1
|
McLellan EL, Suttles KM, Bouska KL, Ellis JH, Flotemersch JE, Goff M, Golden HE, Hill RA, Hohman TR, Keerthi S, Keim RF, Kleiss BA, Lark TJ, Piazza BP, Renfro AA, Robertson DM, Schilling KE, Schmidt TS, Waite IR. Improving ecosystem health in highly altered river basins: a generalized framework and its application to the Mississippi-Atchafalaya River Basin. FRONTIERS IN ENVIRONMENTAL SCIENCE 2024; 12:1-19. [PMID: 38516348 PMCID: PMC10953731 DOI: 10.3389/fenvs.2024.1332934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Continued large-scale public investment in declining ecosystems depends on demonstrations of "success". While the public conception of "success" often focuses on restoration to a pre-disturbance condition, the scientific community is more likely to measure success in terms of improved ecosystem health. Using a combination of literature review, workshops and expert solicitation we propose a generalized framework to improve ecosystem health in highly altered river basins by reducing ecosystem stressors, enhancing ecosystem processes and increasing ecosystem resilience. We illustrate the use of this framework in the Mississippi-Atchafalaya River Basin (MARB) of the central United States (U.S.), by (i) identifying key stressors related to human activities, and (ii) creating a conceptual ecosystem model relating those stressors to effects on ecosystem structure and processes. As a result of our analysis, we identify a set of landscape-level indicators of ecosystem health, emphasizing leading indicators of stressor removal (e.g., reduced anthropogenic nutrient inputs), increased ecosystem function (e.g., increased water storage in the landscape) and increased resilience (e.g., changes in the percentage of perennial vegetative cover). We suggest that by including these indicators, along with lagging indicators such as direct measurements of water quality, stakeholders will be better able to assess the effectiveness of management actions. For example, if both leading and lagging indicators show improvement over time, then management actions are on track to attain desired ecosystem condition. If, however, leading indicators are not improving or even declining, then fundamental challenges to ecosystem health remain to be addressed and failure to address these will ultimately lead to declines in lagging indicators such as water quality. Although our model and indicators are specific to the MARB, we believe that the generalized framework and the process of model and indicator development will be valuable in an array of altered river basins.
Collapse
Affiliation(s)
| | | | - Kristen L. Bouska
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, United States
| | - Jamelle H. Ellis
- Theodore Roosevelt Conservation Partnership, Washington, DC, United States
| | - Joseph E. Flotemersch
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Madison Goff
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, United States
| | - Heather E. Golden
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Ryan A. Hill
- U.S. Environmental Protection Agency, Office of Research and Development, Corvallis, OR, United States
| | - Tara R. Hohman
- Audubon Upper Mississippi River, Audubon Center at Riverlands, West Alton, MO, United States
| | | | - Richard F. Keim
- School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA, United States
| | - Barbara A. Kleiss
- Department of River Coastal Science and Engineering, Tulane University, New Orleans, LA, United States
| | - Tyler J. Lark
- Center for Sustainability and the Global Environment, University of Wisconsin, Madison, WI, United States
| | | | | | - Dale M. Robertson
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, WI, United States
| | - Keith E. Schilling
- IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA, United States
| | - Travis S. Schmidt
- U.S. Geological Survey, Wyoming-Montana Water Science Center, Helena, MT, United States
| | - Ian R. Waite
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, United States
| |
Collapse
|
2
|
Kamanmalek S, Rice-Boayue J. Development of a national antibiotic multimetric index for identifying watersheds vulnerable to antibiotic pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122670. [PMID: 37813143 DOI: 10.1016/j.envpol.2023.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
Improved surveillance of antibiotics and antibiotic resistance (AR) throughout the environment is an important aspect of the prevention and control of threats posed to human and ecological health. In response to field investigations often limited by resources and time, this study aims to develop a systematic approach to assess watershed vulnerability to antibiotic pollution and AR by integrating modeling and field studies. The national antibiotic pollution vulnerability index was developed to identify watersheds most impacted by antibiotic sources. The index incorporates multiple metrics representing antibiotic pollution driven by both agricultural activities and municipal wastewater (i.e. outpatient antibiotic prescriptions, wastewater treatment plant effluent flow, stream order and dilution factor of effluent-receiving streams, manure application, and animal facilities), alongside climate change indicators (i.e., temperature, precipitation, and runoff). The pollution index was applied at a state level in North Carolina to identify the most-impacted watersheds and inform site selection for targeted field study quantifying azithromycin, ciprofloxacin, sulfamethoxazole, and trimethoprim concentrations. Modeled-informed sites in NC demonstrated the highest reported concentrations of azithromycin, trimethoprim, and sulfamethoxazole compared to previous NC studies, confirming the index effectiveness in identifying watersheds with higher antibiotic concentrations. At the national scale, watersheds relatively more vulnerable to antibiotic pollution are predominantly located in the Midwest, South, and Northeast regions of the U.S., with Iowa and Indiana being the most impacted states. Climate change is expected to exacerbate watershed vulnerability to agriculture-driven AR in the Midwest and Northeast due to an increase in precipitation and mean temperature coupled with intense agricultural activities. In addition, due to climate change-induced reductions in precipitation and runoff, watersheds in the Midwest, Mid-Atlantic, and South Central are dominantly at higher risk of effluent-driven AR occurrences. We have disseminated the developed indices as open-source online tools to aid in prioritizing strategies to mitigate AR occurrence across the U.S.
