1
|
Yamamoto FY, Batista LA, Santos MP, Bedia C, Lacorte S, Cavalcante RM, Grassi MT, de Souza Abessa DM, Tauler R. Elucidating mechanisms of action of environmental contaminants from Doce River in Brazilian fish embryos using metabolomics and chemometric methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179158. [PMID: 40147241 DOI: 10.1016/j.scitotenv.2025.179158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/06/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Mining and other essential economic activities have a long historical contamination impact on diverse aquatic environments, such as the Doce River Basin (DRB), in Southeast Brazil. High concentrations of metals combined with organic chemicals released from multiple sources of contaminants may trigger complex toxicity pathways that are complicated to interpret and distinguish. This study aimed to investigate mechanisms of toxicity of environmental chemicals from DRB using a comprehensive untargeted LC-HRMS metabolomics approach (data-independent acquisition of all ion-fragmentation mode), in fish embryos (Rhamdia quelen) exposed to complex chemical mixtures. The Regions of Interest (ROI) Multivariate Curve Resolution (MCR) approach was applied to compress and resolve data-independent acquisition (DIA) LC-MS/MS complex datasets mode. Fish embryos exposed for 96 h to 6 treatment sample groups showed a distinct pattern of responses when compared to controls, with downregulated essential metabolites, such as amino acids, as a main response, especially for metal exposure. Organic contaminants extracted from sediments combined with inorganic elements have shown non-additive effects, with inorganics possibly exerting greater influence on metabolic responses. The results helped to investigate and distinguish the effects of different complex mixtures of environmental chemicals on fish embryo samples. ROIMCR approach is shown to be a suitable strategy for the analysis of large metabolomics-derived data in the investigation of the effects of different classes of environmental chemicals on aquatic biota and ecosystems.
Collapse
Affiliation(s)
- Flávia Y Yamamoto
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain; Institute of Biosciences, São Paulo State University, São Vicente, Brazil; Marine Science Institute, Federal University of Ceará, Fortaleza, Brazil.
| | - Larissa A Batista
- Department of Zoology, Federal University of Paraná, Curitiba, Brazil
| | - Mayara P Santos
- Chemistry Department, Federal University of Paraná, Curitiba, Brazil
| | - Carmen Bedia
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | | | - Marco T Grassi
- Chemistry Department, Federal University of Paraná, Curitiba, Brazil
| | | | - Romà Tauler
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| |
Collapse
|
2
|
Martins Fernandes Pereira K, de Carvalho AC, Ventura Fernandes BH, Dos Santos Grecco S, Rodrigues E, da Silva Fernandes MJ, de Carvalho LRS, Nakamura MU, Guo S, Hernández RB. Systems toxicology studies reveal important insights about chronic exposure of zebrafish to Kalanchoe pinnata (Lam.) Pers leaf - KPL: Implications for medicinal use. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119044. [PMID: 39532221 DOI: 10.1016/j.jep.2024.119044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of depression and anxiety is high during pregnancy. Several traditional medicines use the plant Kalanchoe pinnata (Lam.) Pers. (KP) to treat emotional disorders, inflammation, and to prevent preterm delivery, but the effects on the exposed offspring and the mechanism behind these events remain unknown. AIM OF THE STUDY In this work, integrated systems toxicology (INSYSTA) was used to investigate traditional toxicological outcomes and behavioral performance in zebrafish larvae after chronic exposure (from 2 to 96 hpf) to K. pinnata leaf extracts (KPL). MATERIALS AND METHODS We investigated light/dark preference, thigmotaxis and locomotor activity parameters, followed by gene expression and systems biology approaches to discover the mechanisms behind toxicological endpoint and phenomics. RESULTS The embryos exposed to 700 mg/L KPL showed retarded development including hatching delay. Larvae exposed to 500 mg/L KPL resulted in decreased dark avoidance and increased locomotor activity, while 700 mg/L showed opposite effects. The INSYSTA revealed sixteen genes down-regulated after KPL chronic treatment; they are involved in folding, sorting, and degradation of proteins as well as DNA replication and repair mechanisms. This may result in deregulation of the organismal functions, including those of immune and endocrine systems. These physiological changes appear to make embryos more sensitive to infections and disorders that resemble 47 human diseases. CONCLUSION These findings suggest that the medicinal use of plant extracts requires strict toxicological, pharmacological, and medical supervision. At the same time, it suggests a polypharmacological pathway for KPL extract that goes beyond preventing premature delivery and controlling anxiety.
Collapse
Affiliation(s)
- Kássia Martins Fernandes Pereira
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04021-001, São Paulo, SP, Brazil.
| | | | - Bianca H Ventura Fernandes
- Technical Directorate of Support for Teaching, Research and Innovation at the Faculty of Medicine of the University of São Paulo, São Paulo, SP, Brazil.
| | - Simone Dos Santos Grecco
- Department of Chemistry, Universidade Federal de São Paulo, 09972-270, Diadema, SP, Brazil; Triplet Biotechnology Solutions, São Paulo, Brazil.
| | - Eliana Rodrigues
- Center for Ethnobotanical and Ethnopharmacological Studies, Department of Environmental Sciences, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Maria José da Silva Fernandes
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04021-001, São Paulo, SP, Brazil.
| | - Luciani Renata Silveira de Carvalho
- Technical Directorate of Support for Teaching, Research and Innovation at the Faculty of Medicine of the University of São Paulo, São Paulo, SP, Brazil; Discipline of Endocrinology, Laboratory of Hormones and Molecular Genetics-LIM42, Hospital das Clínicas of the University of São Paulo, São Paulo, SP, Brazil.
| | - Mary Uchiyama Nakamura
- Department of Obstetrics, Universidade Federal de São Paulo, São Paulo, SP, 04021-001, Brazil.
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Biological Sciences and Human Genetics, University of California, San Francisco, CA, 94158-2811, USA.
| | - Raúl Bonne Hernández
- Laboratory of Bioinorganic and Environmental Toxicology - LABITA, Department of Exact and Earth Sciences, Universidade Federal de São Paulo, 09972-270, Diadema, SP, Brazil.
| |
Collapse
|
3
|
Beale DJ, Limpus D, Sinclair G, Bose U, Bourne N, Stockwell S, Lettoof DC, Shah R, Nguyen TV, Gonzalez-Astudillo V, Braun C, Myburgh A, Baddiley B, Shimada T, Limpus C, Vardy S. Forever chemicals don't make hero mutant ninja turtles: Elevated PFAS levels linked to unusual scute development in newly emerged freshwater turtle hatchlings (Emydura macquarii macquarii) and a reduction in turtle populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024:176313. [PMID: 39537477 DOI: 10.1016/j.scitotenv.2024.176313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 11/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants known to pose significant risks to human and wildlife health. Freshwater turtles (Emydura macquarii macquarii), as long-lived species inhabiting aquatic ecosystems, are particularly vulnerable to PFAS bioaccumulation. This study investigated the multifaceted impact of PFAS contamination on these turtles, focusing on metabolic disruptions, reproductive success, hatchling health, and population impacts. Comprehensive analyses, including proteomics, lipidomics, metabolomics, and histopathology, were conducted on turtles from PFAS-impacted, control, and reference sites. The findings reveal significant metabolic disruptions in PFAS-exposed turtles, with alterations in amino acid and lipid metabolism, energy production, and oxidative stress responses. Proteomic analysis identified several health biomarkers indicative of early disease progression. Despite high levels of PFAS in tissues and organs, no gross or histopathological phenotypical abnormalities were directly linked to PFAS exposure. Gravid females from contaminated sites exhibited altered egg composition, particularly in magnesium to calcium ratios, potentially affecting eggshell strength. Biochemical profiles of egg albumin and yolk indicated significant differences in metabolites and lipids between contaminated and reference sites, suggesting potential impacts on embryo development. Hatchling deformities were notably higher and with increased frequency in terms of the types of deformities at the PFAS-impacted sites, with common defects including abnormal intergular scale shapes and marginal scale counts. Furthermore, the demographic profile of the turtle population showed a lack of juvenile turtles at contaminated sites, indicating reduced recruitment and potential long-term population declines. This indicates a field-based demonstration of an Adverse Outcome Pathway, from elevated levels of PFAS in the turtles, to biochemical perturbations within the animals, and finally population effects. These findings underscore the urgent need for regulatory measures to address PFAS contamination and its detrimental effects on wildlife.
Collapse
Affiliation(s)
- David J Beale
- Environment Research Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, Qld 4102, Australia.
| | - Duncan Limpus
- Aquatic Threatened Species, Wildlife and Threatened Species Operations, Department of Environment, Science, and Innovation, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Georgia Sinclair
- Environment Research Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, Qld 4102, Australia
| | - Utpal Bose
- Agriculture and Food Research Unit, CSIRO, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - Nicholas Bourne
- Agriculture and Food Research Unit, CSIRO, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - Sally Stockwell
- Agriculture and Food Research Unit, CSIRO, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - Damian C Lettoof
- Environment Research Unit, CSIRO, Centre for Environment and Life Sciences, Floreat, WA 6014, Australia
| | - Rohan Shah
- Environment Research Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, Qld 4102, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn Vic 3122, Australia
| | - Thao V Nguyen
- Environment Research Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, Qld 4102, Australia
| | | | - Christoph Braun
- Water Quality and Investigations, Science and Technology Division, Department of Environment, Science and Innovation, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Albert Myburgh
- Water Quality and Investigations, Science and Technology Division, Department of Environment, Science and Innovation, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Brenda Baddiley
- Water Quality and Investigations, Science and Technology Division, Department of Environment, Science and Innovation, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Taka Shimada
- Aquatic Threatened Species, Wildlife and Threatened Species Operations, Department of Environment, Science, and Innovation, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Colin Limpus
- Aquatic Threatened Species, Wildlife and Threatened Species Operations, Department of Environment, Science, and Innovation, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Suzanne Vardy
- Water Quality and Investigations, Science and Technology Division, Department of Environment, Science and Innovation, Queensland Government, Dutton Park, Qld 4102, Australia
| |
Collapse
|
4
|
Xue M, Jia M, Qin Y, Li J, Yao T, Francis F, Gu X. Determination of Bisphenol Compounds and the Bioaccumulation after Co-Exposure with Polyethylene Microplastics in Zebrafish. TOXICS 2024; 12:702. [PMID: 39453122 PMCID: PMC11511028 DOI: 10.3390/toxics12100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Knowledge regarding the combined toxicity mechanism of bisphenol compounds and microplastics (MPs) on organisms remains limited. In this study, we first developed an accurate and sensitive method to simultaneously quantify two bisphenol compounds and evaluate their accumulation and tissue distribution after co-exposure with MPs in zebrafish. Then, we determined the bioaccumulation potential of bisphenol A (BPA) and bisphenol S (BPS) in adult zebrafish in the absence and presence of MPs. Bisphenol compounds were found to accumulate in different tissues of zebrafish, with BPS showing lower accumulation levels compared to BPA. Importantly, we discovered that the presence of MPs could exacerbate the accumulation of bisphenol compounds in biological tissues. These findings highlight the enhanced bioavailability and risk posed by the co-exposure of bisphenol compounds and MPs, underscoring the need for further investigation into their combined environmental and biological health impacts.
Collapse
Affiliation(s)
- Moyong Xue
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (M.X.)
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium;
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Ming Jia
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (M.X.)
| | - Yuchang Qin
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Jing Li
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (M.X.)
| | - Ting Yao
- Beijing Institute of Food Control, Beijing 110108, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium;
| | - Xu Gu
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (M.X.)
| |
Collapse
|
5
|
Morash MG, Kirzinger MW, Achenbach JC, Venkatachalam AB, Nixon J, Penny S, Cooper JP, Ratzlaff DE, Woodland CLA, Ellis LD. Comparative toxicological assessment of 2 bisphenols using a systems approach: evaluation of the behavioral and transcriptomic responses of Danio rerio to bisphenol A and tetrabromobisphenol A. Toxicol Sci 2024; 200:394-403. [PMID: 38730555 DOI: 10.1093/toxsci/kfae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
The zebrafish (Danio rerio) is becoming a critical component of new approach methods (NAMs) in chemical risk assessment. As a whole organism in vitro NAM, the zebrafish model offers significant advantages over individual cell-line testing, including toxicokinetic and toxicodynamic competencies. A transcriptomic approach not only allows for insight into mechanism of action for both apical endpoints and unobservable adverse outcomes, but also changes in gene expression induced by lower, environmentally relevant concentrations. In this study, we used a larval zebrafish model to assess the behavioral and transcriptomic alterations caused by subphenotypic concentrations of 2 chemicals with the same structural backbone, the endocrine-disrupting chemicals bisphenol A and tetrabromobisphenol A. Following assessment of behavioral toxicity, we used a transcriptomic approach to identify molecular pathways associated with previously described phenotypes. We also determined the transcriptomic point of departure for each chemical by modeling gene expression changes as continuous systems which allows for the identification of a single concentration at which toxic effects can be predicted. This can then be investigated with confirmatory cell-based testing in an integrated approach to testing and assessment to determine risk to human health and the environment with greater confidence. This paper demonstrates the impact of using a multi-faceted approach for evaluating the physiological and neurotoxic effects of exposure to structurally related chemicals. By comparing phenotypic effects with transcriptomic outcomes, we were able to differentiate, characterize, and rank the toxicities of related bisphenols, which demonstrates methodological advantages unique to the larval zebrafish NAM.
