We propose a coherent and unifying naming scheme for all current major DEB variants, explore the implications of each model's underlying assumptions in terms of its capability and complexity and analyse differences between the models (endpoints, mathematical differences, physiological modes of action). The results imply a hierarchy of model complexity which could be used to guide the implementation of simplified model variants. We provide a decision tree to support matching the simplest suitable model to a given research or regulatory question. We detail which new insights can be gained by using DEB in toxicokinetic-toxicodynamic modelling, both generally and for the specific example of ERA, and highlight open questions. Specifically, we outline a moving time window approach to assess time-variable exposure concentrations and discuss how to account for cross-generational exposure. Where possible, we suggest valuable topics for experimental and theoretical research.
Collapse
Affiliation(s)
- Neil Sherborne
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom.
| | - Nika Galic
- Syngenta Crop Protection, LLC, Greensboro, NC, United States of America
| | - Roman Ashauer
- Department of Environment and Geography, University of York, Wentworth Way, Heslington, York YO10 5NG, United Kingdom; Syngenta Crop Protection AG, Rosentalstrasse 67, Basel CH-4002, Switzerland
| |
Collapse
|
22
|
Carnesecchi E, Toma C, Roncaglioni A, Kramer N, Benfenati E, Dorne JLCM. Integrating QSAR models predicting acute contact toxicity and mode of action profiling in honey bees (A. mellifera): Data curation using open source databases, performance testing and validation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139243. [PMID: 32480144 DOI: 10.1016/j.scitotenv.2020.139243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Honey bees (Apis mellifera) provide key ecosystem services as pollinators bridging agriculture, the food chain and ecological communities, thereby ensuring food production and security. Ecological risk assessment of single Plant Protection Products (PPPs) requires an understanding of the exposure and toxicity. In silico tools such as QSAR models can play a major role for the prediction of structural, physico-chemical and pharmacokinetic properties of chemicals as well as toxicity of single and multiple chemicals. Here, the first integrative honey bee QSAR model has been developed for PPPs using EFSA's OpenFoodTox, US-EPA ECOTOX and Pesticide Properties DataBase i) to predict acute contact toxicity (LD50) and ii) to profile the Mode of Action (MoA) of pesticides active substances. Three different classification-based and four regression-based models were developed and tested for their performance, thus identifying two models providing the most reliable predictions based on k-NN algorithm. The two-category QSAR model (toxic/non-toxic; n = 411) was validated using sensitivity (=0.93), specificity (=0.85), balanced accuracy (=0.90), and Matthews correlation coefficient (MCC = 0.78) as statistical parameters. The regression-based model (n = 113) was validated for its reliability and robustness (R2 = 0.74; MAE = 0.52). Current study proposes the MoA profiling for 113 pesticides active substances and the first harmonised MoA classification scheme for acute contact toxicity in honey bees, including LD50s data points from three different databases. The classification allows to further define MoAs and the target site of PPPs active substances, thus enabling regulators and scientists to refine chemical grouping and toxicity extrapolations for single chemicals and component-based mixture risk assessment of multiple chemicals. Relevant future perspectives are briefly addressed to integrate MoA, adverse outcome pathways (AOPs) and toxicokinetic information for the refinement of single-chemical/combined toxicity predictions and risk estimates at different levels of biological organization in the bee health context.
Collapse
Affiliation(s)
- Edoardo Carnesecchi
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, PO Box 80177, 3508 TD Utrecht, the Netherlands; Laboratory of Chemistry and Environmental Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy.
