1
|
Wang N, Kunz JL, Dorman RA, Cleveland D, Steevens JA, Raimondo S, Augspurger T, Barnhart MC. Evaluation of Chronic Effects of Potassium Chloride and Nickel on Survival, Growth, and Reproduction of a Unionid Mussel (Lampsilis siliquoidea). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1097-1111. [PMID: 38488680 PMCID: PMC11215799 DOI: 10.1002/etc.5843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 02/07/2024] [Indexed: 07/03/2024]
Abstract
The ASTM International standard test method for freshwater mussels (E2455-13) recommends 4-week toxicity testing with juveniles to evaluate chronic effects on survival and growth. However, concerns remain that the method may not adequately address the sensitivity of mussels to longer term exposures (>4 weeks), particularly in relation to potential reproductive impairments. No standard method directly evaluates toxicant effects on mussel reproduction. The objectives of the present study were to (1) evaluate toxicity endpoints related to reproduction in fatmucket (Lampsilis siliquoidea) using two common reference toxicants, potassium chloride (KCl) and nickel (Ni); (2) evaluate the survival and growth of juvenile fatmucket in standard 4-week and longer term (12-week) KCl and Ni tests following a method refined from the standard method; and (3) compare the sensitivity of the reproductive endpoints with the endpoints obtained from the juvenile mussel tests. Reproductive toxicity tests were conducted by first exposing female fatmucket brooding mature larvae (glochidia) to five test concentrations of KCl and Ni for 6 weeks. Subsamples of the glochidia were then removed from the adults to determine three reproductive endpoints: (1) the viability of brooded glochidia; (2) the viability of free glochidia in a 24-h exposure to the same toxicant concentrations as their mother; and (3) the success of glochidia parasitism on host fish. Mean viability of brooded glochidia was significantly reduced in the high KCl concentration (26 mg K/L) relative to the control, with a 20% effect concentration (EC20) of 14 mg K/L, but there were no significant differences between the control and any Ni treatment (EC20 > 95 µg Ni/L). The EC20s for viability of free glochidia after the additional 24-h exposure and parasitism success were similar to the EC20s of brooded glochidia. The EC20s based on the most sensitive biomass endpoint in the 4-week juvenile tests were 15 mg K/L and 91 µg Ni/L, similar to or greater than the EC20s from the reproductive KCl and Ni tests, respectively. When exposure duration in the juvenile tests was extended from 4 to 12 weeks, the EC20s decreased by more than 50% in the KCl test but by only 8% in the Ni test. Overall, these results indicate that a standard 4-week test with juvenile mussels can prove effective for estimating effects in chronic exposures with different life stages although a longer term 12-week exposure with juvenile mussels may reveal higher sensitivity of mussels to some toxicants, such as KCl. Environ Toxicol Chem 2024;43:1097-1111. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Ning Wang
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - James L. Kunz
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Rebecca A. Dorman
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Danielle Cleveland
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Jeffery A. Steevens
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Sandy Raimondo
- US Environmental Protection Agency, Gulf Ecosystem Measurement and Modeling Division, Gulf Breeze, Florida, USA
| | - Tom Augspurger
- US Fish and Wildlife Service, Raleigh, North Carolina, USA
| | | |
Collapse
|
2
|
Siagian UWR, Lustiyani L, Khoiruddin K, Ismadji S, Wenten IG, Adisasmito S. From waste to resource: Membrane technology for effective treatment and recovery of valuable elements from oilfield produced water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122717. [PMID: 37863251 DOI: 10.1016/j.envpol.2023.122717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/16/2023] [Accepted: 10/07/2023] [Indexed: 10/22/2023]
Abstract
Oilfield produced water, a toxic and saline byproduct of the oil and gas industry, has become a global concern due to its adverse environmental and human health impacts. With large volumes of oilfiled produced water generated annually and predictions of even higher volumes in the near future, effective treatment and resource recovery are imperative. This review paper explores the potential of membrane technology, particularly integrated membrane systems, in treating and recovering valuable elements from oilfield produced water. The increasing attention to this topic is evident, but research on resource recovery still needs to be expanded. Membrane technology offers a promising solution due to its efficiency and minimal need for chemical additives or thermal inputs. However, challenges such as fouling, resistance to oil and organics, and economic viability must be addressed. By discussing oilfield produced water characteristics, treatment methods, practical applications, challenges, and prospects, this review underscores the transformative role of membrane technology in turning oilfield produced water into a valuable resource. Additionally, it emphasizes the importance of research in developing anti-fouling membranes, sustainable waste management techniques, and efficient cleaning protocols while considering economic implications and market dynamics for resource recovery.
Collapse
Affiliation(s)
- U W R Siagian
- Department of Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - L Lustiyani
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - K Khoiruddin
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - S Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
| | - I G Wenten
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - S Adisasmito
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia.