Collapse
Affiliation(s)
- Michael G Morash
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | - Morgan W Kirzinger
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada
| | - John C Achenbach
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | - Ananda B Venkatachalam
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | - Jessica Nixon
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | - Susanne Penny
- Human Health and Therapeutics, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | | | - Deborah E Ratzlaff
- New Substances Assessment and Control Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Cindy L A Woodland
- New Substances Assessment and Control Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Lee D Ellis
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
6
|
Dunn F, Paquette SE, Pennell KD, Plavicki JS, Manz KE. Metabolomic changes following GenX and PFBS exposure in developing zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106908. [PMID: 38608566 PMCID: PMC11209921 DOI: 10.1016/j.aquatox.2024.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Short chain per- and polyfluoroalkyl substances (PFAS), including hexafluoropropylene oxide dimer acid (GenX) and perfluorobutane sulfonate (PFBS), are replacement chemicals for environmentally persistent, long-chain PFAS. Although GenX and PFBS have been detected in surface and ground water worldwide, few studies provide information on the metabolic alterations or risks associated with their exposures. In this study, larval zebrafish were used to investigate the toxicity of early-life exposure to GenX or PFBS. Zebrafish were chronically exposed from 4 h post-fertilization (hpf) to 6 days post-fertilization (dpf) to 150 µM GenX or 95.0 µM PFBS. Ultra-high-performance liquid chromatography paired with high-resolution mass spectrometry was used to quantify uptake of GenX and PFBS into zebrafish larvae and perform targeted and untargeted metabolomics. Our results indicate that PFBS was 20.4 % more readily absorbed into the zebrafish larvae compared to GenX. Additionally, PFBS exposure significantly altered 13 targeted metabolites and 21 metabolic pathways, while GenX exposure significantly altered 1 targeted metabolite and 17 metabolic pathways. Exposure to GenX, and to an even greater extent PFBS, resulted in a number of altered metabolic pathways in the amino acid metabolism, with other significant alterations in the carbohydrate, lipid, cofactors and vitamins, nucleotide, and xenobiotics metabolisms. Our results indicate that GenX and PFBS impact the zebrafish metabolome, with implications of global metabolic dysregulation, particularly in metabolic pathways relating to growth and development.
Collapse
Affiliation(s)
- Fiona Dunn
- School of Engineering, Brown University, 184 Hope Street, Providence, RI, 02912, United States
| | - Shannon E Paquette
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, 184 Hope Street, Providence, RI, 02912, United States
| | - Jessica S Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, United States.
| | - Katherine E Manz
- School of Engineering, Brown University, 184 Hope Street, Providence, RI, 02912, United States; Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
7
|
Miranda RA, Lima DGV, de Souza LL, Souza da Silva B, Bertasso IM, Meyer LG, Rossetti CL, Junior RR, Miranda-Alves L, de Moura EG, Lisboa PC. Maternal exposure to tributyltin alters the breast milk, hormonal profile, and thyroid morphology of dams and induces sex-specific changes in neonate rat offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123963. [PMID: 38621455 DOI: 10.1016/j.envpol.2024.123963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Tributyltin (TBT) is the chemical substance commonly used worldwide to prevent biofouling of vessels. Due to its ability to bioaccumulate and biomagnify, even after being banned, significant concentrations of TBT can be detected in sediment, affecting marine and human life. Although studies have shown that direct exposure to TBT alters physiological parameters in mammals, the relationship between exposure to TBT during pregnancy and lactation, considered critical windows for metabolic programming, has not been fully elucidated. Our hypothesis is that offspring whose mothers were exposed to TBT during critical stages of development may exhibit dysfunctions in endocrine-metabolic parameters. We used pregnant Wistar rats that were divided into groups and received the following treatments from gestational day 7 until the end of lactation by intragastric gavage: vehicle (ethanol 0.01%; Control), low TBT dose (100 ng/kg of body weight (bw)/day; TBT100ng) and high TBT dose (1000 ng/kg bw/day; TBT1000ng). Dams and offspring at birth and weaning (21 days old) were studied. Maternal exposure to TBT promoted dose-dependent changes in dams. The findings for adiposity, milk composition and lipid profile were more pronounced in TBT100 ng dam; however, thyroid morphology was altered in TBT1000 ng dam. Female offspring were differentially affected by the dose of exposure. At birth, females in the TBT100ng group had low body weight, lower naso-anal length (NAL), and higher plasma T4, and at weaning, females in the TBT100ng group had lower insulin and leptin levels. Females in the TBT1000ng group had lower NAL at birth and lower leptinemia and weight of white adipose tissue at weaning. Male offspring from TBT groups showed high T3 at birth, without biometric alterations at birth or weaning. Despite these findings, both sexes exhibited dose-dependent morphological changes in the thyroid gland. Thus, maternal exposure to TBT constitutes an important route of contamination for both dams and offspring.
Collapse
Affiliation(s)
- Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Daniel Galinis Vieira Lima
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Luana Lopes de Souza
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Beatriz Souza da Silva
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Lilian Guedes Meyer
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Camila Lüdke Rossetti
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Reinaldo Röpke Junior
- Laboratory of Experimental Endocrinology, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, RJ, Brazil; Post graduate Program in Endocrinology, Faculty of Medicine, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, RJ, Brazil; Post graduate Program in Endocrinology, Faculty of Medicine, Universidade Federal do Rio de Janeiro, RJ, Brazil; Post graduate Program of Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, RJ, Brazil; Post graduate Program of Morphological Sciences, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Patricia Cristina Lisboa
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Sanz C, Sunyer-Caldú A, Casado M, Mansilla S, Martinez-Landa L, Valhondo C, Gil-Solsona R, Gago-Ferrero P, Portugal J, Diaz-Cruz MS, Carrera J, Piña B, Navarro-Martín L. Efficient removal of toxicity associated to wastewater treatment plant effluents by enhanced Soil Aquifer Treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133377. [PMID: 38237439 DOI: 10.1016/j.jhazmat.2023.133377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024]
Abstract
The regeneration of wastewater has been recognized as an effective strategy to counter water scarcity. Nonetheless, Wastewater Treatment Plant (WWTP) effluents still contain a wide range of contaminants of emerging concern (CECs) even after water depuration. Filtration through Soil Aquifer Treatment (SAT) systems has proven efficient for CECs removal although the attenuation of their associated biological effects still remains poorly understood. To evaluate this, three pilot SAT systems were monitored, two of them enhanced with different reactive barriers. SATs were fed with secondary effluents during two consecutive campaigns. Fifteen water samples were collected from the WWTP effluent, below the barriers and 15 m into the aquifer. The potential attenuation of effluent-associated biological effects by SATs was evaluated through toxicogenomic bioassays using zebrafish eleutheroembryos and human hepatic cells. Transcriptomic analyses revealed a wide range of toxic activities exerted by the WWTP effluents that were reduced by more than 70% by SAT. Similar results were observed when HepG2 hepatic cells were tested for cytotoxic and dioxin-like responses. Toxicity reduction appeared partially determined by the barrier composition and/or SAT managing and correlated with CECs removal. SAT appears as a promising approach to efficiently reduce effluent-associated toxicity contributing to environmental and human health preservation.
Collapse
Affiliation(s)
- Claudia Sanz
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Adrià Sunyer-Caldú
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Marta Casado
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Sylvia Mansilla
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Lurdes Martinez-Landa
- Associated Unit: Hydrogeology Group (UPC-CSIC), Spain; Dept. of Civil and Environmental Engineering. Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Cristina Valhondo
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain; Geosciences Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Ruben Gil-Solsona
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Jose Portugal
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - M Silvia Diaz-Cruz
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Jesús Carrera
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain.
| |
Collapse
|
9
|
Kumar M, Naik DK, Maharana D, Das M, Jaiswal E, Naik AS, Kumari N. Sediment-associated microplastics in Chilika lake, India: Highlighting their prevalence, polymer types, possible sources, and ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169707. [PMID: 38184253 DOI: 10.1016/j.scitotenv.2023.169707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024]
Abstract
The primary objective of this research was to assess microplastics (MPs) in the sediments of Chilika lake. MPs were extracted from 22 sediment samples using the density separation method combined with vacuum pump filtration. A stereo-zoom microscope and Raman spectroscopy were employed to identify the sediment-associated MPs. The total MPs collected from all 22 sites was 440 ± 3.53 particles kg-1 wet sediments, with sizes ranging between 50 and 500 μm. In terms of morphology, fibers and fragments emerged as the dominant MP types, with counts of 210 ± 1.66 and 175 ± 1.76 particles kg-1 wet sediments, respectively. Raman spectroscopy verified the presence of various MP polymers in the sediments, predominantly HDPE (37 %), followed by PS (20 %), PET (18 %), PA (11 %), PP (7 %), and PC (7 %). A notable color variation was observed in MPs; black being the most prevalent (38.8 %), succeeded by blue (19.5 %), green (11.8 %), white (11.5 %), red (10.6 %), and transparent (7.5 %). ANOVA results indicated significant (p > 0.05) variations in MP abundance across the 22 sampling locations. However, principal component analysis (PCA) and multiple regression analysis indicated that water quality parameters did not significantly influence MP abundance, yet it was found that MP retention was higher in fine-grained sediments like clay and silt. The leading sources of MPs in Chilika lake were found to be aquafarming, trailed by river and sewage discharges, fishing activities, antifouling coatings and tourism. Additionally, the pollution load index (PLI) was employed to gauge the ecological risks, categorizing the lake under risk category 1, which implies a minimal level of MPs pollution. This research aims to serve as an early warning system for MPs pollution in productive brackish water habitats globally, including Chilika lake, guiding policymakers towards appropriate management strategies and preventive measures.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Geology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Dinesh Kumar Naik
- Department of Geology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Dusmant Maharana
- School of Sciences, P. P. Savani University, Kosamba, Surat 394125, Gujarat, India; Department of Marine Sciences, Berhampur University, Berhampur 760007, Odisha, India.
| | - Moumita Das
- Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ekta Jaiswal
- Department of Geology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Amiya Shankar Naik
- Department of Geology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Neha Kumari
- Department of Geology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
10
|
Albers J, Mylroie J, Kimble A, Steward C, Chapman K, Wilbanks M, Perkins E, Garcia-Reyero N. Per- and Polyfluoroalkyl Substances: Impacts on Morphology, Behavior and Lipid Levels in Zebrafish Embryos. TOXICS 2024; 12:192. [PMID: 38535925 PMCID: PMC10975676 DOI: 10.3390/toxics12030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
The presence of per- and polyfluoroalkyl substances (PFASs) in aquatic environments is often persistent and widespread. Understanding the potential adverse effects from this group of chemicals on aquatic communities allows for better hazard characterization. This study examines impacts on zebrafish (Danio rerio) embryo physiology, behavior, and lipid levels from exposure to perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), and heptadecafluorooctanesulfonic acid (PFOS). Embryos were exposed to lethal and sublethal levels of each chemical and monitored for alterations in physiological malformations, mortality, lipid levels, and behavior (only PFOA and PFHxS). The predicted 50% lethal concentrations for 120 hpf embryos were 528.6 ppm PFOA, 14.28 ppm PFHxS, and 2.14 ppm PFOS. Spine curvature and the inability of the 120 hpf embryos to maintain a dorsal-up orientation was significantly increased at 10.2 ppm PFHxS and 1.9 ppm PFOS exposure. All measured 120 hpf embryo behaviors were significantly altered starting at the lowest levels tested, 188 ppm PFOA and 6.4 ppm PFHxS. Lipid levels decreased at the highest PFAS levels tested (375 PFOA ppm, 14.4 PFHxS ppm, 2.42 ppm PFOS). In general, the PFAS chemicals, at the levels examined in this study, increased morphological deformities, embryo activity, and startle response time, as well as decreased lipid levels in 120 hpf zebrafish embryos.
