1
|
Zhang H, Nie Y, Zhao S, Wu L, Xi X, Xu L, Fang Y, Long X, Liu X. Distribution characteristics and transport pathways of soil microplastics in coral reef islands with different developmental stages and human activities. MARINE POLLUTION BULLETIN 2025; 215:117848. [PMID: 40138955 DOI: 10.1016/j.marpolbul.2025.117848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Microplastics have attracted substantial attention on remote coral sand islands owing to their delicate ecosystems. However, the distribution, transport pathways, and control mechanisms of soil microplastics on these islands are yet to be elucidated. The coral reef islands of China's Xisha Archipelago in the South China Sea are at varying stages of development and experience differing levels of human activity, rendering them an ideal location to investigate the environmental characteristics of microplastics. This study conducted a comparative analysis of the distribution characteristics of microplastics in surface soils and beach sands, which were collected from coral cays and islands. We further analyzed the potential impacts of plant cover, geomorphology, soil environmental factors and human activities on accumulation and transport of microplastics. The results show that their abundance varies from 1068 to 1616 particles/kg on the different reef islands. Total organic carbon and dissolved organic carbon in the soils exert a significant influence on the accumulation of microplastics. The abundance of microplastics in the exposed areas showed an increasing trend with the degree of island development, and the human activities have a significant impact on the distribution of microplastics across the islands. Analysis of the microplastic abundance at different locations of the atoll reveals that ocean currents and monsoons are the primary drivers of microplastic accumulation on the coral reef islands. This study provides a scientific basis for the management of microplastic pollution and environmental conservation on remote islands.
Collapse
Affiliation(s)
- Haiyang Zhang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
| | - Yaguang Nie
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei 230601, China
| | - Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Libin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xianglong Xi
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
| | - Liqiang Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Youfei Fang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
| | - Xuanqi Long
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Zhang X, Li M, Xiao Y, Yang X, Zhou H, Qu Y, Zhan J. Metagenomics reveals combined effects of microplastics and antibiotics on microbial community structure and function in coastal sediments. MARINE POLLUTION BULLETIN 2025; 218:118153. [PMID: 40381442 DOI: 10.1016/j.marpolbul.2025.118153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/14/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Microplastics and antibiotics are emerging pollutants in marine environments, yet their combined effects on coastal sediments remain poorly understood. This study examined the impacts of microplastics and antibiotics on sediment properties and microbial communities through a 60-day laboratory simulation. Results showed that microplastics significantly reduced carbon, nitrogen, and phosphorus levels in sediments, while both antibiotics and combined pollution decreased phosphorus content. Combined pollution also increased NH4+-N concentration. Enzyme activity analysis revealed that microplastics elevated alkaline phosphatase activity, antibiotics increased fluorescein diacetate (FDA) hydrolase activity but decreased urease activity, and their combination further enhanced FDA hydrolase activity. Metagenomics analysis demonstrated that the presence of microplastics and antibiotics altered microbial community structure and metabolic functions. The dominant phylum Pseudomonadota (42.62 %-56.24 %) showed reduced abundance under combined pollution. Antibiotics significantly increased resistance gene abundance, while combined pollution led to selective enrichment of these genes. Both pollutants inhibited ammonia assimilation, and antibiotics also suppressed dissimilatory nitrate reduction. Conversely, combined pollution promoted nitrification and nitrogen fixation. While microplastics and antibiotics inhibited methane synthesis, combined pollution increased methane production via elevated mttB and hdrA genes. Antibiotics also reduced methane-oxidizing bacteria and genes, suppressing methane oxidation. These findings provide crucial insights into the ecological impacts of microplastics and antibiotics on coastal sediments, offering a theoretical basis for future marine pollution management strategies.
Collapse
Affiliation(s)
- Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Menglong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Yang Xiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xiaojing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
3
|
Shamim MAH, Wang J, Hossain KB, Rayhan ABMS, Islam MM, Chen K, Ke H, Zheng X, Wang C, Chen D, Cai M. Integrated analysis of microplastics origins and impact on prominent aquaculture ecosystems in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179334. [PMID: 40220470 DOI: 10.1016/j.scitotenv.2025.179334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Microplastics (MPs) have become a pressing environmental challenge in aquaculture-farmed ponds, particularly in Bangladesh, where research on their prevalence and impact is sparse. This research systematically investigates the distribution, abundance, and features of MPs in water and fish from aquaculture ponds in the western region of Bangladesh. The study reveals that MPs were widespread in water samples, with quantities ranging from 0.095 to 0.36 items/L, predominantly fibers accounted for 60.86 % of the total, followed by 26.08 % fragments, 11.30 % lines, and 1.76 % pellets. Fish samples demonstrated an average MP concentration of 1.19 items/g (23.37 items/individual), in fish gill ranging from 1.05 to 5.04 items/g and in GIT 0.40 to 2.26 items/g across eleven species, predominantly fibers with a 100 % detection rate, showing variability in MP concentration based on tissue type, species, and feeding habits. Fourier transform infrared spectroscopy (FT-IR) was employed to analyze the polymer composition, revealing significant proportions of SSP (W-43.17 %, F-35.22 %), PE (W-5.06 %, F-23.14 %), PP (W-5.57 %, F-8.19 %), nylon (W-15.76 %, F-14.84 %), PVC (W-7.16 %, F-3.58 %), and acrylic (W-5.57 %, F-4.93 %). Strong correlations were found between fish size and MP abundance, indicating that pond environmental contamination is a significant factor in MP ingestion. Pollution risk assessment revealed high contamination MP levels in both water and fish. Among the probable sources, MPs contributions are from agricultural runoff, tires of vehicles (each 14.11 %), fishing nets, fish feed, household wastage, plastic-made feeding equipment, laundry wastage (each 11.76 %), and so on. The research underscores the need for further research on MP exposure to human health and sustainable aquaculture production practices.
Collapse
Affiliation(s)
- Md Ali Hossain Shamim
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China; Department of Fisheries, Ministry of Fisheries & Livestock, Dhaka 1217, Bangladesh
| | - Jun Wang
- Department of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361102, China
| | - Kazi Belayet Hossain
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Department of Marine Sciences, Chulalongkorn University, Bangkok 10400, Thailand
| | - A B M Sadique Rayhan
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Md Mazharul Islam
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Kai Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Hongwei Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Xuehong Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Chunhui Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Ding Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Minggang Cai
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Thuan PM, Nguyen MK, Nguyen DD. The potential release of microplastics from paint fragments: Characterizing sources, occurrence and ecological impacts. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:207. [PMID: 40375036 DOI: 10.1007/s10653-025-02525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/18/2025]
Abstract
Paint fragments have become a significant environmental pollutant in our era. These particles pose environmental and health risks, with microplastics (MPs) being a major component. This review critically examines the sources, occurrence, and ecological impacts of paint particles (PPs) on terrestrial and aquatic ecosystems. Land-based paint fragments from disturbed or deteriorating coatings on roads and buildings are carried to the ocean along with MP items through urban runoff, wastewater, and atmospheric deposition. In the ocean, paint fragments mainly originate from boating, shipping activities, and road markings. Beyond the direct effects on biota, biocides, and heavy metals from antifouling paint formulations can be released into the environment, impacting various organisms. Future research should focus on developing solutions to address the contamination of paint-related MPs in the environment. Efficient control of paint-originated MPs should encompass a blend of approaches, such as minimizing emissions via novel paint designs and deploying cutting-edge treatment technologies to intercept released particles.
Collapse
Affiliation(s)
- Pham Minh Thuan
- Faculty of Environment and Labour Safety, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam
| | - Minh-Ky Nguyen
- Department of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Gialai Campus, Hamlet 1, Dien Phu Commune, Pleiku City, 600000, Vietnam.
| | - D Duc Nguyen
- Department of Civil & Energy Systems Engineering, Kyonggi University, Suwon, 16227, South Korea.
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
5
|
Xie S, Su Y, Qi D, Liu F, Gao L, Bao R, Cheng X, Lin X, Zhang T, Peng L. Comprehensive analysis of microplastics at typical outlets around Hainan Island: From spatial distribution to flux estimation and correlation analysis. WATER RESEARCH 2025; 276:123289. [PMID: 39970720 DOI: 10.1016/j.watres.2025.123289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Previous studies on microplastics (MPs) distribution have predominantly focused on water bodies within specific regions, with limited emphasis on the contributions of MPs directly discharged from functional zones surrounding isolated island. This study addressed this gap by investigating the occurrence and distribution of MPs in water and sediment directly discharged into the adjacent coast of Hainan Island, a geographically isolated and ecologically sensitive region in the South China Sea. Based on the sampling from 40 typical sewage outlets (affiliated to five functional zones, i.e., wastewater treatment plants (WWTP), industrial area (ID), residential area (RA), aquaculture area (QA), estuary (EST)) around the Hainan Island, we analyzed the MPs abundance and composition in water and sediment. Our findings revealed significant contributions of land-derived MPs, with an average abundance of 15,900 items/m3 in water and 3171 items/kg in sediment. Annually, approximately 61.6 trillion MPs were discharged into the South China Sea via rivers from Hainan Island, highlighting its role as a major land-derived source of MPs pollution in this critical marine ecosystem. Risk assessments indicated the H and PLI level of Hainan Island as II and I, respectively, with H-water level highest in WWTP and EST as III and H-sediment level highest in WWTP, RD and QA as II, and this indicated the critical function of WWTP to control the release of land-derived MPs and reduce the environmental risks. Correlation analysis underscored the influence of natural factors (currents, tides, waves, and drifts), socio-economic factors (population density, regional area, and agricultural output), and anthropogenic activity (tourism development) on coastal MPs pollution. On the basis of existing timely MPs prevention and control measures in Hainan province, such as intercepting the MPs via WWTP and prohibiting the direct discharge of aquaculture wastewater to the surrounding sea, this study re-underscored the urgency of MPs management on the protection of the South China Sea's eco-environmental quality in view of the pivotal role of Hainan Island on the isolated geographic position and the South China Sea's ecological health. Overall, this study offered scientific insights to support source-oriented strategies for coastal MPs pollution control by providing fundamental data for predicting land-derived MPs contributions on an island-scale.
Collapse
Affiliation(s)
- Shiyu Xie
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, PR China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Yuanyuan Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, PR China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Dan Qi
- College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, PR China
| | - Fei Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, PR China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Liu Gao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, PR China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ruiqi Bao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, PR China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xing Cheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, PR China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Xubing Lin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, PR China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Tingting Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, PR China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, PR China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
6
|
Ajegi JO, Adie PA, Ubwa ST, Tyohemba RL, Oklo DA. Preliminary investigation of the spatio-seasonal distribution of microplastics in the surface water of River Benue, North Central Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:650. [PMID: 40358771 DOI: 10.1007/s10661-025-14096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Rivers are critical pathways for microplastic (MP) pollution, yet data remain limited on MP presence in Nigeria's freshwater systems. This study presents the first comprehensive assessment of MP occurrence and associated risks in the River Benue, one of Nigeria's most important rivers. Surface water samples were collected in September 2023 (rainy season) and January 2024 (dry season), pre-treated with NaCl and H₂O₂ for density separation and wet peroxide oxidation, and analysed using FTIR spectroscopy and SEM-EDS. MP abundance was higher along the southern bank, ranging from 0 to 11 items L-1 in the dry season and 0 to 9 items L-1 in the rainy season. The lower rainy-season concentrations were attributed to improved hydraulic conditions, which enhanced dilution and downstream transport. Particle sizes ranged from 0.5 to 5 mm, with the 1.5-3 mm fraction being most abundant, raising concerns due to their bioavailability. Risk assessment revealed contamination factors of 2-22 and pollution load indices of 2-4.69, indicating sites with moderate to elevated risks. The PLIzone (3.23) confirmed severe pollution across the river, potentially warranting remediation. MP distribution patterns are strongly associated with anthropogenic activities, including commerce, transportation, and waste disposal. This study provides crucial baseline data on MP pollution in River Benue and supports the development of targeted management strategies. For a more comprehensive understanding, future investigations should explore the collection of larger sample volumes and asses contamination in the sediments and biota. These findings contribute to global efforts in understanding freshwater MP pollution, particularly in understudied tropical river systems.
Collapse
|
7
|
Wu L, Li C, Huang C, Luo Y, Huang J, Chen F, Huang X, Sun R. Ocean current modulation of the spatial distribution of microplastics in the surface sediments of the Beibu Gulf, China. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137332. [PMID: 39862776 DOI: 10.1016/j.jhazmat.2025.137332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Microplastic pollution, a major global environmental issue, is gaining heightened attention worldwide. Marginal seas are particularly susceptible to microplastic contamination, yet data on microplastics in marine sediments remain scarce, especially in the Beibu Gulf. This study presents a large-scale investigation of microplastics in the surface sediments of the Beibu Gulf to deciphering their distribution, sources and risk to marginal seas ecosystems. The results reveal widespread microplastic contamination, with an average abundance of 391 ± 27 items/kg in sediments. The spatial variability of microplastic abundance was significant, with lower levels in the western Beibu Gulf and higher concentrations in the northeastern and southeastern regions. The spatial distribution of microplastics was largely driven by geological features, hydrodynamic conditions, and human activity, with minimal influence from local environmental factors such as water depth, sediment grain size, organic carbon content, and sediment types. The pollution load index (PLI) suggests a low level of microplastic contamination, but the polymer hazard index (PHI) identified a high ecological risk, likely due to the presence of PVC, a polymer with higher chemical toxicity. Our findings highlight the significant role of hydrodynamic processes in determining microplastic distribution in the Beibu Gulf. These insights enhance our understanding of microplastic dispersal and its governing factors in semi-enclosed marginal seas, providing foundation for targeted pollution control strategies.