Collapse
Affiliation(s)
- Sara Kamanmalek
- Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL, 32306, USA
| | - Jacelyn Rice-Boayue
- Department of Civil, Construction, And Environmental Engineering, North Carolina State University, Raleigh, NC, 27606, USA.
| |
Collapse
|
3
|
Keely SP, Brinkman NE, Wheaton EA, Jahne MA, Siefring SD, Varma M, Hill RA, Leibowitz SG, Martin RW, Garland JL, Haugland RA. Geospatial Patterns of Antimicrobial Resistance Genes in the US EPA National Rivers and Streams Assessment Survey. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14960-14971. [PMID: 35737903 PMCID: PMC9632466 DOI: 10.1021/acs.est.2c00813] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antimicrobial resistance (AR) is a serious global problem due to the overuse of antimicrobials in human, animal, and agriculture sectors. There is intense research to control the dissemination of AR, but little is known regarding the environmental drivers influencing its spread. Although AR genes (ARGs) are detected in many different environments, the risk associated with the spread of these genes to microbial pathogens is unknown. Recreational microbial exposure risks are likely to be greater in water bodies receiving discharge from human and animal waste in comparison to less disturbed aquatic environments. Given this scenario, research practitioners are encouraged to consider an ecological context to assess the effect of environmental ARGs on public health. Here, we use a stratified, probabilistic survey of nearly 2000 sites to determine national patterns of the anthropogenic indicator class I integron Integrase gene (intI1) and several ARGs in 1.2 million kilometers of United States (US) rivers and streams. Gene concentrations were greater in eastern than in western regions and in rivers and streams in poor condition. These first of their kind findings on the national distribution of intI1 and ARGs provide new information to aid risk assessment and implement mitigation strategies to protect public health.
Collapse
Affiliation(s)
- Scott P. Keely
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Nichole E. Brinkman
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Emily A. Wheaton
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Michael A. Jahne
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Shawn D. Siefring
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Manju Varma
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Ryan A. Hill
- Center
for Public Health and Environmental Assessment, US Environmental Protection Agency, Corvallis, Oregon 97333, United States
| | - Scott G. Leibowitz
- Center
for Public Health and Environmental Assessment, US Environmental Protection Agency, Corvallis, Oregon 97333, United States
| | - Roy W. Martin
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Jay L. Garland
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Richard A. Haugland
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
4
|
Harrison LJ, Pearson KA, Wheatley CJ, Hill JK, Maltby L, Rivetti C, Speirs L, White PCL. Functional measures as potential indicators of down-the-drain chemical stress in freshwater ecological risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1135-1147. [PMID: 34951104 PMCID: PMC9543243 DOI: 10.1002/ieam.4568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Conventional ecological risk assessment (ERA) predominately evaluates the impact of individual chemical stressors on a limited range of taxa, which are assumed to act as proxies to predict impacts on freshwater ecosystem function. However, it is recognized that this approach has limited ecological relevance. We reviewed the published literature to identify measures that are potential functional indicators of down-the-drain chemical stress, as an approach to building more ecological relevance into ERA. We found wide variation in the use of the term "ecosystem function," and concluded it is important to distinguish between measures of processes and measures of the capacity for processes (i.e., species' functional traits). Here, we present a classification of potential functional indicators and suggest that including indicators more directly connected with processes will improve the detection of impacts on ecosystem functioning. The rate of leaf litter breakdown, oxygen production, carbon dioxide consumption, and