Collapse
Affiliation(s)
- Janice Albers
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA
| | - John Mylroie
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Ashley Kimble
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | | | - Kacy Chapman
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA
| | - Mitchell Wilbanks
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Edward Perkins
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| |
Collapse
|
11
|
Annunziato M, Bashirova N, Eeza MNH, Lawson A, Fernandez-Lima F, Tose LV, Matysik J, Alia A, Berry JP. An Integrated Metabolomics-Based Model, and Identification of Potential Biomarkers, of Perfluorooctane Sulfonic Acid Toxicity in Zebrafish Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38411227 DOI: 10.1002/etc.5824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/28/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024]
Abstract
Known for their high stability and surfactant properties, per- and polyfluoroalkyl substances (PFAS) have been widely used in a range of manufactured products. Despite being largely phased out due to concerns regarding their persistence, bioaccumulation, and toxicity, legacy PFAS such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid continue to persist at high levels in the environment, posing risks to aquatic organisms. We used high-resolution magic angle spinning nuclear magnetic resonance spectroscopy in intact zebrafish (Danio rerio) embryos to investigate the metabolic pathways altered by PFOS both before and after hatching (i.e., 24 and 72 h post fertilization [hpf], respectively). Assessment of embryotoxicity found embryo lethality in the parts-per-million range with no significant difference in mortality between the 24- and 72-hpf exposure groups. Metabolic profiling revealed mostly consistent changes between the two exposure groups, with altered metabolites generally associated with oxidative stress, lipid metabolism, energy production, and mitochondrial function, as well as specific targeting of the liver and central nervous system as key systems. These metabolic changes were further supported by analyses of tissue-specific production of reactive oxygen species, as well as nontargeted mass spectrometric lipid profiling. Our findings suggest that PFOS-induced metabolic changes in zebrafish embryos may be mediated through previously described interactions with regulatory and transcription factors leading to disruption of mitochondrial function and energy metabolism. The present study proposes a systems-level model of PFOS toxicity in early life stages of zebrafish, and also identifies potential biomarkers of effect and exposure for improved environmental biomonitoring. Environ Toxicol Chem 2024;00:1-19. © 2024 SETAC.
Collapse
Affiliation(s)
- Mark Annunziato
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Narmin Bashirova
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Muhamed N H Eeza
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Ariel Lawson
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Francisco Fernandez-Lima
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Lilian V Tose
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - John P Berry
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| |
Collapse
|
12
|
Shi G, Zhu B, Wu Q, Dai J, Sheng N. Prenatal exposure to hexafluoropropylene oxide trimer acid (HFPO-TA) disrupts the maternal gut microbiome and fecal metabolome homeostasis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169330. [PMID: 38135079 DOI: 10.1016/j.scitotenv.2023.169330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Initially considered a "safe" substitute for perfluorooctanoic acid (PFOA), hexafluoropropylene oxide trimer acid (HFPO-TA) has been extensively used in the production of fluoropolymers for several years, leading to its environmental ubiquity and subsequent discovery of its significant bio-accumulative properties and toxicological effects. However, the specific impact of HFPO-TA on females, particularly those who are pregnant, remains unclear. In the present study, pregnant mice were exposed to 0.63 mg/kg/day HFPO-TA from gestational day (GD) 2 to GD 18. We then determined the potential effects of exposure on gut microbiota and fecal metabolites at GD 12 (mid-pregnancy) and GD 18 (late pregnancy). Our results revealed that, in addition to liver damage, HFPO-TA exposure during the specified window altered the structure and function of cecal gut microbiota. Notably, these changes showed the opposite trends at GD 12 and GD 18. Specifically, at GD 12, HFPO-TA exposure primarily resulted in the down-regulation of relative abundances within genera from the Bacteroidetes and Proteobacteria phyla, as well as associated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. With extended exposure time, the down-regulated genera within Proteobacteria became significantly up-regulated, accompanied by corresponding up-regulation of human disease- and inflammation-associated pathways, suggesting that HFPO-TA exposure can induce intestinal inflammation and elevate the risk of infection during late pregnancy. Pearson correlation analysis revealed that disturbances in the gut microbiota were accompanied by abnormal fecal metabolite. Additionally, alterations in hormones related to the steroid hormone biosynthesis pathway at both sacrifice time indicated that HFPO-TA exposure might change the steroid hormone level of pregnant mice, but need further study. In conclusion, this study provides new insights into the mechanisms underlying HFPO-TA-induced adverse effects and increases awareness of potential persistent health risks to pregnant females.
Collapse
Affiliation(s)
- Guohui Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao Zhu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
13
|
Sillé F, Hartung T. Metabolomics in Preclinical Drug Safety Assessment: Current Status and Future Trends. Metabolites 2024; 14:98. [PMID: 38392990 PMCID: PMC10890122 DOI: 10.3390/metabo14020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolomics is emerging as a powerful systems biology approach for improving preclinical drug safety assessment. This review discusses current applications and future trends of metabolomics in toxicology and drug development. Metabolomics can elucidate adverse outcome pathways by detecting endogenous biochemical alterations underlying toxicity mechanisms. Furthermore, metabolomics enables better characterization of human environmental exposures and their influence on disease pathogenesis. Metabolomics approaches are being increasingly incorporated into toxicology studies and safety pharmacology evaluations to gain mechanistic insights and identify early biomarkers of toxicity. However, realizing the full potential of metabolomics in regulatory decision making requires a robust demonstration of reliability through quality assurance practices, reference materials, and interlaboratory studies. Overall, metabolomics shows great promise in strengthening the mechanistic understanding of toxicity, enhancing routine safety screening, and transforming exposure and risk assessment paradigms. Integration of metabolomics with computational, in vitro, and personalized medicine innovations will shape future applications in predictive toxicology.
Collapse
Affiliation(s)
- Fenna Sillé
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- CAAT-Europe, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
14
|
Gust KA, Erik Mylroie J, Kimble AN, Wilbanks MS, Steward CSC, Chapman KA, Jensen KM, Kennedy AJ, Krupa PM, Waisner SA, Pandelides Z, Garcia-Reyero N, Erickson RJ, Ankley GT, Conder J, Moore DW. Survival, Growth, and Reproduction Responses in a Three-Generation Exposure of the Zebrafish (Danio rerio) to Perfluorooctane Sulfonate. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:115-131. [PMID: 38018867 PMCID: PMC11131580 DOI: 10.1002/etc.5770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
A prior multigenerational perfluorooctane sulfonic acid (PFOS) exposure investigation in zebrafish reported adverse effects at 0.734 µg/L, among the lowest aquatic effect levels for PFOS reported to date. The present three-generation PFOS exposure quantified survival, growth, reproduction, and vitellogenin (VTG; egg yolk protein) responses in zebrafish, incorporating experimental design and procedural improvements relative to the earlier study. Exposures targeting 0.1, 0.6, 3.2, 20, and 100 µg/L in parental (P) and first filial (F1) generations lasted for 180 days post fertilization (dpf) and the second filial generation (F2) through 16 dpf. Survival decreased significantly in P and F2 generation exposures, but not in F1, at the highest PFOS treatment (100 µg/L nominal, 94-205 µg/L, measured). Significant adverse effects on body weight and length were infrequent, of low magnitude, and occurred predominantly at the highest exposure treatment. Finally, PFOS had no significant effects on P or F1 egg production and survival or whole-body VTG levels in P or F1 male fish. Overall, the predominance and magnitude of adverse PFOS effects at <1 µg/L reported in prior research were largely nonrepeatable in the present study. In contrast, the present study indicated a threshold for ecologically relevant adverse effects in zebrafish at 117 µg/L (SE 8 µg/L, n = 10) for survival and 47 µg/L (SE 11 µg/L, n = 19) for all statistically significant negative effects observed. Environ Toxicol Chem 2024;43:115-131. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Kurt A. Gust
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - J. Erik Mylroie
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - Ashley N. Kimble
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - Mitchell S. Wilbanks
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | | | - Kacy A. Chapman
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Kathleen M. Jensen
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Alan J. Kennedy
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - Paige M. Krupa
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - Scott A. Waisner
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | | | - Natalia Garcia-Reyero
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - Russell J. Erickson
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Gerald T. Ankley
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Jason Conder
- Geosyntec Consultants, Costa Mesa, California, USA
| | - David W. Moore
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| |
Collapse
|
15
|
Cui J, Tian S, Gu Y, Wu X, Wang L, Wang J, Chen X, Meng Z. Toxicity effects of pesticides based on zebrafish (Danio rerio) models: Advances and perspectives. CHEMOSPHERE 2023; 340:139825. [PMID: 37586498 DOI: 10.1016/j.chemosphere.2023.139825] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Pesticides inevitably enter aquatic environments, posing potential risks to organisms. The common aquatic model organism, zebrafish (Danio rerio), are widely used to evaluate the toxicity of pesticides. In this review, we searched the Web of Science database for articles published between 2012 and 2022, using the keywords "pesticide", "zebrafish", and "toxicity", retrieving 618 publications. Furthermore, we described the main pathways by which pesticides enter aquatic environments and the fate of their residues in these environments. We systematically reviewed the toxicity effects of pesticides on zebrafish, including developmental toxicity, endocrine-disrupting effects, reproductive toxicity, neurotoxicity, immunotoxicity, and genotoxicity. Importantly, we summarized the latest research progress on the toxicity mechanism of pesticides to zebrafish based on omics technologies, including transcriptomics, metabolomics, and microbiomics. Finally, we discussed future research prospects, focusing on the combined exposure of multiple pollutants including pesticides, the risk of multigenerational exposure to pesticides, and the chronic toxicity of aquatic nanopesticides. This review provides essential data support for ecological risk assessments of pesticides in aquatic environments, and has implications for water management in the context of pesticide pollution.
Collapse
Affiliation(s)
- Jiajia Cui
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuntong Gu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xinyi Wu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Lei Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Jianjun Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xiaojun Chen
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| | - Zhiyuan Meng
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| |
Collapse
|
16
|
Lee J, Jeong S. Approach to an answer to "How dangerous microplastics are to the human body": A systematic review of the quantification of MPs and simultaneously exposed chemicals. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132404. [PMID: 37672992 DOI: 10.1016/j.jhazmat.2023.132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
This review aims to facilitate future research on microplastics (MPs) in the environment using systematic and analytical protocols, ultimately contributing to assessment of the risk to human health due to continuous daily exposure to MPs. Despite extensive studies on MP abundance in environment, identification, and treatment, their negative effects on human health remain unknown due to the lack of proof from clinical studies and limited technology on the MP identification. To assess the risk of MPs to human health, the first step is to estimate MP intake via ingestion, inhalation, and dermal contact under standardized exposure conditions in daily life. Furthermore, rather than focusing on the sole MPs, migrating chemicals from plastic products should be quantified and their health risk be assessed concurrently with MP release. The critical factors influencing MP release and simultaneously exposed chemicals (SECs) must be investigated using a standardized identification method. This review summarises release sources, factors, and possible routes of MPs from the environment to the human body, and the quantification methods used in risk assessment. We also discussed the issues encountered in MP release and SEC migration. Consequently, this review provides directions for future MP studies that can answer questions about MP toxicity to human health.
Collapse
Affiliation(s)
- Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan 46241, South Korea
| | - Sanghyun Jeong
- Department of Environmental Engineering, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
17
|
Yamamoto FY, Pérez-López C, Lopez-Antia A, Lacorte S, de Souza Abessa DM, Tauler R. Linking MS1 and MS2 signals in positive and negative modes of LC-HRMS in untargeted metabolomics using the ROIMCR approach. Anal Bioanal Chem 2023; 415:6213-6225. [PMID: 37587312 PMCID: PMC10558381 DOI: 10.1007/s00216-023-04893-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Data-independent acquisition (DIA) mode in liquid chromatography (LC) high-resolution mass spectrometry (HRMS) has emerged as a powerful strategy in untargeted metabolomics for detecting a broad range of metabolites. However, the use of this approach also represents a challenge in the analysis of the large datasets generated. The regions of interest (ROI) multivariate curve resolution (MCR) approach can help in the identification and characterization of unknown metabolites in their mixtures by linking their MS1 and MS2 DIA spectral signals. In this study, it is proposed for the first time the analysis of MS1 and MS2 DIA signals in positive and negative electrospray ionization modes simultaneously to increase the coverage of possible metabolites present in biological systems. In this work, this approach has been tested for the detection and identification of the amino acids present in a standard mixture solution and in fish embryo samples. The ROIMCR analysis allowed for the identification of all amino acids present in the analyzed mixtures in both positive and negative modes. The methodology allowed for the direct linking and correspondence between the MS signals in their different acquisition modes. Overall, this approach confirmed the advantages and possibilities of performing the proposed ROIMCR simultaneous analysis of mass spectrometry signals in their differing acquisition modes in untargeted metabolomics studies.