Collapse
Affiliation(s)
- Liyuan Wu
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chao Huang
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou 511458, China; Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, China.
| | - Yongyi Luo
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiang Huang
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fajin Chen
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, China
| | - Xin Huang
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
8
|
Sui Y, You X, Xu X, Guo G, Sheng H, Huang L. Harmonious assessment of mesh effect in water sieve sampling for fibrous microplastics abundance. ENVIRONMENTAL RESEARCH 2025; 271:121056. [PMID: 39920959 DOI: 10.1016/j.envres.2025.121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Fibrous microplastic pollution in natural water is increasingly concerning because these particles could carry and release toxic substances, and be bioavailable of microplastics less than 100 μm, posing significant risks to ecosystems and human health. Effective monitoring and accurate data sharing are hampered by a lack of standardized sampling methods, particularly for assessing the impact of mesh size (hereafter referred to as mesh opening) on microplastics abundance. This study investigated the efficiencies of various mesh openings (50-500 μm) in water sieve sampling of fibrous microplastics using a continuous multi-layer filtration device. Surface water samples from Zhanqiao Pier, China, were processed, and the geometric properties of the collected microplastics were analyzed. The retention of fibrous microplastics was calculated using logistic models, and Monte Carlo simulations were employed to estimate the amounts of microplastics that were not retained. Data from previous studies were re-evaluated to develop a harmonious assessment protocol for estimating fibrous microplastics abundance. The results showed that larger mesh openings significantly underestimate the abundance of microplastics, missing up to 14.6 (500 μm), 8.8 (315 μm), and 2.0 (150 μm) times more fibers compared to the finest mesh opening (50 μm). Thus, coarser meshes fail to capture smaller, yet numerous, microplastics fibers. Moreover, the re-evaluated results were used to develop correction factors of the harmonious assessment and highlight the need for finer mesh openings in sampling nets and sieves to ensure more accurate data collection. Such improvements could be used to establish a globally standardized methodology for microplastics monitoring.
Collapse
Affiliation(s)
- Yipu Sui
- College of Fisheries, Ocean University of China, Qingdao 266003, China.
| | - Xinxing You
- College of Fisheries, Ocean University of China, Qingdao 266003, China.
| | - Xinle Xu
- College of Fisheries, Ocean University of China, Qingdao 266003, China.
| | - Gaobo Guo
- College of Fisheries, Ocean University of China, Qingdao 266003, China.
| | - Huaxiang Sheng
- College of Fisheries, Ocean University of China, Qingdao 266003, China.
| | - Liuyi Huang
- College of Fisheries, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
9
|
Yan Y, Cheng J, Gao J, Liu Y, Tian H, Liu Y, Zheng X, Wang G, Yao J, Ding Y, Liu A, Wang M, Zhao J, Wang S, Shi C, Zeng L, Yang X, Qin H, Zhao X, Liu R, Chen L, Qu G, Yan B, Jiang G. Exploring Environmental Behaviors and Health Impacts of Biodegradable Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5897-5912. [PMID: 40116393 DOI: 10.1021/acs.est.4c14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Biodegradable plastics (BPs) are promoted as eco-friendly alternatives to conventional plastics. However, compared to conventional microplastics (MPs), they degrade rapidly into biodegradable microplastics (BMPs), which may lead to a more significant accumulation of BMPs in the environment. This review systematically compares BMPs and MPs, summarizes current knowledge on their environmental behaviors and impacts on ecosystems and human health, and offers recommendations for future research. BMPs are detected in water, sediments, indoor dust, food, marine organisms, and human samples. Compared to MPs, BMPs are more prone to environmental transformations, such as photodegradation and biodegradation, which results in a shorter migration distance across different matrices. Like MPs, BMPs can adsorb pollutants and transport them into organisms, enhancing toxicity and health risks through the Trojan horse effect. Studies indicate that BMPs may negatively impact terrestrial and aquatic ecosystems more than MPs by disrupting nutrient cycling and inhibiting plant and animal growth. In vivo and in vitro research also shows that BMP degradation products increase bioavailability, exacerbating neurotoxicity and overall toxicity. However, findings on BMPs' environmental and health effects remain inconsistent. Further evaluation of the trade-offs between BMP risks and their biodegradability is needed to address these uncertainties.
Collapse
Affiliation(s)
- Yuhao Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiexia Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijiang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehan Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangxuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingtai Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Ding
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Aifeng Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Minghao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Li Zeng
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xinyue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Science, Northeastern University, Shenyang 110004, China
| | - Xiulan Zhao
- School of Public Health, Shandong University, Jinan 250012, China
| | - Runzeng Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Public Health, Shandong University, Jinan 250012, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Public Health, Shandong University, Jinan 250012, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- College of Science, Northeastern University, Shenyang 110004, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Wei W, Zhang Y, Wang L, Xing Q, Xiang J, Zhang Y, Peng Q, Chen Y, Hu Y, Ma Y, Mo L. Microplastic Pollution and Its Ecological Risks in the Xisha Islands, South China Sea. TOXICS 2025; 13:205. [PMID: 40137532 PMCID: PMC11946236 DOI: 10.3390/toxics13030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
China is facing increasing marine microplastic pollution. Despite the fact that the South China Sea is the largest marine area in China, the ecological danger and present state of microplastic contamination in this region have not been systematically and comprehensively investigated. This study analyzed the abundance, distribution, and characteristics of microplastics in different environmental media and biological samples from the Xisha Islands in the South China Sea, and then the ecological risk assessment of microplastic pollution in this area was conducted. The findings indicated that the quantities of sediments, soil, water, fish, and birds were 41.56 ± 19.12 items/kg, 92.94 ± 111.05 items/kg, 2.89 ± 1.92 items/L, 2.57 ± 2.12 items/ind, and 1.702 ± 1.50 items/ind, respectively. By evaluating the pollution load index (PLI), polymer hazard index (PHI), and potential ecological risk index (PERI), the PLI of the Xisha Islands in the South China Sea as a whole indicated that the hazard level was slightly polluted, the PHI was at a high-risk level, and the PERI samples were at no risk, except for the soil and seawater, which were at a medium-risk level.
Collapse
Affiliation(s)
- Wenchao Wei
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
- College of Resources & Environment of Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Zhang
- Hainan Medical University—The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China;
| | - Licheng Wang
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
| | - Qiao Xing
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
| | - Jun Xiang
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
| | - Yuquan Zhang
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qifei Peng
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yongfu Chen
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yufeng Hu
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yini Ma
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Ling Mo
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
| |
Collapse
|
11
|
Zhu Z, Pang S, Su Q, Wei H, Qu Y, Chen J, Huang L. Fate, source, and ecological risk of microplastic in the surface sediment of the Beibu Gulf, the Northern South China sea. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106931. [PMID: 39919601 DOI: 10.1016/j.marenvres.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 11/02/2024] [Accepted: 12/23/2024] [Indexed: 02/09/2025]
Abstract
A large-scale investigation of the surface sediments in the Beibu Gulf was conducted in this study to reveal the contamination characteristics of microplastics in the surface sediments of the Beibu Gulf. The results showed that the abundance of microplastics ranged from 12.91 to 251.69 items/kg, dry weigh (DW), with an average abundance of 84.34 ± 51.85 items/kg (DW). The highest abundance of microplastics was found in the estuary of northwestern Hainan, influenced by the West Guangdong Coastal Current. The overall distribution of abundance showed a decreasing trend from nearshore to offshore. Microplastics in the surface sediments were predominantly in the form of fiber (87.51%), with a predominant white color. The polymer of microplastics in surface sediment was primarily polyester (43.43%). The main sources of microplastics include household items, textile products, food packaging, fishing activities, industrial activities, sewage discharges, and biochemical materials, of which household products and textile products are the most important sources. The results of the risk evaluation showed that the sediment of Beibu Gulf was contaminated with microplastics (pollution load index >1) and the polymer risk was at low to extremely high levels. The high abundance of microplastics and highly toxic polymers resulted in increased ecological risk. These findings highlight the urgent need to implement timely and effective measures to reduce the impact of intensive human activities on microplastic pollution. At the same time, the study data provide an important reference for future ecotoxicological investigations, pollution management strategies and microplastic policy development.
Collapse
Affiliation(s)
- Zuhao Zhu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China.
| | - Shuting Pang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Qiongyuan Su
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Huihua Wei
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Yi Qu
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Jie Chen
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
12
|
Li S, Wang H, Feng X, Zeng Y, Shen Y, Gu Q. Microplastics in Chinese coastal waters: A mini-review of occurrence characteristics, sources and driving mechanisms. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2025; 43:358-368. [PMID: 38752548 DOI: 10.1177/0734242x241248727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The oceans are facing global and irreversible pollution from microplastics, and China is not immune. In this mini-review, information on microplastics in four coastal waters of China and the natural and social environment of key basins were compiled. The results showed that microplastics were ubiquitous in the coastal waters, and the abundance and spatial distribution of microplastics varied significantly under different sampling methods. For trawl samples, microplastic abundance ranged from 0.045 to 1170.8 items m-3, among which the coastal waters of the East China Sea were the most polluted. For filtered samples, microplastic abundance ranged from 46 to 63,600 items m-3, and the coastal waters of the Yellow Sea were the most polluted. Meanwhile, human activities in basin were the key factors affecting microplastic pollution in coastal waters. The main terrestrial source in the coastal waters of the South China Sea was express packaging loss, whereas the main source in the other coastal waters was tyres and road markings wear from vehicle trip. The decoupling results of analytic hierarchy process showed that there was spatial heterogeneity in the impact of socio-economic and natural environmental factors in the basin on the distribution of microplastics in coastal waters. Among the five major basins, the impact weights of the latter were 20.00%, 83.34%, 66.66%, 50.00% and 25.00%, respectively. This study provides the first perspective of land-sea linkage to summarize the characteristics, sources and influencing factors of microplastics in Chinese coastal waters, providing ideas for reducing marine microplastic pollution from the source.
Collapse
Affiliation(s)
- SiQiong Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, China
- College of Environment, Hohai University, Nanjing, China
| | - Hua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, China
- College of Environment, Hohai University, Nanjing, China
| | - XiangYu Feng
- Academy of Environmental Planning & Design, Co., Ltd., Nanjing University, Nanjing, China
| | - Yichuan Zeng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, China
- College of Environment, Hohai University, Nanjing, China
| | - Yuhan Shen
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK
| | - Qihui Gu
- College of Environment, Hohai University, Nanjing, China
| |
Collapse
|
13
|
Chen CF, Ju YR, Wang MH, Lim YC, Chen CW, Cheng YR, Dong CD. Microplastic pollution in stony coral skeletons and tissues: A case study of accumulation and interrelationship in South Penghu Marine National Park, Taiwan Strait. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136761. [PMID: 39647331 DOI: 10.1016/j.jhazmat.2024.136761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Microplastics (MPs) pose a growing threat to coral reef ecosystems worldwide. However, data on MP contamination in coral reefs remain limited, hampering accurate ecological risk assessment. This study investigated MP contamination in coral reefs at South Penghu Marine National Park, analyzing 40 samples from 31 coral species. The average MP abundance was 0.32 ± 0.32 MPs/g wet weight, and the mean MP abundance in the coral tissues (0.26 ± 0.26 MPs/g ww) was significantly higher than that in the coral skeleton (0.08 ± 0.10 MPs/g ww). Most MPs were small (<1 mm: >60 %), fibrous (99.7 %), and primarily composed of rayon (59.8 %) and polyester (27.5 %). Significant correlations were found among MP abundance in whole corals, coral tissues, and coral skeletons. The correlation equation established in this study, linking coral skeleton, tissue, and whole corals, can facilitate a more comprehensive understanding of MP pollution level and its associated risks in coral reef environments. Notably, monofilament overgrowth was observed, highlighting the impact of nearby fisheries and recreational activities on MP contamination. These findings provide valuable field-based data on MP pollution levels and the associated risks to corals and offer a novel tool for assessing MP accumulation and potential risks in coral ecosystems.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan
| | - Ming-Huang Wang
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yu-Rong Cheng
- Department of Fisheries Production and Management, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
14
|
Islam MM, Rayhan ABMS, Wang J, Shamim MAH, Ke H, Wang C, Zheng X, Chen D, Cai M. Tracing microplastics in marine fish: Ecological threats and human exposure in the Bay of Bengal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178462. [PMID: 39826218 DOI: 10.1016/j.scitotenv.2025.178462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/14/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
This research on microplastics (MPs) in marine environments, particularly in Bay of Bengal fish, underscores the limited comprehension of their accumulation and potential health and environmental consequences. The study investigated the abundance of MPs in the organs of nine marine fish species from the north Bay of Bengal, assessing their polymeric risks and implications for human health. The average MPs ingested by each individual was 32.9 ± 3.0 items/ind.10 g-1 predominantly fibers (93.1 %), followed by fragments (6.1 %), with black being the most common color (76.3 %). The primary polymers identified were polyvinyl alcohol (PVA) (19.4 %), polyether sulfone (PES) (10.7 %), polyamide PA (8.7 %), acrylic, and polyethylene (PE), in the 500-5000 (80 %) μm size range. A moderate negative correlation with strong statistical significance was found with girth sizes and MPs concentration of average (Pearson's r = -0.5728, p < 0.0001). Body weight exhibited moderate negative correlations with MPs abundance in fish tissues (Pearson's r = -0.4701, p < 0.0001). Movement behavior analysis showed a negative correlation between MPs in fish tissues and depth range (Pearson's r = -0.4231, p < 0.0001). Demersal species contained more MPs than pelagic species, and carnivorous fishes had higher MPs levels than omnivorous and planktivorous fishes. The contamination factors (CF), pollution load index (PLI), and polymeric hazard index (PHI) were high and associated with untreated industrial and municipal wastewater sources. The estimated daily intake (EDI) of MPs for adults and children indicates significant health risks. The study improves our comprehension of MPs contamination, providing a significant reference for the appropriate governance, tracking, and reducing pollutants in marine animals in coastal waters.