| |
Collapse
|
3
|
Saud A, Saleem H, Khan AW, Munira N, Khan M, Zaidi SJ. Date Palm Tree Leaf-Derived Cellulose Nanocrystal Incorporated Thin-Film Composite forward Osmosis Membranes for Produced Water Treatment. MEMBRANES 2023; 13:membranes13050513. [PMID: 37233574 DOI: 10.3390/membranes13050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Worldwide water shortage and significant issues related to treatment of wastewater streams, mainly the water obtained during the recovery of oil and gas operations called produced water (PW), has enabled forward osmosis (FO) to progress and become advanced enough to effectively treat as well as retrieve water in order to be productively reused. Because of their exceptional permeability qualities, thin-film composite (TFC) membranes have gained increasing interest for use in FO separation processes. This research focused on developing a high water flux and less oil flux TFC membrane by incorporating sustainably developed cellulose nanocrystal (CNC) onto the polyamide (PA) layer of the TFC membrane. CNCs are prepared from date palm leaves and different characterization studies verified the definite formations of CNCs and the effective integration of CNCs in the PA layer. From the FO experiments, it was confirmed that that the membrane with 0.05 wt% of CNCs in the TFC membrane (TFN-5) showed better FO performance in PW treatment. Pristine TFC and TFN-5 membrane exhibited 96.2% and 99.0% of salt rejection and 90.5% and 97.45% of oil rejection. Further, TFC and TFN-5 demonstrated 0.46 and 1.61 LMHB pure water permeability and 0.41 and 1.42 LHM salt permeability, respectively. Thus, the developed membrane can help in overcoming the current challenges associated with TFC FO membranes for PW treatment processes.
Collapse
Affiliation(s)
- Asif Saud
- Center for Advanced Material, Qatar University, Doha 2713, Qatar
| | - Haleema Saleem
- Center for Advanced Material, Qatar University, Doha 2713, Qatar
| | | | - Nazmin Munira
- Center for Advanced Material, Qatar University, Doha 2713, Qatar
| | - Maryam Khan
- Center for Advanced Material, Qatar University, Doha 2713, Qatar
| | | |
Collapse
|
4
|
Wang N, Dorman RA, Kunz JL, Cleveland D, Steevens JA, Dunn S, Martinez AD. Influence of Water Hardness on Chronic Toxicity of Potassium Chloride to a Unionid Mussel (Lampsilis siliquoidea). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1085-1093. [PMID: 36856127 DOI: 10.1002/etc.5598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Elevated concentrations of potassium (K) often occur in effluents from wastewater treatment plants, oil and gas production operations, mineral extraction processes, and other anthropogenic sources. Previous studies have demonstrated that freshwater mussels are highly sensitive to K in acute and chronic exposures, and that acute toxicity of K decreases with increasing water hardness. However, little is known about the influence of hardness on the chronic toxicity of K. The objective of our study was to evaluate the chronic toxicity of K (tested as KCl) to a commonly tested unionid mussel (fatmucket, Lampsilis siliquoidea) at five hardness levels (25, 50, 100, 200, and 300 mg/L as CaCO3 ) representing most surface waters in the United States. Chronic 28-day K toxicity tests were conducted with 3-week-old juvenile fatmucket in the five hardness waters using an ASTM International standard method. The maximum acceptable toxicant concentrations (geometric mean of the no-observed-effect concentration and the lowest-observed-effect concentration) increased from 15.1 to 69.3 mg K/L for survival and from 15.1 to 35.8 mg K/L for growth (length and dry wt) and biomass when water hardness was increased from 25 mg/L (soft) to 300 mg/L (very hard). These results provide evidence to support water hardness influence on chronic K toxicity to juvenile fatmucket. However, the chronic effect concentrations based on the more sensitive endpoint (growth or biomass) increased only 2.4-fold from the soft water to the very hard water, indicating that water hardness had a limited influence on the chronic toxicity of K to the mussels. These results can be used to establish chronic toxicity thresholds for K across a broad range of water hardness and to derive environmental guideline values for K to protect freshwater mussels and other organisms. Environ Toxicol Chem 2023;42:1085-1093. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Ning Wang
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Rebecca A Dorman
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - James L Kunz
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Danielle Cleveland
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Jeffery A Steevens
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Suzanne Dunn
- US Fish and Wildlife Service, Tulsa, Oklahoma, USA
| | | |
Collapse
|
5
|
Li Y, Xin H, Zong Y, Jin X, Wang Y, Shang Y, Jin P, Wang X. A novel nucleation-induced crystallization process towards simultaneous removal of hardness and organics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Produced Water Treatment and Valorization: A Techno-Economical Review. ENERGIES 2022. [DOI: 10.3390/en15134619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, environmental concerns have urged companies in the energy sector to modify their industrial activities to facilitate greater environmental stewardship. For example, the practice of unconventional oil and gas extraction has drawn the ire of regulators and various environmental groups due to its reliance on millions of barrels of fresh water—which is generally drawn from natural sources and public water supplies—for hydraulic fracturing well stimulation. Additionally, this process generates two substantial waste streams, which are collectively characterized as flowback and produced water. Whereas flowback water is comprised of various chemical additives that are used during hydraulic fracturing; produced water is a complex mixture of microbiota, inorganic and organic constituents derived from the petroliferous strata. This review will discuss the obstacles of managing and treating flowback and produced waters, concentrating on the hardest constituents to remove by current technologies and their effect on the environment if left untreated. Additionally, this work will address the opportunities associated with repurposing produced water for various applications as an alternative to subsurface injection, which has a number of environmental concerns. This review also uses lithium to evaluate the feasibility of extracting valuable metals from produced water using commercially available technologies.
