1
|
Zhao L, Wang C, Sun F, Liao H, Chang H, Jia X. Assessment of occurrence, partitioning and ecological risk for 144 steroid hormones in Taihu Lake using UPLC-MS/MS with machine learning model. CHEMOSPHERE 2024; 354:141598. [PMID: 38432464 DOI: 10.1016/j.chemosphere.2024.141598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Steroid hormones (SHs) have attracted mounting attention due to their endocrine-disrupting effects on humans and aquatic organisms. However, the lack of analytical methods and toxicity data for a large number of SHs has limited the effective management of SH contamination in the water-sediment systems. In this study, we developed a highly sensitive analytical method for the simultaneous quantification of 144 SHs to investigate their occurrence, spatial distribution and partitioning in the water and sediment in Taihu Lake. The results showed that the total concentrations of SHs in water and sediment were 366.88-998.23 ng/L (mean: 612.84 ng/L) and 17.46-150.20 ng/g (mean: 63.41 ng/g), respectively. The spatial distribution of SHs in Taihu Lake might be simultaneously influenced by the pollution sources, lake hydrodynamics, and sediment properties. The sediment-water partitioning result implied that 28 SHs were in dynamic equilibrium at the water-water interface. In addition, 22 and 12 SHs tended to spread to water and settle into sediment, respectively. To assess the ecological risk of all SHs, a robust random forest model (R2 = 0.801) was developed to predict the acute toxicity of SHs for which toxicity data were not available from publications. Risk assessment showed that SHs posed a high ecological risk throughout Taihu Lake, with the highest risk in the northwestern areas. Estrone, 17β-estradiol and 17α-ethynylestradiol were the dominant risk contributors and were therefore recommended as the priority SHs in Taihu Lake. This work provided a valuable dataset for Taihu Lake, which would help to provide guidance and suggestions for future studies and be useful for the government to develop the mitigation and management measures.
Collapse
Affiliation(s)
- Li Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hong Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Xudong Jia
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China.
| |
Collapse
|
2
|
Smutná M, Javůrek J, Sehnal L, Toušová Z, Javůrková B, Sychrová E, Lepšová-Skácelová O, Hilscherová K. Potential risk of estrogenic compounds produced by water blooms to aquatic environment. CHEMOSPHERE 2023; 341:140015. [PMID: 37657694 DOI: 10.1016/j.chemosphere.2023.140015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Some freshwater phytoplankton species have been suggested to produce estrogenic compounds in concentrations which could cause adverse effects to aquatic biota, while other studies showed no estrogenic effects after exposure to phytoplankton extracts or pointed out possible sources of the overestimation of the estrogenic activity. This study aimed to clarify these research inconsistencies by investigating estrogenicity of biomass extracts from both environmental freshwater blooms and laboratory cyanobacterial and algae cultures by in vitro reporter bioassay. Biomasses of 8 cyanobacterial and 3 algal species from 7 taxonomic orders were extracted and tested. Next to this, samples of environmental water blooms collected from 8 independent water bodies dominated by phytoplankton species previously assessed as laboratory cultures were tested. The results showed undetectable or low estrogenicity of both freshwater blooms and laboratory cultures with E2 equivalent concentration (EEQ) in a range from LOQ up to 4.5 ng EEQ/g of dry mass. Moreover, the co-exposure of biomass extracts with environmentally relevant concentration of model estrogen (steroid hormone 17β-estradiol; E2), commonly occurring in surface waters, showed simple additive interaction. However, some of the biomass extracts elicited partially anti-estrogenic effects in co-exposure with higher E2 concentration. In conclusion, our study documents undetectable or relatively low estrogenic potential of biomass extracts from both environmental freshwater blooms and studied laboratory cultured cyanobacterial and algae species. Nevertheless, in case of very high-density water blooms, even this low estrogenicity (detected for two cyanobacterial species) could lead to EEQ content in biomass reaching effect-based trigger values indicating potential risk, if recalculated per water volume at field sites. However, these levels would not occur in water under realistic environmental scenarios and the potential estrogenic effects would be most probably minor compared to other toxic effects caused by massive freshwater blooms of such high densities.