Collapse
Affiliation(s)
- Md Mazharul Islam
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China; Marine Fisheries Academy, Chittagong 4000, Bangladesh
| | - A B M Sadique Rayhan
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jun Wang
- Department of marine biology, Xiamen Ocean vocational college, Xiamen 361102, China
| | - Md Ali Hossain Shamim
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Hongwei Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Chunhui Wang
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Xuehong Zheng
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Ding Chen
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Minggang Cai
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; Department of marine biology, Xiamen Ocean vocational college, Xiamen 361102, China; College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
15
|
Ni Z, Chen X, Zhang M, Lu C, Ji X, Yuan L, Chen C, Chen Z, Ye J, Yang J. Microplastics in the surface waters of the northern South China Sea: Interannual variation and potential ecological risks. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106947. [PMID: 39778252 DOI: 10.1016/j.marenvres.2025.106947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Microplastic pollution in marine environments has become a global concern due to its potential ecological risks. However, long-term data on microplastic distribution are scare, hindering the assessment of the ecological threats. This study monitored microplastics pollution in the surface water of the northern South China Sea from 2019 to 2023. The average abundance of microplastics exhibited an increasing trend from 2019 to 2021 and a subsequent decrease from 2021 to 2023 in both the Pearl River Estuary and Zhanjiang offshore waters. Conversely, a steady annual decrease was observed in the surface waters of Beibu Gulf from 2020 to 2023. The spatial variability of microplastic hotspot across different years and regions. Microplastics predominantly ranged from 1 to 2 mm in size, with fragments and fibers being the most common shapes and transparent and white colors being the most prevalent. The primary chemical components of microplastics were polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). No significant inter-annual differences were observed in the physicochemical characteristics of microplastics. The pollution load index (PLI) indicated medium to low levels of microplastic pollution, with the potential ecological risk index (PERI) suggesting a low level of ecological risk, implying a minimal threat to the marine ecosystem. This study first revealed the annual variations in microplastic pollution and their potential ecological risks in the northern South China Sea, providing crucial data support for the future management and control of marine microplastic pollution.
Collapse
Affiliation(s)
- Zhixin Ni
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China
| | - Xin Chen
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China.
| | - Minxia Zhang
- China National Offshore Oil Corporation Research Institute, Beijing, 100028, China
| | - Chuqian Lu
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China.
| | - Xiao Ji
- East China Sea Ecological Center of Ministry of Natural Resources (MNR), Shanghai, 201206, China
| | - Lei Yuan
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China
| | - Changshu Chen
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China
| | - Zhiqiang Chen
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China
| | - Jianping Ye
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China
| | - Jiayu Yang
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China
| |
Collapse
|
16
|
Saila R, Dhar BR. Effects of aging of polyethylene microplastics and polystyrene nanoplastics on antibiotic resistance gene transfer during primary sludge fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177589. [PMID: 39571815 DOI: 10.1016/j.scitotenv.2024.177589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
The increasing presence of nano and microplastics (NPs/MPs) in wastewater treatment plants and their inevitable accumulation in the sludge has raised serious concerns in recent years. This study investigated the effects of pristine and aged polyethylene microplastics (PEMPs), polystyrene nanoplastics (PsNPs), and their mixtures on the primary sludge fermentation process. Pristine MPs/NPs (150 μg/L and 2 g/L for PsNPs and PEMPs, respectively) underwent two weeks of weathering in the presence of humic and alginic acids. The results from a batch fermentation experiment (15 days, pH 10) revealed that the exposure to aged PEMPs/PsNPs experienced greater VFA production than pristine samples. Notably, the aged PEMPs/PsNPs mixture showed a 23.12% increase in VFA production over the pristine mixture. The relative abundance and total concentration of antibiotic resistance genes (ARGs) increased in all PEMPs/PsNPs batches compared to the control, with the most significant rise in total ARGs observed in the aged PEMPs sample. Aged PEMPs exhibited a 26.22-fold increase in tetA genes, while aged mix samples showed a 19.68-fold increase in tetM genes compared to their pristine counterparts. Both pristine and aged PEMPs/PsNPs, particularly the aged PEMPs adversely affected the microbial communities at the genus level and altered the microbial structure. Microbial richness and diversity were enhanced in samples exposed to pristine PEMPs/PsNPs and aged PsNPs but decreased in aged PEMPs and in the aged mixture group, suggesting a negative impact of aged polyethylene microplastics on microbial communities. Correlation analysis suggested that phyla Planctomycetes, Proteobacteria, and TM7 are potential hosts of ARGs. These findings manifest the substantial effects of aged nano/microplastics compared to their pristine forms, emphasizing the complex interplay between various forms of PEMPs/PsNPs and microbial dynamics in sludge fermentation processes.
Collapse
Affiliation(s)
- Romana Saila
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
17
|
Forero-López AD, Colombo CV, Loperena AP, Morales-Pontet NG, Ronda AC, Lehr IL, De-la-Torre GE, Ben-Haddad M, Aragaw TA, Suaria G, Rimondino GN, Malanca FE, Botté SE. Paint particle pollution in aquatic environments: Current advances and analytical challenges. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135744. [PMID: 39270584 DOI: 10.1016/j.jhazmat.2024.135744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Paints, coatings and varnishes play a crucial role in various industries and daily applications, providing essential material protection and enhancing aesthetic characteristics. However, they sometimes present environmental challenges such as corrosion, wear, and biofouling which lead to economic losses and ecological harm. Paint particles (PPs), including antifouling/anticorrosive paint particles (APPs), originate from marine, industrial, and architectural activities, primarily due to paint leakage, wear, and removal, thus significantly contributing to marine pollution. These particles are often misclassified as microplastics (MPs) because of their polymeric content, so the abundance of these materials is often underestimated. Standardized assessment methodologies are imperative to accurately differentiate and quantify them. Since PPs/APPs incorporate hazardous substances like metals, biocides, and additives that leach into the environment, further investigation into their potential impacts on organisms is of utmost importance to understand their complex composition and toxicity. While essential characterization techniques are needed, a holistic approach, focusing on sustainable paint formulations, is crucial for effective pollution mitigation. This review delves into the intricate structure of paint systems, elucidating the mechanisms governing the aging and formation of PPs/APPs, their prevalence and subsequent environmental and ecotoxicological repercussions. Additionally, it addresses challenges in sampling, processing, and characterizing PPs/APPs, advocating standardized approaches to mitigate their environmental threats, and proposing new perspectives for the future.
Collapse
Affiliation(s)
- A D Forero-López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, Buenos Aires B8000FWB, Argentina.
| | - C V Colombo
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, Buenos Aires B8000FWB, Argentina
| | - A P Loperena
- Instituto de Ingeniería Electroquímica y Corrosión (INIEC), Departamento de Ingeniería Química, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - N G Morales-Pontet
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, Buenos Aires B8000FWB, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - A C Ronda
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, Buenos Aires B8000FWB, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - I L Lehr
- Instituto de Ingeniería Electroquímica y Corrosión (INIEC), Departamento de Ingeniería Química, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - G E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - M Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - T A Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - G Suaria
- Institute of Marine Sciences - National Research Council (CNR-ISMAR), Lerici, La Spezia 19032, Italy
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - F E Malanca
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - S E Botté
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, Buenos Aires B8000FWB, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| |
Collapse
|
18
|
He J, Guo X, Zhang X, Chen QA, Gao K, Han L, Xu C. Delving into South China Sea microplastic pollution: Abundance, composition, and environmental risk. MARINE POLLUTION BULLETIN 2024; 209:117086. [PMID: 39406067 DOI: 10.1016/j.marpolbul.2024.117086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 11/28/2024]
Abstract
Understanding marine pollution in the South China Sea is crucial for preserving marine ecosystems and biodiversity. Despite extensive research on pollutants, there is a significant gap in knowledge about microplastics (MPs) in the archipelago region. This study focused on four typical islands, examining MPs in seawater and sediments, their distribution, and environmental risks. Most MPs (>90 %) were smaller than 2.5 mm, with black fiber-shaped polyethylene terephthalate MPs being predominant. MPs in seawater had lower abundance (5-12 items/L) compared to sediment (100-2600 items/kg) but showed richer polymer composition. Pollution load index (PLI) and risk index analysis indicated all regions were contaminated (PLI > 1), with the Zhongsha islands being the most polluted. Correlation analysis highlighted black, fibrous PET-like polymers with large particle sizes (>0.5 mm) as major contributors. This study could help to understand the MPs distribution and pollution in the archipelago region of the South China Sea.
Collapse
Affiliation(s)
- Jiehong He
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyu Guo
- Key Laboratory of Environmental Toxicology of Haikou, Hainan University, Haikou 570228, China
| | - Xuanwei Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Qi-Ang Chen
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Kuo Gao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lanfang Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Chao Xu
- Institute of Geography, Humboldt University of Berlin, Rudower Chaussee 16, 12489 Berlin, Germany.
| |
Collapse
|
19
|
Hou X, Li J, Li H, Du S, Liu S, Jiao S, Niu F, Tu J, Zong Y, Wang X, Liu X. Microplastics distribution, ecological risk and outflows of rivers in the Bohai Rim region of China - A flux model considering small and medium-sized rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176035. [PMID: 39236832 DOI: 10.1016/j.scitotenv.2024.176035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Microplastics (MPs) pollution and its ecological risks have attracted increasing global attention. The Bohai Rim region (BRR), as the economic and population center of the entire northern China, still lacks a precise assessment of MPs pollution. Although current attention on MPs pollution mainly focuses on large rivers, small and medium-sized rivers are more numerous and more closely connected to human activities. In this study, measurement data of MPs from 11 estuaries in the BRR was collected to understand MPs distribution and ecological risk. The results indicate that the overall MPs pollution in these estuaries is still at a low level, with an average abundance of 1254.3 particles m-3. While the pollution load index (1.85) is relatively low, the potential ecological risk of PVC in some area (S8, EPVC = 1433.78, III) warrants further attention. Then we integrated data from 22 relevant rivers (covering all size rivers) in this region from the literature to fit a MPs flux model and assessed the MPs outflow from the four provinces and cities in the region. A strong correlation is achieved between modeled estimates and field measurements (r2 = 0.74), which can well estimate the river MPs outflows in northern China such as the Nanfei River. The MPs outflow from the four provinces (cities) is calculated to be 123.235 (range 44.415-242.314) T year-1, of which Shandong accounted for >80 % (104.066 T year-1). The small and medium-sized rivers accounted for 47 % (58.08 T year-1), whose contribution to MPs outflows should not be underestimated. This study can help us to accurately assess MPs pollution in different coastal areas in northern China, benefiting the formulation of precise control measures and policies for marine MPs pollution.
Collapse
Affiliation(s)
- Xin Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Jiayao Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Hongyu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Shuyun Du
- School of Earth and Environmental Science, University of Queensland, Brisbane 4067, Australia
| | - Sitong Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Shipu Jiao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Fuxin Niu
- Tianjin Marine Environmental Center Station, Ministry of Natural Resources, Tianjin 300450, PR China
| | - Jianbo Tu
- Tianjin Marine Environmental Center Station, Ministry of Natural Resources, Tianjin 300450, PR China
| | - Yanping Zong
- Tianjin Marine Environmental Center Station, Ministry of Natural Resources, Tianjin 300450, PR China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai 264000, PR China.