| | - Cosimo Toma
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, PO Box 80177, 3508 TD Utrecht, the Netherlands; Laboratory of Chemistry and Environmental Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Alessandra Roncaglioni
- Laboratory of Chemistry and Environmental Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Nynke Kramer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, PO Box 80177, 3508 TD Utrecht, the Netherlands
| | - Emilio Benfenati
- Laboratory of Chemistry and Environmental Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Jean Lou C M Dorne
- European Food Safety Authority (EFSA), Scientific Committee and Emerging Risks Unit, Via Carlo Magno 1A, 43126 Parma, Italy
| |
Collapse
|
23
|
Trestrail C, Nugegoda D, Shimeta J. Invertebrate responses to microplastic ingestion: Reviewing the role of the antioxidant system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:138559. [PMID: 32470656 DOI: 10.1016/j.scitotenv.2020.138559] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 05/06/2023]
Abstract
Microplastic ingestion in invertebrates reduces somatic and reproductive growth. This could be caused by energy reserves being detracted from growth processes and redistributed to maintenance processes that preserve life. A potential sink for this diverted energy is the antioxidant system, which minimises oxidative damage and reinstates redox homeostasis following disturbances caused by exposure to pollution. Several microplastic studies have used genetic and molecular redox biomarkers to assess how microplastic ingestion affects the functioning of the antioxidant system. This systematic review synthesises the current understanding of redox biomarker responses in invertebrates that have ingested microplastics. We found that biomarker response information exists for only seven invertebrate taxa, and early life stages have received little scientific attention. The microplastics used by most studies were polystyrene (45% of studies), spherical (51% of studies), and were < 10 μm in diameter (31% of studies). We found multiple examples of microplastic ingestion posing an oxidative challenge to invertebrates, which required upregulation of antioxidant system components. However, the lack of systematic experiments prevented us from clearly identifying which characteristic of microplastics caused these responses. We identify several areas for consideration when investigating biomarker responses to microplastic ingestion and offer research priorities for future studies.
Collapse
Affiliation(s)
- Charlene Trestrail
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Dayanthi Nugegoda
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
24
|
Mounier F, Loizeau V, Pecquerie L, Drouineau H, Labadie P, Budzinski H, Lobry J. Dietary bioaccumulation of persistent organic pollutants in the common sole Solea solea in the context of global change. Part 2: Sensitivity of juvenile growth and contamination to toxicokinetic parameters uncertainty and environmental conditions variability in estuaries. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Roeben V, Oberdoerster S, Rakel KJ, Liesy D, Capowiez Y, Ernst G, Preuss TG, Gergs A, Oberdoerster C. Towards a spatiotemporally explicit toxicokinetic-toxicodynamic model for earthworm toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137673. [PMID: 32208236 DOI: 10.1016/j.scitotenv.2020.137673] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 05/20/2023]
Abstract
The aim of the environmental risk assessment of chemicals is the prevention of unacceptable adverse effects on the environment. Therefore, the risk assessment for in-soil organisms, such as earthworms, is based on two key elements: the exposure assessment and the effect assessment. In the current risk assessment scheme, these two elements are not linked. While for the exposure assessment, advanced exposure models can take the spatial and temporal scale of substances into account, the effect assessment in the lower tiers considers only a limited temporal and spatial variability. However, for soil organisms, such as earthworms, those scales play a significant role as species move through the soil in response to environmental factors. To overcome this gap, we propose a conceptual integration of pesticide exposure, ecology, and toxicological effects on earthworms using a modular modeling approach. An essential part of this modular approach is the environment module, which utilizes exposure models to provide spatially and temporally explicit information on environmental variables (e.g., temperature, moisture, organic matter content) and chemical concentrations. The behavior module uses this information and simulates the feeding and movement of different earthworm species using a trait-based approach. The resulting exposure can be processed by a toxicokinetic-toxicodynamic (TKTD) module. TKTD models are particularly suitable to make effect predictions for time-variable exposure situations as they include the processes of uptake, elimination, internal distribution, and biotransformation of chemicals and link the internal concentration to an effect at the organism level. The population module incorporates existing population models of different earthworm species. The modular approach is illustrated using a case study with an insecticide. Our results emphasize that using a modular model approach will facilitate the integration of exposure and effects and thus enhance the risk assessment of soil organisms.
Collapse
Affiliation(s)
- Vanessa Roeben
- gaiac - Research Institute for Ecosystem Analysis and Assessment, Kackertstrasse 10, 52072 Aachen, Germany.
