1
|
Soares M, Oliveira H, Alves C. Airborne particulate matter inhalation bioaccessibility: A review of methodological aspects. Chem Biol Interact 2025; 408:111403. [PMID: 39862943 DOI: 10.1016/j.cbi.2025.111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Research has consistently linked exposure to particulate matter (PM) with adverse health outcomes, including cardiovascular and pulmonary morbidity and mortality. Understanding the mechanisms by which PM leads to these effects on human health is crucial for developing effective mitigation strategies. One aspect of PM research that has gained increasing attention in the past few years is the bioaccessibility of inhaled PM-bound pollutants that have potential to cause adverse health effects. To assess the bioaccessibility of PM-bound pollutants, such as polycyclic aromatic hydrocarbons, phthalate esters, organophosphorus flame retardants and metal(loid)s, simulated lung fluids (SLF) are used as a tool to mimic the conditions in the human respiratory system. In addition to different SLF, various extraction methodologies and experimental conditions (e.g., incubation period, solid to liquid ratio, and pH) have been employed to extract the bioaccessible part of these pollutants, though there is not yet a standardised procedure to do so. This review aims to critically evaluate existing inhalation bioaccessibility methodologies and explore their connection with PM characteristics. More research is needed, and a standardised procedure should be implemented to allow the comparation of data between studies. Better in vitro-in vivo relationships need to be established to enhance the feasibility of in vitro bioaccessibility assays as surrogates in human health exposure assessments. Long-term effects of bioaccessible pollutants and any potential synergetic effects between multiple contaminants should also be explored to assess health repercussions more thoroughly.
Collapse
Affiliation(s)
- Marlene Soares
- Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Helena Oliveira
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Célia Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Cervellati F, Benedusi M, Casoni A, Trinchera G, Vallese A, Ferrara F, Pietrogrande MC, Valacchi G. Effect of Cu- and Fe- Isolated from Environmental Particulate Matter on Mitochondrial Dynamics in Human Colon CaCo-2 Cells. Biol Trace Elem Res 2024:10.1007/s12011-024-04497-7. [PMID: 39738852 DOI: 10.1007/s12011-024-04497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Atmospheric particulate matter (PM) is one of the most dangerous air pollutants of anthropogenic origin; it consists of a heterogeneous mixture of inorganic and organic components, including transition metals and polycyclic aromatic hydrocarbons. Although previous studies have focused on the effects of exposure to highly concentrated PM on the respiratory and cardiovascular systems, emerging evidence supports a significant impact of air pollution on the gastrointestinal (GI) tract by linking exposure to external stressors with conditions such as appendicitis, colorectal cancer, and inflammatory bowel disease. In general, it has been hypothesized that the main mechanism involved in PM toxicity consists of an inflammatory response and this has also been suggested for the GI tract. In the present study, we analyzed the effect of specific redox-active PM components, such as copper (Cu) and iron (Fe), in human intestinal cells focusing on ultrastructural integrity, redox homeostasis, and modulation of some mitochondrial-related markers. According to our results, exposure to Cu- and Fe-PM components and their combination induced ultrastructural alterations in the endoplasmic reticulum and in the mitochondria with an additive effect when combined. The increase in ROS and the loss of the mitochondrial mass in the cells exposed to PM indicates that mitochondria are a target of acute metal exposure. Furthermore, the gene expression and the protein levels of mitochondria dynamics markers were affected by the PM exposure. In particular, OPA1 increases at both gene and protein levels in all conditions while Mitofusin1 decreases significantly only in the presence of Fe. The increase in PINK expression is modulated by Fe, while Cu seems to affect mainly Parkin. Finally, a significant decrease in trans-epithelial resistance was also observed. In general, our study can confirm the correlation observed between pollution exposure areas and increased incidence of GI tract conditions.
Collapse
Affiliation(s)
- Franco Cervellati
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Alice Casoni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giulia Trinchera
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Andrea Vallese
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Chiara Pietrogrande
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Animal Science, North Carolina State University, Plants for Human Health Institute, NC Research Campus, Kannapolis, NC, USA.
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
3
|
Kasongo J, Alleman LY, Kanda JM, Kaniki A, Riffault V. Metal-bearing airborne particles from mining activities: A review on their characteristics, impacts and research perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175426. [PMID: 39137842 DOI: 10.1016/j.scitotenv.2024.175426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The presence of various contaminants in airborne dusts from metal mining sites poses obvious risks to human health and the environment. Yet, few studies have thoroughly investigated the properties of airborne particles in terms of their morphology, size distribution and chemical composition, that are associated with health effects around mining activities. This review presents the most recent knowledge on the sources, physicochemical characteristics, and health and environmental risks associated with airborne dusts from various mining and smelting operations. The literature reviewed found only one research on atmospheric dust associated with hydrometallurgical plants compared to a larger number of pyrometallurgical processes/smelters studies. In addition, there are relatively few works comparing the distribution of metals between the fine and coarse size fractions around mining sites. Our analysis suggests that (i) exposure pathways of metal(loid)s to the human body are defined by linking concentration data in human biosamples and contaminated samples such as soils, drinking water and food, and (ii) chitosan and its derivatives may serve as an environmentally friendly and cost-effective method for soil remediation, with removal rates for metal(loid)s around 70-95 % at pH 6-8, and as dust suppressants for unpaved roads around mining sites. The specific limit values for PM and metal(loid)s at mining sites are not well documented. Despite the health risks associated with fine particles around mining areas, regulations have tended to focus on coarse particles. While some air quality agencies have issued regulations for occupational health and safety, there is no global alignment or common regulatory framework for enforcement. Future research priorities should focus on investigating PM and secondary inorganic aerosols associated with hydrometallurgical processes and dust monitoring, using online metal(loid)s analysers to identify the driving parameters in the deposition and resuspension process.
Collapse
Affiliation(s)
- John Kasongo
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environnement, 59000 Lille, France; Department of Industrial Chemistry, Polytechnic Faculty, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.
| | - Laurent Y Alleman
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environnement, 59000 Lille, France.
| | - Jean-Marie Kanda
- Department of Industrial Chemistry, Polytechnic Faculty, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Arthur Kaniki
- Department of Industrial Chemistry, Polytechnic Faculty, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Véronique Riffault
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environnement, 59000 Lille, France
| |
Collapse
|
4
|
Meng T, Fang K, Li T, Qi W, Zhang L, Hu Y, Liu Y, Shi Y, Cao H, Xiao J. Implications of inhalation bioaccessibility for the exposure assessment of drifting airborne pesticides caused by field spraying. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177254. [PMID: 39477104 DOI: 10.1016/j.scitotenv.2024.177254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/07/2024]
Abstract
Pesticide contamination in ambient air due to spray drifting has received extensive attention. Quantifying the associated health risk highlights the importance of incorporating bioaccessibility into inhalation exposure assessments rather than using the total inhaled concentration of airborne pesticides. In this study, we measured the inhalation unit exposure (UE) of three typical pesticides (lambda-cyhalothrin, phoxim, and acetamiprid) during application and post-application drift at the recommended application dosage. The UE values were found to be 1.74-424.37 ng/m3 and 0.07-1.40 ng/m3, respectively, with marked variation between different spraying nozzles and formulations. For the inhalation exposure assessment, an in vitro method was developed to determine the inhalation bioaccessibility of lambda-cyhalothrin, phoxim, and acetamiprid and its applicability was validated based on in vivo-in vitro correlations (IVIVC) analysis. Their conservative inhalation bioaccessibility values estimates were 46.09 %, 67.12 %, and 40.31 %, respectively. The calculated average daily dose values of the analyzed pesticides in both single and mixed formulations ranged from 8.03 × 10-8 to 4.35 × 10-5 mg/kg·day based on the bioaccessible UE, corresponding to 22.99-67.11 % of the total exposure. Collectively, these findings are of guiding significance for improving risk management in pesticide application.
Collapse
Affiliation(s)
- Tingting Meng
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ke Fang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Tingting Li
- College of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Weizhang Qi
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Li Zhang
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yingmei Hu
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yuying Liu
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yanhong Shi
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; College of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jinjing Xiao
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; College of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China.
| |
Collapse
|
5
|
Deng Y, Li G, Xie L, Li X, Wu Y, Zheng J, Xian S, Zhou J, Chen J, Liu Y, Yang Q, Wang Q, Liu L. Associations of occupational exposure to micro-LiNiCoMnO 2 particles with systemic inflammation and cardiac dysfunction in cathode material production for lithium batteries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124694. [PMID: 39127333 DOI: 10.1016/j.envpol.2024.124694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/08/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Micro-LiNiCoMnO2 (MNCM), a cathode material with highest market share, has increasing demand with the growth of lithium battery industry. However, whether MNCM exposure brings adverse effects to workers remains unclear. This study aimed to explore the association between MNCM exposure with systemic inflammation and cardiac function. A cross-sectional study of 347 workers was undertaken from the MNCM production industry in Guangdong province, China in 2020. Metals in urine were measured using ICP-MS. The associations between metals, systemic inflammation, and cardiac function were appraised using a linear or logistic regression model. Bayesian kernel machine regression (BKMR) and generalized weighted quantile sum (gWQS) models were used to explore mixed metal exposures. The analysis of interaction and mediation was adopted to assess the role of inflammation in the relation between urinary metals and cardiac function. We observed that the levels of lithium (Li) and cobalt (Co) were positively associated with systemic inflammation and heart rate. The amount of Co contributed the highest weight on the increased systemic immune-inflammation index (SII) (59.8%), the system inflammation response index (SIRI) (44.3%), and heart rate (65.0%). Based on the mediation analysis, we estimated that SII mediated 32.3% and 20.9% of the associations between Li and Co with heart rate, and SIRI mediated 44.6% and 22.2% of the associations between Li and Co with heart rate, respectively. This study demonstrated for the first time that MNCM exposure increased the risk of workers' systemic inflammation and elevated heart rate, which were contributed by the excessive Li and Co exposure. Additionally, it indicates that systemic inflammation was a major mediator of the associations of Li and Co with cardiac function in MNCM production workers.
Collapse
Affiliation(s)
- Yaotang Deng
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Guoliang Li
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Lijie Xie
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoliang Li
- The Third People's Hospital of Zhuhai, Zhuhai, 519099, China
| | - Youyi Wu
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Jiewei Zheng
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Simin Xian
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China; Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiazhen Zhou
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Jiabin Chen
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiaoyuan Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, 510182, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lili Liu
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China.
| |
Collapse
|
6
|
Liu Y, Lin F, Yue X, Zhang S, Wang H, Xiao J, Cao H, Shi Y. Inhalation bioaccessibility of imidacloprid in particulate matter: Implications for risk assessment during spraying. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133986. [PMID: 38493632 DOI: 10.1016/j.jhazmat.2024.133986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Adverse health outcomes due to the inhalation of pesticide residues in atmospheric particulate matter (PM) are gaining global attention. Quantitative health risk assessments of pesticide inhalation exposure highlight the need to understand the bioaccessibility of pesticide residues. Herein, the inhalation bioaccessibility of imidacloprid in PM was determined using three commonly used in vitro lung modeling methods (Artificial Lysosomal Fluid, Gamble Solution, and Simulated Lung Fluid). To validate its feasibility and effectiveness, we evaluated the bioavailability of imidacloprid using a mouse nasal instillation assay. The in vitro inhalation bioaccessibility of imidacloprid was extracted using Gamble Solution with a solid-liquid ratio of 1/1000, an oscillation rate of 150 r/min, and an extraction time of 24 h, showed a strong linear correlation with its in vivo liver-based bioavailability (R2 =0.8928). Moreover, the margin of exposure was incorporated into the inhalation exposure risk assessment, considering both formulations and nozzles. The inhalation unit exposure of imidacloprid for residents was 0.95-4.09 ng/m3. The margin of exposure for imidacloprid was determined to be acceptable when considering inhalation bioaccessibility. Taken together, these results indicate that the inhalation bioaccessibility of pesticides should be incorporated into assessments of human health risks posed by PM particles.