Collapse
Affiliation(s)
- Marie Smutná
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jakub Javůrek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Luděk Sehnal
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Zuzana Toušová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Barbora Javůrková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Olga Lepšová-Skácelová
- Department of Botany, Faculty of Science, University of South Bohemia, Na Zlaté stoce 1, České Budějovice, Czech Republic
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
3
|
Guo J, Tu K, Zhou C, Lin D, Wei S, Zhang X, Yu H, Shi W. Methodology for Effect-Based Identification of Bioconcentratable Endocrine Disrupting Chemicals (EDCs) in Water: Establishment, Validation, and Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6284-6295. [PMID: 37013483 DOI: 10.1021/acs.est.2c08025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Since the wide occurrence of endocrine disrupting chemicals (EDCs) in water is associated with various adverse effects in aquatic organisms, it is urgent to identify key bioconcentratable EDCs. Currently, bioconcentration is generally ignored during the identification of key EDCs. Thus, a methodology for effect-based identification of bioconcentratable EDCs was established in Microcosm, validated in the field, and applied to typical surface water in Taihu Lake. In Microcosm, an inverted U-shaped relationship between logBCFs and logKows was observed for typical EDCs, with medium hydrophobic EDCs (3 ≤ logKow ≤ 7) exhibiting the greatest bioconcentration potentials. On this basis, enrichment methods for bioconcentratable EDCs were established using POM and LDPE, which better fitted the bioconcentration characteristics and enabled the enrichment of 71 ± 8% and 69 ± 6% bioconcentratable compounds. The enrichment methods were validated in the field, where LDPE exhibited a more significant correlation with the bioconcentration characteristics than POM, with mean correlation coefficients of 0.36 and 0.15, respectively, which was selected for further application. By application of the new methodology in Taihu Lake, 7 EDCs were prioritized from 79 identified EDCs as key bioconcentratable EDCs on consideration of their great abundance, bioconcentration potentials, and anti-androgenic potencies. The established methodology could support the evaluation and identification of bioconcentratable contaminants.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Keng Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chengzhuo Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Die Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| |
Collapse
|
4
|
Toušová Z, Priebojová J, Javůrek J, Večerková J, Lepšová-Skácelová O, Sychrová E, Smutná M, Hilscherová K. Estrogenic and retinoid-like activity in stagnant waters with mass occurrence of water blooms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158257. [PMID: 36037903 DOI: 10.1016/j.scitotenv.2022.158257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Stagnant freshwaters can be affected by anthropogenic pollution and eutrophication that leads to massive growth of cyanobacteria and microalgae forming complex water blooms. These can produce various types of bioactive compounds, some of which may cause embryotoxicity, teratogenicity, endocrine disruption and impair animal or human health. This study focused on potential co-occurrence of estrogenic and retinoid-like activities in diverse stagnant freshwaters affected by phytoplankton blooms with varying taxonomic composition. Samples of phytoplankton bloom biomass and its surrounding water were collected from 17 independent stagnant water bodies in the Czech Republic and Hungary. Total estrogenic equivalents (EEQ) of the most potent samples reached up to 4.9 ng·g-1 dry mass (dm) of biomass extract and 2.99 ng·L-1 in surrounding water. Retinoic acid equivalent (REQ) measured by in vitro assay reached up to 3043 ng·g-1 dm in phytoplankton biomass and 1202 ng·L-1in surrounding water. Retinoid-like and estrogenic activities at some sites exceeded their PNEC and effect-based trigger values, respectively. The observed effects were not associated with any particular species of cyanobacteria or algae dominating the water blooms nor related to phytoplankton density. We found that taxonomically diverse phytoplankton communities can produce and release retinoid-like compounds to surrounding water, while estrogenic potency is likely related to estrogens of anthropogenic origin adsorbed to phytoplankton biomass. Retinoids occurring in water blooms are ubiquitous signalling molecules, which can affect development and neurogenesis. Selected water bloom samples (both water and biomass extracts) with retinoid-like activity caused effects on neurodifferentiation in vitro corresponding to those of equivalent all-trans-retinoic acid concentrations. Co-occurrence of estrogenic and retinoid-like activities in stagnant water bodies as well as the potential of compounds produced by water blooms to interfere with neural differentiation should be considered in the assessment of risks associated with water blooms, which can comprise complex mixtures of natural and anthropogenic bioactive compounds.