Collapse
|
7
|
Characterizing Various Produced Waters from Shale Energy Extraction within the Context of Reuse. ENERGIES 2022. [DOI: 10.3390/en15134521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Environmental concerns with unconventional oil and gas development are frequently centered on elevated water usage and the induction of seismic events during waste disposal. Reuse of produced water for subsequent production well stimulation can effectively address these concerns, but the variability among such samples must be well understood. Twenty-four samples of wastewater from unconventional oil and gas development were collected from south and west Texas to assess their variability and feasibility for direct reuse. Bulk metrics were collected, including total organic carbon, total nitrogen, as well as total dissolved and suspended solids. The profiles of pertinent inorganic constituents were also evaluated. Variations were not only seen between regions but also among samples collected from the same region. For example, the average total organic carbon for Eagle Ford samples collected was 700 ± 500 mg/L, while samples collected from the Permian Basin featured an average total organic carbon concentration of 600 ± 900 mg/L. The Permian Basin total organic carbon ranged from 38 to 2600 mg/L. The total dissolved solids levels had the same variability between regions, with an average value for Eagle Ford of 20,000 ± 10,000 mg/L and a Permian Basin value of 150,000 ± 40,000 mg/L. However, samples were more reproducible within a given region. Collectively, the data indicate that the direct reuse of raw produced water for subsequent production well development without treatment is not feasible based on the reported reuse thresholds. Unconventional development wastewater samples from the Permian Basin were also compared to produced water values from conventional oil and gas wells in the same region, as reported by the United States Geological Survey. Samples collected in the Permian Basin consistently demonstrated lower ionic strength compared to conventional produced water data.
Collapse
|
8
|
Tao Z, Liu C, He Q, Chang H, Ma J. Detection and treatment of organic matters in hydraulic fracturing wastewater from shale gas extraction: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153887. [PMID: 35181355 DOI: 10.1016/j.scitotenv.2022.153887] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Although shale gas has shown promising potential to alleviate energy crisis as a clean energy resource, more attention has been paid to the harmful environmental impacts during exploitation. It is a critical issue for the management of shale gas wastewater (SGW), especially the organic compounds. This review focuses on analytical methods and corresponding treatment technologies targeting organic matters in SGW. Firstly, detailed information about specific shale-derived organics and related organic compounds in SGW were overviewed. Secondly, the state-of-the art analytical methods for detecting organics in SGW were summarized. The gas chromatography paired with mass spectrometry was the most commonly used technique. Thirdly, relevant treatment technologies for SGW organic matters were systematically explored. Forward osmosis and membrane distillation ranked the top two most frequently used treatment processes. Moreover, quantitative analyses on the removal of general and single organic compounds by treatment technologies were conducted. Finally, challenges for the analytical methods and treatment technologies of organic matters in SGW were addressed. The lack of effective trace organic detection techniques and high cost of treatment technologies are the urgent problems to be solved. Advances in the extraction, detection, identification and disposal of trace organic matters are critical to address the issues.
Collapse
Affiliation(s)
- Zhen Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|
9
|
Jiang W, Xu X, Hall R, Zhang Y, Carroll KC, Ramos F, Engle MA, Lin L, Wang H, Sayer M, Xu P. Characterization of produced water and surrounding surface water in the Permian Basin, the United States. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128409. [PMID: 35149501 DOI: 10.1016/j.jhazmat.2022.128409] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
A thorough understanding of produced water (PW) quality is critical to advance the knowledge and tools for effective PW management, treatment, risk assessment, and feasibility for beneficial reuse outside the oil and gas industry. This study provides the first step to better understand PW quality to develop beneficial reuse programs that are protective of human health and the environment. In total, 46 PW samples from unconventional operations in the Permian Basin and ten surface water samples from the Pecos River in New Mexico were collected for quantitative target analyses of more than 300 constituents. Water quality analyses of Pecos River samples could provide context and baseline information for the potential discharge and reuse of treated PW in this area. Temporal PW and river water quality changes were monitored for eight months in 2020. PW samples had total dissolved solids (TDS) concentrations ranging from 100,800-201,500 mg/L. Various mineral salts, metals, oil and grease, volatile and semi-volatile organic compounds, radionuclides, ammonia, hydraulic fracturing additives, and per- and polyfluoroalkyl substances were detected at different concentrations. Chemical characterization of organic compounds found in Pecos River water showed no evidence of PW origin. Isometric log-ratio Na-Cl-Br analysis showed the salinity in the Pecos River samples appeared to be linked to an increase in natural shallow brine inputs. This study outlines baseline analytical information to advance PW research by describing PW and surrounding surface water quality in the Permian Basin that will assist in determining management strategies, treatment methods, potential beneficial reuse applications, and potential environmental impacts specific to intended beneficial use of treated PW.
Collapse
Affiliation(s)
- Wenbin Jiang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Xuesong Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Ryan Hall
- NGL Partners LP, Santa Fe, NM 87501, United States
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Kenneth C Carroll
- Department of Plant and Environmental Science, New Mexico State University, Las Cruces, NM, United States
| | - Frank Ramos
- Department of Geological Sciences, New Mexico State University, Las Cruces, NM 88003, United States
| | - Mark A Engle
- Department of Earth, Environmental and Resource Sciences, The University of Texas at El Paso, El Paso, TX 79968, United States
| | - Lu Lin
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Huiyao Wang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | | | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States.