Collapse
Affiliation(s)
- Yuying Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China
| | - Fengxiang Lin
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China
| | - Xingyu Yue
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China
| | - Sai Zhang
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China
| | - Han Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China
| | - Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
7
|
Kastury F, Besedin J, Betts AR, Asamoah R, Herde C, Netherway P, Tully J, Scheckel KG, Juhasz AL. Arsenic, cadmium, lead, antimony bioaccessibility and relative bioavailability in legacy gold mining waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133948. [PMID: 38493633 PMCID: PMC11097331 DOI: 10.1016/j.jhazmat.2024.133948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
Bioaccessibility and relative bioavailability of As, Cd, Pb and Sb was investigated in 30 legacy gold mining wastes (calcine sands, grey battery sands, tailings) from Victorian goldfields (Australia). Pseudo-total As concentration in 29 samples was 1.45-148-fold higher than the residential soil guidance value (100 mg/kg) while Cd and Pb concentrations in calcine sands were up to 2.4-fold and 30.1-fold higher than the corresponding guidance value (Cd: 20 mg/kg and Pb: 300 mg/kg). Five calcine sands exhibited elevated Sb (31.9-5983 mg/kg), although an Australian soil guidance value is currently unavailable. Arsenic bioaccessibility (n = 30) and relative bioavailability (RBA; n = 8) ranged from 6.10-77.6% and 10.3-52.9% respectively. Samples containing > 50% arsenopyrite/scorodite showed low As bioaccessibility (<20.0%) and RBA (<15.0%). Co-contaminant RBA was assessed in 4 calcine sands; Pb RBA ranged from 73.7-119% with high Pb RBA associated with organic and mineral sorbed Pb and, lower Pb RBA observed in samples containing plumbojarosite. In contrast, Cd RBA ranged from 55.0-67.0%, while Sb RBA was < 5%. This study highlights the importance of using multiple lines of evidence during exposure assessment and provides valuable baseline data for co-contaminants associated with legacy gold mining activities.
Collapse
Affiliation(s)
- Farzana Kastury
- Future Industries Institute, STEM, University of South Australia, SA, Australia.
| | - Julie Besedin
- Future Industries Institute, STEM, University of South Australia, SA, Australia; School of Science, STEM, RMIT University, Victoria, Australia
| | - Aaron R Betts
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Land Remediation and Technology Division, Cincinnati, OH, USA
| | - Richmond Asamoah
- Future Industries Institute, STEM, University of South Australia, SA, Australia
| | - Carina Herde
- South Australian Health and Medical Research Institute, Adelaide 5086, Australia
| | - Pacian Netherway
- EPA Science, Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria 3085, Australia
| | - Jennifer Tully
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Water Infrastructure Division, Cincinnati, OH, USA
| | - Kirk G Scheckel
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Land Remediation and Technology Division, Cincinnati, OH, USA
| | - Albert L Juhasz
- Future Industries Institute, STEM, University of South Australia, SA, Australia
| |
Collapse
|
8
|
Wang M, Xu X, Han Q, Lin X, Yuan H, Wang M, Jiang F, Wang W. Assessment of source-oriented health risk associated with the oral ingestion of heavy metals in dust within an iron/steel smelting-affected area of the North China Plain. ENVIRONMENTAL RESEARCH 2023; 237:117101. [PMID: 37689335 DOI: 10.1016/j.envres.2023.117101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Heavy metals (HMs) from iron/steel smelting activities pose notable risks to human health, especially to those living around industrial facilities of North China Plain, the base of China's steel production. In this study, 78 outdoor windowsill dust samples were collected around a large-scale iron/steel smelter with more than 65 years of production history in the western North China Plain. Nine HMs were analysed to comprehensively assess the health risks by integrating Monte Carlo simulation, oral bioaccessibility, and source apportionment. Results showed serious pollution with Cd, Pb, and Zn based on their geo-accumulation index values and concentrations. Four potential sources including industrial sources (49.85%), traffic sources (21.78%), natural sources (20.58%), and coal combustion (7.79%) were quantitatively identified by multivariate statistical analysis. The oral bioaccessibilities of HMs determined by the physiologically based extraction test ranged from 0.02% to 65.16%. Zn, Mn, Cd, and Pb had higher bioaccessibilities than other HMs. After incorporating oral bioavailability adjustments, noncarcinogenic and carcinogenic risks were significantly reduced, especially for adults. The mean hazard index (HI) for children and adults was below the safety threshold (1.0), whereas the mean of the total carcinogenic risk (TCR) based on HM bioaccessibilities in the gastric phase remained above the acceptable level (1.0E-06) (children: 5.20E-06; adults: 1.16E-06). Traffic sources warranted increased concern as it substantially increased TCR. Cd was identified as the priority pollution in iron/steel smelting areas. Assessing source-oriented health risks associated with oral ingestion exposure can guide the management and control of HM contamination within iron/steel smelting-affected areas.
Collapse
Affiliation(s)
- Mingya Wang
- College of Resource and Environment, Henan Polytechnic University, 454003, Jiaozuo, China
| | - Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081, Guiyang, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Colleage of Resources and Environmental Engineering, Guizhou University, 550025, Guiyang, China
| | - Qiao Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081, Guiyang, China.
| | - Xihuang Lin
- Analysis and Test Center, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, China
| | - Haijun Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081, Guiyang, China
| | - Mingshi Wang
- College of Resource and Environment, Henan Polytechnic University, 454003, Jiaozuo, China
| | - Fengcheng Jiang
- College of Resource and Environment, Henan Polytechnic University, 454003, Jiaozuo, China
| | - Wenju Wang
- College of Resource and Environment, Henan Polytechnic University, 454003, Jiaozuo, China
| |
Collapse
|
9
|
Sánchez-Piñero J, Novo-Quiza N, Moreda-Piñeiro J, Muniategui-Lorenzo S, López-Mahía P. A multi-residue method for the analysis of organic pollutants released from atmospheric PM 2.5 in simulated biological fluids: Inhalation bioaccessibility and bioavailability estimation. Anal Chim Acta 2023; 1280:341862. [PMID: 37858566 DOI: 10.1016/j.aca.2023.341862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND In recent decades, there has been a growing interest within the scientific community regarding the study of the fraction that could be released in simulated biological fluids to estimate in vitro bioaccessibility and bioavailability of compounds. Concerning particulate matter (PM), studies were essentially focused on metal (oid)s probably due to more complex methodologies needed for organic compounds, requiring extraction and pre-concentration steps from simulated fluids, followed by chromatographic analysis. Thus, the development of a simple and sensitive methodology for the analysis of multi-class organic compounds released in different inhalation simulated fluids would represent a great contribution to the field. RESULTS In this work, a methodology for the analysis of 49 organic pollutants, including 18 polycyclic aromatic hydrocarbons (PAHs), 12 phthalate esters (PAEs), 11 organophosphorus flame retardants (OPFRs), 6 synthetic musk compounds (SMCs) and 2 bisphenols released in simulated fluids from PM2.5 samples was developed. After a physiologically based extraction test (PBET) by using artificial lysosomal fluid (ALF) and a simulated body fluid (SBF, filling a dialysis membrane) to obtain in vitro inhalation bioaccessible and bioavailable fractions, respectively; compounds were determined by a vortex-assisted liquid-liquid extraction (VALLE) and a subsequent analysis by programmed temperature vaporization-gas chromatography-tandem mass spectrometry (PTV-GC-MS/MS). Experimental conditions concerning VALLE extraction (extraction time and amount of NaCl (g)) were optimized by using a central composite design (CCD), best MS/MS transitions were selected and matrix-matched calibration combined with use of labelled subrogate standards provided high sensitivity, minimization of matrix effects and recovering losses compensation. SIGNIFICANCE The successful validation results obtained for most of the compounds demonstrated the effectiveness of the proposed methodology for the analysis of multi-class organic pollutants released in ALF and SBF for inhalation bioaccessibility and bioavailability assessment, respectively. Furthermore, applicability of the method was proved by analysing 20 p.m.2.5 samples, being the proposed in vitro PBET dialyzability approach for assessing organic pollutant's inhalation bioavailability applied to PM2.5 samples for the first time.
Collapse
Affiliation(s)
- Joel Sánchez-Piñero
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain.
| | - Natalia Novo-Quiza
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Jorge Moreda-Piñeiro
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Purificación López-Mahía
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain
| |
Collapse
|
10
|
Xiao J, Fang K, Zhang S, Jiang S, Liu T, Lv M, Liao M, Cao H, Shi Y. Inhalation bioaccessibility of inhaled triazole fungicides and health risk assessment during spraying. PEST MANAGEMENT SCIENCE 2023; 79:1768-1776. [PMID: 36627764 DOI: 10.1002/ps.7354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ambient air pollution caused by pesticide drift has received great attention. To accurately evaluate the health risk of inhaled pesticides, bioaccessibility should be considered. However, methods to reliably assess pesticide residues remain limited, hindering the precise estimation of exposure assessment. We aimed to optimize an in vitro method for the inhalation bioaccessibility (IBA) measurement of triazole fungicides and to incorporate this into inhalation exposure assessment during pesticide spraying. RESULTS The IBA of triazole fungicides increased logarithmically with extraction duration, plateauing after 6 h. The frequency of agitation displayed a similar pattern, whereas the ratio of solid to liquid between 1/1500 and 1/250 was considerably negatively associated. The predicted values (35.9-53.5%) for IBA based on optimized methodological parameters determined using a response surface methodology showed an acceptable deviation from experimental values (30.7-50.8%), suggesting feasibility for in vitro IBA measurement. Incorporating IBA into calculations of inhalation exposure amount (IE) yielded a value of 8.5 × 10-7 -2.1 × 10-5 mg kg-1 day-1 , a 50-68% reduction compared to IE based on total amount. Additionally, the safety exposure threshold was determined for triazole fungicides using benchmark dose modelling of data from lung A549 cell proliferation toxicity assays, and in this context, margin of exposure (MOE) values were calculated to be within an acceptable level. CONCLUSION This in vitro method supplements bioaccessibility evaluation based on pesticide inhalation exposure, along with the risk to human health. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Ke Fang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Sidong Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- School of Resource & Environment, Anhui Agricultural University, Hefei, China
| | - Siyuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Tianhe Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Mengjiao Lv
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Yanhong Shi
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- School of Resource & Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
11
|
Li L, Liu Y, Ippolito JA, Xing W, Zuo Q, Wang F. Fermentation affects heavy metal bioaccessibility in Chinese mantou. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59013-59026. [PMID: 37000393 DOI: 10.1007/s11356-023-26727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/26/2023] [Indexed: 05/10/2023]
Abstract
Effect of different fermentation methods on heavy metal bioaccessibilities in wheat flour is undetermined. In this work, gastric and gastrointestinal heavy metal bioaccessibility in wheat flour products (control-wheat dough, T1-mantou made with normally fermented dough, T2-mantou made with over-fermented dough and T3-mantou made with over-fermented dough + Na2CO3) made from two wheat flour samples (NX and QD) was assessed via a modified physiologically-based extraction test. Cadmium, Zn and Mn bioaccessibility in the gastric phase (GP) was greater than in the gastrointestinal phase (GIP), yet the opposite was observed for Cu (p < 0.05). Lead bioaccessibility in the GIP of the QD sample was 1.37-4.08 times greater than that in the GP, while only the control had greater bioaccessibility in the GIP than that in the GP (p < 0.05) for the NX sample. Treatments T2 and T3 had greater Cd, Cu, Zn and Mn bioaccessibilities than the control and T1 in the GP (p < 0.05). In the GIP, however, only T3 had greater Mn bioaccessibility than the control for the NX sample. Enhanced degradation of the heavy metal-phytate following over-fermentation may have led to greater heavy metal bioaccessibility. Results should help food processors reduce human absorption of excessive heavy metals present in wheat flour foods.
