1
|
Gautam K, Anbumani S. Understudied and underestimated impacts of organic UV filters on terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176008. [PMID: 39236826 DOI: 10.1016/j.scitotenv.2024.176008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/28/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Organic UV filters (OUVFs) are vital components in various personal care products (PCPs) and commercial goods, with the annual consumption estimated at 10,000 tons. Consequently, the unavoidable use of OUVFs in PCPs and other unregulated commercial applications could present a considerable risk to human and environmental health. These chemical entities enter terrestrial ecosystems through wastewater discharge, agriculture, atmospheric deposition, and recreational activities. Compared to aqueous ecosystems, the effects of OUVFs on terrestrial environments should be more studied and potentially underestimated. The present review addresses the abovementioned gap by summarizing 189 studies conducted between 2006 and 2024, focusing on the analytical measures, occurrence, and ecotoxicological effects of OUVFs on terrestrial ecosystems. These studies underscore the harmful effects of certain OUVFs on the development, reproduction, and endocrine systems of terrestrial organisms, highlighting the necessity for comprehensive toxicological assessments to understand their impacts on non-target species in terrestrial ecosystems. Besides, by underscoring the ecological effects of OUVFs, this review aims to guide future research and inform regulatory measures to mitigate the risks posed by these widespread contaminants. Meanwhile, interdisciplinary research is essential, integrating environmental science, toxicology, ecology, and chemistry to tackle OUVF challenges in terrestrial ecosystems.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Newmeyer MN, Lyu Q, Sobus JR, Williams AJ, Nachman KE, Prasse C. Combining Nontargeted Analysis with Computer-Based Hazard Comparison Approaches to Support Prioritization of Unregulated Organic Contaminants in Biosolids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12135-12146. [PMID: 38916220 PMCID: PMC11381038 DOI: 10.1021/acs.est.4c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Biosolids are a byproduct of wastewater treatment that can be beneficially applied to agricultural land as a fertilizer. While U.S. regulations limit metals and pathogens in biosolids intended for land applications, no organic contaminants are currently regulated. Novel techniques can aid in detection, evaluation, and prioritization of biosolid-associated organic contaminants (BOCs). For example, nontargeted analysis (NTA) can detect a broad range of chemicals, producing data sets representing thousands of measured analytes that can be combined with computational toxicological tools to support human and ecological hazard assessment and prioritization. We combined NTA with a computer-based tool from the U.S. EPA, the Cheminformatics Hazard Comparison Module (HCM), to identify and prioritize BOCs present in U.S. and Canadian biosolids (n = 16). Four-hundred fifty-one features were detected in at least 80% of samples, with identities of 92 compounds confirmed or assigned probable structures. These compounds were primarily categorized as endogenous compounds, pharmaceuticals, industrial chemicals, and fragrances. Examples of top prioritized compounds were p-cresol and chlorophene, based on human health end points, and fludioxonil and triclocarban, based on ecological health end points. Combining NTA results with hazard comparison data allowed us to prioritize compounds to be included in future studies of the environmental fate and transport of BOCs.
Collapse
Affiliation(s)
- Matthew N Newmeyer
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Qinfan Lyu
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Jon R Sobus
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Keeve E Nachman
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Risk Sciences and Public Policy Institute, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Center for a Livable Future, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Carsten Prasse
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Risk Sciences and Public Policy Institute, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
3
|
Li J, Lu Y, Chen H, Zheng D, Yang Q, Campos LC. Synthetic musks in the natural environment: Sources, occurrence, concentration, and fate-A review of recent developments (2010-2023). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171344. [PMID: 38432391 DOI: 10.1016/j.scitotenv.2024.171344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Synthetic musks (SMs) have served as cost-effective substitutes for natural musk compounds in personal care and daily chemical products for decades. Their widespread use has led to their detection in various environmental matrices, raising concerns about potential risks. Despite numerous studies on SM levels in different natural environments, a systematic review of their contemporary presence is lacking. This review aims to address this gap by summarising recent research developments on SMs in diverse natural environments, including river water, lake water, seawater, estuarine water, groundwater, snow, meltwater, sediments, aquatic suspended matter, soils, sands, outdoor air, and atmospheric particulate matter. Covering the period from 2010 to 2023, the review focuses on four SM categories: nitro, polycyclic, macrocyclic, and alicyclic. It systematically examines their sources, occurrences, concentrations, spatial and temporal variations, and fate. The literature reveals widespread detection of SMs in the natural environment (freshwater and sediments in particular), with polycyclic musks being the most studied group. Both direct (e.g., wastewater discharges) and indirect (e.g., human recreational activities) sources contribute to SM presence. Levels of SMs vary greatly among studies with higher levels observed in certain regions, such as sediments in Southeast Asia. Spatial and temporal variations are also evident. The fate of SMs in the environment depends on their physicochemical properties and environmental processes, including bioaccumulation, biodegradation, photodegradation, adsorption, phase exchange, hydro-dilution effects. Biodegradation and photodegradation can decrease SM levels, but may produce more persistent and eco-toxic products. Modelling approaches have been employed to analyse SM fate, especially for indirect processes like photodegradation or long-distance atmospheric transport. Future studies should further investigate the complex fate if SMs and their environmental influence. This review enhances understanding of SM status in the natural environment and supports efforts to control environmental contamination.