Collapse
Affiliation(s)
- Zuzana Toušová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jana Priebojová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jakub Javůrek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jaroslava Večerková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Olga Lepšová-Skácelová
- Department of Botany, Faculty of Science, University of South Bohemia, Na Zlaté stoce 1, České Budějovice, Czech Republic
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Marie Smutná
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
5
|
Carere M, Antoccia A, Buschini A, Frenzilli G, Marcon F, Andreoli C, Gorbi G, Suppa A, Montalbano S, Prota V, De Battistis F, Guidi P, Bernardeschi M, Palumbo M, Scarcelli V, Colasanti M, D'Ezio V, Persichini T, Scalici M, Sgura A, Spani F, Udroiu I, Valenzuela M, Lacchetti I, di Domenico K, Cristiano W, Marra V, Ingelido AM, Iacovella N, De Felip E, Massei R, Mancini L. An integrated approach for chemical water quality assessment of an urban river stretch through Effect-Based Methods and emerging pollutants analysis with a focus on genotoxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113549. [PMID: 34543968 DOI: 10.1016/j.jenvman.2021.113549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/04/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The impact of emerging chemical pollutants, on both status and functionality of aquatic ecosystems is worldwide recognized as a relevant issue of concern that should be assessed and managed by researchers, policymakers, and all relevant stakeholders. In Europe, the Reach Regulation has registered more than 100.000 chemical substances daily released in the environment. Furthermore, the effects related to the mixture of substances present in aquatic ecosystems may not be predictable on the basis of chemical analyses alone. This evidence, coupled with the dramatic effects of climate changes on water resources through water scarcity and flooding, makes urgent the application of innovative, fast and reliable monitoring methods. In this context, Effect-Based Methods (EBMs) have been applied in the urban stretch of the Tiber River (Central Italy) with the aim of understanding if detrimental pressures affect aquatic environmental health. In particular, different eco-genotoxicological assays have been used in order to detect genotoxic activity of chemicals present in the river, concurrently characterized by chemical analysis. Teratogenicity and embryo-toxicity have been studied in order to cover additional endpoints. The EBMs have highlighted the presence of diffuse chemical pollution and ecotoxicological effects in the three sampling stations, genotoxicological effects have been also detected through the use of different tests and organisms. The chemical analyses confirmed that in the aquatic ecosystems there is a diffuse presence, even at low concentrations, of emerging contaminants such as pharmaceuticals, not routinely monitored pesticides, personal care products, PFAS. The results of this study can help to identify an appropriate battery of EBMs for future studies and the application of more appropriate measures in order to monitor, mitigate or eliminate chemical contamination and remediate its adverse/detrimental effects on the ecosystem health.
Collapse
Affiliation(s)
- Mario Carere
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy.
| | - Antonio Antoccia
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Annamaria Buschini
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze, 11/a, 43124, Parma, Italy
| | - Giada Frenzilli
- University of Pisa, Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, Via A. Volta 4, Pisa, Italy
| | - Francesca Marcon
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Cristina Andreoli
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Gessica Gorbi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze, 11/a, 43124, Parma, Italy
| | - Antonio Suppa
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze, 11/a, 43124, Parma, Italy
| | - Serena Montalbano
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze, 11/a, 43124, Parma, Italy
| | - Valentina Prota
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Francesca De Battistis
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Patrizia Guidi
- University of Pisa, Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, Via A. Volta 4, Pisa, Italy
| | - Margherita Bernardeschi
- University of Pisa, Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, Via A. Volta 4, Pisa, Italy
| | - Mara Palumbo
- University of Pisa, Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, Via A. Volta 4, Pisa, Italy
| | - Vittoria Scarcelli
- University of Pisa, Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, Via A. Volta 4, Pisa, Italy
| | - Marco Colasanti
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Veronica D'Ezio
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Tiziana Persichini
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Massimiliano Scalici
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Antonella Sgura