Collapse
Affiliation(s)
- Liping Li
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China.
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China.
| | - Yanqing Liu
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
| | - James A Ippolito
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523-1170, USA
| | - Weiqin Xing
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
| | - Qian Zuo
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| |
Collapse
|
12
|
Al-Abadleh HA, Kubicki JD, Meskhidze N. A perspective on iron (Fe) in the atmosphere: air quality, climate, and the ocean. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:151-164. [PMID: 36004543 DOI: 10.1039/d2em00176d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As scientists engage in research motivated by climate change and the impacts of pollution on air, water, and human health, we increasingly recognize the need for the scientific community to improve communication and knowledge exchange across disciplines to address pressing and outstanding research questions holistically. Our professional paths have crossed because our research activities focus on the chemical reactivity of Fe-containing minerals in air and water, and at the air-sea interface. (Photo)chemical reactions driven by Fe can take place at the surface of the particles/droplets or within the condensed phase. The extent and rates of these reactions are influenced by water content and biogeochemical activity ubiquitous in these systems. One of these reactions is the production of reactive oxygen species (ROS) that cause damage to respiratory organs. Another is that the reactivity of Fe and organics in aerosol particles alter surficial physicochemical properties that impact aerosol-radiation and aerosol-cloud interactions. Also, upon deposition, aerosol particles influence ocean biogeochemical processes because micronutrients such as Fe or toxic elements such as copper become bioavailable. We provide a perspective on these topics and future research directions on the reactivity of Fe in atmospheric aerosol systems, from sources to short- and long-term impacts at the sinks with emphasis on needs to enhance the predictive power of atmospheric and ocean models.
Collapse
Affiliation(s)
- Hind A Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo N2L 3C5, Ontario, Canada.
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso 79968, Texas, USA.
| | - Nicholas Meskhidze
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh 27695, North Carolina, USA.
| |
Collapse
|
13
|
Haque E, Jing X, Bostick BC, Thorne PS. In vitro and in silico bioaccessibility of urban dusts contaminated by multiple legacy sources of lead (Pb). JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 8:100178. [PMID: 36926421 PMCID: PMC10016194 DOI: 10.1016/j.hazadv.2022.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lead contamination from gasoline, paint, pesticides, and smelting have unique chemical structures. Recent investigations into Pb speciation in urban soils and dusts from multiple sources have revealed emerging forms which differ from the initial sources. This results from reactions with soil constituents leading to transformation to new forms for which the bioaccessibilities remain uninvestigated. We investigated the in vitro and in silico bioaccessibility of these emerging forms in three physiologically relevant milieux: artificial lysosomal fluid (ALF), simulated epithelial lung fluid (SELF), and simulated gastric fluid (SGF). Species were validated using extended X-ray absorption fine structure spectroscopy. Results highlight diverse bioaccessibilities which are form and compartmentally-dependent. In ALF the bioaccessibility trend was humate-bound Pb (86%) > hydrocerussite (79%) > Fe oxide-bound Pb (47%) > galena (10%) > pyromorphite (4%) > Mn oxide-bound Pb (2%). Humate-bound Pb, hydrocerussite, Fe and Mn oxide-bound Pb were 100% bioaccessible in SGF while pyromorphite and galena were 26%, and 8%, respectively. Bioaccessibility in SELF was very low (< 1%) and significantly lower than ALF and SGF (p < 0.001). In silico bioaccessibilities modeled using equilibrium solubilities in extraction solutions were in good agreement with empirical measurements. These emerging forms of Pb have a wide range of bioaccessibilities that can influence their toxicity and impact on human health.
Collapse
Affiliation(s)
- Ezazul Haque
- Human Toxicology Program, University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, University of Iowa, IA, USA
| | - Xuefang Jing
- Department of Occupational and Environmental Health, University of Iowa, IA, USA
| | | | - Peter S. Thorne
- Human Toxicology Program, University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, University of Iowa, IA, USA
| |
Collapse
|
14
|
Ettler V, Hladíková K, Mihaljevič M, Drahota P, Culka A, Jedlicka R, Kříbek B, Vaněk A, Penížek V, Sracek O, Bagai Z. Contaminant Binding and Bioaccessibility in the Dust From the Ni-Cu Mining/Smelting District of Selebi-Phikwe (Botswana). GEOHEALTH 2022; 6:e2022GH000683. [PMID: 36348990 PMCID: PMC9636585 DOI: 10.1029/2022gh000683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
We studied the dust fractions of the smelting slag, mine tailings, and soil from the former Ni-Cu mining and processing district in Selebi-Phikwe (eastern Botswana). Multi-method chemical and mineralogical investigations were combined with oral bioaccessibility testing of the fine dust fractions (<48 and <10 μm) in a simulated gastric fluid to assess the potential risk of the intake of metal(loid)s contaminants. The total concentrations of the major contaminants varied significantly (Cu: 301-9,600 mg/kg, Ni: 850-7,000 mg/kg, Co: 48-791 mg/kg) but were generally higher in the finer dust fractions. The highest bioaccessible concentrations of Co, Cu, and Ni were found in the slag and mine tailing dusts, where these metals were mostly bound in sulfides (pentlandite, pyrrhotite, chalcopyrite). On the contrary, the soil dusts exhibited substantially lower bioaccessible fractions of these metals due to their binding in less soluble spinel-group oxides. The results indicate that slag dusts are assumed to be risk materials, especially when children are considered as a target group. Still, this exposure scenario seems unrealistic due to (a) the fencing of the former mine area and its inaccessibility to the local community and (b) the low proportion of the fine particles in the granulated slag dump and improbability of their transport by wind. The human health risk related to the incidental ingestion of the soil dust, the most accessible to the local population, seems to be quite limited in the Selebi-Phikwe area, even when a higher dust ingestion rate (280 mg/d) is considered.
Collapse
Affiliation(s)
- Vojtěch Ettler
- Institute of Geochemistry, Mineralogy and Mineral ResourcesFaculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Karolína Hladíková
- Institute of Geochemistry, Mineralogy and Mineral ResourcesFaculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral ResourcesFaculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Petr Drahota
- Institute of Geochemistry, Mineralogy and Mineral ResourcesFaculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Adam Culka
- Institute of Geochemistry, Mineralogy and Mineral ResourcesFaculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Radim Jedlicka
- Institute of Petrology and Structural GeologyFaculty of ScienceCharles UniversityPrague 2Czech Republic
| | | | - Aleš Vaněk
- Department of Soil Science and Soil ProtectionFaculty of AgrobiologyFood and Natural ResourcesCzech University of Life Sciences PraguePrague 6Czech Republic
| | - Vít Penížek
- Department of Soil Science and Soil ProtectionFaculty of AgrobiologyFood and Natural ResourcesCzech University of Life Sciences PraguePrague 6Czech Republic
| | - Ondra Sracek
- Department of GeologyFaculty of SciencePalacký University in OlomoucOlomoucCzech Republic
| | - Zibisani Bagai
- Department of GeologyFaculty of ScienceUniversity of BotswanaGaboroneBotswana
| |
Collapse
|
15
|
Luo J, Xing W, Ippolito JA, Zhao L, Han K, Wang Y, Qiu K, Li L. Bioaccessibility, source and human health risk of Pb, Cd, Cu and Zn in windowsill dusts from an area affected by long-term Pb smelting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156707. [PMID: 35718186 DOI: 10.1016/j.scitotenv.2022.156707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/22/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Non-ferrous metal smelting results in heterogenous spatial distribution of potentially toxic metals (PTM) near smelters. In this work, windowsill dusts were collected from smelting (SA) and urban (UJ) sub-areas of Jiyuan (a city affected by >70 years of Pb smelting) to investigate PTM source and bioaccessibility. The <10 μm fraction of dusts were analyzed for total and bioaccessible Pb, Cd, Cu and Zn concentrations; bioaccessibility was analyzed by a three-stage assay (i.e., lung phase, gastric phase and gastrointestinal phase) using artificial lysosomal fluid (ALF, L phase) followed by simulated gastric and gastrointestinal fluids (G and GI phases). This assay mimicked the movement of particles phagocytosed by alveolar macrophages in the respiratory system, then transported up the oropharynx and subsequently swallowed and transported into the digestive system. Zinc had greater bioaccessible concentrations in L and GI phases than other metals, and the mean L phase bioaccessible PTM concentrations in SA were greater than in UJ. The mean L + GI phase bioaccessible concentrations of Pb, Cd, Cu and Zn in SA were 280, 79, 124 and 1458 mg kg-1, while those in UJ were 215, 54, 116 and 598 mg kg-1, respectively. The L phase extracted 87.7 to 98.8 % of PTM within the L + GI assay. Lead had a lower L + GI bioaccessibility than Cd, Cu and Zn (70-76 % vs. 82-92 %). Higher tolerable Cd carcinogenic risks based on bioaccessibility were found in SA sub-area than in UJ while no carcinogenic or non-carcinogenic risk was found for other metals. Lead isotopic ratios indicated that both Pb ore and smelting bottom ash contributed to dust Pb accumulation in SA, while coal burning, lead ore, Pb smelting bottom ash and diesel engine exhaust contributed to dust Pb accumulation in UJ. Overall, results indicated heterogenous distribution of PTM source and bioaccessibility in the vicinity of Pb smelters.
Collapse
Affiliation(s)
- Jie Luo
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, Henan 450001, China
| | - Weiqin Xing
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, Henan 450001, China
| | - James A Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA; Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, Henan 450001, China
| | - Linlin Zhao
- Jiyuan Ecological and Environmental Monitoring Center of Henan Province, Jiyuan, Henan 459000, China
| | - Ke Han
- Jiyuan Ecological and Environmental Monitoring Center of Henan Province, Jiyuan, Henan 459000, China
| | - Yale Wang
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, Henan 450001, China
| | - Kunyan Qiu
- Jiyuan Ecological and Environmental Monitoring Center of Henan Province, Jiyuan, Henan 459000, China
| | - Liping Li
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, Henan 450001, China.
| |
Collapse
|
16
|
Sánchez-Piñero J, Novo-Quiza N, Pernas-Castaño C, Moreda-Piñeiro J, Muniategui-Lorenzo S, López-Mahía P. Inhalation bioaccessibility of multi-class organic pollutants associated to atmospheric PM 2.5: Correlation with PM 2.5 properties and health risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119577. [PMID: 35688393 DOI: 10.1016/j.envpol.2022.119577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Inhalation exposure to fine particulate matter (PM2.5) represents a global concern due to the adverse effects in human health. In the last years, scientific community has been adopted the assessment of the PM2.5-bound pollutant fraction that could be released (bioaccessible fraction) in simulated lung fluids (SLFs) to achieve a better understanding of PM risk assessment and toxicological studies. Thus, bioaccessibility of 49 organic pollutants, including 18 polycyclic aromatic hydrocarbons (PAHs), 12 phthalate esters (PAEs), 11 organophosphorus flame retardants (OPFRs), 6 synthetic musk compounds (SMCs) and 2 bisphenols in PM2.5 samples was evaluated. The proposed method consists of a physiologically based extraction test (PBET) by using artificial lysosomal fluid (ALF) to obtain bioaccessible fractions, followed by a vortex-assisted liquid-liquid microextraction (VALLME) and a final analysis by programmed temperature vaporization-gas chromatography-tandem mass spectrometry (PTV-GC-MS/MS). The highest inhalation bioaccessibility ratio was found for bisphenol A (BPA) with an average of 83%, followed by OPFRs, PAEs and PAHs (with average bioaccessibilities of 68%, 41% and 34%, respectively). Correlations between PM2.5 composition (major ions, trace metals, equivalent black carbon (eBC) and UV-absorbing particulate matter (UVPM)) and bioaccessibility ratios were also assessed. Principal Component Analysis (PCA) suggested that PAHs, PAES and OPFRs bioaccessibility ratios could be positively correlated with PM2.5 carbonaceous content. Furthermore, both inverse and positive correlations on PAHs, PAEs and OPFRs bioaccessibilites could be accounted for some major ions and metal (oid)s associated to PM2.5, whereas no correlations comprising considered PM2.5 major ions and metal (oid)s contents and BPA bioaccessibility was observed. In addition, health risk assessment of target PM2.5-associated PAHs via inhalation was assessed in the study area considering both total and bioaccessible concentrations, being averaged human health risks within the safe carcinogenic and non-carcinogenic levels.