| |
Collapse
|
10
|
|
11
|
Hu L, Jiang W, Xu X, Wang H, Carroll KC, Xu P, Zhang Y. Toxicological characterization of produced water from the Permian Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152943. [PMID: 35007582 DOI: 10.1016/j.scitotenv.2022.152943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/18/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Produced water (PW) is a hypersaline waste stream generated from the shale oil and gas industry, consisting of numerous anthropogenic and geogenic compounds. Despite prior geochemical characterization, the comprehensive toxicity assessment is lacking for evaluating treatment technologies and the beneficial use of PW. In this study, a suite of in vitro toxicity assays using various aquatic organisms (luminescent bacterium Vibrio fischeri, fish gill cell line RTgill-W1, and microalgae Scenedesmus obliquus) were developed to investigate the toxicological characterizations of PW from the Permian Basin. The exposure to PW, PW inorganic fraction (PW-IF), and PW salt control (PW-SC) at 30-50% dilutions caused significant toxicological effects in all model species, revealing the high salinity was the foremost toxicological driver in PW. In addition, the toxicity level of PW was usually higher than that of PW-IF, suggesting that organic contaminants might also play a critical role in PW toxicity. When comparing the observed toxicity with associated chemical characterizations in different PW samples, strong correlations were found between them since higher concentrations of contaminants could generally result in higher toxicity towards exposed organisms. Furthermore, the toxicity results from the pretreated PW indicated that those in vitro toxicity assays had different sensitives to the chemical components present in PW. As expected, the combination of multiple pretreatments could lead to a more significant decrease in toxicity compared to the single pretreatment since the mixture of contaminants in PW might exhibit synergistic toxicity. Overall, the current work is expected to enhance our understanding of the potential toxicological impacts of PW to aquatic ecosystems and the relationships between the chemical profiles and observed toxicity in PW, which might be conducive to the establishment of monitoring, remediation, treatment, and reuse protocols for PW.
Collapse
Affiliation(s)
- Lei Hu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Wenbin Jiang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Xuesong Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Huiyao Wang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Kenneth C Carroll
- Department of Plant and Environmental Science, New Mexico State University, Las Cruces, NM 88003, USA
| | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
12
|
Emmons RV, Shyam Sunder GS, Liden T, Schug KA, Asfaha TY, Lawrence JG, Kirchhoff JR, Gionfriddo E. Unraveling the Complex Composition of Produced Water by Specialized Extraction Methodologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2334-2344. [PMID: 35080868 DOI: 10.1021/acs.est.1c05826] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Produced water (PW), a waste byproduct of oil and gas extraction, is a complex mixture containing numerous organic solubles and elemental species; these constituents range from polycyclic aromatic hydrocarbons to naturally occurring radioactive materials. Identification of these compounds is critical in developing reuse and disposal protocols to minimize environmental contamination and health risks. In this study, versatile extraction methodologies were investigated for the untargeted analysis of PW. Thin-film solid-phase microextraction with hydrophilic-lipophilic balance particles was utilized for the extraction of organic solubles from eight PW samples from the Permian Basin and Eagle Ford formation in Texas. Gas chromatography-mass spectrometry analysis found a total of 266 different organic constituents including 1,4-dioxane, atrazine, pyridine, and PAHs. The elemental composition of PW was evaluated using dispersive solid-phase extraction followed by inductively coupled plasma-mass spectrometry, utilizing a new coordinating sorbent, poly(pyrrole-1-carboxylic acid). This confirmed the presence of 29 elements including rare earth elements, as well as hazardous metals such as Cr, Cd, Pb, and U. Utilizing chemometric analysis, both approaches facilitated the discrimination of each PW sample based on their geochemical origin with a prediction accuracy above 90% using partial least-squares-discriminant analysis, paving the way for PW origin tracing in the environment.
Collapse
Affiliation(s)
- Ronald V Emmons
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
| | - Govind Sharma Shyam Sunder
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Tiffany Liden
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
- Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Timnit Yosef Asfaha
- Center for Materials and Sensor Characterization, College of Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Joseph G Lawrence
- Center for Materials and Sensor Characterization, College of Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Jon R Kirchhoff
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Emanuela Gionfriddo
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606, United States
- School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
13
|
Ji Y, Zhang Z, Zhuang Y, Liao R, Zhou Z, Chen S. Molecular-level variation of dissolved organic matter and microbial structure of produced water during its early storage in Fuling shale gas field, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38361-38373. [PMID: 33733405 DOI: 10.1007/s11356-021-13228-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Shale gas-produced water (PW), the waste fluid generated during gas production, contains a large number of organic contaminants and high salinity matrix. Previous studies generally focused on the end-of-pipe treatment of the PW and ignored the early collection process. In this study, the transformation of the molecular composition and microbial community structure of the PW in the transportation and storage process (i.e., from the gas-liquid separator to the storage tank) were investigated. As the PW was transported from the gas-liquid separator to the portable storage tank, the dissolved organic matter (DOM) showed greater saturation, less oxidation, and lower polarity. DOMs with high O/C and low H/C ratios (numbers of oxygen and hydrogen divided by numbers of carbon) were eliminated, which may be due to precipitation or adsorption by the solids suspended in the PW. The values of double-bond equivalent (DBE), DBE/C (DBE divided by the number of carbon), and aromatic index (AI) decreased, likely because of the microbial degradation of aromatic compounds. The PW in the gas-liquid separator presented a lower biodiversity than that in the storage tank. The microbial community in the storage tank showed the coexistence of anaerobes and aerobes. Genera related to biocorrosion and souring were detected in the two facilities, thus indicating the necessity of more efficient anticorrosion strategies. This study helps to enhance the understanding of the environmental behavior of PW during shale gas collection and provides a scientific reference for the design and formulation of efficient transportation and storage strategies to prevent and control the environmental risk of shale gas-derived PW.