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China.
| |
Collapse
|
20
|
Zhu Z, Hossain KB, Wei H, Chen J, Jia R, Gao X, Jin H, Cai M. Fate and mass budget of microplastic in the Beibu Gulf, the northern South China sea. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106797. [PMID: 39454486 DOI: 10.1016/j.marenvres.2024.106797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
This study investigated the distribution, abundance, and mass budget of microplastics (MPs) in the Beibu Gulf, Northern South China Sea, focusing on their ecological significance and anthropogenic influence. Microplastics were found in all water and sediment samples, with concentrations in surface water ranging from 0.10 to 0.89 items/m³, and in bottom water from 0 to 0.85 items/m³. Sediment samples exhibited higher levels, ranging from 13.12 to 155.59 items/kg. The spatial distribution revealed higher concentrations along the northern Gulf and Guangxi Province, suggesting significant human influence from coastal activities, such as mariculture and industrial discharges. The study utilized both field data and a mass balance box model to estimate the MPs mass budget, revealing that oceanic flow and riverine discharge are major contributors, accounting for 49% and 52% of MPs, while Atmospheric deposition and sedimentation represents 8% and 1%, respectively. The inventory estimation calculated that 0.24 tons of MPs exist in the water column, and 137 tons in the sediment, emphasizing the substantial environmental burden posed by these pollutants. The significance of this research lies in its comprehensive assessment of MPs in a semi-enclosed gulf, providing critical insight into the role of coastal and hydrodynamic processes in MP distribution. This study highlights the urgent need for better waste management practices in coastal regions to mitigate microplastic pollution and its detrimental effects on marine ecosystems.
Collapse
Affiliation(s)
- Zuhao Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, PR China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, PR China.
| | - Kazi Belayet Hossain
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, PR China; Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, PR China; College of Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Huihua Wei
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, PR China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, PR China
| | - Jie Chen
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, PR China
| | - Renming Jia
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, PR China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, PR China
| | - Xiaofeng Gao
- Key Laboratory of the Three Georges Reservoir Region's Eco-Environment, Ministry Education, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Haiyan Jin
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, PR China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, PR China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310000, PR China
| | - Minggang Cai
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, PR China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, PR China; Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, PR China; College of Environment and Ecology, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
21
|
Yoo JW, Lee YH, Kim J, Han S, Lee KW, Lee YM. Size-dependent toxic interaction between polystyrene beads and mercury on the mercury accumulation and multixenobiotic resistance (MXR) of brackish water flea Diaphanosoma celebensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117131. [PMID: 39405973 DOI: 10.1016/j.ecoenv.2024.117131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Due to their worldwide distribution and persistence, mercury (Hg), and nano- and microplastics (NMPs) pose major threats to global ocean ecosystems. Hg and NMPs co-exist in the ocean and can interact with each other. However, information on the toxicity of this interaction to marine biota remains limited. Thus, we investigated the toxicological interaction between HgCl2 (Hg) and NMPs by studying the influence of different sizes of polystyrene beads (0.05-, 0.5-, and 6-μm) on Hg accumulation in the brackish water flea Diaphanosoma celebensis. The Hg adsorption capacity of NPs (0.05-μm) was higher than that of MPs (0.5- and 6-μm). Only the group co-exposed to both Hg and NPs showed increased Hg content in D. celebensis. Multixenobiotic resistance (MXR) activity and transcriptional modulation of transporter genes (ABCBs and ABCCs) were decreased by NMP exposure, particularly by NPs, suggesting MXR disruption by NPs. However, only the activity of multidrug resistance-associated proteins (MRPs; ABCCs) increased with Hg exposure and decreased upon NP+Hg co-exposure, indicating an important role of ABCC in Hg efflux. Furthermore, in vivo toxicity tests showed a synergistic toxic interaction between Hg and NPs on the reproduction of D. celebensis. Our findings suggest that NPs have the potential to enhance the toxicity of Hg, increasing Hg accumulation not only by serving Hg as a carrier but also by disrupting MXR.
Collapse
Affiliation(s)
- Je-Won Yoo
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Youn-Ha Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jihee Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Kyun-Woo Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
22
|
Liu B, Ye K, Lu Y, Deng H, Yang J, Li K, Liu L, Zheng H, Sun K, Jiang Y. Occurrence and risk assessment of microplastics on the Shenzhen coast, South China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117227. [PMID: 39442256 DOI: 10.1016/j.ecoenv.2024.117227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Microplastics (MPs) have attracted increasing attention worldwide owing to their widespread presence and potential risks to terrestrial and marine ecosystems. Estimating the pollution status and risk levels of MPs in coastal ecosystems is necessary; however, these are poorly understood in coastal megacities. Here, the abundance and characteristics of MPs in seawater, marine sediment, marine organisms, and beaches in the Shenzhen coastal ecosystems and land sources (river and sewage outfall) were simultaneously investigated, and the annual MPs load of rivers and MP-induced ecological risks were evaluated. The results showed that MPs pollution was prevalent in Shenzhen coastal ecosystems, with the average abundances of 2.40 ± 2.48 items/m3, 404.21 ± 431.48 items/kg, 1.66 ± 1.96 items/individual, and 1648.99 ± 1908.19 items/kg in seawater, marine sediment, marine organisms, and beach sands, respectively. The detected MPs were predominantly fibrous/granular, transparent/white, < 1 mm in size, and polyethylene terephthalate/polyethylene/polystyrene. The spatial distribution patterns of marine MPs are influenced mainly by anthropogenic activities and freshwater inflows (rivers and sewage outfalls). Pollution hotspots of MPs were identified in the Pearl River Estuary, which has a high population, gross domestic product, and river and wastewater discharge. Furthermore, the negative correlation between the abundance of MPs in seawater and salinity indicates that freshwater inflow carrying MPs to the sea is an important source of marine MPs pollution. It has been estimated that approximately 8320 billion MPs particles, weighing 274.55 tons, flow into the Shenzhen coast annually through river input. Based on the MPs polymer types and quantities, the ecological risk of MPs pollution in the Shenzhen coastal ecosystem is moderate and deserves further attention. These findings deepen the understanding of MPs pollution, sources, and ecological risks in the southern coastal region of China, and are helpful for employing effective management strategies to control marine MPs pollution.
Collapse
Affiliation(s)
- Bingjie Liu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Kuangmin Ye
- Guangdong Provincial Academy of Environmental Sciences, Guangzhou 510045, China
| | - Yao Lu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Hanqiang Deng
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Jing Yang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Kaiming Li
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Liuqingqing Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Kaifeng Sun
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Yuxia Jiang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China.
| |
Collapse
|
23
|
Lin L, Yi J, Wang J, Qian Q, Chen Q, Cao C, Zhou W. Enhancing Microplastic Degradation through Synergistic Photocatalytic and Pretreatment Approaches. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22582-22590. [PMID: 39422971 DOI: 10.1021/acs.langmuir.4c02124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Microplastics (MPs) pollution has emerged as a pressing environmental concern in recent years. Owing to their minute dimensions, conventional plastic remediation approaches are inadequate for addressing the challenges posed by MPs. Herein, spherical (BOC-S) and nanosheet (BOC-N) BiOCl photocatalysts were prepared and applied to the degradation of poly(ethylene terephthalate) (PET) MPs after hydrothermal pretreatment. The results indicated that the degradation efficiency of pretreated PET MPs using BOC-S and BOC-N photocatalysts was 8.8 and 6.9 times that of the unpretreated MPs under the same conditions. Comparative experiments confirmed the excellent performance of the photocatalysis-pretreatment system. The creation of pores on the surface of pretreated PET MPs facilitates the entry of active substances into the interior to cause damage, while the enhancement of hydrophilicity and specific surface area facilitates the contact between the catalyst and PET MPs, thus increasing the degradation efficiency. Free radical trapping experiments revealed that hydroxyl radicals (·OH) produced by photocatalysis had the greatest influence on the degradation performance of pretreated PET MPs. Finally, a possible photocatalytic degradation mechanism for PET MPs was proposed. This research offers a novel perspective on MPs degradation, providing valuable insights for advancing the efficacy of the process.
Collapse
Affiliation(s)
- Liangbin Lin
- College of Environmental and Resource Sciences, College of Carbon Neutral, Fujian Normal University, Fuzhou 350100, China
- ModernInsustry, Fujian Normal University Engineering Research Center of Polymer, Fuzhou 350100, China
- GreenRecycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350100, China
| | - Jiayu Yi
- College of Environmental and Resource Sciences, College of Carbon Neutral, Fujian Normal University, Fuzhou 350100, China
- ModernInsustry, Fujian Normal University Engineering Research Center of Polymer, Fuzhou 350100, China
- GreenRecycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350100, China
| | - Jiaming Wang
- College of Environmental and Resource Sciences, College of Carbon Neutral, Fujian Normal University, Fuzhou 350100, China
- ModernInsustry, Fujian Normal University Engineering Research Center of Polymer, Fuzhou 350100, China
- GreenRecycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350100, China
| | - Qingrong Qian
- College of Environmental and Resource Sciences, College of Carbon Neutral, Fujian Normal University, Fuzhou 350100, China
- ModernInsustry, Fujian Normal University Engineering Research Center of Polymer, Fuzhou 350100, China
- GreenRecycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350100, China
| | - Qinghua Chen
- College of Environmental and Resource Sciences, College of Carbon Neutral, Fujian Normal University, Fuzhou 350100, China
- ModernInsustry, Fujian Normal University Engineering Research Center of Polymer, Fuzhou 350100, China
- GreenRecycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350100, China
| | - Changlin Cao
- College of Environmental and Resource Sciences, College of Carbon Neutral, Fujian Normal University, Fuzhou 350100, China
- ModernInsustry, Fujian Normal University Engineering Research Center of Polymer, Fuzhou 350100, China
- GreenRecycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350100, China
| | - Weiming Zhou
- College of Environmental and Resource Sciences, College of Carbon Neutral, Fujian Normal University, Fuzhou 350100, China
- ModernInsustry, Fujian Normal University Engineering Research Center of Polymer, Fuzhou 350100, China
- GreenRecycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350100, China
| |
Collapse
|
24
|
Lin J, Zheng JY, Zhan ZG, Zhao YM, Zhou QZ, Peng J, Li Y, Xiao X, Wang JH. Abundant small microplastics hidden in water columns of the Yellow Sea and East China Sea: Distribution, transportation and potential risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135531. [PMID: 39178782 DOI: 10.1016/j.jhazmat.2024.135531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Microplastics (MPs) pose significant concerns for marine ecological security due to their minuteness and ubiquity. However, comprehensive knowledge on their distribution and fate in seawater columns remains limited. This study investigated the abundances and characteristics of MPs across 3-6 water layers in the South Yellow Sea and East China Sea. Results indicate that high-abundance small MPs (< 100 µm) (average 6567 items/m3) were hidden beneath the sea-surface, predominantly fine-grained particles (< 20 µm) and high-density polymers (> 1.03 g/cm3). The total suspended MPs (5.0-834.2 µm) are estimated at 2.9-3.1 × 1017 particles, with most of them occurring in upper layers. In profiles, their distribution varied by physical properties with depth; fragment-shaped and high-density MPs increased in proportion at greater depths, contrasting with fibrous MPs. These MPs originated primarily from the Yangtze River and their winter transport was driven by the Yangtze River Dilution Water, East China Sea Coastal Current, and Yellow Sea Warm Current, resulting in their accumulation in coastal and estuarine regions. Consequently, the Yangtze River Estuary ecosystem faces substantial risks from MP pollution throughout the water column. This work unveils the prevalence of small MPs in coastal water columns and intricate interaction between their fate and hydrodynamic conditions.
Collapse
Affiliation(s)
- Jia Lin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Jia-Yuan Zheng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Zhi-Geng Zhan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Yuan-Ming Zhao
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Qian-Zhi Zhou
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Juan Peng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Yan Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Xi Xiao
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou 511457, China; Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511457, China.
| | - Jiang-Hai Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| |
Collapse
|
25
|
Lyu Z, Chen X, Wei T, Wang D, Zhao P, Sanganyado E, Chi D, Sun Z, Wang T, Li P, Liu W, Bi R. Microplastics and arsenic speciation in edible bivalves from the coast of China: Distribution, bioavailability, and human health risk. MARINE POLLUTION BULLETIN 2024; 207:116861. [PMID: 39216255 DOI: 10.1016/j.marpolbul.2024.116861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Bivalves, such as oysters and mussels, are exposed to environmental pollutants, like microplastics (MPs) and arsenic (As). This study investigated co-existence and interaction of MPs and As (total As and As species) in two bivalve species from the Chinese coastline. Smaller MPs (20-100 μm) averaged 30.98 items/g, while larger MPs (100-500 μm) averaged 2.98 items/g. Oysters contained more MPs (57.97 items/g) in comparison to mussels (11.10 items/g). In Contrast, mussels had a higher As concentrations (8.36-23.65 mg/kg) than oysters (4.97-11.02 mg/kg). The size and composition of MPs influenced As uptake and speciation in bivalves, with inorganic arsenic (iAs) and methylated arsenic (MMA and DMA) correlating with larger-sized MPs. Polyethylene (PE) may interact with the formation of arsenobetaine (AsB) in oyster. This study provides valuable insights into the interaction of MPs and As in marine ecosystems and highlights their implications for food safety.