Collapse
Affiliation(s)
- Joel Sánchez-Piñero
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain.
| | - Natalia Novo-Quiza
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain
| | - Cristina Pernas-Castaño
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain
| | - Jorge Moreda-Piñeiro
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain
| | - Purificación López-Mahía
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain
| |
Collapse
|
17
|
Lau W, Dutton MD, Vasiluk L, Hale B. Derivation of a Ni bioaccessibility value for screening-level risk assessment of Ni substances in ingested materials including soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2563-2575. [PMID: 34328606 DOI: 10.1007/s10653-021-01048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The objective of the present study was to derive a Ni bioaccessibility value for screening-level risk assessment of Ni substances in ingested materials including soils where multiple Ni substances are expected but not definitively identified. Broad ranges of Ni mass loading and dissolution time of a simple gastric assay were applied to pure Ni substances (removing the confounding factors of soil constituents on dissolution), thus broadening the applicability of the conclusions. The data were also used to support current knowledge of 'read across' for Ni substances. Release of Ni from pure manufactured Ni substances (Ni metal, NiO, NiSO4, Ni3S2, and NiS) was determined relative to Ni mass and substance surface area loading. Mass loadings ranged from 0.33 to 20.0 g Ni per L of 0.15 M HCl, and dissolution time ranged from 1 to 168 h. Proton exhaustion was indicated only at the highest loading (20 g/L) of NiO and Ni-M. Dissolution of substances other than NiSO4 was most likely limited by formation of intermediate products at the particle surface or particle agglomeration, impeding access to the principal Ni substance. The bioaccessibility of Ni for these substances was consistent with previously published data: substances other than NiSO4 were < 48% bioaccessible for a variety of gastric assays, which is much lower than all data for NiSO4, the usual reference substance. Thus, we suggest that Ni bioaccessibility data from gastric assays that are most relevant to human exposure can be relied upon to develop scientifically sound screening-level human health RA decisions for Ni contamination in soils and sediments in the absence of detailed Ni speciation.
Collapse
Affiliation(s)
- Wilson Lau
- GEMTEC Consulting Engineers and Scientists Ltd, 32 Steacie Drive, Ottawa, ON, K2K 2A9, Canada
| | | | - Luba Vasiluk
- School of Environmental Sciences, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| | - Beverley Hale
- School of Environmental Sciences, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
18
|
Yu YQ, Luo HQ, Yang JY. Health risk of fluorine in soil from a phosphorus industrial area based on the in-vitro oral, inhalation, and dermal bioaccessibility. CHEMOSPHERE 2022; 294:133714. [PMID: 35065175 DOI: 10.1016/j.chemosphere.2022.133714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Health risk of F in soil is of special concern due to the continuously elevated concentration of F in soil. However, there is still a dearth of risk assessments of F in soil based on in-vitro bioaccessibility posed by multiple exposure routes. Herein, the oral, inhalation, and dermal bioaccessibility of F in soil was firstly obtained by adapting and combining in-vitro methods, which then was introduced to remedy an information gap of a comprehensive risk of F in soil posed by a multi-exposure pathway. Combined in-vitro tests indicate the oral, inhalation, and dermal bioaccessibility of F was 13.15 ± 2.63%, 16.55 ± 2.63%, and 1.27 ± 0.73%, respectively. Plasma yielded a detoxic potential for the absorbed F after digesting in small intestine, while effects of enzymes, sweat, and food on the oral bioaccessibility of F were insignificant. Different with metals, the major dissolving phase of F was the interstitial fluid in the deep lung instead of in the alveolar macrophages intracellular environment. A potentially major release of F in the exocrine sweat was noted than in the apocrine sweat. Risk assessments based on the daily exposure incorporated with the in-vitro bioaccessibility suggested that compared with inhalation and dermal contact, oral ingestion was the main exposure route of F in soil to human. Present findings provide insights into the bioaccessibility and health risk of F in soil by multiple exposure routes, which are crucial for the risk control of F contamination in soil.
Collapse
Affiliation(s)
- Ya-Qi Yu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Hou-Qiao Luo
- Sichuan Academy of Environmental Policy and Planning, Chengdu, 610065, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
19
|
Islam MR, Sanderson P, Naidu R, Payne TE, Johansen MP, Bari ASMF, Rahman MM. Beryllium in contaminated soils: Implication of beryllium bioaccessibility by different exposure pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126757. [PMID: 34352522 DOI: 10.1016/j.jhazmat.2021.126757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 05/14/2023]
Abstract
Inhalation exposure and beryllium (Be) toxicity are well-known, but research on bioaccessibility from soils via different exposure pathways is limited. This study examined soils from a legacy radioactive waste disposal site using in vitro ingestion (Solubility Bioaccessibility Research Consortium [SBRC], physiologically based extraction test [PBET], in vitro gastrointestinal [IVG]), inhalation (simulated epithelial lung fluid [SELF]) and dynamic two-stage bioaccessibility (TBAc) methods, as well as 0.43 M HNO3 extraction. The results showed, 70 ± 4.8%, 56 ± 16.8% and 58 ± 5.7% of total Be were extracted (gastric phase [GP] + intestinal phase [IP]) in the SBRC, PBET, and IVG methods, respectively. Similar bioaccessibility of Be (~18%) in PBET-IP and SELF was due to chelating agents in the extractant. Moreover, TBAc-IP showed higher extraction (20.8 ± 2.0%) in comparison with the single-phase (SBRC-IP) result (4.8 ± 0.23%), suggesting increased Be bioaccessibility and toxicity in the gastrointestinal tract when the contamination derives from the inhalation route. The results suggested Be bioaccessibility depends on solution pH; time of extraction; soil reactive fractions (organic-inorganic); particle size, and the presence of chelating agents in the fluid. This study has significance for understanding Be bioaccessibility via different exposure routes and the application of risk-based management of Be-contaminated sites.
Collapse
Affiliation(s)
- Md Rashidul Islam
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Peter Sanderson
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Timothy E Payne
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Mathew P Johansen
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - A S M Fazle Bari
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia
| |
Collapse
|
20
|
Zahedi A, Hassanvand MS, Jaafarzadeh N, Ghadiri A, Shamsipour M, Dehcheshmeh MG. Effect of ambient air PM 2.5-bound heavy metals on blood metal(loid)s and children's asthma and allergy pro-inflammatory (IgE, IL-4 and IL-13) biomarkers. J Trace Elem Med Biol 2021; 68:126826. [PMID: 34371327 DOI: 10.1016/j.jtemb.2021.126826] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/17/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND We investigated the concentrations of metals in fine particulate matter PM2.5 in the outdoor air around the home sites of 123 male children from Ahvaz, average age 7.56, along with their blood samples to measure pro-inflammatory responses (Immunoglobulin E and cytokines: IgE, IL-4 and IL-13). METHODS We measured 6 metals (As, Cd, Cr, Hg, Ni and Pb) in three Ahvaz's regions including industrial (Padad), vehicle traffic (Golestan) and control (Kianpars). RESULTS The higher concentrations of metals in the Padad as the industrial ambient air i.e., arsenic, cadmium, chromium, mercury and nickel coincided with the higher concentrations of those metals in exposed children (P < 0.05) versus the controls. Children in Golestan, the high traffic air pollution area had the highest lead concentrations (p < 0.05). Also a significant association was shown in Padad between blood arsenic and IgE (β = 26.59, P < 0.001), IL-4 (β = 172.1, P < 0.001) and IL-13 (β = 14.84, P < 0.001), blood chromium and IgE (β = 10.38, P < 0.001), IL-4 (β = 75.27, P < 0.001) and IL-13 (β = 5.27, P < 0.001) and blood mercury and IgE (β = 13.11, P < 0.001), IL-4 (β = 108.09, P < 0.001) and IL-13 (β = 7.96, P < 0.001) and blood lead and IgE(β = 0.92, P = 0.025), IL-4(β = 7.16, P < 0.001) and IL-13(β = 0.58, P = 0.003). However, no significant relation was found for Cadmium, Nickel in blood with IgE, IL-4 and IL-13 levels. Moreover, children from industrial areas showed significantly higher concentrations of IgE (mean = 146.44 pg/200landa, P < 0.001), IL-4 (mean = 548.23 pg/200landa, P < 0.001) and IL-13 (mean = 52.93 pg/200landa, P < 0.001) versus Golestan and Kianpars. CONCLUSION Children residing in an industrial area with high concentrations of metals in PM2.5 had high metals in blood and high production of IgE, IL-4 and IL-13, reflecting an immune dysregulation and brisk inflammatory responses.
Collapse
Affiliation(s)
- Amir Zahedi
- Student Research Committee, Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Sadegh Hassanvand
- Centre for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Neamatollah Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61355-179, Iran; Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ata Ghadiri
- Department of Immunology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
21
|
Mishra A, Pervez S, Candeias C, Verma M, Bano S, Dugga P, Verma SR, Tamrakar A, Shafi S, Pervez YF, Gupta V. Bioaccessiblity features of particulate bound toxic elements: Review of extraction approaches, concentrations and health risks. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Hammer SE, Ervik T, Ellingsen DG, Thomassen Y, Weinbruch S, Benker N, Berlinger B. Particle characterisation and bioaccessibility of manganese in particulate matter in silico- and ferromanganese smelters. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1488-1499. [PMID: 34549213 DOI: 10.1039/d1em00243k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was to characterise particulate matter (PM) collected in the furnace area during SiMn and high carbon (HC)-FeMn production in terms of single particle analysis and to determine the bioaccessibility of Mn in the PM in a simulated lung fluid. Airborne PM was collected with Sioutas cascade impactors and respirable cyclones in the breathing zone of tappers and crane operators. Stationary samples were collected from the furnace area with a nanoMOUDI cascade impactor and an ESPnano electrostatic particle collector. Individual particles were characterised by scanning and transmission electron microscopy. Bioaccessibility of Mn was studied in terms of the dissolution of Mn in Gamble solution (24 hours leaching at 37 °C) relative to total Mn. Slag particles, alloy fragments, Mn and Fe oxides as well as carbonaceous particles were observed in the size fraction > 1 μm aerodynamic diameter (dae). Thermally generated condensation particles dominated the dae size range of 0.18-1 μm collected from the tapping fumes, while carbonaceous particles dominated the fraction below 0.18 μm. Condensation generated particles from the furnace area of HC-FeMn production were coated with an amorphous Si-O rich surface layer which seemed to hold primary particles together as aggregates. In the same size range, the particles from the furnace area of SiMn production were dominated by spherical condensation particles rich in Si, Mn and O, but without a Si-O rich surface layer. Instead, the Mn oxides were enclosed in an amorphous Si-O rich matrix. The bioaccessibility of Mn was low to moderate (<30%), but higher for SiMn furnace workers (highest median = 23%) than HC-FeMn furnace workers (highest median = 12%). This difference in bioaccessibility was significant for PM with dae up to 2.5 μm, and most pronounced in the dae size range between 0.25 and 1.0 μm. Also, a significantly higher bioaccessibility of Mn was found for PM larger than dae of 0.5 μm collected among crane operators compared to tappers in the HC-FeMn smelter.