| | | | - Kim J Rakel
- gaiac - Research Institute for Ecosystem Analysis and Assessment, Kackertstrasse 10, 52072 Aachen, Germany
| | - Dino Liesy
- gaiac - Research Institute for Ecosystem Analysis and Assessment, Kackertstrasse 10, 52072 Aachen, Germany
| | - Yvan Capowiez
- INRAE, 228 route de l'Aérodrome, 84914 Avignon Cedex 9, France
| | - Gregor Ernst
- Bayer AG, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany
| | - Thomas G Preuss
- Bayer AG, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany
| | - André Gergs
- Bayer AG, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany
| | | |
Collapse
|
26
|
Lautz LS, Nebbia C, Hoeks S, Oldenkamp R, Hendriks AJ, Ragas AMJ, Dorne JLCM. An open source physiologically based kinetic model for the chicken (Gallus gallus domesticus): Calibration and validation for the prediction residues in tissues and eggs. ENVIRONMENT INTERNATIONAL 2020; 136:105488. [PMID: 31991240 DOI: 10.1016/j.envint.2020.105488] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Xenobiotics from anthropogenic and natural origin enter animal feed and human food as regulated compounds, environmental contaminants or as part of components of the diet. After dietary exposure, a chemical is absorbed and distributed systematically to a range of organs and tissues, metabolised, and excreted. Physiologically based kinetic (PBK) models have been developed to estimate internal concentrations from external doses. In this study, a generic multi-compartment PBK model was developed for chicken. The PBK model was implemented for seven compounds (with log Kow range -1.37-6.2) to quantitatively link external dose and internal dose for risk assessment of chemicals. Global sensitivity analysis was performed for a hydrophilic and a lipophilic compound to identify the most sensitive parameters in the PBK model. Model predictions were compared to measured data according to dataset-specific exposure scenarios. Globally, 71% of the model predictions were within a 3-fold change of the measured data for chicken and only 7% of the PBK predictions were outside a 10-fold change. While most model input parameters still rely on in vivo experiments, in vitro data were also used as model input to predict internal concentration of the coccidiostat monensin. Future developments of generic PBK models in chicken and other species of relevance to animal health risk assessment are discussed.
Collapse
Affiliation(s)
- L S Lautz
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands.
| | - C Nebbia
- Department of Veterinary Sciences, University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - S Hoeks
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - R Oldenkamp
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - A J Hendriks
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - A M J Ragas
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands; Department of Science, Faculty of Management, Science &Technology, Open University, 6419 AT Heerlen, the Netherlands
| | - J L C M Dorne
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| |
Collapse
|
27
|
|
28
|
Choudri BS, Charabi Y, Ahmed M. Ecological and human health risk assessment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1072-1079. [PMID: 31386779 DOI: 10.1002/wer.1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 06/10/2023]
Abstract
The literature review presented in this paper covers the risk assessment process that is important to human health as well as the health of ecology in the form of receptors. One of the important objectives of present review is to provide summary of the scientific studies published in the year 2018. The review starts with literature published on the assessment of health risks, which are valuable to human and ecology. Most of the literature in the entire article focuses on techniques used for the analysis of scientific data and methods. In addition, review also highlights data interpretation, uncertainty, policy, and regulatory guidance associated with the management of human and ecological risks. Particularly, the review on the risk assessment related to human health and ecology is divided into two main sections. These sections provide broad state of knowledge on the risk assessment process used to health of human and ecological systems focused on investigation of polluted sites, techniques of remediation, and tools required for natural resource management.
Collapse
Affiliation(s)
- B S Choudri
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Oman
| | - Yassine Charabi
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Oman
| | - Mushtaque Ahmed
- College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
29
|
Eom HJ, Choi J. Clathrin-mediated endocytosis is involved in uptake and toxicity of silica nanoparticles in Caenohabditis elegans. Chem Biol Interact 2019; 311:108774. [DOI: 10.1016/j.cbi.2019.108774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
|
30
|
Perkins EJ, Ashauer R, Burgoon L, Conolly R, Landesmann B, Mackay C, Murphy CA, Pollesch N, Wheeler JR, Zupanic A, Scholz S. Building and Applying Quantitative Adverse Outcome Pathway Models for Chemical Hazard and Risk Assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1850-1865. [PMID: 31127958 PMCID: PMC6771761 DOI: 10.1002/etc.4505] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/26/2019] [Accepted: 05/21/2019] [Indexed: 05/20/2023]