Collapse
Affiliation(s)
- Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yu Lu
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK; Department of Structural Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0085, USA
| | - Huanfa Chen
- Centre for Advanced Spatial Analysis, University College London, London WC1E 6BT, UK
| | - Duan Zheng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qinlin Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Luiza C Campos
- Centre for Urban Sustainability and Resilience, Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
4
|
Diao Z, Zhang X, Xu M, Wei F, Xie X, Zhu F, Hui B, Zhang X, Wang S, Yuan X. A critical review of distribution, toxicological effects, current analytical methods and future prospects of synthetic musks in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169872. [PMID: 38199360 DOI: 10.1016/j.scitotenv.2024.169872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Synthetic musks (SMs) have gained widespread utilization in daily consumer products, leading to their widespread dissemination in aquatic environments through various pathways. Over the past few decades, the production of SMs has consistently risen, prompting significant concern over their potential adverse impacts on ecosystems and human health. Although several studies have focused on the development of analytical techniques for detecting SMs in biological samples and cosmetic products, a comprehensive evaluation of their global distribution in diverse aquatic media and biological matrices remains lacking. This review aims to provide an up-to-date overview of the occurrence of SMs in both aquatic and various biological matrices, investigating their worldwide distribution trends, assessing their ecological toxicity, and comparing different methodologies for processing and analysis of SMs. The findings underscore the prevalence of polycyclic musks as predominant SMs, with consumption of various products in different countries leading to contrasting distribution of contaminants. Furthermore, the migration of SMs from sediments to the water phase is investigated, indicating the role of solid-phase reservoirs. Incomplete degradation of SMs in the environment could contribute to their accumulation in aquatic systems, impacting the growth and oxidative stress of aquatic organisms, and having a possibility of genotoxicity to them. Human exposure data highlight substantial risks for vulnerable populations such as pregnant women and infants. Moreover, contemporary methods for SMs analysis are presented in this review, particularly focusing on advancements made in the last five years. Finally, research enhancement and critical questions regarding the analysis of SMs are provided, offering suggestions for future research endeavors.
Collapse
Affiliation(s)
- Zishan Diao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Mengxin Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Fenghua Wei
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiaomin Xie
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Fanping Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Bin Hui
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiaohan Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China.
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| |
Collapse
|
5
|
Rede D, Teixeira I, Delerue-Matos C, Fernandes VC. Assessing emerging and priority micropollutants in sewage sludge: environmental insights and analytical approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3152-3168. [PMID: 38085484 PMCID: PMC10791843 DOI: 10.1007/s11356-023-30963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/05/2023] [Indexed: 01/18/2024]
Abstract
The application of sewage sludge (SS) in agriculture, as an alternative to manufactured fertilizers, is current practice worldwide. However, as wastewater is collected from households, industries, and hospitals, the resulting sludge could contaminate land with creeping levels of pharmaceuticals, pesticides, heavy metals, polycyclic aromatic hydrocarbons, and microplastics, among others. Thus, the sustainable management of SS requires the development of selective methods for the identification and quantification of pollutants, preventing ecological and/or health risks. This study presents a thorough evaluation of emerging and priority micropollutants in SS, through the lens of environmental insights, by developing and implementing an integrated analytical approach. A quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction method, coupled with gas chromatography and liquid chromatography, was optimized for the determination of 42 organic compounds. These include organophosphorus pesticides, organochlorine pesticides, pyrethroid pesticides, organophosphate ester flame retardants, polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. The optimization of the dispersive-solid phase for clean-up, combined with the optimization of chromatographic parameters, ensured improved sensitivity. Method validation included assessments for recovery, reproducibility, limit of detection (LOD), and limit of quantification (LOQ). Recoveries ranged from 59.5 to 117%, while LODs ranged from 0.00700 to 0.271 µg g-1. Application of the method to seven SS samples from Portuguese wastewater treatment plants revealed the presence of sixteen compounds, including persistent organic pollutants. The quantification of α-endosulfan, an organochlorine pesticide, was consistently observed in all samples, with concentrations ranging from 0.110 to 0.571 µg g-1. Furthermore, the study encompasses the analysis of agronomic parameters, as well as the mineral and metal content in SS samples. The study demonstrates that the levels of heavy metals comply with legal limits. By conducting a comprehensive investigation into the presence of micropollutants in SS, this study contributes to a deeper understanding of the environmental and sustainable implications associated with SS management.