Collapse
Affiliation(s)
| | - Torunn Ervik
- National Institute of Occupational Health, Gydas vei 8, N-0363 Oslo, Norway.
| | - Dag G Ellingsen
- National Institute of Occupational Health, Gydas vei 8, N-0363 Oslo, Norway.
| | - Yngvar Thomassen
- National Institute of Occupational Health, Gydas vei 8, N-0363 Oslo, Norway.
| | - Stephan Weinbruch
- National Institute of Occupational Health, Gydas vei 8, N-0363 Oslo, Norway.
- Institute of Applied Geosciences, Technical University of Darmstadt, Schnittspahnstrasse 9, D-64287 Darmstadt, Germany
| | - Nathalie Benker
- Institute of Applied Geosciences, Technical University of Darmstadt, Schnittspahnstrasse 9, D-64287 Darmstadt, Germany
| | - Balazs Berlinger
- National Institute of Occupational Health, Gydas vei 8, N-0363 Oslo, Norway.
| |
Collapse
|
23
|
Innes E, Yiu HHP, McLean P, Brown W, Boyles M. Simulated biological fluids - a systematic review of their biological relevance and use in relation to inhalation toxicology of particles and fibres. Crit Rev Toxicol 2021; 51:217-248. [PMID: 33905298 DOI: 10.1080/10408444.2021.1903386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The use of simulated biological fluids (SBFs) is a promising in vitro technique to better understand the release mechanisms and possible in vivo behaviour of materials, including fibres, metal-containing particles and nanomaterials. Applications of SBFs in dissolution tests allow a measure of material biopersistence or, conversely, bioaccessibility that in turn can provide a useful inference of a materials biodistribution, its acute and long-term toxicity, as well as its pathogenicity. Given the wide range of SBFs reported in the literature, a review was conducted, with a focus on fluids used to replicate environments that may be encountered upon material inhalation, including extracellular and intracellular compartments. The review aims to identify when a fluid design can replicate realistic biological conditions, demonstrate operation validation, and/or provide robustness and reproducibility. The studies examined highlight simulated lung fluids (SLFs) that have been shown to suitably replicate physiological conditions, and identify specific components that play a pivotal role in dissolution mechanisms and biological activity; including organic molecules, redox-active species and chelating agents. Material dissolution was not always driven by pH, and likewise not only driven by SLF composition; specific materials and formulations correspond to specific dissolution mechanisms. It is recommended that SLF developments focus on biological predictivity and if not practical, on better biological mimicry, as such an approach ensures results are more likely to reflect in vivo behaviour regardless of the material under investigation.
Collapse
Affiliation(s)
- Emma Innes
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Humphrey H P Yiu
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - William Brown
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | | |
Collapse
|
24
|
Corona Sánchez JE, González Chávez MDCA, Carrillo González R, Scheckel K, Tapia Maruri D, García Cue JL. Metal(loid) bioaccessibility of atmospheric particulate matter from mine tailings at Zimapan, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19458-19472. [PMID: 33394436 PMCID: PMC8895307 DOI: 10.1007/s11356-020-11887-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/30/2020] [Indexed: 05/31/2023]
Abstract
Metal(loid)s are contaminants of concern emitted as particulate matter (PM) from several pollution sources. The objective was to characterize potential exposure from local airborne metal(loid)s in a community in proximity to mine tailings. Air samples were collected weekly at five sites around the municipal mine tailings using two Hi-volume samplers for simultaneously collecting PM10 and PM2.5. Total suspended particulates (TSP), concentrations, speciation, and bioaccessibility of metal(loid)s were quantified. The size and form of particles were determined by scanning electron microscopy. The concentration of TSP (μg m-3) in the airborne samples ranged from 21.2 to 64.6 for PM2.5 and 23.6 to 80.1 for PM10. The profiles of analyzed quasi-total metal(loid) concentration from all sampling sites were similar between these aerosols PM sizes except at site 2 for Cd, at site 3 for Cu, and site 4 for Zn. The order of quasi-total metal(loid) concentration, in the airborne samples for both PM sizes, was As > Zn > Fe > Pb > Cu > Mn > Cd. As speciation included As-sulfite, As(III)-O, and As(V)-O with less concentration of As(III)-O in both PM sizes. Bioaccessible metal(loid) concentrations were very high and represented a great percentage from the quasi-total airborne concentrations, for instance, 10% and 37% for Pb and 8% and 6% for As in pulmonary and gastric bioaccessible concentrations, respectively. Knowing the toxic effects of these pollutants, there is an urgent need to establish environmental regulation of bioaccessible pollutant concentrations from PM dislodged from uncovered metal(loid) mine tailings affecting not only nearby human populations but also possible long-distance ecosystem transport.
Collapse
Affiliation(s)
| | | | - Rogelio Carrillo González
- Campus Montecillo, Colegio de Postgraduados, Carretera México Texcoco km, 36.5, CP 56230, Montecillo, Mexico.
| | - Kirk Scheckel
- Office of Research & Development, United States Environmental Protection Agency, Washington, D.C., USA
| | - Daniel Tapia Maruri
- Laboratorio de Microscopia Electrónica, Centro de Desarrollo de Productos Bióticos (CEPROBI), Yautepec, Morelos, Mexico
| | - José L García Cue
- Campus Montecillo, Colegio de Postgraduados, Carretera México Texcoco km, 36.5, CP 56230, Montecillo, Mexico
| |
Collapse
|
25
|
Jesús Eulises CS, González-Chávez MDCA, Carrillo-González R, García-Cué JL, Fernández-Reynoso DS, Noerpel M, Scheckel KG. Bioaccessibility of potentially toxic elements in mine residue particles. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:367-380. [PMID: 33527965 PMCID: PMC8935130 DOI: 10.1039/d0em00447b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mining companies used to abandon tailing heaps in countryside regions of Mexico and other countries. Mine residues (MRs) contain a high concentration of potentially toxic elements (PTE). The wind can disperse dust particles (<100 μm) and once suspended in the atmosphere, can be ingested or inhaled; this is a common situation in arid climates. Nowadays, there is little information on the risk of exposure to PTEs from particulate matter dispersed by wind. The pseudo-total PTE in bulk and fractionated MR after aqua regia digestion, the inhalable bioaccessibility with Gamble solution (pH = 7.4), and the gastric bioaccessibility with 0.4 M glycine solution at pH 1.5 were determined. As and Pb chemical species were identified by X-ray absorption near-edge structure (XANES) spectroscopy. The highest rate of dispersion was observed with 74-100 μm particles (104 mg m-2 s-1); in contrast, particles <44 μm had the lowest rate (26 mg m-2 s-1). The highest pseudo-total As (35 961 mg kg-1), Pb (3326 mg kg-1), Cd (44 mg kg-1) and Zn (up to 4678 mg kg-1) concentration was in the <20 μm particles and As in the 50-74 μm (40 236 mg kg-1) particles. The highest concentration of inhaled bioaccessible As (343 mg kg-1) was observed in the <20 μm fraction and the gastric bioaccessible As was 744 mg kg-1, Pb was 1396 mg kg-1, Cd was 19.2 mg kg-1, and Zn was 2048 mg kg-1. The predominant chemical As species was arsenopyrite (92%), while 54% of Pb was in the adsorbed form. Erodible particle matter is a potential risk for humans in case of inhalation or ingestion.
Collapse
Affiliation(s)
| | | | - Rogelio Carrillo-González
- Programa de Edafología, Colegio de Postgraduados, Carretera, México-Texcoco 36.5 km, Texcoco, 56230, Mexico.
| | - José Luis García-Cué
- Programa de Estadística, Colegio de Postgraduados, Carretera, México-Texcoco 36.5 km, Texcoco, 56230, Mexico
| | | | - Matthew Noerpel
- United States Environmental Protection Agency, Office of Research & Development, Center for Environmental Solutions & Emergency Response, Cincinnati, OH, USA
| | - Kirk G Scheckel
- United States Environmental Protection Agency, Office of Research & Development, Center for Environmental Solutions & Emergency Response, Cincinnati, OH, USA
| |
Collapse
|
26
|
Expósito A, Markiv B, Ruiz-Azcona L, Santibáñez M, Fernández-Olmo I. Understanding how methodological aspects affect the release of trace metal(loid)s from urban dust in inhalation bioaccessibility tests. CHEMOSPHERE 2021; 267:129181. [PMID: 33340883 DOI: 10.1016/j.chemosphere.2020.129181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/18/2020] [Accepted: 12/01/2020] [Indexed: 05/12/2023]
Abstract
The bioaccessibility of metal(loid)s in ambient particulate matter (PM) has been recently used to represent the risk of inhalation exposure. Nevertheless, different methodological factors affect the bioaccessibility values; among these, the type and composition of surrogate biological fluids and the liquid to solid ratio have been revealed to be the most important. To better understand how these methodological aspects affect the bioaccessibility, a reference material corresponding to urban dust (SRM1648a) was contacted with synthetic biological fluids commonly used in the literature representing surrogate fluids that may interact with fine (Gamble's solutions, artificial lysosomal fluid (ALF)) and coarse particles (gastric fluid), for liquid to solid (L/S) ratios ranging from 500 to 20,000. Visual MINTEQ 3.1. was used to enhance the discussion on how the solubility of metals in the leaching solution depends on the composition of the simulated fluids and the speciation of metals. The results obtained indicate that a small change in the composition of Gamble's solution (the presence of glycine) may increase significantly the bioaccessibility at a L/S ratio of 5,000. The highest bioaccessibility of most of the studied metal(loid)s at a L/S ratio of 5,000 was found for ALF fluid. The study of the effect of the L/S ratio showed that metal(loid)s bioaccessibility in Gamble's fluid increased logarithmically with increasing L/S ratio, while it remained practically constant in ALF and gastric fluid. This different behavior is explained assuming that the leaching of metal(loid)s in Gamble's solution is solubility-controlled, while in ALF and gastric fluid is availability-controlled.