Collapse
Affiliation(s)
- Yufei Ji
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoji Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Yiling Zhuang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rugang Liao
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co. Ltd., Chongqing, 408014, China
| | - Zejun Zhou
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co. Ltd., Chongqing, 408014, China
| | - Shaohua Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
14
|
Tang P, Xie W, Tiraferri A, Zhang Y, Zhu J, Li J, Lin D, Crittenden JC, Liu B. Organics removal from shale gas wastewater by pre-oxidation combined with biologically active filtration. WATER RESEARCH 2021; 196:117041. [PMID: 33774348 DOI: 10.1016/j.watres.2021.117041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Biological treatment technology is increasingly explored in shale gas wastewater (SGW) treatment owing to its cost effectiveness and requires efforts to improve its efficacy. In this work, ozone and ferrate(VI) oxidation pre-treatment were evaluated to enhance the performance of the subsequent biologically active filtration (BAF) in the removal of organic contaminants. The oxidation improved the SGW biodegradability and organic composition under relative high salinity (~20 g/L). Due to the degradation activity of microorganisms, the organics removal efficiency in the BAF system was observed to gradually improve and then reaching stability in long-term continuous-mode operation. The removal rate of dissolved organic carbon (DOC) of the ozone-BAF (O3-BAF) and the ferrate(VI)-BAF (Fe(VI)-BAF) systems was 83.2% and 82.8% , respectively, higher than that of BAF alone (80.9%). This increase was attributed to higher activity and content of microorganisms in O3-BAF and Fe(VI)-BAF systems. Two uncultured bacterial species with high abundance of 7.2-21.0% and 2.24-22.31% in genus Rehaibacterium and genus Methyloversatilis were significantly correlated with DOC removal and fluorescent organics removal, respectively. More research is needed to understand whether the species were new and their specific function. This study provides valuable suggestions for extracting safe water from SGW with an efficient treatment train.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Wancen Xie
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Yongli Zhang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China
| | - Jin Zhu
- Petro China Southwest Oil & Gasfield Company, No.5 Fuqing Rd., Chengdu, Sichuan 610051, PR China
| | - Jing Li
- Petro China Southwest Oil & Gasfield Company, No.5 Fuqing Rd., Chengdu, Sichuan 610051, PR China
| | - Dong Lin
- Petro China Southwest Oil & Gasfield Company, No.5 Fuqing Rd., Chengdu, Sichuan 610051, PR China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, North Ave. NW, Atlanta, Georgia, 30332, USA
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
15
|
Seltzer KM, Pennington E, Rao V, Murphy BN, Strum M, Isaacs KK, Pye HOT. Reactive organic carbon emissions from volatile chemical products. ATMOSPHERIC CHEMISTRY AND PHYSICS 2021; 21:5079-5100. [PMID: 34122530 PMCID: PMC8193795 DOI: 10.5194/acp-21-5079-2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Volatile chemical products (VCPs) are an increasingly important source of anthropogenic reactive organic carbon (ROC) emissions. Among these sources are everyday items, such as personal care products, general cleaners, architectural coatings, pesticides, adhesives, and printing inks. Here, we develop VCPy, a new framework to model organic emissions from VCPs throughout the United States, including spatial allocation to regional and local scales. Evaporation of a species from a VCP mixture in the VCPy framework is a function of the compound-specific physiochemical properties that govern volatilization and the timescale relevant for product evaporation. We introduce two terms to describe these processes: evaporation timescale and use timescale. Using this framework, predicted national per capita organic emissions from VCPs are 9.5 kg per person per year (6.4 kg C per person per year) for 2016, which translates to 3.05 Tg (2.06 Tg C), making VCPs a dominant source of anthropogenic organic emissions in the United States. Uncertainty associated with this framework and sensitivity to select parameters were characterized through Monte Carlo analysis, resulting in a 95 % confidence interval of national VCP emissions for 2016 of 2.61-3.53 Tg (1.76-2.38 Tg C). This nationwide total is broadly consistent with the U.S. EPA's 2017 National Emission Inventory (NEI); however, county-level and categorical estimates can differ substantially from NEI values. VCPy predicts higher VCP emissions than the NEI for approximately half of all counties, with 5 % of all counties having greater than 55 % higher emissions. Categorically, application of the VCPy framework yields higher emissions for personal care products (150 %) and paints and coatings (25 %) when compared to the NEI, whereas pesticides (-54 %) and printing inks (-13 %) feature lower emissions. An observational evaluation indicates emissions of key species from VCPs are reproduced with high fidelity using the VCPy framework (normalized mean bias of -13 % with r =0.95). Sector-wide, the effective secondary organic aerosol yield and maximum incremental reactivity of VCPs are 5.3 % by mass and 1.58 gO3 g-1, respectively, indicating VCPs are an important, and likely to date underrepresented, source of secondary pollution in urban environments.