Collapse
Affiliation(s)
- Diana Rede
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Ivan Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
| |
Collapse
|
6
|
Nguyen TTN, Baduel C. Optimization and validation of an extraction method for the analysis of multi-class emerging contaminants in soil and sediment. J Chromatogr A 2023; 1710:464287. [PMID: 37797419 DOI: 10.1016/j.chroma.2023.464287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 10/07/2023]
Abstract
Analytical methods for the determination of multi-class emerging contaminants are limited for soil and sediment while they are essential to provide a more complete picture of their distribution in the environment and to understand their fate in different environmental compartments. In this paper, we present the development and optimization of an analytical strategy that combines reliable extraction, purification and the analysis using ultra-pressure liquid chromatography triple quadrupole mass spectrometry (UPLC-MS/MS) of 90 emerging organic contaminants including pesticides, pharmaceuticals and personal care products, flame retardants, per- and polyfluoroalkyl substances (PFASs) and plasticizers in soil and sediment. To extract a wide range of chemicals, the extraction strategy is based on the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) approach. A number of different options were investigated (buffer, acidification, addition of EDTA, different types and combinations of dispersive SPE etc.) and the effectiveness of the chemical extraction procedure and the clean-up was assessed for two matrices: soil (organic matter content of 9%) and sediment (organic matter content of 1.9%). The method was fully validated for both matrices, in terms of accuracy, linearity, repeatability (intra-day), reproducibility (inter-day), method limits of detection and quantification (LODs and MLOQs, respectively). The final performance showed good accuracy and precision (mean recoveries were between 70 and 120% with relative standard deviations (RSD) less than 20% in most cases), low matrix effects, good linearity for the matrix-matched calibration curve (R2≥0.991) and MLOQs ranged from 0.25 and 10 µg/kg. To demonstrate the applicability and suitability of the validated method, soil and sediment samples from Vietnam, France, Sweden and Mexico were analyzed. The results showed that of the 90 target compounds, a total of 33 were quantified in the sediment and soil samples analyzed. In addition to multi-target analysis, this strategy could be suitable for non-target screening, to provide a more comprehensive view of the contaminants present in the samples.
Collapse
Affiliation(s)
- Tuyet T N Nguyen
- IRD, CNRS, IGE, Université Grenoble Alpes, Grenoble F-38000, France.
| | - Christine Baduel
- IRD, CNRS, IGE, Université Grenoble Alpes, Grenoble F-38000, France
| |
Collapse
|
7
|
Chane AD, Košnář Z, Hřebečková T, Wiesnerová L, Jozífek M, Doležal P, Praus L, Tlustoš P. Bioremediation of the synthetic musk compounds Galaxolide and Tonalide by white rot fungal strain-assisted phytoremediation in biosolid-amended soil. CHEMOSPHERE 2023; 328:138605. [PMID: 37028715 DOI: 10.1016/j.chemosphere.2023.138605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/23/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
The study was aimed to conduct the bioremediation of synthetic musks by four species of white rot fungi combined with phytoremediation (Zea mays) in biosolid-amended soils where only Galaxolide (HHCB) and Tonalide (AHTN) were found as other musks were below the detection limit (0.5-2 μg/kg dw). The HHCB and AHTN concentration in natural attenuation treated soil was decreased by not more than 9%. In solely mycoremediation, Pleurotus ostreatus was found to be the most efficient fungal strain, with the higher (P < 0.05) HHCB and AHTN removal (51.3% and 46.4%). Phytoremediation-only of biosolid-amended soil was also able to remove HHCB and AHTN from soil significantly (P < 0.05) in comparison to the control treatment without plants which resulted in the final concentration for both compounds of 56.2 and 15.3 μg/kg dw, respectively. Using white rot fungus-assisted phytoremediation, only P. ostreatus decreased the HHCB content in soil significantly (P < 0.05) by 44.7%, when compared to the initial concentration. While using Phanerochaete chrysosporium, the AHTN concentration was decreased by 34.5%, which was a significantly lower concentration at the end of experiment compared to the initial value. Via fungus-assisted phytoremediation, the enzymatic activity and fungal biomass were increased, probably due to the presence of roots in association with the soil microbiome, in the process increasing the degradation of fragrances accordingly. This could lead to a higher (P < 0.05) AHTN removal in P. chrysosporium assisted phytoremediation. Estimated HHCB and AHTN bioaccumulation factors in maize were lower than 1, therefore no environmental risk would be posed.
Collapse
Affiliation(s)
- Abraham Demelash Chane
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Zdeněk Košnář
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic.