biomass production have great potential to be used as functional indicators. However, the limited supporting evidence means that further study is needed before these measures can be fully implemented and interpreted within an ERA and regulatory context. Sensitivity to chemical stress is likely to vary among functional indicators depending on the stressor and ecosystem context. Therefore, we recommend that ERA incorporates a variety of indicators relevant to each aspect of the function of interest, such as a direct measure of a process (e.g., rate of leaf litter breakdown) and a capacity for a process (e.g., functional composition of macroinvertebrates), alongside structural indicators (e.g., taxonomic diversity of macroinvertebrates). Overall, we believe that the consideration of functional indicators can add value to ERA by providing greater ecological relevance, particularly in relation to indirect effects, functional compensation (Box 1), interactions of multiple stressors, and the importance of ecosystem context. Environ Assess Manag 2022;18:1135-1147. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Laura J. Harrison
- Department of Environment and GeographyUniversity of YorkYorkHeslingtonUK
| | - Katie A. Pearson
- Department of Environment and GeographyUniversity of YorkYorkHeslingtonUK
| | - Christopher J. Wheatley
- Department of BiologyLeverhulme Centre for Anthropocene Biodiversity, University of YorkYorkHeslingtonUK
| | - Jane K. Hill
- Department of BiologyLeverhulme Centre for Anthropocene Biodiversity, University of YorkYorkHeslingtonUK
| | - Lorraine Maltby
- School of Biosciences, The University of SheffieldSheffieldWestern BankUK
| | - Claudia Rivetti
- Safety and Environmental Assurance Centre, Unilever, Colworth Science ParkSharnbrookUK
| | - Lucy Speirs
- Safety and Environmental Assurance Centre, Unilever, Colworth Science ParkSharnbrookUK
| | - Piran C. L. White
- Department of Environment and GeographyUniversity of YorkYorkHeslingtonUK
| |
Collapse
|
5
|
Somerville DE, Pond GJ. The coastal plain headwater stream restoration (CP-HStR) index: a macroinvertebrate index for assessing the biological effectiveness of stream restoration in the Georgia coastal plain, USA. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:319. [PMID: 35357588 PMCID: PMC9066382 DOI: 10.1007/s10661-022-09987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Stream restoration projects undertaken as compensatory mitigation pursuant to Sect. 404 of the U.S. Clean Water Act must be evaluated using ecological performance standards that are objective and verifiable and based on the best available science that can be measured or assessed in a practicable manner. While performance standards for physical stream conditions are common, evaluating biological conditions following stream restoration activities has proven more problematic. We developed a macroinvertebrate multimetric index for headwater streams in three Southeastern Plains subecoregions (65 g, 65 h, and 65 l) of Georgia using 76 sites sampled in 2019. An abiotic disturbance gradient based on principal components analysis of instream habitat, physicochemical, and land use variables was employed to assign condition classes (good, fair, poor) among sites within each subecoregion. We identified genus-level macroinvertebrate richness and proportional richness of traits-based metrics (habit and functional feeding groups) that demonstrated high discriminatory power between good and poor abiotic conditions and response to individual stressors. Subecoregion-specific metrics were then standardized and aggregated to develop the final index and biological reference curves. These biological reference curves represent a continuum of relevant regional conditions against which a stream enhancement or restoration project may be assessed relative to other streams throughout the region and allow for the award of mitigation credit, if applicable, to be based directly on the relative improvement of biological conditions. These biological performance standards will supplement other performance standards (hydrologic and geomorphic measures) necessary to evaluate the effectiveness of stream restoration projects in the study area.
Collapse
Affiliation(s)
- D Eric Somerville
- Water Division, Oceans Wetlands and Streams Protection Branch, U.S. EPA Region 4, Athens, GA, USA.