Collapse
Affiliation(s)
- Karl M Seltzer
- Oak Ridge Institute for Science and Education Postdoctoral Fellow in the Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Elyse Pennington
- Oak Ridge Institute for Science and Education Fellow in the Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
- California Institute of Technology, Pasadena, CA 91125, USA
| | - Venkatesh Rao
- Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Benjamin N Murphy
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Madeleine Strum
- Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Kristin K Isaacs
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Havala O T Pye
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
16
|
Khan HJ, Spielman-Sun E, Jew AD, Bargar J, Kovscek A, Druhan JL. A Critical Review of the Physicochemical Impacts of Water Chemistry on Shale in Hydraulic Fracturing Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1377-1394. [PMID: 33428391 DOI: 10.1021/acs.est.0c04901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hydraulic fracturing of unconventional hydrocarbon resources involves the sequential injection of a high-pressure, particle-laden fluid with varying pH's to make commercial production viable in low permeability rocks. This process both requires and produces extraordinary volumes of water. The water used for hydraulic fracturing is typically fresh, whereas "flowback" water is typically saline with a variety of additives which complicate safe disposal. As production operations continue to expand, there is an increasing interest in treating and reusing this high-salinity produced water for further fracturing. Here we review the relevant transport and geochemical properties of shales, and critically analyze the impact of water chemistry (including produced water) on these properties. We discuss five major geochemical mechanisms that are prominently involved in the temporal and spatial evolution of fractures during the stimulation and production phase: shale softening, mineral dissolution, mineral precipitation, fines migration, and wettability alteration. A higher salinity fluid creates both benefits and complications in controlling these mechanisms. For example, higher salinity fluid inhibits clay dispersion, but simultaneously requires more additives to achieve appropriate viscosity for proppant emplacement. In total this review highlights the nuances of enhanced hydrogeochemical shale stimulation in relation to the choice of fracturing fluid chemistry.
Collapse
Affiliation(s)
- Hasan Javed Khan
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Eleanor Spielman-Sun
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Adam D Jew
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - John Bargar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Anthony Kovscek
- Department of Energy Resource Engineering, Stanford University, Stanford, California 94305, United States
| | - Jennifer L Druhan
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
A Critical Review of Analytical Methods for Comprehensive Characterization of Produced Water. WATER 2021. [DOI: 10.3390/w13020183] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Produced water is the largest waste stream associated with oil and gas production. It has a complex matrix composed of native constituents from geologic formation, chemical additives from fracturing fluids, and ubiquitous bacteria. Characterization of produced water is critical to monitor field operation, control processes, evaluate appropriate management practices and treatment effectiveness, and assess potential risks to public health and environment during the use of treated water. There is a limited understanding of produced water composition due to the inherent complexity and lack of reliable and standardized analytical methods. A comprehensive description of current analytical techniques for produced water characterization, including both standard and research methods, is discussed in this review. Multi-tiered analytical procedures are proposed, including field sampling; sample preservation; pretreatment techniques; basic water quality measurements; organic, inorganic, and radioactive materials analysis; and biological characterization. The challenges, knowledge gaps, and research needs for developing advanced analytical methods for produced water characterization, including target and nontarget analyses of unknown chemicals, are discussed.
Collapse
|
18
|
Emmons RV, Liden T, Schug KA, Gionfriddo E. Optimization of thin film solid phase microextraction and data deconvolution methods for accurate characterization of organic compounds in produced water. J Sep Sci 2020; 43:1915-1924. [DOI: 10.1002/jssc.201901330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Ronald V. Emmons
- Department of Chemistry and BiochemistryThe University of Toledo Toledo Ohio USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental AnalysisThe University of Toledo Toledo Ohio USA
| | - Tiffany Liden
- Department of Chemistry and BiochemistryThe University of Texas at Arlington Arlington Texas USA
| | - Kevin A. Schug
- Department of Chemistry and BiochemistryThe University of Texas at Arlington Arlington Texas USA
- Collaborative Laboratories for Environmental Analysis and RemediationThe University of Texas at Arlington Arlington Texas USA
| | - Emanuela Gionfriddo
- Department of Chemistry and BiochemistryThe University of Toledo Toledo Ohio USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental AnalysisThe University of Toledo Toledo Ohio USA
- School of Green Chemistry and EngineeringThe University of Toledo Toledo Ohio USA
| |
Collapse
|
19
|
Treatment of Produced Water in the Permian Basin for Hydraulic Fracturing: Comparison of Different Coagulation Processes and Innovative Filter Media. WATER 2020. [DOI: 10.3390/w12030770] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Produced water is the largest volume of waste product generated during oil and natural gas exploration and production. The traditional method to dispose of produced water involves deep well injection, but this option is becoming more challenging due to high operational cost, limited disposal capacity, and more stringent regulations. Meanwhile, large volumes of freshwater are used for hydraulic fracturing. The goal of this study is to develop cost-effective technologies, and optimize system design and operation to treat highly saline produced water (120–140 g/L total dissolved solids) for hydraulic fracturing. Produced water was collected from a salt water disposal facility in the Permian Basin, New Mexico. Chemical coagulation (CC) using ferric chloride and aluminum sulfate as coagulants was compared with electrocoagulation (EC) with aluminum electrodes for removal of suspended contaminants. The effects of coagulant dose, current density, and hydraulic retention time during EC on turbidity removal were investigated. Experimental results showed that aluminum sulfate was more efficient and cost-effective than ferric chloride for removing turbidity from produced water. The optimal aluminum dose was achieved at operating current density of 6.60 mA/cm2 and 12 min contact time during EC treatment, which resulted in 74% removal of suspended solids and 53–78% removal of total organic carbon (TOC). The energy requirement of EC was calculated 0.36 kWh/m3 of water treated. The total operating cost of EC was estimated $0.44/m3 of treated water, which is 1.7 or 1.2 times higher than CC using alum or ferric chloride as the coagulant, respectively. The EC operating cost was primarily associated with the consumption of aluminum electrode materials due to faradaic reactions and electrodes corrosions. EC has the advantage of shorter retention time, in situ production of coagulants, less sludge generation, and high mobility for onsite produced water treatment. The fine particles and other contaminants after coagulation were further treated in continuous-flow columns packed with different filter media, including agricultural waste products (pecan shell, walnut shell, and biochar), and new and spent granular activated carbon (GAC). Turbidity, TOC, metals, and electrical conductivity were monitored to evaluate the performance of the treatment system and the adsorption capacities of different media. Biochar and GAC showed the greatest removal of turbidity and TOC in produced water. These treatment technologies were demonstrated to be effective for the removal of suspended constituents and iron, and to produce a clean brine for onsite reuse, such as hydraulic fracturing.