| | - Tereza Hřebečková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Lucie Wiesnerová
- Department of Horticulture, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic; Faculty of Medicine in Pilsen, Department of Medical Chemistry and Biochemistry, Charles University in Prague, Husova 3, 301 00, Plzeň, Czech Republic
| | - Miroslav Jozífek
- Department of Horticulture, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Petr Doležal
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Lukáš Praus
- Laboratory of Environmental Chemistry, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Pavel Tlustoš
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| |
Collapse
|
8
|
Wang T, Zou H, Li D, Gao J, Bu Q, Wang Z. Global distribution and ecological risk assessment of synthetic musks in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121893. [PMID: 37245793 DOI: 10.1016/j.envpol.2023.121893] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/30/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Synthetic musks, as an alternative product of natural musks, are widely used in almost all fragrances of consumer products, such as perfumes, cosmetics and detergents. During the past few decades, the production of synthetic musks has been increasing year by year, subsequently followed by large concern about their adverse effects on ecosystems and human beings. Until now, several studies have reviewed the latest development of analytical methods of synthetic musks in biological samples and cosmetics products, while there is still lack of a systematic analysis of their global distribution in different environmental media. Thus, this review summarizes the occurrence of synthetic musks in the environment including biota around the world and explores their global distribution patterns. The results show that galaxolide (HHCB), tonalide (AHTN), musk xylene (MX) and musk ketone (MK) are generally the most frequently detected synthetic musks in different samples with HHCB and AHTN being predominant. Higher concentrations of HHCB and AHTN are normally found in western countries compared to Asian countries, indicating more consumptions of these musks in western countries. The persistence, bioaccumulation and toxicity (PBT) of synthetic musks (mainly for polycyclic musks and nitro musks) are also discussed. The risk quotients (RQs) of HHCB, AHTN, MX and MK in most waters and sediments are below 0.1, reflecting a low risk to aqueous and sediment-dwelling species. In some sites, e.g., close to STPs, high risks (RQs>1) are characterized. Currently, limited data are available for macrocyclic musks and alicyclic musks in terms of either occurrence or PBT properties. More studies with an expanded scope of chemical type, geographical distribution and (synergic) toxicological effects especially from a long-term point of view are needed.
Collapse
Affiliation(s)
- Tao Wang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, 300387, Tianjin, PR China
| | - Hongyan Zou
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, 300387, Tianjin, PR China.
| | - Danyang Li
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, 300387, Tianjin, PR China
| | - Jian Gao
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, 300387, Tianjin, PR China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, 100083, Beijing, PR China
| | - Zhanyun Wang
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014, St. Gallen, Switzerland; Institute of Environmental Engineering, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
9
|
Recent trends in the determination of organic UV filters by gas chromatography-mass spectrometry in environmental samples. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
10
|
Vimalkumar K, Mayilsamy M, Arun E, Gobinath B, Prasanth S, Nikhil PN, Krishna-Kumar S, Srimurali S, Mkandawire M, Babu-Rajendran R. Screening of antimicrobials, fragrances, UV stabilizers, plasticizers and preservatives in sewage treatment plants (STPs) and their risk assessment in India. CHEMOSPHERE 2022; 308:136452. [PMID: 36116630 DOI: 10.1016/j.chemosphere.2022.136452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/16/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Community/industrial wastewater is the prime source of anthropogenic chemicals, its treatment is often a daunting task and unaffordable for many countries. Emerging Contaminants (ECs) have been drained into wastewater after continuous use/misuse and Conventional treatments in STPs do not remove them completely. ECs including antimicrobial agents, synthetic musks, Benzotriazole UV stabilizers (BUVSs), plasticizers, and preservatives are frequently reported in environment, and cause health effects to non-target organisms. Monitoring of ECs is important to understand their status in aquatic environment. Hence, it was aimed to monitor ECs (n = 21) from 11 STPs in Tamil Nadu, India. The detection frequency of most of these analytes was >90%. Antimicrobials ranged from 247 to 22,714 ng/L and 11-14,369 ng/L in influents and effluents, respectively. The synthetic musks were in the order of Tonalide > Galaxolide > Musk Ketone. BUVSs ranged from 4 to 1632 ng/L (influents) and < LOD to 29,853 ng/L (effluents). Concentration of phthalates in influents and effluents were < LOD - 11,311 ng/L and < LOD - 17,618 ng/L, respectively. Parabens were found in the order of Prophyl > Methyl > Ethyl > Butyl in influents and Methyl > Prophyl > Butyl > Ethyl in effluents. Mass loads of ECs through STPs were found as antimicrobials > plasticizers > fragrances > BUVSs > Preservatives. This study reveals increasing usage of ECs and inadequate treatment processes at STPs in India. Also helps to adopt suitable treatment processes to remove ECs from wastewater and to reuse the wastewater.
Collapse
Affiliation(s)
- Krishnamoorthi Vimalkumar
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; Department of Environmental Medicine and Pediatrics, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Murugasamy Mayilsamy
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; Hiyoshi India Ecological Services Private Limited, TICEL Biopark Ltd., Chennai, Tamil Nadu, India
| | - Elayaraja Arun
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Balasubramanian Gobinath
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Saravanan Prasanth
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Patil Nishikant Nikhil
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Selvaraj Krishna-Kumar
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; School of Geography, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Sampath Srimurali
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; Food Chemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Martin Mkandawire
- Department of Chemistry, School of Science and Technology, Cape Breton University, Sydney, Novo Scotia, B1P 6L2, Canada
| | - Ramaswamy Babu-Rajendran
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; Research Center for Inland Seas (KURCIS), Kobe University, Kobe, 658-0022, Japan.