Collapse
Affiliation(s)
- Zhendong Lyu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xiaohan Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ting Wei
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Difeng Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Hangzhou 310012, China
| | - Puhui Zhao
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Duowen Chi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zewei Sun
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ran Bi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| |
Collapse
|
26
|
Devi SS, Saifudeen N, Kumar KS, Kumar AB. Does the microplastics ingestion patterns and polymer composition vary across the oceanic zones? A case study from the Indian coast. MARINE POLLUTION BULLETIN 2024; 204:116532. [PMID: 38824708 DOI: 10.1016/j.marpolbul.2024.116532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
This study explores microplastic (MP) presence in the gastrointestinal tracts of deep-sea fish from the Central Indian Ocean, off the Indian coast. Among the 27 species examined, 19 showed MP contamination, averaging 2.68 ± 0.30 (±SE) MPs per individual. Polymer analysis via FTIR and micro-Raman identified several types, including polyethylene terephthalate (PET), polyvinyl alcohol (PVA), polypropelene (PP), polyvinyl acetate (PVC), polyurethane (PU), polytetrafluoroethylene (PTFE), polyaniline (PANI), polymethyl methacrylate (PMMA), and polyethersulfone (PES), with PET being the most prevalent (33.33 %). MP ingestion was higher in benthopelagic fish and those at higher trophic levels, as indicated by comparisons across oceanic zones. Niche partitioning analysis suggests feeding behaviour as a primary influencer of MP ingestion in deep-sea fish rather than habitat or trophic level. The study proposes the potential use of deep-sea fish as indicators for assessing microplastic pollution across oceanic zones and deep-sea regions through bycatch monitoring.
Collapse
Affiliation(s)
- Suvarna S Devi
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 69551, Kerala, India
| | - Nasila Saifudeen
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 69551, Kerala, India
| | | | - Appukuttannair Biju Kumar
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 69551, Kerala, India.
| |
Collapse
|
27
|
Yarahmadi A, Heidari S, Sepahvand P, Afkhami H, Kheradjoo H. Microplastics and environmental effects: investigating the effects of microplastics on aquatic habitats and their impact on human health. Front Public Health 2024; 12:1411389. [PMID: 38912266 PMCID: PMC11191580 DOI: 10.3389/fpubh.2024.1411389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
Microplastics (MPs) are particles with a diameter of <5 mm. The disposal of plastic waste into the environment poses a significant and pressing issue concern globally. Growing worry has been expressed in recent years over the impact of MPs on both human health and the entire natural ecosystem. MPs impact the feeding and digestive capabilities of marine organisms, as well as hinder the development of plant roots and leaves. Numerous studies have shown that the majority of individuals consume substantial quantities of MPs either through their dietary intake or by inhaling them. MPs have been identified in various human biological samples, such as lungs, stool, placenta, sputum, breast milk, liver, and blood. MPs can cause various illnesses in humans, depending on how they enter the body. Healthy and sustainable ecosystems depend on the proper functioning of microbiota, however, MPs disrupt the balance of microbiota. Also, due to their high surface area compared to their volume and chemical characteristics, MPs act as pollutant absorbers in different environments. Multiple policies and initiatives exist at both the domestic and global levels to mitigate pollution caused by MPs. Various techniques are currently employed to remove MPs, such as biodegradation, filtration systems, incineration, landfill disposal, and recycling, among others. In this review, we will discuss the sources and types of MPs, the presence of MPs in different environments and food, the impact of MPs on human health and microbiota, mechanisms of pollutant adsorption on MPs, and the methods of removing MPs with algae and microbes.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | | | - Parisa Sepahvand
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
28
|
Sharma S, Bhardwaj A, Thakur M, Saini A. Understanding microplastic pollution of marine ecosystem: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41402-41445. [PMID: 37442935 DOI: 10.1007/s11356-023-28314-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Microplastics are emerging as prominent pollutants across the globe. Oceans are becoming major sinks for these pollutants, and their presence is widespread in coastal regions, oceanic surface waters, water column, and sediments. Studies have revealed that microplastics cause serious threats to the marine ecosystem as well as human beings. In the past few years, many research efforts have focused on studying different aspects relating to microplastic pollution of the oceans. This review summarizes sources, migration routes, and ill effects of marine microplastic pollution along with various conventional as well as advanced methods for microplastics analysis and control. However, various knowledge gaps in detection and analysis require attention in order to understand the sources and transport of microplastics, which is critical to deploying mitigation strategies at appropriate locations. Advanced removal methods and an integrated approach are necessary, including government policies and stringent regulations to control the release of plastics.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Aprajita Bhardwaj
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Monika Thakur
- Department of Microbiology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Anita Saini
- Department of Microbiology, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi, Himachal Pradesh, India.
| |
Collapse
|
29
|
Thomas A, Marchand J, Schwoerer GD, Minor EC, Maurer-Jones MA. Size Distributions of Microplastics in the St Louis Estuary and Western Lake Superior. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8480-8489. [PMID: 38693822 PMCID: PMC11097629 DOI: 10.1021/acs.est.3c10776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Identifying the sources and fate of microplastics in natural systems has garnered a great deal of attention because of their implications for ecosystem health. This work characterizes the size fraction, morphology, color, and polymer composition of microplastics in western Lake Superior and its adjacent harbor sampled in August and September 2021. The results reveal that the overall microplastic counts are similar, with the harbor stations ranging from 0.62 to 3.32 microplastics per liter and the lake stations ranged from 0.83 to 1.4 microplastics per liter. However, meaningful differences between the sample locations can be seen in the size fraction trends and polymer composition. Namely, the harbor samples had relatively larger amounts of the largest size fraction and more diversity of polymer types, which can be attributed to the urbanized activity and shorter water residence time. Power law size distribution modeling reveals deviations that help in the understanding of potential sources and removal mechanisms, although it significantly underpredicts microplastic counts for smaller-sized particles (5-45 μm), as determined by comparison with concurrently collected microplastic samples enumerated by Nile Red staining and flow cytometry.
Collapse
Affiliation(s)
- Ariyah Thomas
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, 1038 University Dr. , Duluth , Minnesota 55812, United States
| | - Joseph Marchand
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, 1038 University Dr. , Duluth , Minnesota 55812, United States
| | - Guenter D. Schwoerer
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, 1038 University Dr. , Duluth , Minnesota 55812, United States
| | - Elizabeth C. Minor
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, 1038 University Dr. , Duluth , Minnesota 55812, United States
- Large
Lakes Observatory and Department of Chemistry and Biochemistry, University of Minnesota Duluth, 2205 East Fifth St. , Duluth , Minnesota 55812, United States
| | - Melissa A. Maurer-Jones
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, 1038 University Dr. , Duluth , Minnesota 55812, United States
| |
Collapse
|
30
|
Pang J, Chen H, Guo H, Lin K, Huang S, Lin B, Zhang Y. High-sensitive determination of tetracycline antibiotics adsorbed on microplastics in mariculture water using pre-COF/monolith composite-based in-tube solid phase microextraction on-line coupled to HPLC-MS/MS. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133768. [PMID: 38422729 DOI: 10.1016/j.jhazmat.2024.133768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Microplastics (MPs) act as carriers for organic pollutants (e.g. antibiotics) and microorganisms (e.g. bacteria) in waters, leading to the proliferation of antibiotic resistance genes. Moreover, the antibiotics adsorbed on MPs may exacerbate this process. For further research, it is necessary to understand the types and amounts of antibiotics adsorbed on MPs. However, due to the heavy work of MPs collection and sample pretreatment, there is a lack of analytical methods and relevant data. In this study, an in-tube solid phase microextraction (IT-SPME) on-line coupled to HPLC-MS/MS method based on amorphous precursor polymer of three-dimensional covalent organic frameworks/monolith-based composite adsorbent was developed, which could efficiently capture, enrich and analyze tetracycline (TCs) antibiotics. Under the optimal extraction parameters, the developed method was capable of detecting TCs at levels as low as 0.48-1.76 pg. This method was applied to analyze the TCs adsorbed on MPs of different particle sizes in mariculture water for the first time, requiring a minimum amount of MPs of only 1 mg. Furthermore, it was observed that there could be an antagonistic relationship between algal biofilm and TCs loaded on MPs. This approach could open up new possibilities for analyzing pollutants on MPs and support deeper research on MPs.
Collapse
Affiliation(s)
- Jinling Pang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| | - Hongzhe Chen
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| | - Huige Guo
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| | - Kunning Lin
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| | - Shuyuan Huang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| | - Beichen Lin
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China
| | - Yuanbiao Zhang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China.
| |
Collapse
|
31
|
Wang Y, Zhao J, Fu Z, Guan D, Zhang D, Zhang H, Zhang Q, Xie J, Sun Y, Wang D. Innovative overview of the occurrence, aging characteristics, and ecological toxicity of microplastics in environmental media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123623. [PMID: 38387545 DOI: 10.1016/j.envpol.2024.123623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Microplastics (MPs), pollutants detected at high frequency in the environment, can be served as carriers of many kinds of pollutants and have typical characteristics of environmental persistence and bioaccumulation. The potential risks of MPs ecological environment and health have been widely concerned by scholars and engineering practitioners. Previous reviews mostly focused on the pollution characteristics and ecological toxicity of MPs, but there were few reviews on MPs analysis methods, aging mechanisms and removal strategies. To address this issue, this review first summarizes the contamination characteristics of MPs in different environmental media, and then focuses on analyzing the detection methods and analyzing the aging mechanisms of MPs, which include physical aging and chemical aging. Further, the ecotoxicity of MPs to different organisms and the associated enhanced removal strategies are outlined. Finally, some unresolved research questions related to MPs are prospected. This review focuses on the ageing and ecotoxic behaviour of MPs and provides some theoretical references for the potential environmental risks of MPs and their deep control.
Collapse
Affiliation(s)
- Yuxin Wang
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Jianwei Zhao
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China.
| | - Zhou Fu
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Dezheng Guan
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Dalei Zhang
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Hongying Zhang
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Qi Zhang
- Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao, 266000, PR China
| | - Jingliang Xie
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
32
|
Nandi S, Kumar RN, Dhandapani A, Iqbal J. Characterization of microplastics in outdoor and indoor air in Ranchi, Jharkhand, India: First insights from the region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123543. [PMID: 38367691 DOI: 10.1016/j.envpol.2024.123543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
The study focused on detecting and characterizing microplastics in outdoor and indoor air in Ranchi, Jharkhand, India during post-monsoon (2022) and winter (2023). Stereo microscopic analysis showed that plastic fibres had a dominant presence, fragments were less abundant, whereas fewer films could be detected in indoor and outdoor air. The atmospheric deposition of microplastics outdoors observed 465 ± 27 particles/m2/day in PM10 and 12104 ± 665 and 13833 ± 1152 particles/m2/day in PM2.5 in quartz and PTFE, respectively during the post-monsoon months. During winter, microplastic deposition rates in PM10 samples were found to be 689 ± 52 particles/m2/day and 19789 ± 2957 and 30087 ± 13402 in quartz and PTFE particles/m2/day respectively in PM2.5. The mean deposition rate in indoor environment during post-monsoon was 8.3 × 104 and 1.03 × 105 particles/m2/day in winter. During the post-monsoon period in PM10, there were fibres from 7.7 to 40 μm and fragments from 2.3 μm to 8.6 μm. Indoor atmospheric microplastics, fibres ranged from 1.2 to 47 μm and fragments from 0.9 to 16 μm present respectively during the post-monsoon season. Fibres and fragment sizes witnessed during winter were 3.6-6.9 μm and 2.3-34 μm, respectively. Indoor air films measured in the range of 4.1-9.6 μm. Fourier transform infrared analysis showed that outdoor air contained polyethylene, polypropylene, Polystyrene, whereas indoor air had polyvinyl chloride. Polyethylene mainly was present in outdoor air, with lesser polypropylene and polystyrene than indoors, where polyvinyl chloride and polyethylene were in dominant proportions. Elemental mapping of outdoor and indoor air samples showed the presence of elements on the microplastics. The HYSPLIT models suggest that the particles predominantly were coming from North-West during the post-monsoon season. Principal component analysis indicated wind speed and direction influencing the abundance of microplastics. Microplastics concentration showed strong seasonal influence and potential to act as reservoir of contaminants.
