1
|
Huang H, Yu J, Chen L, Zhang L, Li T, Ye D, Zhang X, Wang Y, Zheng Z, Liu T, Yu H. The effect of different amendments on Cd availability and bacterial community after three-year consecutive application in Cd-contaminated paddy soils. ENVIRONMENTAL RESEARCH 2024; 259:119459. [PMID: 38942257 DOI: 10.1016/j.envres.2024.119459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
In situ immobilization is a widely used measure for passivating Cd-contaminated soils. Amendments need to be continuously applied to achieve stable remediation effects. However, few studies have evaluated the impact of consecutive application of amendments on soil health and the microecological environment. A field experiment was conducted in a Cd-contaminated paddy (available Cd concentration 0.40 mg kg-1) on the Chengdu Plain to investigate the changes in soil Cd availability and response characteristics of soil bacterial communities after consecutive application of rice straw biochar (SW), fly ash (FM) and marble powder (YH) amendments from 2018 to 2020. Compared with control treatment without amendments (CK), soil pH increased by 0.6, 0.5 and 1.5 under SW, FM and YH amendments, respectively, and the soil available Cd concentration decreased by 10.71%, 21.42% and 25.00%, respectively. The Cd concentration in rice grain was less than 0.2 mg kg-1 under YH amendment, which was within the Chinese Contaminant Limit in Food of National Food Safety Standards (GB2762-2022) in the second and third years. The three amendments had different effects on the transformation of Cd fractions in soil, which may be relevant to the specific bacterial communities shaped under different treatments. The proportion of Fe-Mn oxide-bound fraction Cd (OX-Cd) increased by 11% under YH treatment, which may be due to the promotion of Fe(III) and Cd binding by some enriched iron-oxidizing bacteria, such as Lysobacter, uncultured_Pelobacter sp. and Sulfurifusis. Candidatus_Tenderia and Sideroxydans were enriched under SW and FM amendments, respectively, and were likely beneficial for reducing Cd availability in soil through Cd immobilization. These results revealed the significance of the bacterial community in soil Cd immobilization after consecutive application of amendments and highlighted the potential of applying YH amendment to ensure the safe production of rice in Cd-contaminated soil.
Collapse
Affiliation(s)
- Huagang Huang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Jieyi Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Lan Chen
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Lu Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Tao Liu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| |
Collapse
|
2
|
Wang Y, Wang K, Wang T, Liang T, Liu J, Chen X, Xu C, Cao W, Fan H. Joint utilization of Chinese milk vetch and lime materials mitigates soil cadmium risk and improves soil health in a double-cropping rice system. CHEMOSPHERE 2024; 363:142784. [PMID: 38971447 DOI: 10.1016/j.chemosphere.2024.142784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cadmium (Cd) in paddy soil poses significant risks to humans due to its strong biological migration and toxicity. Chinese milk vetch (MV) is commonly used as green manure in the paddy fields of southern China and its potential to decrease the availability of Cd has been identified. Nevertheless, the effects of MV combined with lime materials (lime, L; limestone, LS) on Cd availability, soil properties, enzyme activity and comprehensive benefits are still not fully understood in double-cropping rice system. A field study was conducted to investigate these changes. The results indicated that all treatments notably decreased soil available Cd (Avail-Cd) by 19.3-44.3% and 14.9-43.1% during early and late rice, compared with CK. Moreover, the Cd fractions transformed to more stable forms. Compared to CK, all treatments reduced brown rice Cd content by 34.6-64.2% and 12.7-52.5% during the two periods. Furthermore, the translocation factors root to shoot, as well as shoot to brown rice, decreased. The combination led to improvements in soil properties, soil enzyme activity. Meantime, Cd in iron-manganese plaque (IMP) decreased by 31.9-51.1% and 29.0-42.7% respectively during two periods in amendments treatments. Soil pH and DOC were more important factors for Cd bioavailability than other properties. Additionally, rice Cd uptake was positively correlated with Cd in IMP. Enzyme activity exhibited a negative correlation with soil active Cd. Partial Least Squares Path Model (PLS-PM) indicated that the mitigation of Cd pollution helped to improve soil enzyme activity. Grey correlation analysis (GRA) indicated that MVLS showed the best comprehensive benefits in soil-plant system. Overall, the combination of MV and lime materials could reduce Cd availability, enhance soil properties and enzyme activity. And this could be strengthened by the combination. These findings will provide valuable insights for Cd-contaminated soil remediation.