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Federica Spani
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Ion Udroiu
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Martina Valenzuela
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Ines Lacchetti
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Kevin di Domenico
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Walter Cristiano
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Valentina Marra
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Anna Maria Ingelido
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Nicola Iacovella
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Elena De Felip
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Riccardo Massei
- UFZ - Helmholtz Centre for Environmental Research, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318, Leipzig, Germany
| | - Laura Mancini
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| |
Collapse
|
6
|
Hu X, Shi W, Wei S, Zhang X, Yu H. Identification of (anti-)androgenic activities and risks of sludges from industrial and domestic wastewater treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115716. [PMID: 33011575 DOI: 10.1016/j.envpol.2020.115716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The annual production of sludges is significant all over the world, and large amounts of sludges have been improperly disposed by random dumping. The contaminants in these sludges may leak into the surrounding soils, surface and groundwater, or be blown into the atmosphere, thereby causing adverse effects to human health. In this study, the (anti-)androgenic activities in organic extracts of sludges produced from both industrial and domestic wastewater treatment plants (WWTPs) were examined using reporter gene assay based on MDA-kb2 cell lines and the potential (anti-)androgenic risks were assessed using hazard index (HI) based on bioassays. Twelve of the 18 samples exhibited androgen receptor (AR) antagonistic activities, with AR antagonistic equivalents ranging from 1.2 × 102 μg flutamide/g sludge to 1.8 × 104 μg flutamide/g sludge; however, no AR agonistic activity was detected in any of the tested samples. These 12 sludges were all from chemical WWTPs; no sludges from domestic WWTPs displayed AR antagonistic activity. Aside from wastewater source, treatment scale and technology could also influence AR antagonistic potencies. The HI values of all the 12 sludges exceeded 1.0, and the highest HI value was above 3.0 × 103 for children; this indicates that these sludges might cause adverse effects to human health and that children are at a greater risk than adults. The anti-androgenic potencies and risks of the subdivided fractions were also determined, and medium-polar and polar fractions were found to have relatively high detection rates and contribution rates to the AR antagonistic potencies and risks of the raw sample extracts.
Collapse
Affiliation(s)
- Xinxin Hu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Du B, Fan G, Yu W, Yang S, Zhou J, Luo J. Occurrence and risk assessment of steroid estrogens in environmental water samples: A five-year worldwide perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115405. [PMID: 33618485 DOI: 10.1016/j.envpol.2020.115405] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 05/15/2023]
Abstract
The ubiquitous occurrence of steroid estrogens (SEs) in the aquatic environment has raised global concern for their potential environmental impacts. This paper extensively compiled and reviewed the available occurrence data of SEs, namely estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), estriol (E3), and 17α-ethinyl estradiol (EE2), based on 145 published articles in different regions all over the world including 51 countries and regions during January 2015-March 2020. The data regarding SEs concentrations and estimated 17β-estradiol equivalency (EEQ) values are then compared and analyzed in different environmental matrices, including natural water body, drinking and tap water, and wastewater treatment plants (WWTPs) effluent. The detection frequencies of E1, 17β-E2, and E3 between the ranges of 53%-83% in natural water and WWTPs effluent, and the concentration of SEs varied considerably in different countries and regions. The applicability for EEQ estimation via multiplying relative effect potency (REPi) by chemical analytical data, as well as correlation between EEQbio and EEQcal was also discussed. The risk quotient (RQ) values were on the descending order of EE2 > 17β-E2 > E1 > 17α-E2 > E3 in the great majority of investigations. Furthermore, E1, 17β-E2, and EE2 exhibited high or medium risks in water environmental samples via optimized risk quotient (RQf) approach at the continental-scale. This overview provides the latest insights on the global occurrence and ecological impacts of SEs and may act as a supportive tool for future SEs investigation and monitoring.
Collapse
Affiliation(s)
- Banghao Du
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002, Fujian, China; Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 350002, Fujian, China.