Abstract
An important goal in toxicology is the development of new ways to increase the speed, accuracy, and applicability of chemical hazard and risk assessment approaches. A promising route is the integration of in vitro assays with biological pathway information. We examined how the adverse outcome pathway (AOP) framework can be used to develop pathway-based quantitative models useful for regulatory chemical safety assessment. By using AOPs as initial conceptual models and the AOP knowledge base as a source of data on key event relationships, different methods can be applied to develop computational quantitative AOP models (qAOPs) relevant for decision making. A qAOP model may not necessarily have the same structure as the AOP it is based on. Useful AOP modeling methods range from statistical, Bayesian networks, regression, and ordinary differential equations to individual-based models and should be chosen according to the questions being asked and the data available. We discuss the need for toxicokinetic models to provide linkages between exposure and qAOPs, to extrapolate from in vitro to in vivo, and to extrapolate across species. Finally, we identify best practices for modeling and model building and the necessity for transparent and comprehensive documentation to gain confidence in the use of qAOP models and ultimately their use in regulatory applications. Environ Toxicol Chem 2019;38:1850-1865. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Edward J. Perkins
- US Army Engineer Research and Development CenterVicksburgMississippiUSA
| | - Roman Ashauer
- Environment DepartmentUniversity of York, HeslingtonYorkUK
- ToxicodynamicsYorkUK
| | - Lyle Burgoon
- US Army Engineer Research and Development CenterVicksburgMississippiUSA
| | - Rory Conolly
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and DevelopmentUS Environmental Protection Agency, Research Triangle ParkNorth CarolinaUSA
| | | | - Cameron Mackay
- Unilever Safety and Environmental Assurance Centre, SharnbrookBedfordUK
| | - Cheryl A. Murphy
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichiganUSA
| | - Nathan Pollesch
- Mid‐Continent Ecology Division, National Health and Environmental Effects Laboratory, Office of Research and DevelopmentUS Environmental Protection AgencyDuluthMinnesotaUSA
| | | | - Anze Zupanic
- Department of Environmental ToxicologySwiss Federal Institute for Aquatic Science and TechnologyDübendorfSwitzerland
| | - Stefan Scholz
- Department of Bioanalytical EcotoxicologyHelmholtz Centre for Environmental Research‐UFZLeipzigGermany
| |
Collapse
|
31
|
Synergistic Effects of Climate Change and Marine Pollution: An Overlooked Interaction in Coastal and Estuarine Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152737. [PMID: 31370308 PMCID: PMC6696450 DOI: 10.3390/ijerph16152737] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 11/17/2022]
Abstract
Coastal areas have been increasingly affected by human activities, marine pollution and climate change are among the most important pressures affecting these environments. Human-induced pressures occur in a cumulative way and generate additive, antagonistic or synergistic effects. Knowledge on synergistic effects is crucial to coastal zone management, since they may imply a change in human uses of these systems, as well as dedicated action plans in order to reduce hazards and environmental risks. In this work, we provide an overview of the available literature on synergistic effects between climate change and chemical pollution, and discuss current knowledge, methodological approaches, and research gaps and needs. Interactions between these two pressures may be climate change dominant (climate change leads to an increase in contaminant exposure or toxicity) or contaminant-dominant (chemical exposure leads to an increase in climate change susceptibility), but the mechanistic drivers of such processes are not well known. Results from a few meta-analyses studies and reviews showed that synergistic interactions tend to be more frequent compared to additive and antagonistic ones. However, most of the studies are individual-based and assess the cumulative effects of a few contaminants individually in laboratory settings together with few climate variables, particularly temperature and pH. Nevertheless, a wide diversity of contaminants have already been individually tested, spanning from metals, persistent organic pollutants and, more recently, emergent pollutants. Population and community based approaches are less frequent but have generated very interesting and more holistic perspectives. Methodological approaches are quite diverse, from laboratory studies to mesocosm and field studies, or based on statistical or modelling tools, each with their own potential and limitations. More holistic comparisons integrating several pressures and their combinations and a multitude of habitats, taxa, life-stages, among others, are needed, as well as insights from meta-analyses and systematic reviews.