| |
Collapse
|
11
|
Determination of UV Filters in Waste Sludge Using QuEChERS Method Followed by In-Port Derivatization Coupled with GC-MS/MS. Methods Protoc 2022; 5:mps5060092. [PMID: 36548134 PMCID: PMC9784948 DOI: 10.3390/mps5060092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
UV filters (UVFs) are widely used in personal care and in industrial products for protection against photodegradation. In recent years, their potential toxicological and environmental effects have received growing attention. Due to their excessive use, their residue levels in the environment are gradually increasing and they tend to accumulate on biological wastewater treatment sludge. The utilization of sludge as fertilizer could be one of the main routes of UVF contamination in the environment. Therefore, the development of a reliable and sensitive method of analyzing their trace level residues in waste sludge samples is of great importance. The success of the method largely depends on the sample preparation technique in such complex matrices. This study presents a rapid, sensitive and green analysis method for eight UVFs in sludge samples, selected for their rather low no-observed-effect concentrations (NOEC). For this purpose, the QuEChERS methodology was coupled with in-port derivatization for subsequent detection of the targeted UVFs via GC−MS/MS. The analysis time was substantially shortened using this method, and reagent utilization was also reduced. The method was validated in the sludge samples, and high recovery (66−123%) and low RSD values (<25.6%) were obtained. In addition, major contributing uncertainty sources and expanded uncertainties were determined.
Collapse
|
12
|
Gautam K, Seth M, Dwivedi S, Jain V, Vamadevan B, Singh D, Roy SK, Downs CA, Anbumani S. Soil degradation kinetics of oxybenzone (Benzophenone-3) and toxicopathological assessment in the earthworm, Eisenia fetida. ENVIRONMENTAL RESEARCH 2022; 213:113689. [PMID: 35718163 DOI: 10.1016/j.envres.2022.113689] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
A preponderance of recent evidence indicates that oxybenzone and other personal-care product chemicals threaten the biota inhabiting various ecological niches. What is understudied is the ecotoxicological impact of oxybenzone, a UV filter in sunscreens and anti-aging products, to terrestrial/soil organisms that are keystone species in these habitats. In the present study, acute exposure (14-day) to oxybenzone resulted in earthworm mortality (LC50 of 364 mg/kg) and growth rate inhibition. Environmentally relevant concentration of oxybenzone (3.64, 7.28 and 36.4 mg/kg) at exposures of 7-day, 14-day, 28-day induced oxidative stress and neurotoxicity followed by perturbations in reproduction processes and changes in vital organs. Decreased levels of superoxide dismutase (SOD) and catalase (CAT) activity were statistically lower than controls (p < 0.05) on day 14 for all three concentrations, while glutathione-s-transferase (GST) activity was significantly elevated from controls on days 7 and 14. On day 28, SOD and CAT activities were either not significantly different from the control or were higher, demonstrating a temporal multiphasic response of anti-oxidant enzymes. GST activity on day 28 was significantly reduced compared to controls. Acetylcholinesterase levels across the three-time points exhibited a complicated behaviour, with every exposure concentration being significantly different from the control. Chronic exposure negatively influences earthworm health status with elevated biomarker values analysed using IBRv2 index. This, in turn, impacted higher levels of hierarchical organization, significantly impairing reproduction and organismal homeostasis at the histological level and manifesting as decreasing cocoon formation and successful hatching events. Thus, the overall findings demonstrate that oxybenzone is toxic to Eisenia fetida at low-level, long-term exposure. Based on the concentration verification analysis and application of the EPA PestDF tool, oxybenzone undergoes single first-order kinetics degradation in OECD soil with DT50 and DT90 as 8.7-28.9 days, respectively.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Monika Seth
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shreya Dwivedi
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Veena Jain
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Beena Vamadevan
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Dhirendra Singh
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Somendu K Roy
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C A Downs
- Haereticus Environmental Laboratory, Clifford, VA, 24522, USA
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Enhanced Toxicity of Bisphenols Together with UV Filters in Water: Identification of Synergy and Antagonism in Three-Component Mixtures. Molecules 2022; 27:molecules27103260. [PMID: 35630736 PMCID: PMC9143986 DOI: 10.3390/molecules27103260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Contaminants of emerging concern (CEC) localize in the biome in variable combinations of complex mixtures that are often environmentally persistent, bioaccumulate and biomagnify, prompting a need for extensive monitoring. Many cosmetics include UV filters that are listed as CECs, such as benzophenone derivatives (oxybenzone, OXYB), cinnamates (2-ethylhexyl 4-methoxycinnamate, EMC) and camphor derivatives (4-methylbenzylidene-camphor, 4MBC). Furthermore, in numerous water sources, these UV filters have been detected together with Bisphenols (BPs), which are commonly used in plastics and can be physiologically detrimental. We utilized bioluminescent bacteria (Microtox assay) to monitor these CEC mixtures at environmentally relevant doses, and performed the first systematic study involving three sunscreen components (OXYB, 4MBC and EMC) and three BPs (BPA, BPS or BPF). Moreover, a breast cell line and cell viability assay were employed to determine the possible effect of these mixtures on human cells. Toxicity modeling, with concentration addition (CA) and independent action (IA) approaches, was performed, followed by data interpretation using Model Deviation Ratio (MDR) evaluation. The results show that UV filter sunscreen constituents and BPs interact at environmentally relevant concentrations. Of notable interest, mixtures containing any pair of three BPs (e.g., BPA + BPS, BPA + BPF and BPS + BPF), together with one sunscreen component (OXYB, 4MBC or EMC), showed strong synergy or overadditive effects. On the other hand, mixtures containing two UV filters (any pair of OXYB, 4MBC and EMC) and one BP (BPA, BPS or BPF) had a strong propensity towards concentration dependent underestimation. The three-component mixtures of UV filters (4MBC, EMC and OXYB) acted in an antagonistic manner toward each other, which was confirmed using a human cell line model. This study is one of the most comprehensive involving sunscreen constituents and BPs in complex mixtures, and provides new insights into potentially important interactions between these compounds.