| | - Gregory J Pond
- Laboratory Services and Applied Science Division, Field Services Branch, U.S. EPA Region 3, Wheeling, WV, USA
| |
Collapse
|
6
|
Griffith MB, McManus MG. Consideration of spatial and temporal scales in stream restorations and biotic monitoring to assess restoration outcomes: A literature review, Part 2. RIVER RESEARCH AND APPLICATIONS 2020; 36:1398-1415. [PMID: 33363446 PMCID: PMC7754979 DOI: 10.1002/rra.3694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/16/2020] [Indexed: 06/12/2023]
Abstract
Stream and river restoration practices have become common in many parts of the world. To answer the question whether such restoration measures improve freshwater biotic assemblages or functions over time, and if not, can general reasons be identified for such outcomes, we conducted a literature survey and review of studies in which different types of stream restorations were conducted and outcomes assessed. In the first paper, we reviewed studies of culvert restorations, acid mine drainage or industrial pollution restoration; and urban stream restoration projects. Here, we review studies of restoration via dam removal, changes in dam operation or fish passage structures; instream habitat modification; riparian restoration or woody material addition; channel restoration and multiple restoration measures and develop some general conclusions from these reviews. Biomonitoring in different studies detected improvements for some restoration measures; other studies found minimal or no statistically significant increases in biotic assemblage richness, abundances or functions. In some cases, untreated stressors may have influenced the outcomes of the restoration, but in many cases, there were mismatches in the temporal or spatial scale of the restoration measure undertaken and associated monitoring. For example, either biomonitoring to measure restoration effects was conducted over a too short a time period after restoration for effects to be observed, or the sources and stressors needing remediation occurred at a larger catchment scale than the restoration. Also, many restoration measures lack observations from unimpaired reference sites for use in predicting how much of a beneficial effect might be expected.
Collapse
Affiliation(s)
- Michael B. Griffith
- U. S. Environmental Protection Agency, Office of Research
and Development, National Center for Environmental Assessment, Cincinnati,
Ohio
- Current affiliation: U. S. Environmental Protection Agency,
Office of Research and Development, Center for Environmental Measurement and
Modeling, Cincinnati, Ohio
| | - Michael G. McManus
- U. S. Environmental Protection Agency, Office of Research
and Development, National Center for Environmental Assessment, Cincinnati,
Ohio
- Current affiliation: U. S. Environmental Protection Agency,
Office of Research and Development, Center for Environmental Measurement and
Modeling, Cincinnati, Ohio
| |
Collapse
|
7
|
Riato L, Leibowitz SG, Weber MH. The use of multiscale stressors with biological condition assessments: A framework to advance the assessment and management of streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139699. [PMID: 32531512 PMCID: PMC7808441 DOI: 10.1016/j.scitotenv.2020.139699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Incorporating information on landscape condition (or integrity) across multiple spatial scales and over large spatial extents in biological assessments may allow for a more integrated measure of stream biological condition and better management of streams. However, these systems are often assessed and managed at an individual scale (e.g., a single watershed) without a larger regional multiscale context. In this paper, our goals were: (1) To develop a conceptual framework that could combine stream biological condition to abiotic landscape integrity (or, conversely, stressor) data at three spatial scales: watershed, catchment and stream-reach scale, to enable more targeted management actions. Measures of landscape integrity and stressors are negatively related, i.e., integrity on a 0-1 scale is equal or equivalent to stressors on a 1-0 scale. (2) To develop the framework in such a way that allows operational flexibility, whereby different indicators can be used to represent biological condition, and landscape integrity (or stressors) at various scales. (3) To provide different examples of the framework's use to demonstrate the flexibility of its application and relevance to management. Examples include stream biological assessments from different regions and states across the U.S. for fish, macroinvertebrates and diatoms using a variety of assessment tools (e.g., the Biological Condition Gradient (BCG), and an Index of Biotic Integrity (IBI)). Landscape integrity indicators comprise U.S. EPA's nationally available Index of Watershed Integrity (IWI) and Index of Catchment Integrity (ICI), and state and regional derived watershed and stream-reach scale integrity indicators. Scatterplots and a landscape integrity map were used to relate samples of stream condition classes (e.g., good, fair, poor) to watershed, catchment and stream-reach scale integrity. This framework and approach could provide a powerful tool for prioritizing, targeting, and communicating management actions to protect and restore stream habitats, and for informing the spatial extent at which management is applied.