Collapse
Affiliation(s)
- Flávia Yoshie Yamamoto
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
- Institute of Biosciences, São Paulo State University, São Vicente, Brazil
| | - Carlos Pérez-López
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Ana Lopez-Antia
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | | | - Romà Tauler
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
18
|
Nayak S, Sahoo G, Das II, Mohanty AK, Kumar R, Sahoo L, Sundaray JK. Poly- and Perfluoroalkyl Substances (PFAS): Do They Matter to Aquatic Ecosystems? TOXICS 2023; 11:543. [PMID: 37368643 DOI: 10.3390/toxics11060543] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Poly- and perfluoroalkyl substances (PFASs) are a group of anthropogenic chemicals with an aliphatic fluorinated carbon chain. Due to their durability, bioaccumulation potential, and negative impacts on living organisms, these compounds have drawn lots of attention across the world. The negative impacts of PFASs on aquatic ecosystems are becoming a major concern due to their widespread use in increasing concentrations and constant leakage into the aquatic environment. Furthermore, by acting as agonists or antagonists, PFASs may alter the bioaccumulation and toxicity of certain substances. In many species, particularly aquatic organisms, PFASs can stay in the body and induce a variety of negative consequences, such as reproductive toxicity, oxidative stress, metabolic disruption, immunological toxicity, developmental toxicity, cellular damage and necrosis. PFAS bioaccumulation plays a significant role and has an impact on the composition of the intestinal microbiota, which is influenced by the kind of diet and is directly related to the host's well-being. PFASs also act as endocrine disruptor chemicals (EDCs) which can change the endocrine system and result in dysbiosis of gut microbes and other health repercussions. In silico investigation and analysis also shows that PFASs are incorporated into the maturing oocytes during vitellogenesis and are bound to vitellogenin and other yolk proteins. The present review reveals that aquatic species, especially fishes, are negatively affected by exposure to emerging PFASs. Additionally, the effects of PFAS pollution on aquatic ecosystems were investigated by evaluating a number of characteristics, including extracellular polymeric substances (EPSs) and chlorophyll content as well as the diversity of the microorganisms in the biofilms. Therefore, this review will provide crucial information on the possible adverse effects of PFASs on fish growth, reproduction, gut microbial dysbiosis, and its potential endocrine disruption. This information aims to help the researchers and academicians work and come up with possible remedial measures to protect aquatic ecosystems as future works need to be focus on techno-economic assessment, life cycle assessment, and multi criteria decision analysis systems that screen PFAS-containing samples. New innovative methods requires further development to reach detection at the permissible regulatory limits.
Collapse
Affiliation(s)
- Sipra Nayak
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Ipsita Iswari Das
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - Aman Kumar Mohanty
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - Rajesh Kumar
- Aquaculture Production and Environment Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - Lakshman Sahoo
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - Jitendra Kumar Sundaray
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| |
Collapse
|
19
|
Hossain MB, Yu J, Ujjaman Nur AA, Banik P, Jolly YN, Mamun MA, Arai T, Albeshr MF. Microplastics in surface water from a mighty subtropical estuary: First observations on occurrence, characterization, and contamination assessment. ENVIRONMENTAL RESEARCH 2023; 226:115594. [PMID: 36907342 DOI: 10.1016/j.envres.2023.115594] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Estuarine contamination by Microplastics (MPs) is a mater of serious concern since these areas offer the society valuable ecosystem, economic, and recreational services such as breeding and feeding ground for fish, carbon fixation, nutrients recycling and port development. The Meghna estuary, located along the Bengal delta coast, provides livelihoods for thousands of peoples in Bangladesh, and served as breeding ground for national fish, Hilsha shad. Therefore, knowledge and understanding on any kind of pollution including MPs of this estuary is essential. In this study, the abundance, characteristics and contamination assessment of MPs from the surface water of a Meghna estuary were investigated for the first time. The results demonstrated that MPs were present in all samples and the abundance ranged from 33.33 to 316.67 item/m3 with a mean value of 128.89 ± 67.94 item/m3. Morphological analyses resulted in four types of MPs such as fibers (87%), fragments (6%), foam (4%), and films (3%) with the majority of these being colored (62%) and smaller (<0.5 mm) in size (88%). On the other hand, FTIR analysis for chemical characteristics confirmed five types of polymers, including polythene (PE), polystyrene (PS), polythene terephthalate (PET), polypropylene (PP), and polyvinyl chloride (PVC). The area was determined to be moderately to severely contaminated with MPs based on contamination factor (CF) values (6.18 ± 2.08 to 2.50 ± 1.0) and the pollutant load index (PLI) value (1.94 ± 0.33) as these values were > 3-6 for CF, and >1 for PLI. These results can be utilized to develop policy for the protection of this important environment.
Collapse
Affiliation(s)
- M Belal Hossain
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD, 4111, Australia; Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Jimmy Yu
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD, 4111, Australia
| | - As-Ad Ujjaman Nur
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Partho Banik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Yeasmin N Jolly
- Atmospheric and Environmental Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Dhaka, 1000, Bangladesh
| | - Md Al- Mamun
- Materials Science Division, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Dhaka, 1000, Bangladesh.
| | - Takaomi Arai
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Mohammed Fahad Albeshr
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
20
|
Min EK, Lee H, Sung EJ, Seo SW, Song M, Wang S, Kim SS, Bae MA, Kim TY, Lee S, Kim KT. Integrative multi-omics reveals analogous developmental neurotoxicity mechanisms between perfluorobutanesulfonic acid and perfluorooctanesulfonic acid in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131714. [PMID: 37263023 DOI: 10.1016/j.jhazmat.2023.131714] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
The molecular mechanism of perfluorobutanesulfonic acid (PFBS), an alternative to legacy perfluorooctanesulfonic acid (PFOS), is not fully understood yet. Therefore, we conducted a developmental toxicity evaluation on zebrafish embryos exposed to PFBS and PFOS and assessed neurobehavioral changes at concentrations below each point of departure (POD) determined by embryonic mortality. Using transcriptomics, proteomics, and metabolomics, biomolecular perturbations in response to PFBS were profiled and then integrated for comparison with those for PFOS. Although PFBS (7525.47 μM POD) was approximately 700 times less toxic than PFOS (11.42 μM POD), altered neurobehavior patterns and affected kinds of endogenous neurochemicals were similar between PFBS and PFOS at the corresponding POD-based concentrations. Multi-omics analysis revealed that the PFBS neurotoxicity mechanism was associated with oxidative stress, lipid metabolism, and glycolysis/glucogenesis. The commonalities in developmental neurotoxicity-related mechanisms between PFBS and PFOS interconnected by knowledge-based integration of multi-omics included the calcium signaling pathway, lipid homeostasis, and primary bile acid biosynthesis. Despite being less toxic than PFOS, PFBS exhibited similar dysregulated molecular mechanisms, suggesting that chain length differences do not affect the intrinsic toxicity mechanism. Overall, carefully managing potential toxicity of PFBS can secure its status as an alternative to PFOS.
Collapse
Affiliation(s)
- Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hyojin Lee
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Eun Ji Sung
- College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seong Woo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Myungha Song
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Seungjun Wang
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
21
|
Jun I, Cho H, Amos SE, Choi Y, Choi YS, Ryu CS, Lee SA, Han DW, Han HS, Yang JH, Jeong HW, Park H, Kim YJ. Thyroid-Friendly Soft Materials as 3D Cell Culture Tool for Stimulating Thyroid Cell Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300236. [PMID: 36932895 DOI: 10.1002/smll.202300236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The disruption of thyroid hormones because of chemical exposure is a significant societal problem. Chemical evaluations of environmental and human health risks are conventionally based on animal experiments. However, owing to recent breakthroughs in biotechnology, the potential toxicity of chemicals can now be evaluated using 3D cell cultures. In this study, the interactive effects of thyroid-friendly soft (TS) microspheres on thyroid cell aggregates are elucidated and their potential as a reliable toxicity assessment tool is evaluated. Using state-of-the-art characterization methods coupled with cell-based analysis and quadrupole time-of-flight mass spectrometry, it is shown that TS-microsphere-integrated thyroid cell aggregates exhibit improved thyroid function. Specifically, the responses of zebrafish embryos, which are used for thyroid toxicity analysis, and the TS-microsphere-integrated cell aggregates to methimazole (MMI), a known thyroid inhibitor, are compared. The results show that the thyroid hormone disruption response of the TS-microsphere-integrated thyroid cell aggregates to MMI is more sensitive compared with those of the zebrafish embryos and conventionally formed cell aggregates. This proof-of-concept approach can be used to control cellular function in the desired direction and hence evaluate thyroid function. Thus, the proposed TS-microsphere-integrated cell aggregates may yield new fundamental insights for advancing in vitro cell-based research.
Collapse
Affiliation(s)
- Indong Jun
- Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-EUROPE), 66123, Saarbrücken, Germany
| | - Hyunki Cho
- Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-EUROPE), 66123, Saarbrücken, Germany
| | - Sebastian E Amos
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Youngjun Choi
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-EUROPE), 66123, Saarbrücken, Germany
| | - Sang-Ah Lee
- Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-EUROPE), 66123, Saarbrücken, Germany
- Office of Islands and Coastal Biology Research, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58792, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyung-Seop Han
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ji Hun Yang
- Next & Bio Inc., Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Woo Jeong
- Single Cell Multiomics Laboratory, Max-Planck-Institute for Molecular Biomedicine, 48149, Münster, Germany
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-EUROPE), 66123, Saarbrücken, Germany
| |
Collapse
|
22
|
Gu S, Zhang Q, Gu J, Wang C, Chu M, Li J, Mo X. The stereoselective metabolic disruption of cypermethrin on rats by a sub-acute study based on metabolomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31130-31140. [PMID: 36441315 DOI: 10.1007/s11356-022-24359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Due to the massive application of cypermethrin (CYP) for pest control in China, the adverse effects on non-target organisms have aroused great attention. However, comparative studies between its different stereoisomers remain scarce, especially for metabolism perturbations. Herein, the rats were administered α-CYP, β-CYP, and θ-CYP by gavage at doses of 8.5, 29.2, and 25.0 mg/kg/day, respectively, for 28 consecutive days. By blood examination, significant changes in liver and renal function parameters were observed in rats exposed to all three CYPs. The stereoisomeric selectivity in metabolic disturbances was assessed based on a metabolomic strategy via multivariate analysis and pathway analysis. The results demonstrated that amino acid and glycolipid metabolism were disrupted in all CYP groups. Among them, the most significant changes in the metabolic phenotype were observed in the θ-CYP group, with 56 differential metabolites enriched in 9 differential metabolic pathways. At the same time, the endogenous metabolite trimethylamine oxide (TMAO), which is closely linked to the gut microbiota, was also significantly elevated in this group. Gender differences were found in α- and θ-CYP-exposed rats, with perturbations in amino acid and glucose metabolism of greater concern in females and lipid metabolism of greater concern in males. Overall, β-CYP exhibited a lower risk of metabolic perturbations than α-CYP or θ-CYP, which helps to screen suitable agrochemical products for green agricultural development.
Collapse
Affiliation(s)
- Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| | - Jinping Gu
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengjie Chu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Jing Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Xunjie Mo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| |
Collapse
|
23
|
Schöneich S, Cain CN, Freye CE, Synovec RE. Optimization of Parameters for ROI Data Compression for Nontargeted Analyses Using LC-HRMS. Anal Chem 2023; 95:1513-1521. [PMID: 36563309 DOI: 10.1021/acs.analchem.2c04538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nontargeted analyses of low-concentration analytes in the information-rich data collected by liquid chromatography with high-resolution mass spectrometry detection can be challenging to accomplish in an efficient and comprehensive manner. The aim of this study is to demonstrate a workflow involving targeted parameter optimization for entire chromatograms using region of interest (ROI) data compression uncoupled from a subsequent tile-based Fisher ratio (F-ratio) analysis, a supervised discovery-based method, for the discovery of low-concentration analytes. Soil samples spiked with 18 pesticides at nominal concentrations ranging from 0.1 to 50 ppb for a total of six sample classes served as challenging samples to demonstrate the overall workflow. Optimization of two parameters proved to be the most critical for ROI data compression: the signal threshold parameter and the admissible mass deviation parameter. The parameter optimization method workflow we introduce is based upon spiking known analytes into a representative sample and determining the number of detectable spikes and the Δppm for various combinations of the signal threshold and admissible mass deviation, where Δppm is the absolute value of the difference between the theoretical m/z and the ROI m/z. Once optimal parameters are determined providing the lowest average Δppm and the greatest number of detectable analytes, the optimized parameters can be utilized for the intended analysis. Herein, tile-based F-ratio analysis was performed on the ROI compressed data of all spiked soil samples first by applying ROI parameters recommended in the literature, referred to herein as the initial ROI parameters, and finally by the combination of the two optimized parameters. Using the initial ROI parameters, three pesticides were discovered, whereas all 18 spiked pesticides were discovered by optimizing both ROI parameters.