Collapse
Affiliation(s)
- A Expósito
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Spain.
| | - B Markiv
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Spain
| | - L Ruiz-Azcona
- Department of Nursing. Global Health Research Group, Universidad de Cantabria, Spain
| | - M Santibáñez
- Department of Nursing. Global Health Research Group, Universidad de Cantabria, Spain
| | - I Fernández-Olmo
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Spain
| |
Collapse
|
27
|
Sánchez-Piñero J, Moreda-Piñeiro J, Concha-Graña E, Fernández-Amado M, Muniategui-Lorenzo S, López-Mahía P. Inhalation bioaccessibility estimation of polycyclic aromatic hydrocarbons from atmospheric particulate matter (PM 10): Influence of PM 10 composition and health risk assessment. CHEMOSPHERE 2021; 263:127847. [PMID: 32814136 DOI: 10.1016/j.chemosphere.2020.127847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) inhalation bioaccessibility was assessed in 65 atmospheric particulate matter samples (PM10) collected at an Atlantic coastal European urban site. The proposed method consists on a physiologically based extraction (PBET) by using Gamble's solution followed by a vortex assisted liquid-liquid micro-extraction (VALLME) and quantification by high performance liquid chromatography with fluorescence detection (HPLC-FLD). The use of a micro-extraction technique combined with FLD detection, provides a simple, fast, sensitive, accurate and low-cost methodology to PAHs quantification in bioaccessible fractions. Accuracy of the bioaccessibility study was assessed by means of a mass balance approaches using a PM10 filter and a certified reference material (ERM-CZ100). High-moderate inhalation bioaccessibilities were found for phenanthrene (Phe), fluoranthene (Ft) and pyrene (Pyr) (average ratios in the 52-65% range); while dibenz (a,h)anthracene (DBahA), indeno (1,2,3-cd)pyrene (IP) and benzo (g,h,i)perylene (BghiP) were observed to be less bioaccessibles (average ratios in the 11-14% range). Relationship between PM10 composition (major ions, trace metals, equivalent black carbon (eBC) and UV-absorbing particulate matter (UVPM)) and PAHs bioaccessibility ratios was also assessed. Principal Component Analysis (PCA) showed that PAHs bioaccessibility percentage is dependent on anthropogenic (eBC, UVPM and Sb concentrations) and marine sources of PM10. Predicted PAHs bioaccessibilities after applying a multiple linear regression model based on marine and anthropogenic source of PM10 could also be established. Health risk assessment of target PM10-associated PAHs via inhalation was assessed considering bioaccessibility concentrations by using hazard index (HI) and BaP equivalent concentration (BaPeq) approaches, suggesting no carcinogenic risk in the area during the sampling campaign.
Collapse
Affiliation(s)
- Joel Sánchez-Piñero
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain
| | - Jorge Moreda-Piñeiro
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain.
| | - Estefanía Concha-Graña
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain
| | - María Fernández-Amado
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain
| | - Purificación López-Mahía
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, S/n, 15071, A Coruña, Spain
| |
Collapse
|
28
|
Ren H, Yu Y, An T. Bioaccessibilities of metal(loid)s and organic contaminants in particulates measured in simulated human lung fluids: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115070. [PMID: 32806460 DOI: 10.1016/j.envpol.2020.115070] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Particle-bound pollutants can pose a health risk to humans. Inhalation exposure evaluated by total contaminant concentrations significantly overestimates the potential risk. To assess the risk more accurately, bioavailability, which is the fraction that enters into the systemic circulation, should be considered. Researchers have replaced bioavailability by bioaccessibility due to the rapid and cost-efficient measurement for the latter, especially for assessment by oral ingestion. However, contaminants in particulates have different behavior when inhaled than when orally ingested. Some of the contaminants are exhaled along with exhalation, and others are deposited in the lung with the particulates. In addition, a fraction of the contaminants is released into the lung fluid and absorbed by the lung, and another fraction enters systemic circulation under the action of cell phagocytosis on particulates. Even if the release fraction, i.e., release bioaccessibility, is considered, the measurement faces many challenges. The present study highlights the factors influencing release bioaccessibility and the incorporation of inhalation bioaccessibility into the risk assessment of inhaled contaminants. Currently, there are three types of extraction techniques for simulated human lung fluids, including simple chemical solutions, sequential extraction techniques, and physiologically based techniques. The last technique generally uses three kinds of solution: Gamble's solution, Hatch's solution, and artificial lysosomal fluid, which are the most widely used physiologically based simulated human lung fluids. External factors such as simulated lung fluid composition, pH, extraction time, and sorption sinks can affect release bioaccessibility, whereas particle size and contaminant properties are important internal factors. Overall, release bioaccessibility is less used than bioaccessibility considering the deposition fraction when assessing the risk of contaminants in inhaled particulates. The release bioaccessibility measurement poses two main challenges: developing a unified, accurate, stable, simple, and systematic biologically based method, and validating the method through in-vivo assays.
Collapse
Affiliation(s)
- Helong Ren
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China.
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| |
Collapse
|
29
|
van der Kallen CC, Gosselin M, Zagury GJ. Oral and inhalation bioaccessibility of metal(loid)s in chromated copper arsenate (CCA)-contaminated soils: Assessment of particle size influence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139412. [PMID: 32464400 DOI: 10.1016/j.scitotenv.2020.139412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Soil samples adjacent to ten CCA-treated utility poles were collected, sieved into four fractions (<2 mm, 250-90 μm, 90-20 μm and <20 μm), and characterized for their total metal(loid) (As, Cu, Cr, Pb, and Zn) content and physico-chemical properties. Oral bioaccessibility tests were performed using In Vitro Gastrointestinal (IVG) method for fractions 250-90 μm and 90-20 μm. Inhalation bioaccessibility tests were performed in particle size fraction <20 μm using two simulated lung fluids: artificial lysosomal fluid (ALF) and Gamble's solution (GS). The total concentration of metal(loid)s increased with decreasing particle size. Oral As bioaccessibility (%) increased with increasing particle size in 9 out of 10 soils (p < .05), but oral As bioaccessibility expressed in mg/kg was not significantly different for both particle size. Oral Cu bioaccessibility (% and mg/kg) was not influenced by particle size, but oral Cr bioaccessibility (% and mg/kg) increased when reducing particle size (p < .05), although Cr bioaccessibility was very low (< 8%). Oral bioaccessibility (%) of metal(loid)s decreased in the order: Cu > As > Pb > Zn > Cr. Bioaccessibility (%) in simulated lung fluids decreased in the order: Cu > Zn > As > Pb ≈ Cr using ALF, and As > Cu using GS solution. For all elements, inhalation bioaccessibility (% and mg/kg) using ALF was higher than oral bioaccessibility, except for Pb bioaccessibility (mg/kg) in two samples. However, solubility of metal(loid)s in GS presented the lowest values. Copper showed the highest oral and inhalation bioaccessibility (%) and Cr showed the lowest. Moreover, organic matter content and cation exchange capacity in particle size 90-20 μm were negatively correlated with Cu and Pb oral bioaccessibility (%).
Collapse
Affiliation(s)
- Cecile C van der Kallen
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal (QC), H3C 3A7, Canada
| | - Mathieu Gosselin
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal (QC), H3C 3A7, Canada
| | - Gerald J Zagury
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal (QC), H3C 3A7, Canada.
| |
Collapse
|
30
|
Kastury F, Karna RR, Scheckel KG, Juhasz AL. Correlation between lead speciation and inhalation bioaccessibility using two different simulated lung fluids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114609. [PMID: 33633430 PMCID: PMC7901787 DOI: 10.1016/j.envpol.2020.114609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study investigated the relationship between lead (Pb) speciation determined using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy in <10 μm particulate matter (PM10) from mining/smelting impacted Australian soils (PP, BHK5, BHK6, BHK10 and BHK11) and inhalation exposure using two simulated lung fluids [Hatch's solution, pH 7.4 and artificial lysosomal fluid (ALF), pH 4.5]. Additionally, elemental composition of Pb rich regions in PP PM10 and the post-bioaccessibility assay residuals were assessed using a combination of Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) to provide insights into how extraction using simulated lung fluids may influence Pb speciation in vitro. Correlation between Pb speciation (weighted %) and bioaccessibility (%) was assessed using Pearson r (α = 0.1 and 0.05). Lead concentration in PM10 samples ranged from 782 mg/kg (BHK6) to 7796 mg/kg (PP). Results of EXAFS analysis revealed that PP PM10 was dominated by Pb adsorbed onto clay/oxide, while the four BHK PM10 samples showed variability in the weighted % of Pb adsorbed onto clay/oxide and organic matter bound Pb, Pb phosphate, anglesite and galena. When bioaccessibility was assessed using different in vitro inhalation assays, results varied between samples and between assays, Pb bioaccessibility in Hatch's solution ranged from 24.4 to 48.4%, while in ALF, values were significantly higher (72.9-96.3%; p < 0.05). When using Hatch's solution, bioaccessibility outcomes positively correlated to anglesite (r:0.6246, p:0.0361) and negatively correlated to Pb phosphate (r: -0.9610, p:0.0041), organic bound Pb (r: -0.7079, p: 0.0578), Pb phosphate + galena + plumbojarosite (r: -0.9350, p: 0.0099). No correlation was observed between Pb bioaccessibility (%) using Hatch's solution and weighted % of Pb adsorbed onto clay/oxide and between bioaccessibility (%) using ALF and any Pb species. SEM and EDX analysis revealed that a layer of O-Pb-Ca-P-Si-Al-Fe formed during the in vitro extraction using Hatch's solution.
Collapse
Affiliation(s)
- Farzana Kastury
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Ranju R. Karna
- Bennett Aerospace Inc., 1100, Crescent Green Suite 250, Cary, NC, USA
| | - Kirk G. Scheckel
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Land Remediation and Pollution Control Division, Cincinnati, OH, USA
| | - Albert L. Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| |
Collapse
|
31
|
Kastury F, Ritch S, Rasmussen PE, Juhasz AL. Influence of household smoking habits on inhalation bioaccessibility of trace elements and light rare earth elements in Canadian house dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114132. [PMID: 32179218 DOI: 10.1016/j.envpol.2020.114132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
In this study, total concentration and inhalation bioaccessibility (dissolution in simulated biological solution) of trace elements (TE) and rare earth elements (REE) were assessed in PM10 from Canadian house dust samples with smoking (n = 25) and non-smoking (n = 25) status. Compared to the natural background concentrations in Canadian soils, median Zn, Pb, Cd and Cu concentrations in PM10 were 10-23 fold higher, while median La, Ce and Pr concentrations were 1.6-2.4 fold higher. Mann-Whitney tests (α = 0.05) indicated no difference between the median TE concentrations based on the smoking status of the household; however, median REE concentrations were significantly higher in the PM10 of smoking households. Additionally, Cd and Ni were positively correlated (Spearman r, p < 0.05) to La, Ce and Nd in smoking households, suggesting that tobacco combustion may have contributed REE in the PM10 of these households. Median inhalation-ingestion bioaccessibility assay outcomes of arsenic (As) and lead (Pb) was higher in the non-smoking households when compared to smoking households (Mann Whitney test, α = 0.05), suggesting that tobacco combustion products may be associated with less soluble species of As and Pb. Although REE bioaccessibility was negligible in simulated lung epithelial fluid regardless of the smoking status of the household, bioaccessibility in the lung-gastric phase was 23.6-27.6% in the smoking household and 34.7-36.7% in the non-smoking households, indicating a significantly lower REE dissolution in PM10 of smoking households. In contrast, between 17 and 21.9% bioaccessibility of REE was observed when artificial lysosomal fluid was used, where the outcome was not significantly affected by the smoking status. This study indicates that despite a higher median REE concentration in the PM10 of smoking households, inhalation bioaccessibility may be significantly influenced by the mineralogy.