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, 400074, Chongqing, China
| | - Shuo Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, 400074, Chongqing, China
| | - Jinjin Zhou
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Jing Luo
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| |
Collapse
|
8
|
Neale PA, Grimaldi M, Boulahtouf A, Leusch FDL, Balaguer P. Assessing species-specific differences for nuclear receptor activation for environmental water extracts. WATER RESEARCH 2020; 185:116247. [PMID: 32758789 DOI: 10.1016/j.watres.2020.116247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In vitro bioassays are increasingly applied to detect endocrine disrupting chemicals (EDCs) in environmental waters. Most studies use human nuclear receptor assays, but this raises questions about their relevance for evaluating ecosystem health. The current study aimed to assess species-specific differences in the activation or inhibition of a range of human and zebrafish nuclear receptors by different water extracts. Wastewater and surface water extracts were run in transactivation assays indicative of the estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), mineralocorticoid receptor (MR), pregnane X receptor (PXR) and peroxisome proliferator-activated receptor gamma (PPARγ). The transactivation assays were complemented with competitive binding assays for human AR, GR, PR and MR. In most cases, both human and zebrafish nuclear receptor activity were detected in the water extracts. Only some species-specific differences in potency and activity were observed. Water extracts were more active in zebrafish PXR compared to human PXR whereas the opposite was observed for PPARγ. Further, all water extracts inhibited zebrafish PR, while only one extract showed weak anti-progestagenic activity for human PR. Due to these observed differences, zebrafish nuclear receptor assays may be preferable over human nuclear receptor assays to assess the potential risks of EDCs to aquatic organisms. However, recognizing issues with availability of zebrafish nuclear receptor assays and the relatively small differences in responsiveness for many of the human and zebrafish nuclear receptors, including the widely studied ER, the current study supports the continued use of human nuclear receptor assays for water quality monitoring.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| |
Collapse
|
9
|
Snow DD, Cassada DA, Biswas S, Malakar A, D'Alessio M, Marshall AHL, Sallach JB. Detection, occurrence, and fate of emerging contaminants in agricultural environments (2020). WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1741-1750. [PMID: 32762100 DOI: 10.1002/wer.1429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
A review of 79 papers published in 2019 is presented. The topics ranged from detailed descriptions of analytical methods, to fate and occurrence studies, to ecological effects and sampling techniques for a wide variety of emerging contaminants likely to occur in agricultural environments. New methods and studies on veterinary pharmaceuticals, antibiotics, anthelmintics, and engineered nanomaterials in agricultural environments continue to expand our knowledge base on the occurrence and potential impacts of these compounds. This review is divided into the following sections: Introduction, Analytical Methods, Antibiotics in Agroecosystems, Pharmaceutical Fate and Occurrence, Anthelmintics and Engineered Nanomaterials. PRACTITIONER POINTS: New research describes innovative new techniques for emerging contaminant detection in agricultural settings Newer classes of contaminants include human and veterinary pharmaceuticals Research in nanomaterials show that these also occur in agricultural environments and will likely be topics of future work.
Collapse
Affiliation(s)
- Daniel D Snow
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - David A Cassada
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - Saptashati Biswas
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - Arindam Malakar
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - Matteo D'Alessio
- Department of Civil Engineering, University of Mississippi, Oxford, MS, USA
| | | | | |
Collapse
|
10
|
Archer E, Wolfaardt GM, van Wyk JH, van Blerk N. Investigating (anti)estrogenic activities within South African wastewater and receiving surface waters: Implication for reliable monitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114424. [PMID: 32247920 DOI: 10.1016/j.envpol.2020.114424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/02/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Natural and synthetic steroid hormones and many persistent organic pollutants are of concern for their endocrine-disrupting activities observed in receiving surface waters. Apart from the demonstrated presence of estrogen- and estrogen-mimicking compounds in surface waters, antagonistic (anti-estrogenic) responses originating from wastewater effluent have been reported but are less known. Estrogenicity and anti-estrogenicity were assessed using recombinant yeast estrogen receptor binding assays (YES/YAES) at ten South African wastewater treatment works (WWTWs) and receiving rivers in two separate sampling campaigns during the summer- and winter periods in the area. Four WWTWs were then further investigated to show daily variation in estrogenic endocrine-disrupting activities during the treatment process. Although estrogenicity was notably reduced at most of the WWTWs, some treated effluent and river water samples were shown to be above effect-based trigger values posing an endocrine-disrupting risk for aquatic life and potential health risks for humans. Furthermore, estrogenicity recorded in samples collected upstream from some WWTW discharge points also exceeded some calculated risk trigger values, which highlights the impact of alternative pollution sources contributing towards endocrine disrupting contaminants (EDCs) in the environment. The YAES further showed variable anti-estrogenic activities in treated wastewater. The current study highlights a variety of factors that may affect bioassay outcomes and conclusions drawn from the results for risk decision-making. For example, mismatches were found between estrogenic and anti-estrogenic activity, which suggests a potential masking effect in WWTW effluents and highlights the complexity of environmental samples containing chemical mixtures having variable endocrine-disrupting modes of action. Although the recombinant yeast assay is not without its limitations to show endocrine-disrupting modulation in test water systems, it serves as a cost-effective tier-1 scoping assay for further risk characterisation and intervention.