Collapse
Affiliation(s)
- Sonia Schöneich
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195-1700, United States
| | - Caitlin N Cain
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195-1700, United States
| | - Chris E Freye
- M-7, High Explosives Science and Technology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Robert E Synovec
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
24
|
Jiao H, Yuan T, Wang X, Zhou X, Ming R, Cui H, Hu D, Lu P. Biochemical, histopathological and untargeted metabolomic analyses reveal hepatotoxic mechanism of acetamiprid to Xenopus laevis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120765. [PMID: 36455769 DOI: 10.1016/j.envpol.2022.120765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Acetamiprid, a commonly detected neonicotinoid in aquatic ecosystems, poses a threat to aquatic non-target organisms. However, limited information is available on the toxic effects of acetamiprid on nontarget aquatic organisms. This study assessed the toxic effects of acetamiprid on Xenopus laevis, a typical model organism. The acute toxicity for 96 h revealed that acetamiprid had detrimental effects with a median lethal concentration (LC50) value of 64.48 mg/L. Toxicity assays, including oxidative stress, histopathology and untargeted metabolomics of acetamiprid to X. laevis, were performed for 28 d at 1/10 and 1/100 LC50 by studying the liver, which is the most antioxidant and major metabolic organ. The results demonstrated that acetamiprid exposure significantly changed the oxidant status of and caused histological damage to the liver. Furthermore, the untargeted metabolomic analysis based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified the endogenous metabolites that were significantly altered. There were 89 differential metabolites compared to the controls: 64 in the 1/10 LC50 group, 47 in the 1/100 LC50 group, and 23 metabolites in the 1/10 LC50 group were the same as those in the 1/100 LC50 group. Sixteen pathways that were mainly associated with amino acid metabolism and lipid metabolism, such as sphingolipid metabolism, glycerophospholipid metabolism and histidine metabolism, were disrupted, revealing the hepatotoxic effects of acetamiprid on X. laevis at the molecular level. These findings provide crucial information for evaluating the aquatic risks of neonicotinoids.
Collapse
Affiliation(s)
- Hui Jiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Tingting Yuan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiaohuan Wang
- Guizhou Station of Plant Protection and Quarantine, China
| | - Xia Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Renyue Ming
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Honghao Cui
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Ping Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
25
|
Viganò L, Guzzella L, Marziali L, Mascolo G, Bagnuolo G, Ciannarella R, Roscioli C. The last 50 years of organic contamination of a highly anthropized tributary of the Po River (Italy). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116665. [PMID: 36423407 DOI: 10.1016/j.jenvman.2022.116665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/11/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
We examined the temporal profiles of many organic micropollutants analysed in a sediment core sampled from a highly anthropized tributary of the Po River, the Lambro River. Analysed for extractable organic halogens (EOX), total petroleum hydrocarbons (C10-C40TPH), polycyclic aromatic hydrocarbons (PAHs), common legacy pollutants (DDTs, PCBs), halogenated flame retardants (PBDEs, DBDPE, TBBPA-bis, TCBPA, TBBPA, HBCDs), organotins (TBT, TPhT), antimicrobials (TCS, TCC), fragrances (AHTN, HHCB) and phthalates (DMP, DEP, DnBP, BBP, DEHP, DnOP), the dated sediment core revealed the historical record of 50 years of chemical contamination discharged into the Lambro and thereby the Po River. In this regard, the peak levels of PCBs and DDTs found in Lambro sediments were also identified in other sediment cores collected from the Po River prodelta in the Adriatic Sea, thus hundreds of kilometres downstream (Combi et al., 2020). The highest risk to aquatic organisms was associated with decades of high levels of C10-C40 TPH, PBDEs, PCBs, PAHs, DDTs, EOX, TCC, AHTN and DEHP, which in different periods of the contamination history, showed exceedances of guideline/threshold values. C10-C40 TPH and TCC, for example, were very high in the 1960s, whereas PCBs, DDTs, and PBDEs, peaked from the 1980s onward. The corresponding sums of PEC quotients ranged between 0.48 and 28.63, with a mean value (±SD) for the entire recording period of 10.62 ± 9.83. Environmental legislations and improved wastewater treatments were the main drivers of the recent downward trends observed for most of the chemicals investigated. Floods in turn resulted in macroscopic yet temporary improvements in the chemical quality of the tributary, conveying contaminated sediments into the Po River.
Collapse
Affiliation(s)
- Luigi Viganò
- Water Research Institute, National Research Council, (IRSA - CNR), Via del Mulino 19, 20861, Brugherio, MB, Italy.
| | - Licia Guzzella
- Water Research Institute, National Research Council, (IRSA - CNR), Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Laura Marziali
- Water Research Institute, National Research Council, (IRSA - CNR), Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Giuseppe Mascolo
- Water Research Institute, National Research Council, (IRSA - CNR), Via De Blasio 5, 70132, Bari, Italy
| | - Giuseppe Bagnuolo
- Water Research Institute, National Research Council, (IRSA - CNR), Via De Blasio 5, 70132, Bari, Italy
| | - Ruggero Ciannarella
- Water Research Institute, National Research Council, (IRSA - CNR), Via De Blasio 5, 70132, Bari, Italy
| | - Claudio Roscioli
- Water Research Institute, National Research Council, (IRSA - CNR), Via del Mulino 19, 20861, Brugherio, MB, Italy
| |
Collapse
|
26
|
Colás-Ruiz NR, Courant F, Gomez E, Lara-Martín PA, Hampel M. Transcriptomic and metabolomic integration to assess the response of gilthead sea bream (Sparus aurata) exposed to the most used insect repellent: DEET. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120678. [PMID: 36403875 DOI: 10.1016/j.envpol.2022.120678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
DEET is one of the most frequently detected insect repellents in the environment reaching concentrations of several μg L-1 in surface water. There is scarce information available regarding its mode of action in non-target organisms. Here, we have used an integrated metabolomic and transcriptomic approach to elucidate the possible adverse effects of DEET exposure in the marine fish gilthead sea bream (Sparus aurata). Individuals were exposed at an environmentally relevant concentration of DEET (10 μg L-1) for 22 days in a continuous flow-through system. Transcriptomic analysis revealed 250 differentially expressed genes in liver, while metabolomic analysis identified 190 differentially modulated features in liver and 98 in plasma. Multi-omic data integration and visualization allowed elucidation of the modes of action of DEET exposure, including: energy depletion through the disruption of carbohydrate and amino acids metabolisms, oxidative stress leading to DNA damage, lipid peroxidation, and damage to cell membrane and apoptosis. Activation of xenobiotic pathway as well as the inmune-inflammatory reaction was evidenced in the present work.
Collapse
Affiliation(s)
- Nieves R Colás-Ruiz
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510, Puerto Real, Cádiz, Spain.
| | - Frédérique Courant
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Elena Gomez
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Pablo A Lara-Martín
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| | - Miriam Hampel
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
27
|
Olivier SONGUESAME, Catherine PIVETEAU, Alexandre BIELA, Richard KAMGA, Benoit DEPREZ. Occurrence of bisphenols and contribution of edibles liquids conditioned in plastic packaging to the dietary exposure in Cameroon. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
28
|
Gundacker C, Audouze K, Widhalm R, Granitzer S, Forsthuber M, Jornod F, Wielsøe M, Long M, Halldórsson TI, Uhl M, Bonefeld-Jørgensen EC. Reduced Birth Weight and Exposure to Per- and Polyfluoroalkyl Substances: A Review of Possible Underlying Mechanisms Using the AOP-HelpFinder. TOXICS 2022; 10:toxics10110684. [PMID: 36422892 PMCID: PMC9699222 DOI: 10.3390/toxics10110684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 05/14/2023]
Abstract
Prenatal exposure to per- and polyfluorinated substances (PFAS) may impair fetal growth. Our knowledge of the underlying mechanisms is incomplete. We used the Adverse Outcome Pathway (AOP)-helpFinder tool to search PubMed for studies published until March 2021 that examined PFAS exposure in relation to birth weight, oxidative stress, hormones/hormone receptors, or growth signaling pathways. Of these 1880 articles, 106 experimental studies remained after abstract screening. One clear finding is that PFAS are associated with oxidative stress in in vivo animal studies and in vitro studies. It appears that PFAS-induced reactive-oxygen species (ROS) generation triggers increased peroxisome proliferator-activated receptor (PPAR)γ expression and activation of growth signaling pathways, leading to hyperdifferentiation of pre-adipocytes. Fewer proliferating pre-adipocytes result in lower adipose tissue weight and in this way may reduce birth weight. PFAS may also impair fetal growth through endocrine effects. Estrogenic effects have been noted in in vivo and in vitro studies. Overall, data suggest thyroid-damaging effects of PFAS affecting thyroid hormones, thyroid hormone gene expression, and histology that are associated in animal studies with decreased body and organ weight. The effects of PFAS on the complex relationships between oxidative stress, endocrine system function, adipogenesis, and fetal growth should be further explored.
Collapse
Affiliation(s)
- Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40160-56503
| | - Karine Audouze
- Unit T3S, Université Paris Cité, Inserm U1124, 75006 Paris, France
| | - Raimund Widhalm
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Sebastian Granitzer
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Forsthuber
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Florence Jornod
- Unit T3S, Université Paris Cité, Inserm U1124, 75006 Paris, France
| | - Maria Wielsøe
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Manhai Long
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Thórhallur Ingi Halldórsson
- Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavík, Iceland
- Department of Epidemiology Research, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Maria Uhl
- Environment Agency Austria, 1090 Vienna, Austria
| | - Eva Cecilie Bonefeld-Jørgensen
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
- Greenland Center for Health Research, Greenland University, Nuuk 3905, Greenland
| |
Collapse
|
29
|
Beale DJ, Sinclair GM, Shah R, Paten AM, Kumar A, Long SM, Vardy S, Jones OAH. A review of omics-based PFAS exposure studies reveals common biochemical response pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157255. [PMID: 35817100 DOI: 10.1016/j.scitotenv.2022.157255] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Per and Polyfluoroalkyl Substances (PFAS) are a diverse group of man-made chemicals with a range of industrial applications and which are widespread in the environment. They are structurally diverse but comprise a common chemical feature of at least one (though usually more) perfluorocarbon moiety (-CnF2n-) attached to a functional group such as a carboxylic or sulphonic acid. The strength of the Carbon-Fluorine bond means the compounds do not break down easily and can thus bioaccumulate. PFAS are of high concern to regulators and the public due to their potential toxicity and high persistence. At high exposure levels, PFAS have been implicated in a range of harmful effects on human and environmental health, particularly problems in/with development, cholesterol and endocrine disruption, immune system function, and oncogenesis. However, most environmental toxicology studies use far higher levels of PFAS than are generally found in the environment. Additionally, since the type of exposure, the PFAS used, and the organisms tested all vary between studies, so do the results. Traditional ecotoxicology studies may thus not identify PFAS effects at environmentally relevant exposures. Here we conduct a review of omics-based PFAS exposure studies using laboratory ecotoxicological methodologies and environmentally relevant exposure levels and show that common biochemical response pathways are identified in multiple studies. A major pathway identified was the pentose phosphate shunt pathway. Such molecular markers of sublethal PFAS exposure will greatly benefit accurate and effective risk assessments to ensure that new PFAS regulations can consider the full effects of PFAS exposure on environmental and human health receptors.