Collapse
Affiliation(s)
- Farzana Kastury
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia.
| | - Susie Ritch
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Pat E Rasmussen
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, HECSB, Health Canada, Ottawa, ON, Canada
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| |
Collapse
|
32
|
Manjón I, Ramírez-Andreotta MD, Sáez AE, Root RA, Hild J, Janes MK, Alexander-Ozinskas A. Ingestion and inhalation of metal(loid)s through preschool gardening: An exposure and risk assessment in legacy mining communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:134639. [PMID: 31843310 PMCID: PMC7176541 DOI: 10.1016/j.scitotenv.2019.134639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 05/09/2023]
Abstract
Children residing in mining towns are potentially disproportionately exposed to metal(loid)s via ingestion and dust inhalation, thus, increasing their exposure when engaging in school or home gardening or playing outside. This citizen science study assessed preschool children's potential arsenic (As), cadmium (Cd), and lead (Pb) exposure via locally grown produce, water, incidental soil ingestion, and dust inhalation at four sites. Participants were trained to properly collect water, soil, and vegetable samples from their preschools in Nevada County, California. As, Cd, and Pb concentrations in irrigation sources did not exceed the U.S. EPA's maximum contaminant and action levels. In general, garden and playground As and Pb soil concentrations exceeded the U.S. EPA Regional Screening Level, CalEPA Human Health Screening Level, and California Department of Toxic Substances Control Screening Level. In contrast, all Cd concentrations were below these recommended screening levels. Dust samples (<10 μm diameter) were generated from surface garden and playground soil collected at the preschools by a technique that simulated windblown dust. Soil and dust samples were then analyzed by in-vitro bioaccessibility assays using synthetic lung and gastric fluids to estimate the bioaccessible fraction of As, Cd, and Pb in the body. Metal(loid) exposure via grown produce revealed that lettuce, carrot, and cabbage grown in the preschool gardens accumulated a higher concentration of metal(loid) than those store-bought nation-wide. None of the vegetables exceeded the respective recommendation maximum levels for Cd and Pb set by the World Health Organization Codex Alimentarius Commission. The results of this study indicate that consumption of preschool-grown produce and incidental soil ingestion were major contributors to preschool-aged children's exposure to As, Cd, and Pb. Traditionally, this level of site- and age-specific assessment and analyses does not occur at contaminated sites. The results of this holistic risk assessment can inform future risk assessment and public health interventions related to childhood metal(loid) exposures.
Collapse
Affiliation(s)
- Iliana Manjón
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Mónica D Ramírez-Andreotta
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ, United States; Mel and Enid Zuckerman College of Public Health's Division of Community, Environment & Policy, University of Arizona, Tucson, AZ, United States.
| | - A Eduardo Sáez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, United States
| | - Robert A Root
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Joanne Hild
- Sierra Streams Institute, Nevada City, CA, United States
| | - M Katy Janes
- California Department of Water Resources, Sacramento, CA, United States
| | | |
Collapse
|
33
|
Fifteen Years of Airborne Particulates in Vitro Toxicology in Milano: Lessons and Perspectives Learned. Int J Mol Sci 2020; 21:ijms21072489. [PMID: 32260164 PMCID: PMC7177378 DOI: 10.3390/ijms21072489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Air pollution is one of the world’s leading environmental causes of death. The epidemiological relationship between outdoor air pollution and the onset of health diseases associated with death is now well established. Relevant toxicological proofs are now dissecting the molecular processes that cause inflammation, reactive species generation, and DNA damage. In addition, new data are pointing out the role of airborne particulates in the modulation of genes and microRNAs potentially involved in the onset of human diseases. In the present review we collect the relevant findings on airborne particulates of one of the biggest hot spots of air pollution in Europe (i.e., the Po Valley), in the largest urban area of this region, Milan. The different aerodynamic fractions are discussed separately with a specific focus on fine and ultrafine particles that are now the main focus of several studies. Results are compared with more recent international findings. Possible future perspectives of research are proposed to create a new discussion among scientists working on the toxicological effects of airborne particles.
Collapse
|
34
|
Zhong L, Liu X, Hu X, Chen Y, Wang H, Lian HZ. In vitro inhalation bioaccessibility procedures for lead in PM 2.5 size fraction of soil assessed and optimized by in vivo-in vitro correlation. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:121202. [PMID: 31550658 DOI: 10.1016/j.jhazmat.2019.121202] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
In order to assess and optimize frequently used in vitro inhalation bioaccessibility procedures for heavy metals in the inhalation risk assessment, in vivo inhalation bioavailability of Pb in simulated atmosphere fine particles (PM2.5) from aging soils spiked with lead compounds and field soils in lead-zinc mining areas was investigated via intranasally instilled experiments with these PM2.5 suspensions to mice and Pb bioaccessibility was extracted by using four frequently used in vitro procedures (Gamble Solution, simulated lung fluid, simulated epithelial lung fluid and artificial lysosomal fluid). Mouse exposure experiments showed that Pb was mainly distributed in the liver, kidneys, blood and spleen. Based on the kidney model, in vitro inhalation bioaccessibility of Pb extracted with optimized Gamble Solution, in which solid to liquid ratio (S/L) was optimized to 1:1000 g ml-1 and DTPA was proved to be the key effective component, showed a strong linear relationship with its in vivo inhalation bioavailability (y = 1.07x - 3.86, R2 = 0.73). Moreover, in vitro bioaccessible and bioavailable fractions of Pb were mainly from acid exchangeable and reducible fractions of Pb in PM2.5. Altogether, optimized Gamble Solution was suggested for the analysis of in vitro bioaccessibility for risk-based assessments.
Collapse
Affiliation(s)
- Laijin Zhong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Centre of Materials Analysis, Nanjing University, Nanjing 210023, PR China
| | - Xiaolan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Centre of Materials Analysis, Nanjing University, Nanjing 210023, PR China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Centre of Materials Analysis, Nanjing University, Nanjing 210023, PR China.
| | - Yijun Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Centre of Materials Analysis, Nanjing University, Nanjing 210023, PR China
| | - Hongwei Wang
- Centre for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Centre of Materials Analysis, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
35
|
Kastury F, Smith E, Lombi E, Donnelley MW, Cmielewski PL, Parsons DW, Noerpel M, Scheckel KG, Kingston AM, Myers GR, Paterson D, de Jonge MD, Juhasz AL. Dynamics of Lead Bioavailability and Speciation in Indoor Dust and X-ray Spectroscopic Investigation of the Link between Ingestion and Inhalation Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11486-11495. [PMID: 31460750 PMCID: PMC7416472 DOI: 10.1021/acs.est.9b03249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Lead (Pb) exposure from household dust is a major childhood health concern because of its adverse impact on cognitive development. This study investigated the absorption kinetics of Pb from indoor dust following a single dose instillation into C57BL/6 mice. Blood Pb concentration (PbB) was assessed over 24 h, and the dynamics of particles in the lung and gastro-intestinal (GI) tract were visualized using X-ray fluorescence (XRF) microscopy. The influence of mineralogy on Pb absorption and particle retention was investigated using X-ray absorption near-edge structure spectroscopy. A rapid rise in PbB was observed between 0.25 and 4 h after instillation, peaking at 8 h and slowly declining during a period of 24 h. Following clearance from the lungs, Pb particles were detected in the stomach and small intestine at 4 and 8 h, respectively. Analysis of Pb mineralogy in the residual particles in tissues at 8 h showed that mineral-sorbed Pb and Pb-phosphates dominated the lung, while organic-bound Pb and galena were the main phases in the small intestines. This is the first study to visualize Pb dynamics in the lung and GI tract using XRF microscopy and link the inhalation and ingestion pathways for metal exposure assessment from dust.
Collapse
Affiliation(s)
- Farzana Kastury
- Future Industries Institute , University of South Australia , Adelaide 5095 , Australia
| | - Euan Smith
- Future Industries Institute , University of South Australia , Adelaide 5095 , Australia
| | - Enzo Lombi
- Future Industries Institute , University of South Australia , Adelaide 5095 , Australia
| | - Martin W Donnelley
- Women's and Children's Hospital , Adelaide 5006 , Australia
- Adelaide Medical School , Adelaide 5000 , Australia
- Robinson Research Institute , University of Adelaide , Adelaide 5005 , Australia
| | - Patricia L Cmielewski
- Women's and Children's Hospital , Adelaide 5006 , Australia
- Adelaide Medical School , Adelaide 5000 , Australia
- Robinson Research Institute , University of Adelaide , Adelaide 5005 , Australia
| | - David W Parsons
- Women's and Children's Hospital , Adelaide 5006 , Australia
- Adelaide Medical School , Adelaide 5000 , Australia
- Robinson Research Institute , University of Adelaide , Adelaide 5005 , Australia
| | - Matt Noerpel
- Oak Ridge Institute for Science and Education , Cincinnati , Ohio 37830 , United States
| | - Kirk G Scheckel
- United States Environmental Protection Agency , Cincinnati , Ohio 45224 , United States
| | - Andrew M Kingston
- Department of Applied Mathematics , Australian National University , Canberra 0200 , Australia
| | - Glenn R Myers
- Department of Applied Mathematics , Australian National University , Canberra 0200 , Australia
| | - David Paterson
- Australian Synchrotron, ANSTO , Clayton 3168 , Australia
| | | | - Albert L Juhasz
- Future Industries Institute , University of South Australia , Adelaide 5095 , Australia
| |
Collapse
|
36
|
Kastury F, Placitu S, Boland J, Karna RR, Scheckel KG, Smith E, Juhasz AL. Relationship between Pb relative bioavailability and bioaccessibility in phosphate amended soil: Uncertainty associated with predicting Pb immobilization efficacy using in vitro assays. ENVIRONMENT INTERNATIONAL 2019; 131:104967. [PMID: 31284111 PMCID: PMC7393514 DOI: 10.1016/j.envint.2019.104967] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/12/2019] [Accepted: 06/26/2019] [Indexed: 05/09/2023]
Abstract
In this study, an in vitro in vivo correlation (IVIVC) between Pb in vitro bioaccessibility (IVBA) and relative bioavailability (RBA) was explored to determine whether the efficacy of Pb immobilization in phosphate amended soils could be predicted using an in vitro approach. Mining/smelting impacted soil from Broken Hill, Australia (582-3536 mg/kg of Pb in the <250 μm soil particle fraction) was amended with Phosphoric Acid (PA), Mono Ammonium Phosphate (MAP) or Triple Super Phosphate (TSP) at Pb:P molar ratios of 1:1-1:5. Pb speciation in pre- and post-treated soil was assessed using X-ray Absorption Spectroscopy (XAS), Pb IVBA was measured using the Solubility Bioaccessibility Research Consortium (SBRC) assay (gastric and intestinal phases), and Pb RBA was determined in mice using blood Pb concentration as the bioavailability endpoint. XAS analysis revealed a 3.75-6.00 fold increase in the weighted % of Pb phosphates in soil containing >1000 mg/kg Pb while treatment effect ratios of 0.89-0.99 (SBRC-G), 0.09-0.71 (SBRC-I) and 0.27-0.80 (RBA) were observed in PA amended soil (Pb:P = 1:5). Although significant (p < 0.05) correlation were obtained between Pb RBA and IVBA (%) determined using SBRC-G (r = 0.64) and SBRC-I (r = 0.67), the strengths of the relationships were weak (r2 = 0.41-0.45). This research highlights the complexities associated with the prediction of Pb RBA in phosphate amended soil.