Collapse
Affiliation(s)
- Edward Archer
- Department of Microbiology, University of Stellenbosch, Stellenbosch, 7602, South Africa.
| | - Gideon M Wolfaardt
- Department of Microbiology, University of Stellenbosch, Stellenbosch, 7602, South Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada.
| | - Johannes H van Wyk
- Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, 7602, South Africa.
| | - Nico van Blerk
- Scientific Services, East Rand Water Care Company (ERWAT), Kempton Park, 1631, South Africa
| |
Collapse
|
11
|
Farounbi AI, Ngqwala NP. Occurrence of selected endocrine disrupting compounds in the eastern cape province of South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17268-17279. [PMID: 32152855 PMCID: PMC7192885 DOI: 10.1007/s11356-020-08082-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/11/2020] [Indexed: 05/24/2023]
Abstract
Endocrine-disrupting compounds are attracting attention worldwide because of their effects on living things in the environment. Ten endocrine disrupting compounds: 4-nonylphenol, 2,4-dichlorophenol, estrone, 17β-estradiol, bisphenol A, 4-tert-octylphenol, triclosan, atrazine, imidazole and 1,2,4-triazole were investigated in four rivers and wastewater treatment plants in this study. Rivers were sampled at upstream, midstream and downstream reaches, while the influent and effluent samples of wastewater were collected from treatment plants near the receiving rivers. Sample waters were freeze-dried followed by extraction of the organic content and purification by solid-phase extraction. Concentrations of the compounds in the samples were determined with ultra-high performance liquid chromatography-tandem mass spectrometry. The instrument was operated in the positive electrospray ionization (ESI) mode. The results showed that these compounds are present in the samples with nonylphenol > dichlorophenol > bisphenol A > triclosan > octylphenol > imidazole > atrazine > triazole > estrone > estradiol. Nonylphenol has its highest concentration of 6.72 μg/L in King Williams Town wastewater influent and 2.55 μg/L in midstream Bloukrans River. Dichlorophenol has its highest concentration in Alice wastewater influent with 2.20 μg/L, while it was 0.737 μg/L in midstream Bloukrans River. Uitenhage wastewater effluent has bisphenol A concentration of 1.684 μg/L while it was 0.477 μg/L in the downstream samples of the Bloukrans River. Generally, the upstream samples of the rivers had lesser concentrations of the compounds. The wastewater treatment plants were not able to achieve total removal of the compounds in the wastewater while runoffs and wastes dump from the cities contributed to the concentrations of the compounds in the rivers.
Collapse
Affiliation(s)
- Adebayo I. Farounbi
- Environmental Health and Biotechnology Research Group, Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, P.O. Box 94, Grahamstown, 6140 South Africa
| | - Nosiphiwe P. Ngqwala
- Environmental Health and Biotechnology Research Group, Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, P.O. Box 94, Grahamstown, 6140 South Africa
| |
Collapse
|
12
|
Bertin A, Damiens G, Castillo D, Figueroa R, Minier C, Gouin N. Developmental instability is associated with estrogenic endocrine disruption in the Chilean native fish species, Trichomycterus areolatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136638. [PMID: 31982740 DOI: 10.1016/j.scitotenv.2020.136638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Endocrine disrupting compounds (EDCs) are widespread contaminants that alter the normal functioning of the endocrine system. While they cause dysfunctions in essential biological processes, it is unclear whether EDCs also impact developmental stability. In the present study, we investigated the occurrence of estrogenic endocrine disrupting compounds in a small watershed of south-central Chile impacted by anthropogenic activities. Then, we assessed their relationship with internal levels of estrogenic active compounds and fluctuating asymmetry (FA), a proxy of developmental stability in organisms with bilateral symmetry, in a native fish species (Trichomycterus areolatus). Yeast estrogenic screen assays were performed to measure estrogenic activity in river sediments and in male fish tissues collected from 17 sites along the Chillán watershed, and geometric morphometrics used to estimate fluctuating asymmetry based on the shapes of 248 fish skulls. Estrogenic activity was detected both in sediments and male fish tissues at concentrations of up to 1005 ng and 83 ng 17β-estradiol equivalent/kg dw, respectively. No significant correlation was found between the two. However, fish tissue estrogenicity, water temperature and dissolved oxygen explained >80% of the FA population variation. By showing a significant relationship between estrogenic activity and FA of T. areolatus, our results indicate that developmental stability can be altered by estrogenic endocrine disruption, and that FA can be a useful indicator of sub-lethal stress in T. areolatus populations.