Collapse
Affiliation(s)
- Yikun Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Kai Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tianshu Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Ting Liang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| | - Xiaofen Chen
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| | - Changxu Xu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| | - Weidong Cao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hongli Fan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Wang J, Zhang T, Gao J, Li B, Han L, Ge W, Wang Z. The accumulation of cadmium and lead in wheat grains is primarily determined by the soil-reducible cadmium level during wheat tillering. CHEMOSPHERE 2024; 361:142509. [PMID: 38830466 DOI: 10.1016/j.chemosphere.2024.142509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/11/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
The significant increase in cadmium (Cd) and lead (Pb) pollution in agricultural soil has greatly heightened environmental contamination issues and the risk of human diseases. However, the mechanisms underlying the transformation of Cd and Pb in soil as well as the influencing factors during their accumulation in crop grains remain unclear. Based on the analysis of the distribution trend of Cd and Pb in soil during the growth and development stages of wheat (tillering, filling, and maturity) in alkaline heavy metal-polluted farmland in northern China, this study investigated the response mechanism of soil heavy metal form transformation to soil physicochemical properties, and elucidated the main determining periods and influencing factors for Cd and Pb enrichment in wheat grains. The results showed that an increase in CEC and SOM levels, along with a decrease in pH level, contributed to enhancing the bioavailability of Cd in the soil. This effect was particularly evident during the tillering stage and grain filling stage of wheat. Nevertheless, the effects of soil physicochemical properties on bioavailable Pb was opposite to that on bioavailable Cd. The enrichment of Cd and Pb in grain was significantly influenced by soil pH (r = -0.786, p < 0.01), SOM (r = 0.807, p < 0.01), K (r = -0.730, p < 0.01), AK (r = 0.474, p = 0.019), and AP (r = -0.487, p = 0.016). The reducible form of Cd in soil during the wheat tillering stage was identified as the primary factor contributing to the accumulation of Cd and Pb in wheat grains, with a significant contribution rate of 84.5%. This study provides a greater scientific evidence for the management and risk control of heavy metal pollution in alkaline farmland.
Collapse
Affiliation(s)
- Jing Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Henan Yuanguang Technology Co., LTD, Puyang, Henan, 457000, PR China
| | - Tengyun Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Henan Yuanguang Technology Co., LTD, Puyang, Henan, 457000, PR China
| | - Jianlei Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Bei Li
- Henan Ecological Environment Monitoring and Safety Center, Zhengzhou, Henan, 450000, PR China
| | - Long Han
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Wenjing Ge
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Hebi Renyuan Biotechnology Development Co., LTD, Hebi, Henan, 458030, PR China.
| | - Zongyao Wang
- Henan Yuanguang Technology Co., LTD, Puyang, Henan, 457000, PR China
| |
Collapse
|
4
|
Shang Z, Ren D, Yang F, Wang J, Liu B, Chen F, Du Y. Simultaneous immobilization of V and Cr availability, speciation in contaminated soil and accumulation in ryegrass by using Fe-modified pyrolysis char. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134097. [PMID: 38518692 DOI: 10.1016/j.jhazmat.2024.134097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
In this study, municipal waste pyrolytic char (PEWC) was prepared by pyrolysis from municipal solid waste extracted in landfills, and Fe-based modified pyrolytic char (Fe-PEWC) was prepared by modification. Focusing on the evaluation of the stabilization capacity of Fe-PEWC for vanadium (V) and chromium (Cr) in soils, the effects of PEWC addition on soil properties, bioavailability and morphological distribution of V and Cr, ryegrass growth, and V and Cr accumulation were thoroughly investigated. The results of pot experiment showed that the application of PEWC and Fe-PEWC significantly (P < 0.05) improved soil properties (such as pH, EC, total nitrogen, available phosphorus, available potassium, and organic matter). After 42 days of cultivation, Fe-PEWC has a better fixation effect on heavy metals, and the bioavailable V and Cr of 3% Fe-PEWC decreased by 14.96% and 19.48%, respectively. The exchangeable state and reducible state decreased, while the oxidizable state and residual state increased to varying degrees. The Fe-PEWC can effectively reduce the accumulation of V and Cr in ryegrass by 71.25% and 76.43%, respectively, thereby reducing their toxicity to plants. In summary, modified pyrolytic char can effectively solidify heavy metals in soil, improve soil ecology and reduce the toxicity to plants. The use of excavated waste as a raw material for the preparation of soil heavy metal curing agent has the significance of resource recycling, low price, and practical application.