Collapse
Affiliation(s)
- Farzana Kastury
- Future Industries Institute, University of South Australia, Australia.
| | | | - John Boland
- School of Information Technology and Mathematical Sciences, University of South Australia, Australia
| | - Ranju R Karna
- Oak Ridge Institute for Science and Education, National Risk Management Research Laboratory-Land Remediation and Pollution Control Division, Cincinnati, OH, USA
| | - Kirk G Scheckel
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Land Remediation and Pollution Control Division, Cincinnati, OH, USA
| | - Euan Smith
- Future Industries Institute, University of South Australia, Australia
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Australia
| |
Collapse
|
37
|
Kastury F, Smith E, Doelsch E, Lombi E, Donnelley M, Cmielewski PL, Parsons DW, Scheckel KG, Paterson D, de Jonge MD, Herde C, Juhasz AL. In Vitro, in Vivo, and Spectroscopic Assessment of Lead Exposure Reduction via Ingestion and Inhalation Pathways Using Phosphate and Iron Amendments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10329-10341. [PMID: 31356748 PMCID: PMC7436645 DOI: 10.1021/acs.est.9b02448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This study compared lead (Pb) immobilization efficacies in mining/smelting impacted soil using phosphate and iron amendments via ingestion and inhalation pathways using in vitro and in vivo assays, in conjunction with investigating the dynamics of dust particles in the lungs and gastro-intestinal tract via X-ray fluorescence (XRF) microscopy. Phosphate amendments [phosphoric acid (PA), hydroxyapatite, monoammonium phosphate (MAP), triple super phosphate (TSP), and bone meal biochar] and hematite were applied at a molar ratio of Pb:Fe/P = 1:5. Pb phosphate formation was investigated in the soil/post-in vitro bioaccessibility (IVBA) residuals and in mouse lung via extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structures (XANES) spectroscopy, respectively. EXAFS analysis revealed that anglesite was the dominant phase in the ingestible (<250 μm) and inhalable (<10 μm) particle fractions. Pb IVBA was significantly reduced (p < 0.05) by phosphate amendments in the <250 μm fraction (solubility bioaccessibility research consortium assay) and by PA, MAP, and TSP in the <10 μm fraction (inhalation-ingestion bioaccessibility assay). A 21.1% reduction in Pb RBA (<250 μm fraction) and 56.4% reduction in blood Pb concentration (<10 μm fraction) were observed via the ingestion and inhalation pathways, respectively. XRF microscopy detected Pb in the stomach within 4 h, presumably via mucociliary clearance.
Collapse
Affiliation(s)
- Farzana Kastury
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia
| | - Euan Smith
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia
| | - Emmanuel Doelsch
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France
- Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia
| | - Martin Donnelley
- Women’s and Children’s Hospital, Adelaide 5006, Australia
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia
| | - Patricia L. Cmielewski
- Women’s and Children’s Hospital, Adelaide 5006, Australia
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia
| | - David W. Parsons
- Women’s and Children’s Hospital, Adelaide 5006, Australia
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia
| | - Kirk G. Scheckel
- United States Environmental Protection Agency, Cincinnati 45224, United States
| | | | | | - Carina Herde
- South Australian Health and Medical Research Institute, Adelaide 5086, Australia
| | - Albert L. Juhasz
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia
| |
Collapse
|
38
|
Xing W, Zhao Q, Scheckel KG, Zheng L, Li L. Inhalation bioaccessibility of Cd, Cu, Pb and Zn and speciation of Pb in particulate matter fractions from areas with different pollution characteristics in Henan Province, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:192-200. [PMID: 30901636 DOI: 10.1016/j.ecoenv.2019.03.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/13/2019] [Accepted: 03/14/2019] [Indexed: 05/09/2023]
Abstract
Windowsill particulate matter (PM) samples were collected from an area near large lead-smelting facilities in Jiyuan (JP), the urban area of Jiyuan (JU) and the peri-urban area of Mianchi (MC) in Henan, China to investigate the concentration and inhalation bioaccessibility of Cd, Cu, Pb and Zn. The <10 μm portions of the samples were extracted with simulated lung fluid to assess the in vitro inhalation bioaccessibility. Lower concentrations of heavy metals were found in the MC samples than in the JP and the JU samples. The average concentrations of Pb, Cd and Cu in the portions of the same size are in the order of JP samples > JU samples > MC samples. For Pb, Cd and Zn, the maximum inhalation bioaccessibility fraction values are all found in the MC samples, which ranged 3.87-8.79%, while those of the JP and the JU samples are <2%. The Pb speciation analysis with X-ray absorption spectrometry indicate mineral bound Pb, PbS and Pb3(PO4)2 are the predominant Pb species in the JP samples; for the JU sample, organic bound Pb is the predominant Pb species in the 45-125 μm portion, while mineral bound Pb is the predominant Pb species in the 10-45 μm portion; for the MC samples, organic bound Pb is the predominant Pb species, followed by PbS. The results indicate that there is significant accumulation of Pb, Cd, Cu and Zn associated with PM in the area near the lead smelter and in the urban area of Jiyuan, especially Pb and Cd, however, the inhalation bioaccessibility of these metals in samples from the lead smelting impacted area is low, this may be due to the higher proportion of less soluble species of the metals in the samples from this area. However, organic matter bound Pb found in some samples has higher bioaccessibility than other Pb species.
Collapse
Affiliation(s)
- Weiqin Xing
- School of Chemistry and the Environment, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Qiang Zhao
- School of Chemistry and the Environment, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Kirk G Scheckel
- U. S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH, 45268, USA
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liping Li
- School of Chemistry and the Environment, Henan University of Technology, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
39
|
Luo X, Zhao Z, Xie J, Luo J, Chen Y, Li H, Jin L. Pulmonary bioaccessibility of trace metals in PM 2.5 from different megacities simulated by lung fluid extraction and DGT method. CHEMOSPHERE 2019; 218:915-921. [PMID: 30609496 DOI: 10.1016/j.chemosphere.2018.11.079] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Atmospheric fine particulate matters (PM2.5) pose significant risks to human health through inhalation, especially in the rapidly developing China due to air pollution. The harmful effects of PM2.5 are determined not only by its concentrations and hazardous components from diverse sources, but more by their bioavailable fractions actually absorbed by human body. To accurately estimate the inhalation risks of airborne metals, a physiologically based bioaccessibility method combining Simulated Lung Fluid (SLF) extraction and Diffusive Gradients in Thin-films (DGT) approaches was developed, representing the dissolution of particulate metals into lung fluid and the subsequent lung absorption of free metal cations in solution, respectively. The new method was used to compare the lung bioaccessibility of typical trace metals in PM2.5 from three China megacities (Shanghai and Nanjing in the east, Guangzhou in south) during heavy pollution seasons. Generally, the SLF bioaccessibility (%) simulating the solubility of particulate metals in alveolar lung fluid was in order of Ni > Cd > Mn » Pb, while the succeeding DGT bioaccessibility representing labile metal fractions in solution phase absorbed directly by lung was lower and ranked as Ni ∼ Mn > Cd » Pb, thus Ni and Cd posed relatively higher potential risks owing to their high air pollution level and higher pulmonary bioaccessibility. Due to varied particle sources such as coal combustion and traffic emissions, some airborne metal concentrations (Pb, Ni) showed inconsistent spatial patterns with bulk PM2.5 concentrations, and also varied bioaccessibility in different regions. The framework for PM2.5 pollution risk assessments should be refined by considering both aerosol components and associated pollutants' bioaccessibility.
Collapse
Affiliation(s)
- Xiaosan Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Zhen Zhao
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jiawen Xie
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China
| | - Yan Chen
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
40
|
Ettler V, Cihlová M, Jarošíková A, Mihaljevič M, Drahota P, Kříbek B, Vaněk A, Penížek V, Sracek O, Klementová M, Engel Z, Kamona F, Mapani B. Oral bioaccessibility of metal(loid)s in dust materials from mining areas of northern Namibia. ENVIRONMENT INTERNATIONAL 2019; 124:205-215. [PMID: 30654327 DOI: 10.1016/j.envint.2018.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Ore mining and processing in semi-arid areas is responsible for the generation of metal(loid)-containing dust, which is easily transported by wind to the surrounding environment. To assess the human exposure to dust-derived metal(loid)s (As, Cd, Cu, Pb, Sb, Zn), as well as the potential risks related to incidental dust ingestion, we studied mine tailing dust (n = 8), slag dust (n = 5) and smelter dust (n = 4) from old mining and smelting sites in northern Namibia (Kombat, Berg Aukas, Tsumeb). In vitro bioaccessibility testing using extraction in simulated gastric fluid (SGF) was combined with determination of grain-size distributions, chemical and mineralogical characterizations and leaching tests conducted on original dust samples and separated PM10 fractions. The bulk and bioaccessible concentrations of the metal(loid)s were ranked as follows: mine tailing dusts < slag dusts ≪ smelter dusts. Extremely high As and Pb bioaccessibilities in the smelter dusts were caused by the presence of highly soluble phases such as arsenolite (As2O3) and various metal-arsenates unstable under the acidic conditions of SGF. The exposure estimates calculated for an adult person of 70 kg at a dust ingestion rate of 50 mg/day indicated that As, Pb (and also Cd to a lesser extent) grossly exceeded tolerable daily intake limits for these contaminants in the case of slag and smelter dusts. The high risk for smelter dusts has been acknowledged, and the safety measures currently adopted by the smelter operator in Tsumeb are necessary to reduce the staff's exposure to contaminated dust. The exposure risk for the local population is only important at the unfenced disposal sites at Berg Aukas, where the PM10 exhibited high levels of bioaccessible Pb.
Collapse
Affiliation(s)
- Vojtěch Ettler
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic.
| | - Markéta Cihlová
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Alice Jarošíková
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Petr Drahota
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Bohdan Kříbek
- Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
| | - Aleš Vaněk
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic
| | - Vít Penížek
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic
| | - Ondra Sracek
- Department of Geology, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Mariana Klementová
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Řež, Czech Republic
| | - Zbyněk Engel
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Fred Kamona
- Department of Geology, Faculty of Science, University of Namibia, Private Bag 13301, Windhoek, Namibia
| | - Ben Mapani
- Department of Geology, Faculty of Science, University of Namibia, Private Bag 13301, Windhoek, Namibia
| |
Collapse
|
41
|
Kastury F, Smith E, Karna RR, Scheckel KG, Juhasz AL. Methodological factors influencing inhalation bioaccessibility of metal(loid)s in PM 2.5 using simulated lung fluid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:930-937. [PMID: 29929159 PMCID: PMC6517839 DOI: 10.1016/j.envpol.2018.05.094] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 05/24/2023]
Abstract
In this study, methodological factors influencing the dissolution of metal(loid)s in simulated lung fluid (SLF) was assessed in order to develop a standardised method for the assessment of inhalation bioaccessibility in PM2.5. To achieve this aim, the effects of solid to liquid (S/L) ratio (1:100 to 1:5000), agitation (magnetic agitation, occasional shaking, orbital and end-over-end rotation), composition of SLF (artificial lysosomal fluid: ALF; phagolysosomal simulant fluid: PSF) and extraction time (1-120 h) on metal(loid) bioaccessibility were investigated using PM2.5 from three Australian mining/smelting impacted soils and a certified reference material. The results highlighted that SLF composition significantly (p < 0.001) influenced metal(loid) bioaccessibility and that when a S/L ratio of 1:5000 and end-over-end rotation was used, metal(loid) solubility plateaued after approximately 24 h. Additionally, in order to assess the exposure of metal(loid)s via incidental ingestion of surface dust, PM2.5 was subjected to simulated gastro-intestinal tract (GIT) solutions and the results were compared to extraction using SLF. Although As bioaccessibility in SLF (24 h) was significantly lower than in simulated GIT solutions (p < 0.05), Pb bioaccessibility was equal to or significantly higher than that extracted using simulated GIT solutions (p < 0.05).
Collapse
Affiliation(s)
- Farzana Kastury
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia.
| | - E Smith
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Ranju R Karna
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA; United States Environmental Protection Agency, National Risk Management Research Laboratory, Land and Material Management Division, Research and Technology Evaluation Branch, Cincinnati, OH 45224-1701, USA
| | - Kirk G Scheckel
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Land and Material Management Division, Research and Technology Evaluation Branch, Cincinnati, OH 45224-1701, USA
| | - A L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|