Collapse
Affiliation(s)
- Shreya Nandi
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra, Ranchi, 835215, Jharkhand, India.
| | - Radhakrishnan Naresh Kumar
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra, Ranchi, 835215, Jharkhand, India.
| | - Abisheg Dhandapani
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra, Ranchi, 835215, Jharkhand, India.
| | - Jawed Iqbal
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
33
|
Kumara Sashidara P, Merline Sheela A, Selvakumar N. Impact of anthropogenic activities on the abundance of microplastics in copepods sampled from the southeast coast of India. MARINE POLLUTION BULLETIN 2024; 200:116070. [PMID: 38295482 DOI: 10.1016/j.marpolbul.2024.116070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
In recent year, the use of plastics has become inevitable due to its unique properties that allow for the production of durable and non-durable goods. Post use, plastics enter the waste stream and now can be found in all compartments of the biosphere as microplastics (MPs). This study presents the abundance of MPs in surface water and within copepods in the southwestern Bay of Bengal during dry (June 2022) and wet season (November 2022). The MPs in the surface water were found in all three regions [Chennai, Tuticorin and Nagapattinam (four locations in each region)] and maximum in wet season (53 particles/m3). Moreover, during dry season the mean ingestion of MPs by copepods in Chennai (0.103 ± 0.04 particles/individual), Tuticorin (0.11 ± 0.07 particles/individual) and Nagapattinam (0.036 ± 0.01 particles/individual) is high compared to the wet season. The maximum level of MPs found in both surface water and ingestion by copepods in Tuticorin and Chennai is subjective to the high maritime activities than Nagapattinam region. Whatever, the anthropogenic activities in the study region increase the bioavailability of MPs pollutant in the copepods and transported to higher trophic levels, endangering marine life and human health. Hence, further studies are needed to determine their potential impact on marine food chain in this alarming situation.
Collapse
Affiliation(s)
- P Kumara Sashidara
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai-600025, Tamil Nadu, India.
| | - A Merline Sheela
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai-600025, Tamil Nadu, India
| | - N Selvakumar
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai-600025, Tamil Nadu, India
| |
Collapse
|
34
|
Mishra M, Sudarsan D, Santos CAG, da Silva RM, Beja SK, Paul S, Bhanja P, Sethy M. Current patterns and trends of microplastic pollution in the marine environment: A bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22925-22944. [PMID: 38416357 DOI: 10.1007/s11356-024-32511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
Microplastics are pervasive in the natural environment and pose a growing concern for global health. Plastic waste in marine environments has emerged as a global issue, threatening not only marine biota but also human health due to its implications for the food chain. This study aims to discern the patterns and trends of research, specifically on Marine Microplastic Pollution (MMP), based on a bibliometric analysis of scientific publications from 2011 to 2022. The methodology utilized in this study comprises three stages: (a) creating a bibliographical dataset from Scopus by Elsevier and the Web of Science Core Collection by Clarivate Analytics, (b) analyzing current research (trends and patterns) using bibliometric analysis through Biblioshiny tool, and (c) examining themes and subthemes in MMP research (wastewater treatment, plastic ingestion, the Mediterranean Sea, microplastics pollution, microplastics in freshwater, microplastic ingestion, plastic pollution, and microplastic pollution in the marine environment). The findings reveal that during the studied period, the number of MMP publications amounted to 1377 articles, with an average citation per publication of 59.23 and a total citation count of 81,553. The most cited article was published in 2011, and since then, the number of publications on this topic has been increasing steadily. The author count stood at 5478, with 22 trending topics identified from the 1377 published titles. Between 2019 and 2022, the countries contributing most to the publication of MMP articles were China, the United States of America (USA), and the United Kingdom (UK). However, a noticeable shift in the origin of author countries was observed in the 2019-2022 timeframe, transitioning from a dominance by the USA and the UK to a predominance by China. In 2019, there was a substantial increase in the volume of publications addressing the topic of microplastics. The results show that the most prevalent themes and subthemes pertained to MMP in the Mediterranean Sea. The journals with the highest number of MMP articles published were the Marine Pollution Bulletin (253 articles) and Science of the Total Environment (190 articles). The analysis concludes that research on MMP remains prominent and appears to be increasing each year.
Collapse
Affiliation(s)
- Manoranjan Mishra
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089, Odisha, India
| | - Desul Sudarsan
- Department of Library and Information Science, Berhampur University, Berhampur, 760007, Odisha, India
| | - Celso Augusto Guimarães Santos
- Department of Civil and Environmental Engineering, Federal University of Paraíba, João Pessoa, 58051-900, Paraíba, Brazil.
| | | | - Santosh Kumar Beja
- Department of Environmental Science, Berhampur University, Berhampur, 760007, Odisha, India
| | - Suman Paul
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089, Odisha, India
| | - Pragati Bhanja
- Department of Library and Information Science, Berhampur University, Berhampur, 760007, Odisha, India
| | - Murtyunjya Sethy
- Department of Library and Information Science, Berhampur University, Berhampur, 760007, Odisha, India
| |
Collapse
|
35
|
Banik P, Anisuzzaman M, Bhattacharjee S, Marshall DJ, Yu J, Nur AAU, Jolly YN, Mamun MA, Paray BA, Bappy MMM, Bhuiyan T, Hossain MB. Quantification, characterization and risk assessment of microplastics from five major estuaries along the northern Bay of Bengal coast. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123036. [PMID: 38030111 DOI: 10.1016/j.envpol.2023.123036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/04/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Microplastics (MPs) as hazardous contaminants has drawn the rapid attention of the general public due to their omnipresence and adverse impacts on ecosystems and human health. Despite this, understanding of MPs contamination levels in the estuarine ecosystems along the Bay of Bengal coast remains very limited. This research focused on the presence, spatial distribution, morpho-chemical characteristics and ecological implications of MPs in water and sediment from five key estuaries (Meghna, Karnaphuli, Matamuhuri, Bakkhali, and Naf rivers) within the Bengal delta. Out of the five estuaries, the Meghna exhibited the least amount of MPs in both surface water (150.00 ± 65.62 items/m3) and sediment (30.56 ± 9.34 items/kg). In contrast, the highest occurrence of MPs was recorded in Karnaphuli river water (350.00 ± 69.22 items/m3) and Matamuhuri river sediment (118.33 ± 26.81 items/kg). ANOVA indicated a statistically significant distinction (p < 0.01) among the examined estuaries. Most identified MPs were fibers and < 0.5 mm in size in both water and sediment samples. Transparent MPs were dominant in both water (42.28%) and sediment (45.22%). Besides violet, red, blue, pink and green colored MPs were also observed. Various polymer types, including PE, PP, PET, PS, Nylon, EVA, and ABS, were detected, with PE being the dominant one. Based on the polymer risk index (PHI), the estuaries were classified as hazard level V, signifying a severe level of MP contamination. However, the potential ecological hazardous index (PHI), potential ecological risk index (RI), and pollution load index (PLI) indicated moderate pollution levels. This study offers initial insights into the pollution caused by MPs in major estuaries of Bengal delta, which policymakers can utilize to implement suitable management strategies.
Collapse
Affiliation(s)
- Partho Banik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, 3814, Bangladesh
| | - Md Anisuzzaman
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, 3814, Bangladesh
| | - Shovon Bhattacharjee
- Biosecurity Program, Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia; Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - David J Marshall
- Environmental and Life Sciences Programme, Faculty of Science, University Brunei Darussalam, Jala Tungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Jimmy Yu
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - As-Ad Ujjaman Nur
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, 3814, Bangladesh
| | - Yeasmin N Jolly
- Atmospheric and Environmental Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Dhaka, 1000, Bangladesh
| | - Md Al- Mamun
- Materials Science Division, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Dhaka, 1000, Bangladesh
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Md Maheen Mahmud Bappy
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, 3814, Bangladesh
| | - Tabarok Bhuiyan
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, 3814, Bangladesh; School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
36
|
Liu Y, Li J, Parakhonskiy BV, Hoogenboom R, Skirtach A, De Neve S. Labelling of micro- and nanoplastics for environmental studies: state-of-the-art and future challenges. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132785. [PMID: 37856963 DOI: 10.1016/j.jhazmat.2023.132785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Studying microplastics and nanoplastics (MNP) in environmental matrices is extremely challenging, and recent developments in labelling techniques may hold much promise to further our knowledge in this field. Here, we reviewed MNP labelling techniques and applications to provide the first systematic and in-depth insight into MNP labelling. We classified all labelling techniques for MNP into four main types (fluorescent, metal, stable isotope and radioisotope) and discussed per type the synthesis methods, detection methods, influencing factors, and the current and future applications and challenges. Direct labelling of environmental MNP with fluorescent dyes and metals enables simple visualisation and selective detection of MNP to improve detection efficiency. However, it is still an open question how to avoid co-labelling of non-plastic (i.e. non-target, matrix) materials. Labelling of MNP that are intentionally added in the environment may allow semi-automatic detection of MNP particles with high accuracy and sensitivity during studies on e.g. transport and degradation. The detection limit of labelled MNP largely depends on particle size and the type of matrix. Fluorescent labelling allows efficient detection of microplastics, whereas metal labelling is preferred for nanoplastics research due to a potentially higher sensitivity. A major challenge for fluorescent and metal labelling is to develop techniques that do not alter the inherent MNP properties or only do so minimally, in particular the surface properties. Stable and radioactive isotope labelling (13C and 14C, but also 15N, 2H) of the polymer itself allows to preserve inherent MNP properties, but have been largely ignored. Overall, labelling of MNP holds great promise for advancing our fundamental understanding of the behaviour of plastics, notably the smallest fractions, in the environment.
Collapse
Affiliation(s)
- Yin Liu
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Jie Li
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent Belgium
| | - Bogdan V Parakhonskiy
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent Belgium
| | - Andre Skirtach
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent Belgium
| | - Stefaan De Neve
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
37
|
Wang Y, Zhong Z, Chen X, Sokolova I, Ma L, Yang Q, Qiu K, Khan FU, Tu Z, Guo B, Huang W. Microplastic pollution and ecological risk assessment of Yueqing Bay affected by intensive human activities. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132603. [PMID: 37778312 DOI: 10.1016/j.jhazmat.2023.132603] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Microplastics (MPs) are a widespread environmental problem posing ecological risks in the ocean. We investigated the abundance, spatial distribution, characteristics and ecological risks of MPs in surface seawater, sediments and organisms in Yueqing Bay, China. MPs were detected in both environmental media and organisms. The overall abundance (0.24 items/m3 seawater, 6.13 items/kg dry sediment, 0.77 items/individual in organisms) was low to medium compared with other coastal areas. The MPs were mainly derived from the high-intensity mariculture and shipping in the bay, as well as industrial and human activities along the surrounding coast. The abundance of MPs in water of the left (western) bay (0.39 items/m3) was considerably higher than that of the right (north-eastern) bay (0.07 items/m3) due to the different levels of population and economic development on the left and right coasts. The ecological risk assessment showed generally low to medium risk from MPs pollution in Yueqing Bay, with higher ecological risk index (H) and potential ecological hazards (RI) of MPs polymers in water samples. These data emphasize the need for timely and effective action to reduce the contribution of intensive human activities to MPs pollution and provide information for further ecotoxicological studies, pollution control, and policy development of MPs.
Collapse
Affiliation(s)
- Youji Wang
- Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Zhen Zhong
- Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Xi Chen
- Bureau of Hydrology (Information Center) of Huaihe River Commission, Ministry of Water Resources, Bengbu 233001, China
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Lukuo Ma
- Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Qikun Yang
- Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Kecheng Qiu
- Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Baoying Guo
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wei Huang
- Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| |
Collapse
|
38
|
Sheng Y, Cai J, Yang Z, Du H, Bi R, Liu W, Li P. Microplastic size-dependent biochemical and molecular effects in alga Heterosigma akashiwo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115673. [PMID: 37979358 DOI: 10.1016/j.ecoenv.2023.115673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Micro- and nano-plastics (MNPs) are increasingly prevalent contaminants in marine ecosystems and have a variety of negative impacts on marine organisms. While their toxic impact on freshwater microalgae has been well-documented, limited research has been conducted on the influence of MNPs on marine red tide algae, despite their significant implications for human health and coastal ecological stability. This study investigated the physiological, biochemical and molecular reactions of the common harmful algal species, Heterosigma akashiwo, when exposed to polystyrene (PS) MNPs of 80 nm and 1 µm in size with the concentrations of 0, 1, 10, and 20 mg L-1 in 12 days. The results showed that 80 nm-sized MNPs (at concentrations of 10 mg L-1 and 20 mg L-1) inhibited algal growth. Despite the increased superoxide dismutase (SOD) activity and up-regulation of glutathione metabolism, exposure-induced oxidative stress remained the main cause of the inhibition. Up-regulation of aminoacyl-tRNA biosynthesis and amino acid biosynthesis pathways provide the necessary amino acid feedstock for the synthesis of antioxidant enzymes such as SOD. 1 µm sized PS MNPs increased chlorophyll a (Chl-a) content without significant effects on other parameters. In addition, H. akashiwo have an effective self-regulation ability to defend against two sized MNPs stress at concentrations of 1 mg L-1 by upregulating gene expression related to endocytosis, biotin metabolism, and oxidative phosphorylation. These results provided evidence that H. akashiwo was able to resist exposure to 1 µm MPs, whereas 80 nm NPs exerted a toxic effect on H. akashiwo. This study deepens our understanding of the interaction between MNPs and marine harmful algal at the transcriptional level, providing valuable insights for further evaluating the potential impact of PS MNPs on harmful algal blooms in marine ecosystems.