Collapse
|
32
|
Wu T, Xu H, Liang X, Tang M. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. CHEMOSPHERE 2019; 221:708-726. [PMID: 30677729 DOI: 10.1016/j.chemosphere.2019.01.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The number of biosafety evaluation studies of nanoparticles (NPs) using different biological models is increasing with the rapid development of nanotechnology. Thus far, nematode Caenorhabditis elegans (C. elegans), as a complete model organism, has become an important in vivo alternative assay system to assess the risk of NPs, especially at the environmental level. According to results of qualitative and quantitative analyses, it can be concluded that studies of nanoscientific research using C. elegans is persistently growing. However, the comprehensive conclusion and analysis of toxic effects of NPs in C. elegans are limited and chaotic. This review focused on the effects, especially sublethal ones, induced by NPs in C. elegans, including the development, intestinal function, immune response, neuronal function, and reproduction, as well as the underlying mechanisms of NPs causing these effects, including oxidative stress and alterations of several signaling pathways. Furthermore, we presented some factors that influence the toxic effects of NPs in C. elegans. The advantages and limitations of using nematodes in the nanotoxicology study were also discussed. Finally, we predicted that the application of C. elegans to assess long-term impacts of metal oxide NPs in the ecosystem would become a vital part of the nanoscientific research field, which provided an insight for further study.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| | - Hongsheng Xu
- State Grid Electric Power Research Institute, NARI Group Corporation, Nanjing, 211000, China
| | - Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
33
|
More SJ, Bampidis V, Benford D, Bennekou SH, Bragard C, Halldorsson TI, Hernández-Jerez AF, Koutsoumanis K, Naegeli H, Schlatter JR, Silano V, Nielsen SS, Schrenk D, Turck D, Younes M, Benfenati E, Castle L, Cedergreen N, Hardy A, Laskowski R, Leblanc JC, Kortenkamp A, Ragas A, Posthuma L, Svendsen C, Solecki R, Testai E, Dujardin B, Kass GE, Manini P, Jeddi MZ, Dorne JLC, Hogstrand C. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J 2019; 17:e05634. [PMID: 32626259 PMCID: PMC7009070 DOI: 10.2903/j.efsa.2019.5634] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This Guidance document describes harmonised risk assessment methodologies for combined exposure to multiple chemicals for all relevant areas within EFSA's remit, i.e. human health, animal health and ecological areas. First, a short review of the key terms, scientific basis for combined exposure risk assessment and approaches to assessing (eco)toxicology is given, including existing frameworks for these risk assessments. This background was evaluated, resulting in a harmonised framework for risk assessment of combined exposure to multiple chemicals. The framework is based on the risk assessment steps (problem formulation, exposure assessment, hazard identification and characterisation, and risk characterisation including uncertainty analysis), with tiered and stepwise approaches for both whole mixture approaches and component‐based approaches. Specific considerations are given to component‐based approaches including the grouping of chemicals into common assessment groups, the use of dose addition as a default assumption, approaches to integrate evidence of interactions and the refinement of assessment groups. Case studies are annexed in this guidance document to explore the feasibility and spectrum of applications of the proposed methods and approaches for human and animal health and ecological risk assessment. The Scientific Committee considers that this Guidance is fit for purpose for risk assessments of combined exposure to multiple chemicals and should be applied in all relevant areas of EFSA's work. Future work and research are recommended. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2019.EN-1589/full, http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2019.EN-1602/full
Collapse
|
34
|
Maloney EM. How do we take the pulse of an aquatic ecosystem? Current and historical approaches to measuring ecosystem integrity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:289-301. [PMID: 30387526 DOI: 10.1002/etc.4308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/23/2018] [Accepted: 10/31/2018] [Indexed: 06/08/2023]
Abstract
Global environmental monitoring has indicated that the structure and function of some aquatic ecosystems has been significantly altered by human activities. There are many potential causes for these changes; however, one major concern is the increasing release of anthropogenic contaminants into aquatic environments. Although toxicological responses of individual organisms are typically well characterized, few studies have focused on characterizing toxicity at the ecosystem level. In fact, because of their scale and complexity, changes in ecosystem integrity are rarely considered in assessments of risks to ecosystems. This work attempts to move the conversation forward by defining integrity of ecosystems, reviewing current and historical approaches to measuring ecosystem integrity status (e.g., structural and functional measurements), and highlighting methods that could significantly contribute to the field of ecosystem toxicology (e.g., keystone species, environmental energetics, ecotoxicological modeling, and adverse outcome pathways [AOPs]). Through a critical analysis of current and historical methodologies, the present study offers a comprehensive, conceptual framework for the assessment of risks of contaminant exposure for whole ecosystems and proposes steps to facilitate better diagnoses of the integrity of aquatic systems. Environ Toxicol Chem 2019;38:289-301. © 2018 SETAC.