Collapse
Affiliation(s)
- Luisa Riato
- Oak Ridge Institute for Science and Education (ORISE) Post-Doctoral Fellow c/o U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 200 SW 35th St., Corvallis, OR 97333, USA.
| | - Scott G Leibowitz
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 200 SW 35th St., Corvallis, OR 97333, USA.
| | - Marc H Weber
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 200 SW 35th St., Corvallis, OR 97333, USA.
| |
Collapse
|
8
|
Aho KB, Flotemersch JE, Leibowitz SG, LaCroix MA, Weber MH. Applying the index of watershed integrity to the Matanuska-Susitna basin. ARCTIC, ANTARCTIC, AND ALPINE RESEARCH 2020; 52:435-449. [PMID: 33132766 PMCID: PMC7592703 DOI: 10.1080/15230430.2020.1800219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
The Matanuska-Susitna Borough is the fastest growing region in the State of Alaska and is impacted by a number of human activities. We conducted a multiscale assessment of the stressors facing the borough by developing and mapping the Index of Watershed Integrity (IWI) and Index of Catchment Integrity (the latter considers stressors in areas surrounding individual stream segments exclusive of upstream areas). The assessment coincided with the borough's stormwater management planning. We adapted the list of anthropogenic stressors used in the original conterminous United States IWI application to reflect the borough's geography, human activity, and data availability. This analysis also represents an early application of the NHDPlus High Resolution geospatial framework and the first use of the framework in an IWI study. We also explored how remediation of one important stressor, culverts, could impact watershed integrity at the catchment and watershed scales. Overall, we found that the integrity scores for the Matanuska-Susitna basin were high compared to the conterminous United States. Low integrity scores did occur in the rapidly developing Wasilla-Palmer core area. We also found that culvert remediation had a larger proportional impact in catchments with fewer stressors.
Collapse
Affiliation(s)
- Kelsey B. Aho
- Oak Ridge Institute for Science and Education (ORISE) Fellow C/o U.S. Environmental Protection Agency, Corvallis, Oregon, USA
| | - Joseph E. Flotemersch
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Scott G. Leibowitz
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Corvallis, Oregon, USA
| | - Matthew A. LaCroix
- Region 10, Alaska Operations Office, U.S. Environmental Protection Agency, Anchorage, Alaska, USA
| | - Marc H. Weber
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Corvallis, Oregon, USA
| |
Collapse
|
9
|
Aho KB, Flotemersch JE, Leibowitz SG, Johnson ZC, Weber MH, Hill RA. Adapting the Index of Watershed Integrity for Watershed Managers in the Western Balkans Region. ENVIRONMENTAL MANAGEMENT 2020; 65:602-617. [PMID: 32200409 PMCID: PMC7402417 DOI: 10.1007/s00267-020-01280-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Sustainable development supports watershed processes and functions. To aid the sustainable development of the western Balkans' transboundary river and lake basins, the Regional Environmental Center for Central and Eastern Europe and the US Environmental Protection Agency (EPA) adapted the EPA's Index of Watershed Integrity (IWI) following the devasting 2014 floods in Albania, Bosnia and Herzegovina, Kosovo, North Macedonia, Montenegro, and Serbia. The IWI evaluates six watershed functions based on a suite of anthropogenic stressors (e.g., impervious surfaces, reservoirs). A key feature of the IWI is its ability to accumulate the impact of upstream activities of any specific location in a river network. A novel feature of the IWI, compared with other watershed assessment tools, is its capacity to provide actionable information at the local scale. IWI scores-ranging from 0 (low integrity) to 1 (high integrity)-calculated for the 1084 catchments of the study area indicated highest integrity in the Alpine geographic region (mean = 0.55, standard deviation (SD) = 0.11) and intermediate to lowest integrity within the Mediterranean (mean = 0.49, SD = 0.12) and Continental (mean = 0.40, SD = 0.10) geographic regions. The IWI results are presented hierarchically for data analysts (stressor, functional component, Index of Catchment Integrity and IWI), ecologists (stream/catchment, watershed, basin), and managers (local, national, international). We provide real-world examples for managers, and suggestions for improving the assessment.
Collapse
Affiliation(s)
- Kelsey B Aho
- Oak Ridge Institute for Science and Education (ORISE) Fellow c/o U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, 200 SW 35th St., Corvallis, OR, 97333, USA.
| | - Joseph E Flotemersch
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, 26 W. Martin Luther King Dr., Cincinnati, OH, 45268, USA
| | - Scott G Leibowitz
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, 200 SW 35th St., Corvallis, OR, 97333, USA
| | - Zachary C Johnson
- Oak Ridge Institute for Science and Education (ORISE) Fellow c/o U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, 200 SW 35th St., Corvallis, OR, 97333, USA
| | - Marc H Weber
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, 200 SW 35th St., Corvallis, OR, 97333, USA
| | - Ryan A Hill
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, 200 SW 35th St., Corvallis, OR, 97333, USA
| |
Collapse
|