Collapse
|
14
|
Košnář Z, Mercl F, Chane AD, Pierdonà L, Míchal P, Tlustoš P. Occurrence of synthetic polycyclic and nitro musk compounds in sewage sludge from municipal wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149777. [PMID: 34428658 DOI: 10.1016/j.scitotenv.2021.149777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Synthetic musk compounds (SMCs) are widely used as fragrances that can be released from different sources and through the sewer system, finally reaching wastewater treatment plants (WWTPs). In this study, 6 synthetic polycyclic and 5 nitro musk compounds were screened in 55 sewage sludge (SS) samples from 43 different WWTPs in the Czech Republic, and the effect of WWTP technology parameters on SMC content in SS was assessed. Galaxolide and Tonalide were predominant synthetic polycyclic musk compounds (SPMCs) detected in all SS tested and accounted for 99.5% of the average content of sludge SMCs (5518 μg/kg dw). The amount of synthetic nitro musk compounds (SNMCs) in SS samples was negligible. The Tonalide content in SS correlated significantly with the WWTP design capacity (r = 0.32, P < 0.05). The significant correlation between chemical oxygen demand (COD) removal efficiency and SMCs (r = -0.37, P < 0.05) partly suggests the recalcitrance of SMCs, mainly of Celestolide, Galaxolide and Tonalide, to biodegradation in WWTPs. A statistically lower SNMC content was found in anaerobically digested sludges than in aerobic ones. There was no significant difference (P > 0.05) between the digestion technology as well as the temperature of anaerobic digestion on the SPMC content in sewage sludge. The wastewater (WW) load percentage or WW hydraulic retention time had no influence on the SMC content in the resulting SS. Musk compounds did not change over time when the SS samples were analysed with a gap of two years, suggesting that sewage sludge for soil applications only needs to be analysed for musk compounds once a year. Our study indicates that the currently common WWTP technologies have only very limited potential to affect the accumulation of musk compounds in sewage sludge.
Collapse
Affiliation(s)
- Zdeněk Košnář
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic.
| | - Filip Mercl
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Abraham Demelash Chane
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Lorenzo Pierdonà
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Pavel Míchal
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Pavel Tlustoš
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| |
Collapse
|
15
|
Ramos S, Homem V, Santos L. Uptake and translocation of UV-filters and synthetic musk compounds into edible parts of tomato grown in amended soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148482. [PMID: 34157527 DOI: 10.1016/j.scitotenv.2021.148482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/21/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
In the last years, the number of wastewater treatment plants (WWTPs) has increased and consequently, sewage sludge production. This residue is very rich in crop nutrients, which makes it prone to be used as organic fertilizer or soil conditioner for agriculture. However, the presence of emerging pollutants in these fertilizers has raised concern, namely their potential accumulation in soil and, eventually their uptake by crops. Therefore, the main goal of this work was to study the potential plant uptake and translocation of ultraviolet-filters (UVFs) and synthetic musk compounds (SMCs). A total of 6 UVFs and 11 SMCs were analysed in Micro-Tom tomatoes grown in soil amended with a commercial sewage sludge-based organic fertilizer. Most of the studied compounds were detected in the tomato fruit, in concentrations ranging from 5 to 147 ng g-1 dw for UVFs and from 1.3 to 68 ng g-1 dw for SMCs. This indicates a potential uptake of these emerging pollutants and a subsequent translocation to the fruits. Besides that, UVFs show bioconcentration factors (BCFs) from 3 (DTS) to 33 (BZ) and SMCs from 0.2 (AHTN) to 23 (HHCB). Nevertheless, no risk by ingestion was observed based on estimation of the weekly exposure dose through hazard quotients (HQ < 0.02). SMCs galaxolide and tonalide seem to pose risk to the amended soils.