Collapse
Affiliation(s)
- Erin M Maloney
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
35
|
Morais JV, Custódio AL, Marques GM. Calibration of parameters in Dynamic Energy Budget models using Direct-Search methods. J Math Biol 2018; 78:1439-1458. [PMID: 30523383 DOI: 10.1007/s00285-018-1315-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 11/20/2018] [Indexed: 11/26/2022]
Abstract
Dynamic Energy Budget (DEB) theory aims to capture the quantitative aspects of metabolism at the individual level, for all species. The parametrization of a DEB model is based on information obtained through the observation of natural populations and experimental research. Currently the DEB toolbox estimates these parameters using the Nelder-Mead Simplex method, a derivative-free direct-search method. However, this procedure presents some limitations regarding convergence and how to address constraints. Framed in the calibration of parameters in DEB theory, this work presents a numerical comparison between the Nelder-Mead Simplex method and the SID-PSM algorithm, a Directional Direct-Search method for which convergence can be established both for unconstrained and constrained problems. A hybrid version of the two methods, named as Simplex Directional Direct-Search, provides a robust and efficient algorithm, able to solve the constrained optimization problems resulting from the parametrization of the biological models.
Collapse
Affiliation(s)
- J V Morais
- MARETEC - Marine, Environment and Technology Center, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - A L Custódio
- Department of Mathematics, FCT-UNL-CMA, Campus da Caparica, 2829-516, Caparica, Portugal
| | - G M Marques
- MARETEC - Marine, Environment and Technology Center, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
36
|
Bopp SK, Barouki R, Brack W, Dalla Costa S, Dorne JLCM, Drakvik PE, Faust M, Karjalainen TK, Kephalopoulos S, van Klaveren J, Kolossa-Gehring M, Kortenkamp A, Lebret E, Lettieri T, Nørager S, Rüegg J, Tarazona JV, Trier X, van de Water B, van Gils J, Bergman Å. Current EU research activities on combined exposure to multiple chemicals. ENVIRONMENT INTERNATIONAL 2018; 120:544-562. [PMID: 30170309 PMCID: PMC6192826 DOI: 10.1016/j.envint.2018.07.037] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 05/20/2023]
Abstract
Humans and wildlife are exposed to an intractably large number of different combinations of chemicals via food, water, air, consumer products, and other media and sources. This raises concerns about their impact on public and environmental health. The risk assessment of chemicals for regulatory purposes mainly relies on the assessment of individual chemicals. If exposure to multiple chemicals is considered in a legislative framework, it is usually limited to chemicals falling within this framework and co-exposure to chemicals that are covered by a different regulatory framework is often neglected. Methodologies and guidance for assessing risks from combined exposure to multiple chemicals have been developed for different regulatory sectors, however, a harmonised, consistent approach for performing mixture risk assessments and management across different regulatory sectors is lacking. At the time of this publication, several EU research projects are running, funded by the current European Research and Innovation Programme Horizon 2020 or the Seventh Framework Programme. They aim at addressing knowledge gaps and developing methodologies to better assess chemical mixtures, by generating and making available internal and external exposure data, developing models for exposure assessment, developing tools for in silico and in vitro effect assessment to be applied in a tiered framework and for grouping of chemicals, as well as developing joint epidemiological-toxicological approaches for mixture risk assessment and for prioritising mixtures of concern. The projects EDC-MixRisk, EuroMix, EUToxRisk, HBM4EU and SOLUTIONS have started an exchange between the consortia, European Commission Services and EU Agencies, in order to identify where new methodologies have become available and where remaining gaps need to be further addressed. This paper maps how the different projects contribute to the data needs and assessment methodologies and identifies remaining challenges to be further addressed for the assessment of chemical mixtures.
Collapse
Key Words
- ao, adverse outcome
- aop, adverse outcome pathway
- bmd, benchmark dose modelling
- bqe, biological quality element
- ca, concentration addition
- cag, cumulative assessment group
- cmep, chemical monitoring and emerging pollutants
- cra, cumulative risk assessment
- dart, developmental and reproductive toxicity
- deb, dynamic energy budget
- ebt, effect-based tools
- edc, endocrine disrupting chemical
- eqs, environmental quality standard
- hbm, human biomonitoring
- ia, independent action
- iata, integrated approach to testing and assessment
- ipra, integrated probabilistic risk assessment
- ipsc, induced pluripotent stem cells
- loe, lines of evidence
- mcr, maximum cumulative ratio
- mcra, monte carlo risk assessment tool
- mec, measured exposure concentration
- moa, mode of action
- mra, mixture risk assessment
- msfd, marine strategy framework directive
- nam, new approach methodology
- pbtk, physiologically based toxicokinetic (model)
- pec, predicted exposure concentration
- pnec, predicted no effect concentration
- qsar, quantitative structure activity relationship
- rdt, repeated dose systemic toxicity
- tk, toxicokinetic
- smri, similar mixture risk indicator
- syrina, systematic review and integrated assessment
- ttc, threshold of toxicological concern
- wfd, water framework directive
Collapse
Affiliation(s)
- Stephanie K Bopp
- European Commission, Directorate General Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Ispra, Italy.