Collapse
Affiliation(s)
- Yangjie Sheng
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Provention, Shantou University, Shantou, Guangdong 515063, China
| | - Jingting Cai
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Provention, Shantou University, Shantou, Guangdong 515063, China
| | - Zhenxiong Yang
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou 510300, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Provention, Shantou University, Shantou, Guangdong 515063, China
| | - Ran Bi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Provention, Shantou University, Shantou, Guangdong 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Provention, Shantou University, Shantou, Guangdong 515063, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Provention, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
39
|
Lu H, Ou Y, Zhao M, Ni Z. Microplastic enrichment capacity of Ctenochaetus striatus from the habitat environment - An example in Xisha, South China Sea. MARINE POLLUTION BULLETIN 2023; 197:115756. [PMID: 37976586 DOI: 10.1016/j.marpolbul.2023.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Microplastic pollution is a widespread concern in the global marine environment. In this study, microplastic pollution status in Xisha waters was investigated. Microplastics were found in all seawater samples, and 90.76 % of C. striatus samples were detected with microplastics. The average abundance of microplastics in seawater samples was 0.64 ± 0.39 items/L, and the abundance of microplastics in the gills and gastrointestinal tracts (GITs)of C. striatus was 1.14 ± 0.41 items/L and 1.80 ± 0.49 items/L, respectively. Shapes of microplastics in the seawater and in the gills and GITs of C. striatus were mainly fibers and films, and the majority of the particle sizes being <1 mm, and the polymers were mainly PET. In addition, the abundance of microplastics in the gills and GITs of C. striatus was positively correlated with that in the seawater, and the correlation was higher in the gills than in the GITs, which means that the accumulation of microplastics in the gills was more closely related to their habitats. The positive correlation between microplastic abundance in the gills and GITs of C. striatus and its body size may be due to the fact that larger individuals have greater energetic demands, require more energy requirements, consume more food, and thus increase the chances of ingesting microplastics.
Collapse
Affiliation(s)
- Huajie Lu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies, MNRs, Shanghai 201306, China; National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai 201306, China.
| | - Yuzhe Ou
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Maolin Zhao
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenyu Ni
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
40
|
De-la-Torre GE, Dioses-Salinas DC, Pizarro-Ortega CI, Forero López AD, Fernández Severini MD, Rimondino GN, Malanca FE, Dobaradaran S, Aragaw TA, Mghili B, Ayala F. Plastic and paint debris in marine protected areas of Peru. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165788. [PMID: 37524177 DOI: 10.1016/j.scitotenv.2023.165788] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Contamination with anthropogenic debris, such as plastic and paint particles, has been widely investigated in the global marine environment. However, there is a lack of information regarding their presence in marine protected areas (MPAs). In the present study, the abundance, distribution, and chemical characteristics of microplastics (MPs; <5 mm), mesoplastics (MePs; 5-25 mm), and paint particles were investigated in multiple environmental compartments of two MPAs from Peru. The characteristics of MPs across surface water, bottom sediments, and fish guts were similar, primarily dominated by blue fibers. On the other hand, MePs and large MPs (1-5 mm) were similar across sandy beaches. Several particles were composite materials consisting of multiple layers confirmed as alkyd resins by Fourier-transformed infrared spectroscopy, which were typical indicators of marine coatings. The microstructure of paint particles showed differentiated topography across layers, as well as different elemental compositions. Some layers displayed amorphous structures with Ba-, Cr-, and Ti-based additives. However, the leaching and impact of potentially toxic additives in paint particles require further investigation. The accumulation of multiple types of plastic and paint debris in MPAs could pose a threat to conservation goals. The current study contributed to the knowledge regarding anthropogenic debris contamination in MPAs and further elucidated the physical and chemical properties of paint particles in marine environments. While paint particles may look similar to MPs and MePs, more attention should be given to these contaminants in places where intense maritime activity takes place.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | | | | | - Ana D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, B8000FWB Buenos Aires, Argentina
| | - Melisa D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, B8000FWB Buenos Aires, Argentina
| | - Guido Noé Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Fabio Ernesto Malanca
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Tadele Assefa Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco
| | - Félix Ayala
- Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
41
|
Zhou M, Yanai H, Yap CK, Emmanouil C, Okamura H. Anthropogenic Microparticles in Sea-Surface Microlayer in Osaka Bay, Japan. J Xenobiot 2023; 13:685-703. [PMID: 37987445 PMCID: PMC10660477 DOI: 10.3390/jox13040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023] Open
Abstract
The abundance, distribution, and composition of microparticles (MPs) in the sea-surface microlayer (S-SML, less than 100 μm of sea surface in this experiment) and in bulk water (1 m under the sea surface) were investigated to evaluate the pollution level of MPs in Osaka Bay in Japan. Both seawater fractions were collected at eight sites including ship navigation routes, the coastal area, and the center of Osaka Bay for 2021-2023. MPs were filtered for four size ranges (10-53, 53-125, 125-500, and >500 μm) and then digested with H2O2. MPs' abundance was microscopically assessed; and polymer types of MPs were identified by a Fourier transform infrared spectrometer (FTIR). For the 22 collections performed along eight sites, the average MPs' abundance was 903 ± 921 items/kg for S-SML, while for the 25 collections performed along the same sites, the average MPs' abundance was 55.9 ± 40.4 items/kg for bulk water, respectively. MPs in both S-SML and bulk water exhibited their highest abundance along the navigation routes. The smallest MPs (10-53 μm) accounted for 81.2% and for 62.2% of all MPs in S-SML and in bulk water among all sites, respectively. Polymethyl methacrylate (PMMA) was the major type of MPs identified while minor ones were polyethylene, polyesters, polystyrene, polypropylene, polyvinyl chloride, polyamide, etc. PMMA comprised 95.1% of total MPs in S-SML and 45.6% of total MPs in bulk water. In addition, PMMA accounted for 96.6% in S-SML and 49.5% in bulk water for the smallest MP category (10-53 μm). It can be assumed that the MP sources were marine paints-primarily APPs (antifouling paint particles)-as well as land coatings. Sea pollution due to microparticles from ship vessels should be given proper attention.
Collapse
Affiliation(s)
- Mi Zhou
- Graduate School of Maritime Sciences, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan; (M.Z.); (H.Y.); (C.K.Y.)
| | - Hirofumi Yanai
- Graduate School of Maritime Sciences, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan; (M.Z.); (H.Y.); (C.K.Y.)
| | - Chee Kong Yap
- Graduate School of Maritime Sciences, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan; (M.Z.); (H.Y.); (C.K.Y.)
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Serdang 43400, Selangor, Malaysia
| | - Christina Emmanouil
- School of Spatial Planning and Development, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Hideo Okamura
- Research Center for Inland Seas, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| |
Collapse
|
42
|
Tasnim J, Ahmed MK, Hossain KB, Islam MS. Spatiotemporal distribution of microplastic debris in the surface beach sediment of the southeastern coast of Bangladesh. Heliyon 2023; 9:e21864. [PMID: 38058634 PMCID: PMC10695837 DOI: 10.1016/j.heliyon.2023.e21864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023] Open
Abstract
This study undertakes a spatiotemporal analysis of microplastic pollution in surface beach sediments, covering 7 coastal beaches in Bangladesh and two seasons-monsoon and winter. The concentration of microplastics extracted from the surface beach sediment is 242.86 particles/kg dw. The results showed both significant seasonal (p value = 0.001) and spatial (p value = 0.004) variation. The abundance and polymer types were significantly higher (57 %) in winter than in the monsoon season (43 %). Touristic and commercial beaches showed higher levels of microplastic pollution than the non-touristic beaches. Polyethylene (28.8 %) and Polypropylene (27.6 %) were the most abundant polymer. The most dominant coloration of microplastics was white (42.6 %). The majority of the microplastics were fibers (33.5 %). Smallest particles measuring <1 mm constituted nearly half of the total microplastics load (48.5 %). This baseline data can be useful in terms of coastal zone management for the southeastern coastal beaches of Bangladesh.
Collapse
Affiliation(s)
- Jarin Tasnim
- Department of Oceanography, Faculty of Earth & Environmental Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Kawser Ahmed
- Department of Oceanography, Faculty of Earth & Environmental Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
- International Centre for Ocean Governance (ICOG), Faculty of Earth & Environmental Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Kazi Belayet Hossain
- Coastal and Ocean Management Institute, Xiamen University, Xiamen, 361102, China
- College of Environment and Ecology, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| |
Collapse
|
43
|
Ji X, Yan S, He Y, He H, Liu H. Distribution Characteristics of Microplastics in Surface Seawater off the Yangtze River Estuary Section and Analysis of Ecological Risk Assessment. TOXICS 2023; 11:889. [PMID: 37999541 PMCID: PMC10674722 DOI: 10.3390/toxics11110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
Microplastics are widespread in the oceans as a new type of pollutant. Due to the special geographical environment characteristics, the Yangtze River estuary region become hotspot for microplastics research. In 2017 and 2019, surface seawater microplastics samples were collected from five stations off the Yangtze River estuary during four seasons (spring, summer, autumn, and winter). The abundance and characteristics of microplastics in seawater were researched. The results showed that microplastics widely existed in surface seawater; the average abundance of microplastics in seawater was (0.17 ± 0.14) items/m3 (0.00561 ± 0.00462) mg/m3; and accounting for 80% of the total plastic debris, the abundance of microplastics was at moderately low levels compared to national and international studies. The particle size of most microplastics was between 1 mm to 2 mm, accounting for 36.1% of the total microplastics. The main shapes of microplastics were fiber, flake, and line, accounting for 39.5%, 28.4%, and 20.8%, respectively. Polypropylene, polyethylene terephthalate, and polyethylene were the main components of microplastics, accounting for 41.0%, 25.1%, and 24.9%, respectively. Yellow, green, black, and transparent were the most common colors, accounting for 21.9%, 19.6%, 16.5%, and 15.7%, respectively. This study shows that the spatial distribution of microplastics in the surface waters off the Yangtze River estuary shows a decreasing trend from nearshore to farshore due to the influence of land-based inputs, hydrodynamics, and human activities; the distribution of microplastics has obvious seasonal changes, and the level of microplastic pollution is higher in summer. The potential ecological risk of microplastics in the surface waters off the Yangtze River estuary is relatively small.
Collapse
Affiliation(s)
- Xiao Ji
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China; (X.J.); (S.Y.); (Y.H.); (H.H.)
- Key Laboratory of Marine Ecological Monitoring and Restoration Technology, Ministry of Natural Resources, Shanghai 201206, China
| | - Shuaishuai Yan
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China; (X.J.); (S.Y.); (Y.H.); (H.H.)
| | - Yanlong He
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China; (X.J.); (S.Y.); (Y.H.); (H.H.)
| | - Haisheng He
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China; (X.J.); (S.Y.); (Y.H.); (H.H.)
| | - Hanqi Liu
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China; (X.J.); (S.Y.); (Y.H.); (H.H.)
- Key Laboratory of Marine Ecological Monitoring and Restoration Technology, Ministry of Natural Resources, Shanghai 201206, China
| |
Collapse
|
44
|
Cordova MR, Ulumuddin YI, Lubis AA, Kaisupy MT, Wibowo SPA, Subandi R, Yogaswara D, Purbonegoro T, Renyaan J, Nurdiansah D, Sugiharto U, Shintianata D, Meiliastri SS, Andini FP, Suratno, Ilman M, Anggoro AW, Basir, Cragg SM. Microplastics leaving a trace in mangrove sediments ever since they were first manufactured: A study from Indonesia mangroves. MARINE POLLUTION BULLETIN 2023; 195:115517. [PMID: 37690405 DOI: 10.1016/j.marpolbul.2023.115517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Mangrove environments have been well recognized as marine litter traps. However, it is unclear whether mangrove sediments sink microplastics more effectively than other marine sediments due to active sedimentation. Furthermore, microplastics archives in mangrove sediments may provide quantitative data on the impact of human activities on environmental pollution throughout history. Microplastic abundance varied markedly between high and low anthropogenic activities. Both mangrove and adjacent mudflats sediments act as microplastic sequesters, despite having similar microplastic abundances and depth profiles. The decreasing trend of microplastics was observed until the sediment layers dated to the first-time plastic was manufactured in Indonesia, in the early 1950s, but microplastics remained present beneath those layers, indicating the downward movements. This discovery highlighted the significance of mangrove sediments as microplastic sinks. More research is needed to understand the mechanisms of microplastic deposition in sediments, as well as their fate and potential impact on mangrove sediment dwellers.