Collapse
Affiliation(s)
- Angéline Bertin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile.
| | - Gautier Damiens
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl Bitrán 1305, La Serena, Chile
| | - Daniela Castillo
- Programa de doctorado en Energía, Agua y Medio Ambiente, Universidad de La Serena, Benavente 980, La Serena, Chile.
| | - Ricardo Figueroa
- Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| | - Christophe Minier
- UMR-I 02 SEBIO - Stress Environnementaux et BIOsurveillance des milieu aquatiques, Université du Havre, 25 rue Philippe Lebon, BP1123, 76063 Le Havre cedex, France.
| | - Nicolas Gouin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl Bitrán 1305, La Serena, Chile; Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile.
| |
Collapse
|
13
|
Tiehm A, Hollert H, Yin D, Zheng B. Tai Hu (China): Water quality and processes - From the source to the tap. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135559. [PMID: 31810708 DOI: 10.1016/j.scitotenv.2019.135559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Andreas Tiehm
- Department of Microbiology and Molecular Biology, DVGW-Technologiezentrum Wasser (TZW), Karlsruher Str. 84, 76139 Karlsruhe, Germany.
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Daqiang Yin
- Tongji University, College of Environmental Science & Engineering, No. 1239 Siping Road, Shanghai 200092, China.
| | - Binghui Zheng
- Chinese Research Academy of Environmental Science, No. 8 Anwai Dayangfang, Beijing 100012, China.
| |
Collapse
|
14
|
Sacdal R, Madriaga J, Espino MP. Overview of the analysis, occurrence and ecological effects of hormones in lake waters in Asia. ENVIRONMENTAL RESEARCH 2020; 182:109091. [PMID: 31927242 DOI: 10.1016/j.envres.2019.109091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/15/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Hormones are natural and synthetic compounds that are now being detected in the aquatic environment. Many lakes in Asia are important water sources that may be affected by these emerging contaminants. Lakes are drains and reservoirs of watersheds that are altered by changing land use and environmental conditions. While there are several studies on the detection of hormones in lakes, these studies were mostly done in China. Limited information is available on the presence of these contaminants in the lakes in other Asian countries. Hormones in the lake water come from discharge waters in urban areas, farm runoffs, and effluents of wastewater and sewage treatment plants. Hormones contamination in water has been shown to affect the reproduction and growth of certain aquatic organisms. In this review, a background on the chemical nature and physiological functions of hormones is provided and the existing knowledge on the occurrence and ecological impacts of hormones in lakes is described. The available analytical methods for sampling, analyte extraction and instrumental analysis are outlined. This overview provides insights on the current conditions of lakes that may be impacted by hormones contamination. Understanding the levels and possible ecological consequences will address the issues on these emerging contaminants especially in the Asian environment. This will elicit discussions on improving guidelines on wastewater discharges and will drive future research directions.
Collapse
Affiliation(s)
- Rosselle Sacdal
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Jonalyn Madriaga
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Maria Pythias Espino
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines.
| |
Collapse
|
15
|
Jia Y, Schmid C, Shuliakevich A, Hammers-Wirtz M, Gottschlich A, der Beek TA, Yin D, Qin B, Zou H, Dopp E, Hollert H. Toxicological and ecotoxicological evaluation of the water quality in a large and eutrophic freshwater lake of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:809-820. [PMID: 30851614 DOI: 10.1016/j.scitotenv.2019.02.435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Effect-based methods (EBMs) are recommended as holistic approach for diagnosis and monitoring of water quality; however, the application of EBMs is still scare in China. In the present study, water quality of the freshwater lake Taihu (China) was investigated by EBMs. Different types of water samples were collected from three bays of the lake during 2015, 2016 and 2017. A battery of seven effect-based bioassays, including both specific and non-specific toxicity assays, was used. The bioassay battery was recently suggested based on joint activities of the EU project SOLUTIONS and the NORMAN network on emerging pollutants and is also under discussion for being implemented into monitoring activities in the context of the European Water Framework Directive (WFD). Adverse effects were observed towards the primary producer, primary consumer and fish, indicating the potential ecotoxicity of water in Taihu Lake. Mutagenic and estrogenic effects were found in the Ames fluctuation assay and ERα CALUX (Chemically Activated Luciferase Gene-eXpression) assay, respectively, highlighting the potential risks on human health. Algal growth inhibition and mutagenic effects can be observed during each of the three years. Acute toxicity towards Daphnia magna and estrogen receptor agonistic effects were found in at least one of the samples collected in 2016 and 2017, but not in 2015. The endpoints for fish toxicity in the Danio rerio fish embryo test included both lethal and additionally several sublethal effects (only for samples from 2017) and were not compared between years. Algal growth inhibition, fish embryo toxicity, mutagenic effect and estrogenicity were observed in each of the three bays, while Daphnia acute toxicity was only found in Zhushan Bay. Taking together, this study provides a big picture on the water quality of Taihu Lake. The battery of effect-based tools is promising to be a routine for water quality monitoring in China.