Collapse
Affiliation(s)
- David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - Georgia M Sinclair
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Rohan Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia; Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Amy M Paten
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, Acton, ACT 2601, Australia
| | - Anupama Kumar
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae, SA 5064, Australia
| | - Sara M Long
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Suzanne Vardy
- Water Quality and Investigation, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, QLD 4102, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
30
|
Labine LM, Oliveira Pereira EA, Kleywegt S, Jobst KJ, Simpson AJ, Simpson MJ. Comparison of sub-lethal metabolic perturbations of select legacy and novel perfluorinated alkyl substances (PFAS) in Daphnia magna. ENVIRONMENTAL RESEARCH 2022; 212:113582. [PMID: 35661729 DOI: 10.1016/j.envres.2022.113582] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of pollutants of concern due to their ubiquitous presence, persistence, and toxicity in aquatic environments. Legacy PFAS pollutants such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) have been more widely studied in aquatic environments. However, replacement PFAS, such as ammonium perfluoro (2-methyl-3-oxahexanoate; GenX) are increasingly being detected with little known information surrounding their toxicity. Here, Daphnia magna, a model organism for freshwater ecotoxicology was used to compare the acute sub-lethal toxicity of PFOS, PFOA, GenX, and PFAS mixtures. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), the targeted polar metabolic profile extracted from single Daphnia was quantified to investigate perturbations in the exposure groups versus the unexposed organisms. Multivariate statistical analyses demonstrated significant non-monotonic separation in PFOA, GenX, and PFAS mixture exposures. Sub-lethal exposure to concentrations of PFOS did not lead to significant separation in multivariate analyses. Univariate statistics and pathway analyses were used to elucidate the mode of action of PFAS exposure. Exposure to all individual PFAS led to significant perturbations in many amino acids including cysteine, histidine, tryptophan, glycine, and serine. These perturbations are consistent with biochemical pathway disruptions in the pantothenate and Coenzyme A (CoA) biosynthesis, thiamine metabolism, histidine metabolism, and aminoacyl-tRNA biosynthesis pathways. Overall, the collected metabolomic data is consistent with disruptions in energy metabolism and protein synthesis as the primary mode of action of sub-lethal PFAS exposure. Secondary modes of action among individual pollutant exposures demonstrated that the structural properties (carboxylic acid vs. sulfonic acid group) may play a role in the metabolic perturbations observed. Sub-lethal exposure to PFAS mixtures highlighted a mixed response when compared to the individual pollutants (PFOS, PFOA, and GenX). Overall, this study emphasizes the niche capability of environmental metabolomics to differentiate secondary modes of action from metabolic perturbations in both single pollutant and pollutant mixtures within the same chemical class.
Collapse
Affiliation(s)
- Lisa M Labine
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Erico A Oliveira Pereira
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada, M4V 1M2
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada, A1B 3X7
| | - Andre J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
31
|
Pérez-Cova M, Platikanov S, Tauler R, Jaumot J. Quantification strategies for two-dimensional liquid chromatography datasets using regions of interest and multivariate curve resolution approaches. Talanta 2022; 247:123586. [PMID: 35671578 DOI: 10.1016/j.talanta.2022.123586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
In this work, three chemometrics-based approaches are compared for quantification purposes when using two-dimensional liquid chromatography (LC×LC-MS), taking as a study case the quantification of amino acids in commercial drug mixtures. Although the approaches have been already used for one-dimensional gas or liquid chromatography, the main novelty of this work is the demonstration of their applicability to LC×LC-MS datasets. Besides, steps such as peak alignment and modelling, commonly applied in this type of data analysis, are not required with the approaches proposed here. In a first step, regions of interest (ROI) strategy is used for the spectral compression of the LC×LC-MS datasets. Then the first strategy consists of building a calibration curve from the areas obtained in this ROI compression step. Alternatively, the ROI intensity matrices can be used as input for a second analysis step employing the multivariate curve resolution alternating least squares (MCR-ALS) method. The main benefit of MCR-ALS is the resolution of elution and spectral profiles for each of the analytes in the mixture, even in the case of strong coelutions and high signal overlapping. Classical MCR-ALS based calibration curve from the peak areas resolved only applying non-negativity constraints (second strategy) is compared to the results obtained when an area correlation constraint is imposed during the ALS optimization (third strategy). All in all, similar quantification results were achieved by the three approaches but, especially in prediction studies, the more accurate quantification is obtained when the calibration curve is built from the peak areas obtained with MCR-ALS when the area correlation constraint is imposed.
Collapse
Affiliation(s)
- Miriam Pérez-Cova
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, E08034 Barcelona, Spain; Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 647, E08028, Barcelona, Spain.
| | - Stefan Platikanov
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, E08034 Barcelona, Spain
| | - Romà Tauler
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, E08034 Barcelona, Spain
| | - Joaquim Jaumot
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, E08034 Barcelona, Spain
| |
Collapse
|
32
|
Beale DJ, Nguyen TV, Shah RM, Bissett A, Nahar A, Smith M, Gonzalez-Astudillo V, Braun C, Baddiley B, Vardy S. Host-Gut Microbiome Metabolic Interactions in PFAS-Impacted Freshwater Turtles ( Emydura macquarii macquarii). Metabolites 2022; 12:747. [PMID: 36005619 PMCID: PMC9415956 DOI: 10.3390/metabo12080747] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023] Open
Abstract
Per-and polyfluoroalkyl substances (PFAS) are a growing concern for humans, wildlife, and more broadly, ecosystem health. Previously, we characterised the microbial and biochemical impact of elevated PFAS on the gut microbiome of freshwater turtles (Emydura macquarii macquarii) within a contaminated catchment in Queensland, Australia. However, the understanding of PFAS impacts on this species and other aquatic organisms is still very limited, especially at the host-gut microbiome molecular interaction level. To this end, the present study aimed to apply these leading-edge omics technologies within an integrated framework that provides biological insight into the host turtle-turtle gut microbiome interactions of PFAS-impacted wild-caught freshwater turtles. For this purpose, faecal samples from PFAS-impacted turtles (n = 5) and suitable PFAS-free reference turtles (n = 5) were collected and analysed. Data from 16S rRNA gene amplicon sequencing and metabolomic profiling of the turtle faeces were integrated using MetOrigin to assign host, microbiome, and co-metabolism activities. Significant variation in microbial composition was observed between the two turtle groups. The PFAS-impacted turtles showed a higher relative abundance of Firmicutes and a lower relative abundance of Bacteroidota than the reference turtles. The faecal metabolome showed several metabolites and pathways significantly affected by PFAS exposure. Turtles exposed to PFAS displayed altered amino acid and butanoate metabolisms, as well as altered purine and pyrimidine metabolism. It is predicted from this study that PFAS-impacted both the metabolism of the host turtle and its gut microbiota which in turn has the potential to influence the host's physiology and health.
Collapse
Affiliation(s)
- David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Thao V. Nguyen
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Rohan M. Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Akhikun Nahar
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Research and Innovation Park, Black Mountain, ACT 2601, Australia
| | - Matthew Smith
- NCMI, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | | | - Christoph Braun
- Water Quality and Investigation, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, QLD 4102, Australia
| | - Brenda Baddiley
- Water Quality and Investigation, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, QLD 4102, Australia
| | - Suzanne Vardy
- Water Quality and Investigation, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, QLD 4102, Australia
| |
Collapse
|
33
|
Park CG, Jun I, Lee S, Ryu CS, Lee SA, Park J, Han HS, Park H, Manz A, Shin H, Kim YJ. Integration of Bioinspired Fibrous Strands with 3D Spheroids for Environmental Hazard Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200757. [PMID: 35521748 DOI: 10.1002/smll.202200757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Indexed: 05/25/2023]
Abstract
Numerous methods have been introduced to produce 3D cell cultures that can reduce the need for animal experimentation. This study presents a unique 3D culture platform that features bioinspired strands of electrospun nanofibers (BSeNs) and aquatic cell lines to compensate for shortcomings in the current cell spheroid generation techniques. The use of BSeNs in 3D zebrafish liver cell cultures is found to improve liver and reproductive functions through spheroid-based in vitro assays such as whole transcriptome sequencing and reproductive toxicity testing, with optimized properties exhibiting results similar to those obtained for fish embryo acute toxicity (FET, OECD TG 236) following exposure to environmental endocrine-disrupting chemicals (17β-Estradiol (E2), 4-hydroxytamoxifen (4-HT), and bisphenol compounds (bisphenol A (BPA) and 9,9-Bis(4-hydroxyphenyl)fluorene (BPFL)). These findings indicate that the beneficial effects of bioinspired materials that closely mimic ECM environments can yield efficient zebrafish cells with intrinsic functions and xenobiotic metabolism similar to those of zebrafish embryos. As a closer analog for the in vivo conditions that are associated with exposure to potentially hazardous chemicals, the straightforward culture model introduced in this study shows promise as an alternative tool that can be used to further eco-environmental assessment.
Collapse
Affiliation(s)
- Chang Gyun Park
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123, Saarbrücken, Germany
- Universität des Saarlandes, 66123, Saarbrücken, Germany
| | - Indong Jun
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123, Saarbrücken, Germany
| | - Sangmin Lee
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team Hanyang University, Seoul, 04763, Republic of Korea
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123, Saarbrücken, Germany
| | - Sang-Ah Lee
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123, Saarbrücken, Germany
| | - Jaeho Park
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyung-Seop Han
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Andreas Manz
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123, Saarbrücken, Germany
- Universität des Saarlandes, 66123, Saarbrücken, Germany
| | - Heungsoo Shin
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team Hanyang University, Seoul, 04763, Republic of Korea
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123, Saarbrücken, Germany
| |
Collapse
|
34
|
Mahoney H, Xie Y, Brinkmann M, Giesy JP. Next generation per- and poly-fluoroalkyl substances: Status and trends, aquatic toxicity, and risk assessment. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:117-131. [PMID: 38075527 PMCID: PMC10702929 DOI: 10.1016/j.eehl.2022.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 01/10/2024]
Abstract
Widespread application of poly- and per-fluoroalkyl substances (PFAS) has resulted in some substances being ubiquitous in environmental matrices. That and their resistance to degradation have allowed them to accumulate in wildlife and humans with potential for toxic effects. While specific substances of concern have been phased-out or banned, other PFAS that are emerging as alternative substances are still produced and are being released into the environment. This review focuses on describing three emerging, replacement PFAS: perfluoroethylcyclohexane sulphonate (PFECHS), 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFAES), and hexafluoropropylene oxide dimer acid (HFPO-DA). By summarizing their physicochemical properties, environmental fate and transport, and toxic potencies in comparison to other PFAS compounds, this review offers insight into the viabilities of these chemicals as replacement substances. Using the chemical scoring and ranking assessment model, the relative hazards, uncertainties, and data gaps for each chemical were quantified and related to perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) based on their chemical and uncertainty scores. The substances were ranked PFOS > 6:2 Cl-PFAES > PFOA > HFPO-DA > PFECHS according to their potential toxicity and PFECHS > HFPO-DA > 6:2 Cl-PFAES > PFOS > PFOA according to their need for future research. Since future uses of PFAS remain uncertain in the face of governmental regulations and production bans, replacement PFAS will continue to emerge on the world market and in the environment, raising concerns about their general lack of information on mechanisms and toxic potencies.
Collapse
Affiliation(s)
- Hannah Mahoney
- Toxicology Center, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Yuwei Xie
- Toxicology Center, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Markus Brinkmann
- Toxicology Center, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 3H5, Canada
- Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 1K2, Canada
| | - John P. Giesy
- Toxicology Center, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
35
|
Comparison of Multivariate ANOVA-Based Approaches for the Determination of Relevant Variables in Experimentally Designed Metabolomic Studies. Molecules 2022; 27:molecules27103304. [PMID: 35630781 PMCID: PMC9147242 DOI: 10.3390/molecules27103304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
The use of chemometric methods based on the analysis of variances (ANOVA) allows evaluation of the statistical significance of the experimental factors used in a study. However, classical multivariate ANOVA (MANOVA) has a number of requirements that make it impractical for dealing with metabolomics data. For this reason, in recent years, different options have appeared that overcome these limitations. In this work, we evaluate the performance of three of these multivariate ANOVA-based methods (ANOVA simultaneous component analysis—ASCA, regularized MANOVA–rMANOVA, and Group-wise ANOVA-simultaneous component analysis—GASCA) in the framework of metabolomics studies. Our main goals are to compare these various ANOVA-based approaches and evaluate their performance on experimentally designed metabolomic studies to find the significant factors and identify the most relevant variables (potential markers) from the obtained results. Two experimental data sets were generated employing liquid chromatography coupled to mass spectrometry (LC-MS) with different complexity in the design to evaluate the performance of the statistical approaches. Results show that the three considered ANOVA-based methods have a similar performance in detecting statistically significant factors. However, relevant variables pointed by GASCA seem to be more reliable as there is a strong similarity with those variables detected by the widely used partial least squares discriminant analysis (PLS-DA) method.