Collapse
Affiliation(s)
- Muhammad Reza Cordova
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia.
| | - Yaya Ihya Ulumuddin
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia
| | - Ali Arman Lubis
- Research Center for Radiation Process Technology, The Indonesian National Research and Innovation Agency, Jl. Lebak Bulus Raya No.49, Jakarta 12630, Indonesia
| | - Muhammad Taufik Kaisupy
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia
| | - Singgih Prasetyo Adi Wibowo
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia
| | - Riyana Subandi
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia
| | - Deny Yogaswara
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia
| | - Triyoni Purbonegoro
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia
| | - Jeverson Renyaan
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia
| | - Doni Nurdiansah
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, BRIN Kawasan Ancol Jl Pasir Putih 1, Jakarta 14430, Indonesia
| | - Untung Sugiharto
- Research Center for Radiation Process Technology, The Indonesian National Research and Innovation Agency, Jl. Lebak Bulus Raya No.49, Jakarta 12630, Indonesia
| | - Dienda Shintianata
- Research Center for Radiation Process Technology, The Indonesian National Research and Innovation Agency, Jl. Lebak Bulus Raya No.49, Jakarta 12630, Indonesia
| | - Sonia Saraswati Meiliastri
- Research Center for Radiation Process Technology, The Indonesian National Research and Innovation Agency, Jl. Lebak Bulus Raya No.49, Jakarta 12630, Indonesia
| | - Faza Putri Andini
- Research Center for Radiation Process Technology, The Indonesian National Research and Innovation Agency, Jl. Lebak Bulus Raya No.49, Jakarta 12630, Indonesia
| | - Suratno
- Research Center for Food Technology and Processing, The Indonesian National Research and Innovation Agency, Gading IV Playen Gunung Kidul, Yogyakarta 55861, Indonesia
| | - Muhammad Ilman
- Yayasan Konservasi Alam Nusantara, Jl. Iskandarsyah Raya No.66C, Jakarta 12160, Indonesia
| | - Aji Wahyu Anggoro
- Yayasan Konservasi Alam Nusantara, Jl. Iskandarsyah Raya No.66C, Jakarta 12160, Indonesia
| | - Basir
- Yayasan Konservasi Alam Nusantara, Jl. Iskandarsyah Raya No.66C, Jakarta 12160, Indonesia
| | - Simon M Cragg
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, United Kingdom; Centre for Blue Governance, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
45
|
Qi H, Liu M, Ye J, Wang J, Cui Y, Zhou Y, Chen P, Ke H, Wang C, Cai M. Microplastics in the Taiwan Strait and adjacent sea: Spatial variations and lateral transport. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106182. [PMID: 37729853 DOI: 10.1016/j.marenvres.2023.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
This study investigates the distribution, structural properties, and potential impacts of oceanic processes on microplastics (MPs) in the Taiwan Strait (TWS) and surrounding seas. With an average of 174 particles/m3, the MP abundance in surface seawater ranged from 84 to 389 particles/m3. MP abundance ranged from 16 to 382 particles/kg in sediments, with a median of 121 particles/kg. Fragment and fiber were the two most frequently detected shapes. These MPs were found to be composed primarily of carbon and oxygen elements at 70-90% levels using energy-dispersive X-ray spectroscopy. Additionally, several examples had trace levels of metallic components. Black was the color that MPs saw the most often out of all the hues. The two main types of polymers are polyester and rayon, and their production is influenced by home sewage discharge and synthetic fiber production. The main routes of MP transport were land source input, riverine input, and oceanic currents. This study showed that salinity affects the distribution of MPs, with high-salinity seawater serving to saturate their presence. On the other hand, upwelling raises MP concentrations by bringing nutrients from the deep to the surface. Furthermore, it has been discovered that the dilution of the Pearl River plume increases the MP prevalence in the region. The South China Sea Warm Current had the highest lateral MPs transport flux (2.1 × 1014 particles/y), which was followed by the Taiwan Strait Current area (1.0 × 1014 particles/y) and the Guangdong coastal areas (8.6 × 1013 particles/y). In sediments, the MP prevalence was inversely correlated with particle size. Flocculation processes probably made it easier for MPs to travel down the water column and deposit themselves on the aquatic substrate. Although the relationship between MPs, total organic carbon, and total organic nitrogen was not correlated, a favorable trend showed that MPs may discreetly contribute to carbon storage in coastal sediment.
Collapse
Affiliation(s)
- Huaiyuan Qi
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Mengyang Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, China
| | - Jiandong Ye
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Junge Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yaozong Cui
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yang Zhou
- College of Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Piao Chen
- Coastal and Ocean Management Institute, Xiamen University, Xiamen, 361102, China; College of Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Hongwei Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Chunhui Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Minggang Cai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Department of Biological Technology, Xiamen Ocean Vocational College, Xiamen, 361102, China; Coastal and Ocean Management Institute, Xiamen University, Xiamen, 361102, China; College of Environment and Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
46
|
Cordova MR, Bernier N, Yogaswara D, Subandi R, Wibowo SPA, Kaisupy MT, Haulussy J. Land-derived litter load to the Indian Ocean: a case study in the Cimandiri River, southern West Java, Indonesia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1251. [PMID: 37768383 DOI: 10.1007/s10661-023-11831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
The first study related to the characteristics of the riverine litter was carried out at the mouth of the Cimandiri River in the southern West Java to provide a national database, as mandated in the Indonesian Presidential Regulation 83/2018 concerning the handling of marine debris. We examined floating riverine litter entering the South Java Sea at Cimandiri River outlets four times between December 2020 and October 2021 using a Thomsea 1 T trawl-net. The amount of litter collected tended to rise throughout the sampling period. Daily floating riverine litter released into the South Java Sea was estimated to be 285,931 ± 133.70 items or 307 ± 192.69 kg. Our monitoring data revealed no sampling period differences in litter release into the South Java Sea with no correlation with rainfall. Our data indicate that plastics are the most single abundant type of floating riverine litter entering the South Java Sea from the Cimandiri River, accounting for 99.92% of abundance (285,701 ± 133,464.75 items per day) or 97.78% in terms of weight (300 ± 181.99 kg per day) of the total litter collected. As the Cimandiri River is one of the major rivers with an outlet in the south of Java, this land-derived litter information could be an archetype for riverine ecosystems in the nation and region.
Collapse
Affiliation(s)
- Muhammad Reza Cordova
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, Jakarta, Indonesia.
| | | | - Deny Yogaswara
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, Jakarta, Indonesia
| | - Riyana Subandi
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, Jakarta, Indonesia
| | - Singgih Prasetyo Adi Wibowo
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, Jakarta, Indonesia
| | - Muhammad Taufik Kaisupy
- Research Center for Oceanography, The Indonesian National Research and Innovation Agency, Jakarta, Indonesia
| | | |
Collapse
|
47
|
Yusof KMKK, Anuar ST, Mohamad Y, Jaafar M, Mohamad N, Bachok Z, Mohamad N, Ibrahim YS. First evidence of microplastic pollution in the surface water of Malaysian Marine Park islands, South China Sea during COVID-19. MARINE POLLUTION BULLETIN 2023; 194:115268. [PMID: 37451046 DOI: 10.1016/j.marpolbul.2023.115268] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Malaysia is bounded by the South China Sea with many islands that support species megadiversity and coral reef ecosystems. This study investigates the distribution of microplastics (MPs) in the surface water around the four marine park islands (Perhentian, Redang, Kapas, and Tenggol) during COVID-19. The global pandemic has reset human activities, impacting the environment while possibly reducing anthropogenic contributions of microplastic pollution near the South China Sea islands. It was found that Pulau Perhentian recorded the most abundance of MPs (588.33 ± 111.77 items/L), followed by Pulau Redang (314.67 ± 58.08 items/L), Pulau Kapas (359.8 ± 87.70 items/L) and Pulau Tenggol (294.33 ± 101.64 items/L). Kruskal-Wallis analysis indicates a significant difference in total MPs abundance between islands. There are moderate correlations between salinity, pH, temperature and MPs variability. Among these parameters, only temperature is significant (p < 0.05) as proven by the principal component analysis and multiple linear regression analysis. Nearly 99 % of MPs are fiber type, with the majority of them being black and transparent. Micro-FTIR spectroscopy revealed polyethylene, polypropylene, polyvinyl methyl ether, polyamide, phenoxy-resins and polyurethane-acrylic are associated with MPs. The findings provide a new baseline reference for the MPs distribution on Malaysian islands, which contributes to a potential future direction regarding marine sustainability.
Collapse
Affiliation(s)
- Ku Mohd Kalkausar Ku Yusof
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Sabiqah Tuan Anuar
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Yuzwan Mohamad
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Maisarah Jaafar
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Noorlin Mohamad
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Zainudin Bachok
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Najihah Mohamad
- Fisheries Research Institute, 11960, Batu Maung, Penang, Malaysia.
| | - Yusof Shuaib Ibrahim
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
48
|
Matluba M, Ahmed MK, Chowdhury KMA, Khan N, Ashiq MAR, Islam MS. The pervasiveness of microplastic contamination in the gastrointestinal tract of fish from the western coast of Bangladesh. MARINE POLLUTION BULLETIN 2023; 193:115145. [PMID: 37331273 DOI: 10.1016/j.marpolbul.2023.115145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
This study investigated the prevalence of microplastics (MPs) in the gastrointestinal tract (GIT) of fish from the western coast of Bangladesh, the world's largest mangrove ecosystem. Altogether, 8 different species of fish (5 demersal and 3 pelagic) were examined. Microplastics were detected in every individual fish with an average abundance of 7.1 ± 3.14 particles per specimen. The demersal species were observed to consume more microplastics (7.78 ± 3.51) than the pelagic species (5.92 ± 2.06). Moreover, small-sized fish was found to accumulate higher MPs/body weight than large-sized fish. Polypropylene was the most abundant polymer type (45 %) and fiber was the most prevalent shape (71 %). SEM analysis revealed cracks, pits, and foreign particles on the microplastics' surface, representing their ability to bear organic pollutants and heavy metals. This study will be a source of information for future research and a guide for policy-makers to take better actions to protect and restore marine resources.
Collapse
Affiliation(s)
- Marhaba Matluba
- Department of Oceanography, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Kawser Ahmed
- Department of Oceanography, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Nasim Khan
- Department of Oceanography, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh.
| |
Collapse
|
49
|
Ding T, Huang X, Wei L, Li J. Size-dependent effect of microplastics on toxicity and fate of diclofenac in two algae. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131071. [PMID: 36889078 DOI: 10.1016/j.jhazmat.2023.131071] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are frequently detected in natural waters and usually acted as vectors for other pollutants, leading to possible threats to aquatic organisms. This study investigated the impact of polystyrene MPs (PS MPs) with different diameters on two algae Phaeodactylum tricornutum and Euglena sp., and the combined toxicity of PS MPs and diclofenac (DCF) in two algae was also studied. Significant inhibition of P. tricornutum was observed after 1 d exposure of 0.03 µm MPs at 1 mg L-1, whereas the decreased growth rate of Euglena sp. was recovered after 2 d exposure. However, their toxicity decreased in the presence of MPs with larger diameters. The oxidative stress contributed a major for the size-dependent toxicity of PS MPs in P. tricornutum, while in Euglena sp. the toxicity was mainly caused by a combination of oxidative damage and hetero-aggregation. Also, PS MPs alleviated the toxicity of DCF in P. tricornutum and the DCF toxicity continually decreased as their diameter increased, whereas the DCF at environmentally concentration could weaken the toxicity of MPs in Euglena sp. Moreover, the Euglena sp. revealed a higher removal for DCF, especially in the presence of MPs, but the higher accumulation and bioaccumulation factors (BCFs) indicated a possible ecological risk in natural waters. The present study explored discrepancy on the size-dependent toxicity and removal of MPs associated with DCF in two algae, providing valuable data for risk assessment and pollution control of MPs associated with DCF.
Collapse
Affiliation(s)
- Tengda Ding
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Xiaotong Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Liyan Wei
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Juying Li
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China.
| |
Collapse
|
50
|
Chen Y, Duan M, Xu X, Wu C. Multi-biomarkers hazard assessment of microplastics with different polymers by acute embryo test and chronic larvae test with zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106595. [PMID: 37269673 DOI: 10.1016/j.aquatox.2023.106595] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Microplastics as emerging contaminants show various composition features in the environment. However, influence of polymer types on the toxicity of microplastics is still unclear, thus affecting evaluation of their toxicity and ecological risks. In this work, toxic effects of microplastics (fragment, 52-74 μm) with different polymer types including polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP) and polystyrene (PS) to zebrafish (Danio rerio) were studied using acute embryo test and chronic larvae test. Silicon dioxide (SiO2) was used as a control representing natural particles. Results showed microplastics with different polymers had no influence on embryonic development at environmental relevant concentration (102 particles/L), but could lead to accelerated heartbeat rate and increased embryonic death when exposed to SiO2, PE and PS at higher concentrations (104 and 106 particles/L). Chronic exposure for zebrafish larvae indicated different polymers of microplastics did not affect zebrafish larvae' feeding and growth, nor induce oxidative stress. But larvae' locomotion level and AChE (acetylcholinesterase) activities could be inhibited by SiO2 and microplastics at 104 particles/L. Our study demonstrated negligible toxicity of microplastics at environmental relevant concentration, while different polymers of microplastics have similar toxic effects as SiO2 at high concentrations. We suggest that microplastic particles may have the same biological toxicity as natural particles.
Collapse
Affiliation(s)
- Yuling Chen
- Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ming Duan
- Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Chenxi Wu
- Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|