Collapse
Affiliation(s)
- Yunlu Jia
- RWTH Aachen University, ABBt- Aachen Biology and Biotechnology, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen, Germany.
| | - Cora Schmid
- IWW Water Centre, Mülheim a.d. Ruhr, Germany; University Duisburg-Essen, Zentrum für Wasser- und Umweltforschung (ZWU), Germany
| | - Aliaksandra Shuliakevich
- RWTH Aachen University, ABBt- Aachen Biology and Biotechnology, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen, Germany
| | - Monika Hammers-Wirtz
- Research Institute for Ecosystem Analysis and Assessment - gaiac, Aachen, Germany
| | | | | | - Daqiang Yin
- Tongji University, College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, China
| | - Boqiang Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Elke Dopp
- IWW Water Centre, Mülheim a.d. Ruhr, Germany; University Duisburg-Essen, Zentrum für Wasser- und Umweltforschung (ZWU), Germany
| | - Henner Hollert
- RWTH Aachen University, ABBt- Aachen Biology and Biotechnology, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen, Germany; Research Institute for Ecosystem Analysis and Assessment - gaiac, Aachen, Germany; Tongji University, College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, China; Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing, China.
| |
Collapse
|
16
|
Ding J, Cheng Y, Hua Z, Yuan C, Wang X. The Effect of Dissolved Organic Matter (DOM) on the Release and Distribution of Endocrine-Disrupting Chemicals (Edcs) from Sediment under Hydrodynamic Forces, A Case Study of Bisphenol A (BPA) and Nonylphenol (NP). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101724. [PMID: 31100823 PMCID: PMC6571804 DOI: 10.3390/ijerph16101724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 01/09/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) that exist in the aquatic system bring severe environmental risks. In this study, we investigate the dissolved organic matter (DOM) effect on the release and distribution of EDCs under varied hydrodynamic conditions. A water chamber mesocosm was designed to simulate the hydrodynamic forces in a shallow lake. The contents of bisphenol A (BPA) and nonylphenol (NP) in colloid-bound and soluble phases were measured under four increasing hydrodynamic intensities that were 5%, 20%, 50%, and 80% of the critical shear stress. The total BPA and NP contents in overlying water grew linearly with the hydrodynamic intensity (R2 = 0.997 and 0.987), from 108.28 to 415.92 ng/L of BPA and 87.73 to 255.52 ng/L of NP. The exponential relationships of EDC content and hydrodynamic intensity in soluble phase (R2 = 0.985 of BPA and 0.987 of NP) and colloid phase (R2 = 0.992 of BPA and 0.995 of NP) were also detected. The DOM concentrations in colloid-bound phase (cDOM) and in soluble phase (sDOM) were measured and the linear relationships with BPA content (R2 = 0.967 of cDOM and 0.989 of sDOM) and NP content (R2 = 0.978 of cDOM and 0.965 of sDOM) were detected. We analyzed the ratio (αDOM) of sDOM and cDOM that grew logarithmically with the hydrodynamic intensity (R2 = 0.999). Moreover, the ratio (αEDCs) of BPA and NP contents in soluble and colloid-bound phases varied differently with αDOM. The results suggested that BPA tended to be in the soluble phase and NP tended to be in the colloid-bound phase due to the increasing value of αDOM.
Collapse
Affiliation(s)
- Jue Ding
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China.
| | - Yu Cheng
- Center for Hydrosciences Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210098, China.
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China.
| | - Cong Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China.
| | - Xiaoju Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China.
| |
Collapse
|