Collapse
Affiliation(s)
- Sara Ramos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Vera Homem
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
16
|
Bernardo F, González-Hernández P, Ratola N, Pino V, Alves A, Homem V. Using Design of Experiments to Optimize a Screening Analytical Methodology Based on Solid-Phase Microextraction/Gas Chromatography for the Determination of Volatile Methylsiloxanes in Water. Molecules 2021; 26:molecules26113429. [PMID: 34198808 PMCID: PMC8201336 DOI: 10.3390/molecules26113429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Volatile methylsiloxanes (VMSs) constitute a group of compounds used in a great variety of products, particularly personal care products. Due to their massive use, they are continually discharged into wastewater treatment plants and are increasingly being detected in wastewater and in the environment at low concentrations. The aim of this work was to develop and validate a fast and reliable methodology to screen seven VMSs in water samples, by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography with flame ionization detection (GC-FID). The influence of several factors affecting the extraction efficiency was investigated using a design of experiments approach. The main factors were selected (fiber type, sample volume, ionic strength, extraction and desorption time, extraction and desorption temperature) and optimized, employing a central composite design. The optimal conditions were: 65 µm PDMS/Divinylbenzene fiber, 10 mL sample, 19.5% NaCl, 39 min extraction time, 10 min desorption time, and 33 °C and 240 °C as extraction and desorption temperature, respectively. The methodology was successfully validated, showing low detection limits (up to 24 ng/L), good precision (relative standard deviations below 15%), and accuracy ranging from 62% to 104% in wastewater, tap, and river water samples.
Collapse
Affiliation(s)
- Fábio Bernardo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (F.B.); (N.R.); (A.A.)
| | - Providencia González-Hernández
- Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.G.-H.); (V.P.)
| | - Nuno Ratola
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (F.B.); (N.R.); (A.A.)
| | - Verónica Pino
- Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.G.-H.); (V.P.)
- Institute of Tropical Diseases and Public Health, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain
| | - Arminda Alves
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (F.B.); (N.R.); (A.A.)
| | - Vera Homem
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (F.B.); (N.R.); (A.A.)
- Correspondence:
| |
Collapse
|
17
|
Ramos S, Homem V, Santos L. Modified dispersive solid-phase extraction and cleanup followed by GC-MS/MS analysis to quantify ultraviolet filters and synthetic musk compounds in soil samples. J Sep Sci 2021; 44:3107-3116. [PMID: 34081839 DOI: 10.1002/jssc.202100281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022]
Abstract
A simple method for the analysis of 13 synthetic musk compounds and six ultraviolet filters in soil samples was developed using a modified dispersive solid-phase methodology known as "Quick, Easy, Cheap, Effective, Rugged and Safe," followed by gas chromatography-triple quadrupole mass spectrometry. The methodology was validated by assessing linearity ranges, detection limits, precision, and accuracy. The method detection limit ranged between 0.01 and 10.00 ng/g dry weight and accuracy from 81 to 122%. A good precision was achieved, with relative standard deviation <10%. The applicability of the methodology was tested using different types of soils. Both synthetic musks and ultraviolet filters were detected in all soil samples. The most frequently detected compounds were benzophenone, octocrylene, 2-ethylhexyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-methoxycinnamate, and galaxolide. Higher levels were detected for benzophenone (maximum value of 158 ng/g dry weight) and octocrylene (137 ng/g dry weight). In comparison with conventional techniques, this method uses lower amounts of solvents and sorbents, producing less waste ("greener" technique) and comparable performances. In addition, it presents as main advantages the simplicity, speed (short extraction/cleaning time), low cost, and minimum handling of extracts, which can minimize the possibility of samples cross-contamination.
Collapse
Affiliation(s)
- Sara Ramos
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Vera Homem
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Lúcia Santos
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Katuri GP, Fan X, Kosarac I, Siddique S, Kubwabo C. Synthetic Musk Compounds in Human Biological Matrices: Analytical Methods and Occurrence-A Review. J AOAC Int 2021; 104:368-383. [PMID: 33283860 DOI: 10.1093/jaoacint/qsaa154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022]
Abstract
Extensive use of synthetic musk compounds (SMs) in numerous consumer and personal care products has resulted in direct human exposures via dermal absorption, inhalation of contaminated dust and volatilized fragrances, and oral ingestion of contaminated foods and liquids. SMs and their metabolites are lipophilic, hence commonly detected in various biological matrices such as blood, breast milk, and adipose tissue. Appropriate analytical techniques are needed to detect and quantify SMs in biological matrices to assess their potential effects on human health. Different methods to process and analyze SMs in biological matrices, including sample-pretreatment, solvent extraction, cleanup, and instrumental analysis, are presented in this review. The concentration levels of selected musk compounds in biological samples from different countries/regions are summarized. Finally, research gaps and questions pertaining to the analysis of SMs are identified and suggestions made for future research studies.