Collapse
|
20
|
Danforth C, Chiu WA, Rusyn I, Schultz K, Bolden A, Kwiatkowski C, Craft E. An integrative method for identification and prioritization of constituents of concern in produced water from onshore oil and gas extraction. ENVIRONMENT INTERNATIONAL 2020; 134:105280. [PMID: 31704566 PMCID: PMC7547527 DOI: 10.1016/j.envint.2019.105280] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/16/2019] [Accepted: 10/19/2019] [Indexed: 05/14/2023]
Abstract
In the United States, onshore oil and gas extraction operations generate an estimated 900 billion gallons of produced water annually, making it the largest waste stream associated with upstream development of petroleum hydrocarbons. Management and disposal practices of produced water vary from deep well injection to reuse of produced water in agricultural settings. However, there is relatively little information with regard to the chemical or toxicological characteristics of produced water. A comprehensive literature review was performed, screening nearly 16,000 published articles, and identifying 129 papers that included data on chemicals detected in produced water. Searches for information on the potential ecotoxicological or mammalian toxicity of these chemicals revealed that the majority (56%) of these compounds have not been a subject of safety evaluation or mechanistic toxicology studies and 86% lack data to be used to complete a risk assessment, which underscores the lack of toxicological information for the majority of chemical constituents in produced water. The objective of this study was to develop a framework to identify potential constituents of concern in produced water, based on available and predicted toxicological hazard data, to prioritize these chemicals for monitoring, treatment, and research. In order to integrate available evidence to address gaps in toxicological hazard on the chemicals in produced water, we have catalogued available information from ecological toxicity studies, toxicity screening databases, and predicted toxicity values. A Toxicological Priority Index (ToxPi) approach was applied to integrate these various data sources. This research will inform stakeholders and decision-makers on the potential hazards in produced water. In addition, this work presents a method to prioritize compounds that, based on hazard and potential exposure, may be considered during various produced water reuse strategies to reduce possible human health risks and environmental impacts.
Collapse
Affiliation(s)
- Cloelle Danforth
- Environmental Defense Fund, 2060 Broadway, Suite 300, Boulder, CO 80302, USA.
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, TX 77843, USA.
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, TX 77843, USA.
| | - Kim Schultz
- The Endocrine Disruption Exchange, PO Box 54, Eckert, CO 81418, USA.
| | - Ashley Bolden
- The Endocrine Disruption Exchange, PO Box 54, Eckert, CO 81418, USA.
| | - Carol Kwiatkowski
- The Endocrine Disruption Exchange, PO Box 54, Eckert, CO 81418, USA.
| | - Elena Craft
- Environmental Defense Fund, 301 Congress Ave #1300, Austin, TX 78701, USA.
| |
Collapse
|
21
|
Faber AH, Annevelink MPJA, Schot PP, Baken KA, Schriks M, Emke E, de Voogt P, van Wezel AP. Chemical and bioassay assessment of waters related to hydraulic fracturing at a tight gas production site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:636-646. [PMID: 31301504 DOI: 10.1016/j.scitotenv.2019.06.354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 06/10/2023]
Abstract
Publicly available chemical assessments of hydraulic fracturing related waters are generally based on shale gas practices in the U.S. There is a lack of information on hydraulic fracturing related gas development from EU countries and more generally on other types of extractions. This research fills this knowledge gap by presenting chemical and bioassay assessments of hydraulic fracturing related waters from a tight gas development in the Netherlands. Fracturing fluid, flowback water and groundwater from surrounding aquifers before and after the actual fracturing were analysed by means of high resolution liquid chromatography tandem mass spectrometry, the Ames test and three chemical activated luciferase gene expression bioassays aimed at determining genotoxicity, oxidative stress response and polyaromatic hydrocarbon contamination. After sample enrichment a higher number of peaks can be found in both fracturing fluid and flowback samples. No clear differences in chemical composition were shown in the groundwater samples before and after hydraulic fracturing. Preliminary environmental fate data of the tentatively identified chemicals points towards persistence in water. Clear genotoxic and oxidative stress responses were found in the fracturing fluid and flowback samples. A preliminary suspect screening resulted in 25 and 36 matches in positive and negative ionisation respectively with the 338 possible suspect candidates on the list. Extensive measures relating to the handling, transport and treatment of hydraulic fracturing related waters are currently in place within the Dutch context. The results of the present study provide a scientific justification for such measures taken to avoid adverse environmental and human health impacts.