Collapse
|
36
|
Guo P, Furnary T, Vasiliou V, Yan Q, Nyhan K, Jones DP, Johnson CH, Liew Z. Non-targeted metabolomics and associations with per- and polyfluoroalkyl substances (PFAS) exposure in humans: A scoping review. ENVIRONMENT INTERNATIONAL 2022; 162:107159. [PMID: 35231839 PMCID: PMC8969205 DOI: 10.1016/j.envint.2022.107159] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 05/13/2023]
Abstract
OBJECTIVE To summarize the application of non-targeted metabolomics in epidemiological studies that assessed metabolite and metabolic pathway alterations associated with per- and polyfluoroalkyl substances (PFAS) exposure. RECENT FINDINGS Eleven human studies published before April 1st, 2021 were identified through database searches (PubMed, Dimensions, Web of Science Core Collection, Embase, Scopus), and citation chaining (Citationchaser). The sample sizes of these studies ranged from 40 to 965, involving children and adolescents (n = 3), non-pregnant adults (n = 5), or pregnant women (n = 3). High-resolution liquid chromatography-mass spectrometry was the primary analytical platform to measure both PFAS and metabolome. PFAS were measured in either plasma (n = 6) or serum (n = 5), while metabolomic profiles were assessed using plasma (n = 6), serum (n = 4), or urine (n = 1). Four types of PFAS (perfluorooctane sulfonate(n = 11), perfluorooctanoic acid (n = 10), perfluorohexane sulfonate (n = 9), perfluorononanoic acid (n = 5)) and PFAS mixtures (n = 7) were the most studied. We found that alterations to tryptophan metabolism and the urea cycle were most reported PFAS-associated metabolomic signatures. Numerous lipid metabolites were also suggested to be associated with PFAS exposure, especially key metabolites in glycerophospholipid metabolism which is critical for biological membrane functions, and fatty acids and carnitines which are relevant to the energy supply pathway of fatty acid oxidation. Other important metabolome changes reported included the tricarboxylic acid (TCA) cycle regarding energy generation, and purine and pyrimidine metabolism in cellular energy systems. CONCLUSIONS There is growing interest in using non-targeted metabolomics to study the human physiological changes associated with PFAS exposure. Multiple PFAS were reported to be associated with alterations in amino acid and lipid metabolism, but these results are driven by one predominant type of pathway analysis thus require further confirmation. Standardizing research methods and reporting are recommended to facilitate result comparison. Future studies should consider potential differences in study methodology, use of prospective design, and influence from confounding bias and measurement errors.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA
| | - Tristan Furnary
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA
| | - Qi Yan
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, USA
| | - Kate Nyhan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA; Harvey Cushing / John Hay Whitney Medical Library, Yale University, New Haven, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA; Department of Biochemistry, Emory University School of Medicine, Atlanta, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA.
| |
Collapse
|
37
|
Adverse Effects of Arsenic Uptake in Rice Metabolome and Lipidome Revealed by Untargeted Liquid Chromatography Coupled to Mass Spectrometry (LC-MS) and Regions of Interest Multivariate Curve Resolution. SEPARATIONS 2022. [DOI: 10.3390/separations9030079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rice crops are especially vulnerable to arsenic exposure compared to other cereal crops because flooding growing conditions facilitates its uptake. Besides, there are still many unknown questions about arsenic’s mode of action in rice. Here, we apply two untargeted approaches using liquid chromatography coupled to mass spectrometry (LC-MS) to unravel the effects on rice lipidome and metabolome in the early stages of growth. The exposure is evaluated through two different treatments, watering with arsenic-contaminated water and soil containing arsenic. The combination of regions of interest (ROI) and multivariate curve resolution (MCR) strategies in the ROIMCR data analyses workflow is proposed and complemented with other multivariate analyses such as partial least square discriminant analysis (PLS-DA) for the identification of potential markers of arsenic exposure and toxicity effects. The results of this study showed that rice metabolome (and lipidome) in root tissues seemed to be more affected by the watering and soil treatment. In contrast, aerial tissues alterations were accentuated by the arsenic dose, rather than with the watering and soil treatment itself. Up to a hundred lipids and 40 metabolites were significantly altered due to arsenic exposure. Major metabolic alterations were found in glycerophospholipids, glycerolipids, and amino acid-related pathways.
Collapse
|
38
|
Martyniuk CJ, Martínez R, Navarro-Martín L, Kamstra JH, Schwendt A, Reynaud S, Chalifour L. Emerging concepts and opportunities for endocrine disruptor screening of the non-EATS modalities. ENVIRONMENTAL RESEARCH 2022; 204:111904. [PMID: 34418449 PMCID: PMC8669078 DOI: 10.1016/j.envres.2021.111904] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 05/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS modalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are presented with strong evidence amongst animals and human studies for non-EATS disruption and associations with wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing strategies that can be used in regulatory bodies to protect environmental, animal, and human health from harmful environmental chemicals.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| | - Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Adam Schwendt
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Lorraine Chalifour
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| |
Collapse
|
39
|
Cohen A, Popowitz J, Delbridge-Perry M, Rowe CJ, Connaughton VP. The Role of Estrogen and Thyroid Hormones in Zebrafish Visual System Function. Front Pharmacol 2022; 13:837687. [PMID: 35295340 PMCID: PMC8918846 DOI: 10.3389/fphar.2022.837687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Visual system development is a highly complex process involving coordination of environmental cues, cell pathways, and integration of functional circuits. Consequently, a change to any step, due to a mutation or chemical exposure, can lead to deleterious consequences. One class of chemicals known to have both overt and subtle effects on the visual system is endocrine disrupting compounds (EDCs). EDCs are environmental contaminants which alter hormonal signaling by either preventing compound synthesis or binding to postsynaptic receptors. Interestingly, recent work has identified neuronal and sensory systems, particularly vision, as targets for EDCs. In particular, estrogenic and thyroidogenic signaling have been identified as critical modulators of proper visual system development and function. Here, we summarize and review this work, from our lab and others, focusing on behavioral, physiological, and molecular data collected in zebrafish. We also discuss different exposure regimes used, including long-lasting effects of developmental exposure. Overall, zebrafish are a model of choice to examine the impact of EDCs and other compounds targeting estrogen and thyroid signaling and the consequences of exposure in visual system development and function.
Collapse
Affiliation(s)
- Annastelle Cohen
- Department of Biology, American University, Washington, DC, WA, United States
| | - Jeremy Popowitz
- Department of Biology, American University, Washington, DC, WA, United States
| | | | - Cassie J. Rowe
- Department of Biology, American University, Washington, DC, WA, United States,Center for Neuroscience and Behavior, American University, Washington, DC, WA, United States
| | - Victoria P. Connaughton
- Department of Biology, American University, Washington, DC, WA, United States,Center for Neuroscience and Behavior, American University, Washington, DC, WA, United States,*Correspondence: Victoria P. Connaughton,
| |
Collapse
|
40
|
Pourasil RSM, Cristale J, Lacorte S, Tauler R. Non-targeted Gas Chromatography Orbitrap Mass Spectrometry qualitative and quantitative analysis of semi-volatile organic compounds in indoor dust using the Regions of Interest Multivariate Cuarve Resolution chemometrics procedure. J Chromatogr A 2022; 1668:462907. [DOI: 10.1016/j.chroma.2022.462907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/20/2022] [Accepted: 02/14/2022] [Indexed: 12/21/2022]
|
41
|
Beale DJ, Hillyer K, Nilsson S, Limpus D, Bose U, Broadbent JA, Vardy S. Bioaccumulation and metabolic response of PFAS mixtures in wild-caught freshwater turtles (Emydura macquariimacquarii) using omics-based ecosurveillance techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151264. [PMID: 34715216 DOI: 10.1016/j.scitotenv.2021.151264] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
PFAS mixtures in the environment are common and identifying PFAS constituents, bioaccumulation, and biological impacts of mixtures remains a challenge. Here, an omics-based ecosurveillance approach was taken to investigate the impacts of PFAS pollution in freshwater turtles (Emydura macquariimacquarii). Four turtles were collected from an impacted waterway downstream from an industrial source of PFAS contamination in Queensland, Australia and analysed for 49 different PFAS. One turtle was collected from a suitable control site. PFAS concentrations were quantified in turtle serum using an established targeted methodology. The serum PFAS concentration was ten-fold greater at the impacted site (Σ49 PFAS 1933 ± 481 ng/mL) relative to the control sample (Σ49 PFAS 140 ng/mL). Perfluorooctane sulfonate (PFOS; 889 ± 56 ng/mL) was 235 times higher in turtle serum than in the water that they were collected from (ΣPFAS 32.0 μg/L). Perfluorobutane sulfonamide (FBSA; 403 ± 83 ng/mL) and perfluorohexane sulfonamide (FHxSA; 550 ± 330 ng/mL) were also reported at substantial concentrations in the serum of impacted turtles. Biochemical profiles were analysed using a mixture of liquid chromatography triple quadrupole (QqQ) and quadrupole time-of-flight (QToF) mass spectrometry methodologies. These profiles demonstrated a positive correlation in the impacted turtles exposed to elevated PFAS with an enhanced purine metabolism, glycerophosphocholines and an innate immune response, which suggest an inflammation response, metabolic preservation and re-routing of central carbon metabolites. Conversely, lipid transport and binding activity were negatively correlated. Using these preliminary data, we were able to demonstrate the negative metabolic impact from PFAS mixtures on turtle metabolic health. With further research on a larger turtle cohort, omics-based data will contribute towards linking adverse outcome pathways for turtle populations exposed to PFAS mixtures. Moreover, expanding the use of ecosurveillance tools will inform mechanistic toxicological data for risk assessment and regulatory applications.
Collapse
Affiliation(s)
- David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - Katie Hillyer
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Duncan Limpus
- Aquatic Threatened Species, Wildlife and Threatened Species Operations, Department of Environment and Science, Queensland Government, Australia
| | - Utpal Bose
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - James A Broadbent
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Suzanne Vardy
- Water Quality and Investigation, Science and Technology Division, Department of Environment and Science, Queensland Government, Australia
| |
Collapse
|
42
|
Colás-Ruiz NR, Ramirez G, Courant F, Gomez E, Hampel M, Lara-Martín PA. Multi-omic approach to evaluate the response of gilt-head sea bream (Sparus aurata) exposed to the UV filter sulisobenzone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150080. [PMID: 34525742 DOI: 10.1016/j.scitotenv.2021.150080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Sulisobenzone (BP-4) is one of the benzophenone type UV filters most frequently detected in aquatic ecosystems. As a suspected endocrine disrupting compound, scarce information is available yet about other molecular effects and its mechanism of action. Here, we used an integrated transcriptomic and metabolomic approach to improve the current understanding on the toxicity of BP-4 towards aquatic species. Gilt-head sea bream individuals were exposed at environmentally relevant concentrations (10 μg L-1) for 22 days. Transcriptomic analysis revealed 371 differentially expressed genes in liver while metabolomic analysis identified 123 differentially modulated features in plasma and 118 in liver. Integration of transcriptomic and metabolomic data showed disruption of the energy metabolism (>10 pathways related to the metabolism of amino acids and carbohydrates were impacted) and lipid metabolism (5 glycerophospholipids and the expression of 3 enzymes were affected), suggesting oxidative stress. We also observed, for the first time in vivo and at environmental relevant concentrations, the disruption of several enzymes involved in the steroid and thyroid hormones biosynthesis. DNA and RNA synthesis was also impacted by changes in the purine and pyrimidine metabolisms. Overall, the multiomic workflow presented here increases the evidence on suspected effects of BP-4 exposure and identifies additional modes of action of the compounds that could have been overlooked by using single omic approaches.
Collapse
Affiliation(s)
- Nieves R Colás-Ruiz
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Gaëlle Ramirez
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Frédérique Courant
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Elena Gomez
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Miriam Hampel
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Pablo A Lara-Martín
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
43
|
Sun J, Fang R, Wang H, Xu DX, Yang J, Huang X, Cozzolino D, Fang M, Huang Y. A review of environmental metabolism disrupting chemicals and effect biomarkers associating disease risks: Where exposomics meets metabolomics. ENVIRONMENT INTERNATIONAL 2022; 158:106941. [PMID: 34689039 DOI: 10.1016/j.envint.2021.106941] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 10/12/2021] [Indexed: 05/27/2023]
Abstract
Humans are exposed to an ever-increasing number of environmental toxicants, some of which have gradually been elucidated to be important risk factors for metabolic diseases, such as diabetes and obesity. These metabolism-sensitive diseases typically occur when key metabolic and signaling pathways were disrupted, which can be influenced by the exposure to contaminants such as endocrine disrupting chemicals (EDCs), along with genetic and lifestyle factors. This promotes the concept and research on environmental metabolism disrupting chemicals (MDCs). In addition, identifying endogenous biochemical markers of effect linked to disease states is becoming an important tool to screen the biological targets following environmental contaminant exposure, as well as to provide an overview of toxicity risk assessment. As such, the current review aims to contribute to the further understanding of exposome and human health and disease by characterizing environmental exposure and effect metabolic biomarkers. We summarized MDC-associated metabolic biomarkers in laboratory animal and human cohort studies using high throughput targeted and nontargeted metabolomics techniques. Contaminants including heavy metals and organohalogen compounds, especially EDCs, have been repetitively associated with metabolic disorders, whereas emerging contaminants such as perfluoroalkyl substances and microplastics have also been found to disrupt metabolism. In addition, we found major limitations in the effective identification of metabolic biomarkers especially in human studies, toxicological research on the mixed effect of environmental exposure has also been insufficient compared to the research on single chemicals. Thus, it is timely to call for research efforts dedicated to the study of combined effect and metabolic alterations for the better assessment of exposomic toxicology and health risks. Moreover, advanced computational and prediction tools, further validation of metabolic biomarkers, as well as systematic and integrative investigations are also needed in order to reliably identify novel biomarkers and elucidate toxicity mechanisms, and to further utilize exposome and metabolome profiling in public health and safety management.