Collapse
Affiliation(s)
- Guru Prasad Katuri
- Environmental Health Science and Research Bureau, Health Canada, Ottawa Ontario, Canada
| | - Xinghua Fan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa Ontario, Canada
| | - Ivana Kosarac
- Science Division, Tobacco Control Directorate, Health Canada, Ottawa Ontario, Canada
| | - Shabana Siddique
- Environmental Health Science and Research Bureau, Health Canada, Ottawa Ontario, Canada
| | - Cariton Kubwabo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa Ontario, Canada
| |
Collapse
|
19
|
Al-Alam J, Baroudi F, Chbani A, Fajloun Z, Millet M. A multiresidue method for the analysis of pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in snails used as environmental biomonitors. J Chromatogr A 2020; 1621:461006. [PMID: 32156459 DOI: 10.1016/j.chroma.2020.461006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/14/2023]
Abstract
This paper reports an optimized multiresidue extraction strategy based on the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) extraction procedure and on solid-phase microextraction (SPME) for the simultaneous screening of 120 pesticides, 16 polycyclic aromatic hydrocarbons, and 22 polychlorinated biphenyls from the terrestrial snail Helix aspersa. The optimized extraction method was based on QuEChERS using acetonitrile, followed by dispersive-Solid-phase extraction clean-up using primary secondary amine and octadecyl (C18) sorbents. The obtained extracts were analyzed by liquid chromatography coupled with tandem mass spectrometry and gas chromatography coupled with tandem mass spectrometry. This latest technique was preceded by a pre-concentration step using SPME with appropriate fibers. Afterwards, the method was validated for its linearity, sensitivity, recovery, and precision. Results showed high sensitivity, accuracy, and precision, with limits of detection and quantification lower than 20 ng g - 1 for most considered pollutants. Both inter and intra-day analyses revealed low relative standard deviation (%), which was lower than 20% for most targeted compounds. Moreover, the obtained regression coefficient (R2) was higher than 0.98 and the recoveries were higher than 60% for the majority of the assessed pollutants.
Collapse
Affiliation(s)
- Josephine Al-Alam
- Azm Center for Research in Biotechnology and its Applications, Doctoral School of Science and Technology, Lebanese University, El Mittein Street, Tripoli, Lebanon; Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France; Lebanese American University, School of Engineering, Byblos, Lebanon
| | - Firas Baroudi
- Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France
| | - Asma Chbani
- Azm Center for Research in Biotechnology and its Applications, Doctoral School of Science and Technology, Lebanese University, El Mittein Street, Tripoli, Lebanon; Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - Ziad Fajloun
- Azm Center for Research in Biotechnology and its Applications, Doctoral School of Science and Technology, Lebanese University, El Mittein Street, Tripoli, Lebanon; Department of Biology, Faculty of Sciences 3, Lebanese University, Michel Slayman Tripoli Campus, Ras Maska 1352, Lebanon
| | - Maurice Millet
- Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
20
|
Wen L, Wu P, Wang LL, Chen LZ, Wang ML, Wang X, Lin JM, Zhao RS. Solid-phase microextraction using a β-ketoenamine-linked covalent organic framework coating for efficient enrichment of synthetic musks in water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2434-2442. [PMID: 32930232 DOI: 10.1039/c9ay02755f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Covalent organic frameworks with tunable porous crystallinity and outstanding stability have recently exhibited fascinating pretreatment performance as solid-phase microextraction coatings. In this report, a β-ketoenamine-linked covalent organic framework (TpPa-1) was successfully constructed through a Schiff-base-type reaction between 1,3,5-triformylphloroglucinol (Tp) and para-phenylenediamine (Pa-1). A TpPa-1 coating was then fabricated on a stainless-steel fiber for capturing trace synthetic musks. This TpPa-1 coating exhibited strong interaction with synthetic musks because of its hydrophobicity and π-π affinity. This TpPa-1-based solid-phase microextraction methodology, coupled with gas chromatography-tandem mass spectrometry, provided high enrichment factors (1214-12 487), wide linearity (0.5-1000 ng L-1), low limits of detection (0.04-0.31 ng L-1), and acceptable reproducibility (relative standard deviation, <10%) for nine synthetic musks. Recoveries at three spiked levels in three types of water samples were between 76.2% and 118.7%. These results indicated the promising applicability of the TpPa-1 as a solid-phase microextraction fiber coating for reliably detecting trace concentrations of synthetic musks in the environment.
Collapse
Affiliation(s)
- Lian Wen
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute of Shandong Academy of Sciences, Shandong Province Key Laboratory of Applied Microbiology, Jinan, 250014, China.
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
| | - Lei-Lei Wang
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute of Shandong Academy of Sciences, Shandong Province Key Laboratory of Applied Microbiology, Jinan, 250014, China.
| | - Li-Zong Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Ming-Lin Wang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
| | - Xia Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Jin-Ming Lin
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ru-Song Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| |
Collapse
|
21
|
Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: A critical review. Anal Chim Acta 2019; 1083:19-40. [DOI: 10.1016/j.aca.2019.06.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 12/14/2022]
|
22
|
Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|