Collapse
Affiliation(s)
- Ann-Hélène Faber
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands; KWR Watercycle Research Institute, Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | - Mark P J A Annevelink
- KWR Watercycle Research Institute, Nieuwegein, the Netherlands; Department of Environmental Science, Radboud University Nijmegen, the Netherlands
| | - Paul P Schot
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | - Kirsten A Baken
- KWR Watercycle Research Institute, Nieuwegein, the Netherlands
| | - Merijn Schriks
- KWR Watercycle Research Institute, Nieuwegein, the Netherlands
| | - Erik Emke
- KWR Watercycle Research Institute, Nieuwegein, the Netherlands
| | - Pim de Voogt
- KWR Watercycle Research Institute, Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Annemarie P van Wezel
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands; KWR Watercycle Research Institute, Nieuwegein, the Netherlands
| |
Collapse
|
22
|
Mehta N, Kocar BD. Geochemical conditions conducive for retention of trace elements and radionuclides during shale-fluid interactions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1764-1776. [PMID: 31553335 DOI: 10.1039/c9em00244h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Produced water generated during unconventional oil and gas extractions contains a complex milieu of natural and anthropogenic potentially toxic chemical constituents including arsenic (As), chromium (Cr), and cadmium (Cd), naturally occurring radioactive materials (NORMs) including U and Ra, and a myriad of organic compounds. The human-ecological health risks and challenges associated with the disposal of produced water may be alleviated by understanding geochemical controls on processes responsible for the solubilization of potentially hazardous natural shale constituents to produced water. Here, we investigated, through a series of batch treatments, the leaching behavior of As, Se, Cu, Fe, Ba, Cr, Cd, and radioactive nuclides U, Ra from shale to produced water. Specifically, the effect of four major controls on element mobility was studied: (1) solution pH, (2) ionic strength of the solution, (3) oxic-anoxic conditions, and (4) an additive used in fracking fluid. The mobilization of metals and metalloids from shale was greatest in treatments containing sodium persulfate, an oxidant and a commonly used additive in fracture fluid. In the high ionic strength treatments, dissolved Ba concentrations increased 5-fold compared to low ionic strength treatments. Overall, anoxic conditions superimposed with low pH resulted in the largest increase of dissolved metals and radionuclides such as Ra. Overall, our results suggest that (1) limiting pore water acidification by injection of alkaline fluid in carbonate-low shale and (2) minimizing strong oxidizing conditions in shale formations may result in cost-effective in situ retention of produced water contaminants.
Collapse
Affiliation(s)
- Neha Mehta
- Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St, Cambridge, MA 02139, USA
| | | |
Collapse
|
23
|
Liden T, Carlton DD, Miyazaki S, Otoyo T, Schug KA. Comparison of the degree of fouling at various flux rates and modes of operation using forward osmosis for remediation of produced water from unconventional oil and gas development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:73-80. [PMID: 31026645 DOI: 10.1016/j.scitotenv.2019.04.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Driven by increased energy demands and technological advancements, the energy landscape of the United States has been changed by the expansion of unconventional oil and gas extraction. Unconventional development requires well stimulation, which uses millions of gallons of water per well and generates billions of gallons of wastewater annually. The waste matrix, referred to as produced water, has proven to be challenging to treat due to the complex physical, chemical, and biological composition, which can change over the lifetime of a production well. Here, forward osmosis was used as a remediation technique to extract fresh water from produced water procured from the Permian Basin region of west Texas. These data examine the durability of thin-film hollow-fiber membranes by determining how quickly the membranes irreversibly fouled at various flux rates during two modes of operation: a) active layer in contact with the draw solution (AL-DS); and b) active layer in contact with the feed solution (AL-FS). Membranes used in AL-DS mode fouled faster than their counterparts used in AL-FS mode. Additionally, membranes used with higher flux rates fouled more quickly than those used under low flux conditions. Ultimately, it was determined that produced water will require pretreatment prior to being concentrated using forward osmosis.
Collapse
Affiliation(s)
- Tiffany Liden
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA
| | - Doug D Carlton
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA; Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Shinji Miyazaki
- Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka 416-8501, Japan
| | - Takehiko Otoyo
- Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka 416-8501, Japan
| | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA; Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
24
|
Pretreatment Techniques for Produced Water with Subsequent Forward Osmosis Remediation. WATER 2019. [DOI: 10.3390/w11071437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Unconventional oil and gas extraction is on the rise across the United States and comprises an integral component in meeting the nation’s energy needs. The primary by-product of this industrious process is produced water, which is a challenging matrix to remediate because of its complex physical and chemical composition. Forward osmosis is a viable option to treat high-salinity produced water; however, fouling has been an issue. This study aimed to treat produced water before using forward osmosis as a remediation option. Trials consisted of a series of five experiments in order to evaluate the performance of the membrane. Samples were treated by centrifugation, activated carbon, filtration, ferric chloride, as well as coagulants and a polymer. It can be concluded that forward osmosis can be used to extract water from high-salinity oil field brines and produced water, and that pretreating the produced water decreased the tendency for fouling. The pretreatment with the overall best performance was activated carbon, which also yielded the lowest total organic carbon concentrations of 1.9 mg/L. During remediation trials using produced water pretreated with activated carbon as the feed solution, there was a 14% decrease in flux over the course of the 7 h trials. The membrane performance was restored after washing.
Collapse
|
25
|
Santos IC, Hildenbrand ZL, Schug KA. A Review of Analytical Methods for Characterizing the Potential Environmental Impacts of Unconventional Oil and Gas Development. Anal Chem 2018; 91:689-703. [PMID: 30392348 DOI: 10.1021/acs.analchem.8b04750] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Inês C Santos
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Place , Arlington , Texas 76019 , United States.,Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Zacariah L Hildenbrand
- Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation , The University of Texas at Arlington , Arlington , Texas 76019 , United States.,Inform Environmental, LLC , 6060 N. Central Expressway, Suite 500 , Dallas , Texas 75206 , United States
| | - Kevin A Schug
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Place , Arlington , Texas 76019 , United States.,Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| |
Collapse
|