| | - Robert Barouki
- INSERM UMR-S 1124, Université Paris Descartes, Paris, France.
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Silvia Dalla Costa
- European Commission, Directorate General Joint Research Centre, Directorate B - Growth and Innovation, Ispra, Italy.
| | - Jean-Lou C M Dorne
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority (EFSA), Parma, Italy.
| | - Paula E Drakvik
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden.
| | - Michael Faust
- Faust & Backhaus Environmental Consulting, Bremen, Germany.
| | - Tuomo K Karjalainen
- European Commission, Directorate General Research and Innovation, Directorate E - Health, Brussels, Belgium.
| | - Stylianos Kephalopoulos
- European Commission, Directorate General Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Ispra, Italy.
| | - Jacob van Klaveren
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | | | - Andreas Kortenkamp
- Institute for Environment, Health and Societies, Brunel University, Uxbridge, United Kingdom.
| | - Erik Lebret
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute of Risk Assessment Sciences - IRAS, Utrecht University, Utrecht, the Netherlands.
| | - Teresa Lettieri
- European Commission, Directorate General Joint Research Centre, Directorate D - Sustainable Resources, Ispra, Italy.
| | - Sofie Nørager
- European Commission, Directorate General Research and Innovation, Directorate E - Health, Brussels, Belgium.
| | - Joëlle Rüegg
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden.
| | - Jose V Tarazona
- Pesticides Unit, European Food Safety Authority (EFSA), Parma, Italy.
| | - Xenia Trier
- European Environment Agency, Copenhagen, Denmark.
| | - Bob van de Water
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | | | - Åke Bergman
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden; School of Science and Technology, MTM, Örebro University, Örebro, Sweden.
| |
Collapse
|
37
|
Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Smith RH, Stemmer M, Sundh I, Tiktak A, Topping CJ, Wolterink G, Cedergreen N, Charles S, Focks A, Reed M, Arena M, Ippolito A, Byers H, Teodorovic I. Scientific Opinion on the state of the art of Toxicokinetic/Toxicodynamic (TKTD) effect models for regulatory risk assessment of pesticides for aquatic organisms. EFSA J 2018; 16:e05377. [PMID: 32626020 PMCID: PMC7009662 DOI: 10.2903/j.efsa.2018.5377] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Following a request from EFSA, the Panel on Plant Protection Products and their Residues (PPR) developed an opinion on the state of the art of Toxicokinetic/Toxicodynamic (TKTD) models and their use in prospective environmental risk assessment (ERA) for pesticides and aquatic organisms. TKTD models are species- and compound-specific and can be used to predict (sub)lethal effects of pesticides under untested (time-variable) exposure conditions. Three different types of TKTD models are described, viz., (i) the 'General Unified Threshold models of Survival' (GUTS), (ii) those based on the Dynamic Energy Budget theory (DEBtox models), and (iii) models for primary producers. All these TKTD models follow the principle that the processes influencing internal exposure of an organism, (TK), are separated from the processes that lead to damage and effects/mortality (TD). GUTS models can be used to predict survival rate under untested exposure conditions. DEBtox models explore the effects on growth and reproduction of toxicants over time, even over the entire life cycle. TKTD model for primary producers and pesticides have been developed for algae, Lemna and Myriophyllum. For all TKTD model calibration, both toxicity data on standard test species and/or additional species can be used. For validation, substance and species-specific data sets from independent refined-exposure experiments are required. Based on the current state of the art (e.g. lack of documented and evaluated examples), the DEBtox modelling approach is currently limited to research applications. However, its great potential for future use in prospective ERA for pesticides is recognised. The GUTS model and the Lemna model are considered ready to be used in risk assessment.
Collapse
|