Collapse
Affiliation(s)
- Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Runcheng Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jing Yang
- State Environmental Protection Key Laboratory of Quality Control in Environmental, Monitoring, China National Environmental Monitoring Center, Beijing, China
| | - Xiaochen Huang
- School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Daniel Cozzolino
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plans, Australia
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| |
Collapse
|
44
|
Bernardo RC, Connaughton VP. Transient developmental exposure to tributyltin reduces optomotor responses in larval zebrafish (Danio rerio). Neurotoxicol Teratol 2022; 89:107055. [PMID: 34896240 PMCID: PMC8755603 DOI: 10.1016/j.ntt.2021.107055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023]
Abstract
This study determined the effects of transient developmental exposure to tributyltin (TBT), a well-known anti-estrogenic environmental endocrine disrupting compound, on visual system development of larval zebrafish (Danio rerio). Zebrafish were exposed to either 0.2 μg/L or 20 μg/L TBT for 24 h when they were aged 24 h postfertilization (hpf), 72 hpf, or 7 days (d)pf. Immediately after exposure, larvae were transferred to system water for seven days of recovery followed by behavioral testing (startle and optomotor responses) and morphological assessment. TBT-treated larvae displayed age-dependent changes in morphology characterized by delayed/reduced growth and susceptibility to exposure. TBT exposure reduced the number of larvae displaying optomotor responses regardless of age of exposure; eye diameter was also decreased when exposure occurred at 24 hpf or 7 dpf. Startle responses were reduced only in TBT-treated larvae exposed when they were 24 hpf, suggesting transient TBT exposure during the early larval period may cause vision-specific effects.
Collapse
Affiliation(s)
- Rachel C. Bernardo
- Department of Biology, American University, Washington, DC 20016, USA.,Department of Health Studies, American University, Washington, DC 20016, USA
| | - Victoria P. Connaughton
- Department of Biology, American University, Washington, DC 20016, USA.,Corresponding author: VP Connaughton, Dept of Biology, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, 202-885-2188,
| |
Collapse
|
45
|
Sun D, Yang N, Zhang Q, Wang Z, Luo G, Pang J. The discovery of combined toxicity effects and mechanisms of hexaconazole and arsenic to mice based on untargeted metabolomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112859. [PMID: 34624535 DOI: 10.1016/j.ecoenv.2021.112859] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/04/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The high detected frequencies of hexaconazole (Hex) and arsenic (As) increased the probabilities of their co-existence in agricultural products. However, the combined toxicity effect and mechanism of action for these two pollutants were still unclear. In this study, an untargeted metabolomics method with ultra high performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS) was developed to monitor the changes of endogenous metabolites and metabolism pathways in mice liver. Our study revealed that significant differences in metabolomics profiles were observed after Hex, As, and Hex+As exposure for 90 d. Hex exposure altered 54 metabolites and 11 pathways significantly which were mainly lipid-related. For As exposure, 63 metabolites and 9 pathways were affected most of which were amino acid-related. Hex+As induced 93 metabolites changes with 34% was lipids and lipid-like molecules and 22% was organic acids and derivatives. Hex+As exposure shared the pathways that altered by Hex and As indicated that the interaction of Hex and As might be independent action. The results of this study could provide an important insight for understanding the mechanism of combined toxicity for Hex and As and be helpful for evaluating their health risk to human.
Collapse
Affiliation(s)
- Dali Sun
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Na Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qinghai Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Zelan Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Guofei Luo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Junxiao Pang
- Key Laboratory of Critical Technology for Degradation of Pesticide Residues in Agro-products in Guizhou Ecological Environment, Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang 550005, China.
| |
Collapse
|
46
|
Lee H, Sung EJ, Seo S, Min EK, Lee JY, Shim I, Kim P, Kim TY, Lee S, Kim KT. Integrated multi-omics analysis reveals the underlying molecular mechanism for developmental neurotoxicity of perfluorooctanesulfonic acid in zebrafish. ENVIRONMENT INTERNATIONAL 2021; 157:106802. [PMID: 34358914 DOI: 10.1016/j.envint.2021.106802] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Limited studies on multi-omics have been conducted to comprehensively investigate the molecular mechanism underlying the developmental neurotoxicity of perfluorooctanesulfonic acid (PFOS). In this study, the locomotor behavior of zebrafish larvae was assessed under the exposure to 0.1-20 μM PFOS based on its reported neurobehavioral effect. After the number of zebrafish larvae was optimized for proteomics and metabolomics studies, three kinds of omics (i.e., transcriptomics, proteomics, and metabolomics) were carried out with zebrafish larvae exposed to 0.1, 1, 5, and 10 μM PFOS. More importantly, a data-driven integration of multi-omics was performed to elucidate the toxicity mechanism involved in developmental neurotoxicity. In a concentration-dependent manner, exposure to PFOS provoked hyperactivity and hypoactivity under light and dark conditions, respectively. Individual omics revealed that PFOS exposure caused perturbations in the pathways of neurological function, oxidative stress, and energy metabolism. Integrated omics implied that there were decisive pathways for axonal deformation, neuroinflammatory stimulation, and dysregulation of calcium ion signaling, which are more clearly specified for neurotoxicity. Overall, our findings broaden the molecular understanding of the developmental neurotoxicity of PFOS, for which multi-omics and integrated omics analyses are efficient for discovering the significant molecular pathways related to developmental neurotoxicity in zebrafish.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Eun Ji Sung
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seungwoo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Ji-Young Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Sangkyu Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
47
|
Min EK, Lee AN, Lee JY, Shim I, Kim P, Kim TY, Kim KT, Lee S. Advantages of omics technology for evaluating cadmium toxicity in zebrafish. Toxicol Res 2021; 37:395-403. [PMID: 34631496 DOI: 10.1007/s43188-020-00082-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
In the last decade, several advancements have been made in omics technologies and they have been applied extensively in diverse research areas. Especially in toxicological research, omics technology can efficiently and accurately generate relevant data on the molecular dynamics associated with adverse outcomes. Toxicomics is defined as the combination of toxicology and omics technologies and encompasses toxicogenomics, toxicoproteomics, and toxicometabolomics. This paper reviews the trend of applying omics technologies to evaluate cadmium (Cd) toxicity in zebrafish (D. rerio). Cd is a toxic heavy metal posing several environmental concerns; however, it is being used widely in everyday life. Zebrafish embryos and larvae are employed as standard models for many toxicity tests because they share 71.4% genetic homology with humans. This study summarizes the toxicity of Cd on the nerves, liver, heart, skeleton, etc. of zebrafish and introduces detailed omics techniques to understand the results of the toxicomic studies. Finally, the trend of toxicity evaluation in the zebrafish model of Cd based on omics technology is presented.
Collapse
Affiliation(s)
- Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Ahn Na Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Ji-Young Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Sangkyu Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
48
|
da Silva KM, Iturrospe E, Bars C, Knapen D, Van Cruchten S, Covaci A, van Nuijs ALN. Mass Spectrometry-Based Zebrafish Toxicometabolomics: A Review of Analytical and Data Quality Challenges. Metabolites 2021; 11:metabo11090635. [PMID: 34564451 PMCID: PMC8467701 DOI: 10.3390/metabo11090635] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolomics has achieved great progress over the last 20 years, and it is currently considered a mature research field. As a result, the number of applications in toxicology, biomarker, and drug discovery has also increased. Toxicometabolomics has emerged as a powerful strategy to provide complementary information to study molecular-level toxic effects, which can be combined with a wide range of toxicological assessments and models. The zebrafish model has gained importance in recent decades as a bridging tool between in vitro assays and mammalian in vivo studies in the field of toxicology. Furthermore, as this vertebrate model is a low-cost system and features highly conserved metabolic pathways found in humans and mammalian models, it is a promising tool for toxicometabolomics. This short review aims to introduce zebrafish researchers interested in understanding the effects of chemical exposure using metabolomics to the challenges and possibilities of the field, with a special focus on toxicometabolomics-based mass spectrometry. The overall goal is to provide insights into analytical strategies to generate and identify high-quality metabolomic experiments focusing on quality management systems (QMS) and the importance of data reporting and sharing.
Collapse
Affiliation(s)
- Katyeny Manuela da Silva
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
- Correspondence: (K.M.d.S.); (A.L.N.v.N.)
| | - Elias Iturrospe
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Campus Jette, Free University of Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Chloe Bars
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (C.B.); (S.V.C.)
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium;
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (C.B.); (S.V.C.)
| | - Adrian Covaci
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
| | - Alexander L. N. van Nuijs
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
- Correspondence: (K.M.d.S.); (A.L.N.v.N.)
| |
Collapse
|
49
|
Xu M, Legradi J, Leonards P. Cross platform solutions to improve the zebrafish polar metabolome coverage using LC-QTOF MS: Optimization of separation mechanisms, solvent additives, and resuspension solvents. Talanta 2021; 234:122688. [PMID: 34364485 DOI: 10.1016/j.talanta.2021.122688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 11/29/2022]
Abstract
Untargeted metabolomics has been widely used for studies with zebrafish embryos. Until now, the number of analytical approaches to determine metabolites in zebrafish is limited, and there is a lack of consensus on the best platforms for comprehensive metabolomics analysis of zebrafish embryos. In addition, the capacity of these methods to detect metabolites is unsatisfactory and the confidence level for identifying compounds is relatively low. To improve the metabolome coverage, we mainly focused on the optimization of separation mechanisms, mobile phase additives, and resuspension solvents based on liquid chromatography (LC) coupling to high-resolution mass spectrometry (HRMS) techniques. Moreover, the procedures for optimizing methods were assessed when taking metabolite profiles in both positive and negative ionization modes into account. Four LC columns were studied: C18, T3, PFP, and HILIC. In positive ionization mode, it was strongly recommended to employ the HILIC approach operated at the neutral condition, which led to the presence of more than 4700 features and the annotation of 151 metabolites, mainly zwitterionic and basic compounds, in comparison to reverse phase (RP)-based methods with less than 1000 features. In negative ionization mode, the PFP column operated at 0.02% acetic acid showed the best performance in terms of metabolite coverage: 3100 metabolic features were detected and 218 metabolites were annotated in zebrafish embryos. Metabolite profiles mainly contained acidic and zwitterionic compounds. HILIC-based platforms were complementary to RP columns when analyzing highly polar metabolites. Additionally, it was preferable to reconstitute zebrafish extracts in 100% water for analysis of metabolites on RP columns, with a 20-30% increase in the number of identified metabolites compared to a 50% water in methanol solution. However, water/methanol (1:9, v/v), as resuspension solution, was advantageous over water/methanol (1:1, v/v) for HILIC analysis showing an 8-15% increase in detected metabolites. In total 336 polar metabolites were annotated by the combination of the optimized HILIC (positive) and PFP (negative) approaches. The largest metabolome coverage of polar metabolites in zebrafish embryos was obtained when three approaches were combined (negative PFP and HILIC, and HILIC positive) resulting in more than 420 annotated compounds.
Collapse
Affiliation(s)
- Mengmeng Xu
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Jessica Legradi
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Pim Leonards
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Lai KP, Gong Z, Tse WKF. Zebrafish as the toxicant screening model: Transgenic and omics approaches. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105813. [PMID: 33812311 DOI: 10.1016/j.aquatox.2021.105813] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The production of large amounts of synthetic industrial and biomedical compounds, together with environmental pollutants, poses a risk to our ecosystem and induces negative effects on the health of wildlife and human beings. With the emergence of the global problem of chemical contamination, the adverse biological effects of these chemicals are gaining attention among the scientific communities, industry, governments, and the public. Among these chemicals, endocrine disrupting chemicals (EDCs) are regarded as one of the major global issues that potentially affecting our health. There is an urgent need of understanding the potential hazards of such chemicals. Zebrafish have been widely used in the aquatic toxicology. In this review, we first discuss the strategy of transgenic lines that used in the toxicological studies, followed by summarizing the current omics approaches (transcriptomics, proteomics, metabolomics, and epigenomics) on toxicities of EDCs in this model. We will also discuss the possible transgenerational effects in zebrafish and future prospective of the integrated omics approaches with customized transgenic organism. To conclude, we summarize the current findings in the field, and provide our opinions on future environmental toxicity research in the zebrafish model.
Collapse
Affiliation(s)
- Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin 541004, PR China; Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, PR China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, PR China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China.
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|