Collapse
Affiliation(s)
- Zhixin Shang
- College of Textile and Clothing, Dezhou University, Dezhou 253023, China
| | - Dongyin Ren
- College of Textile and Clothing, Dezhou University, Dezhou 253023, China
| | - Fan Yang
- College of Textile and Clothing, Dezhou University, Dezhou 253023, China
| | - Jin Wang
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan, Shandong 250101, China
| | - Bing Liu
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan, Shandong 250101, China
| | - Feiyong Chen
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan, Shandong 250101, China
| | - Yufeng Du
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| |
Collapse
|
5
|
Cui J, Zhou F, Li J, Shen Z, Zhou J, Yang J, Jia Z, Zhang Z, Du F, Yao D. Amendment-driven soil health restoration through soil pH and microbial robustness in a Cd/Cu-combined acidic soil: A ten-year in-situ field experiment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133109. [PMID: 38071771 DOI: 10.1016/j.jhazmat.2023.133109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 02/08/2024]
Abstract
Soil health arguably depends on biodiversity and has received wide attention in heavy-metal (HM) contaminated farmland remediation in recent years. However, long-term effects and mechanisms of soil amendment remain poorly understood with respect to soil microbal community. In this in-situ field study, four soil amendments (attapulgite-At, apatite-Ap, montmorillonite-M, lime-L) at three rates were applied once only for ten years in a cadmium (Cd)-copper (Cu) contaminated paddy soil deprecated for over five years. Results showed that after ten years and in compared with CK (no amendment), total Cd concentration and its risk in plot soils were not altered by amendments (p > 0.05), but total Cu concentration and its risk were significantly increased by both Ap and L, especially the former, rather than At and M (p < 0.05), through increased soil pH and enhanced bacterial alpha diversity as well as plant community. Soil microbial communities were more affected by amendment type (30%) than dosage (11%), microbial network characteristics were dominated by rare taxa, and soil multifunctionality was improved in Ap- and L-amended soils. A structural equation model (SEM) indicated that 57.3% of soil multifunctionality variances were accounted for by soil pH (+0.696) and microbial network robustness (-0.301). Moreover, microbial robustness could be potentially used as an indicator of soil multifunctionality, and Ap could be optimized to improve soil health in combined with biomass removal. These findings would advance the understanding of soil microbial roles, especially its network robustness, on soil multifunctionality for the remediation of metal contaminated soils and metal control management strategies in acidic soils. ENVIRONMENTAL IMPLICATION: Farmland soil contamination by heavy metals (HMs) has been becoming a serious global environmental challenge. However, most studies have been conducted over the short term, leading to a gap in the long-term remediation efficiency and ecological benefits of soil amendments. For the successful deployment of immobilization technologies, it is critical to understand the long-term stability of the immobilized HMs and soil health. Our study, to the best of our knowlege, is the first to state the long-term effects and mechanisms of soil amendments on soil health and optimize an effective and eco-friendly amendment for long-term Cd/Cu immobilization.
Collapse
Affiliation(s)
- Jian Cui
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Fengwu Zhou
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Jinfeng Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ziyao Shen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jing Zhou
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - John Yang
- Department of Agriculture and Environmental Science, Lincoln University of Missouri, Jefferson City, MO 65201, USA
| | - Zhongjun Jia
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengfeng Du
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Dongrui Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
6
|
Fu H, Ma S, Wang L, Xue W, Xiong S, Sui F, Liu H, Li C, Li G, Duan R, Zhao P. Hierarchically porous magnetic biochar as an amendment for wheat (Triticum aestivum L.) cultivation in alkaline Cd-contaminated soils: Impacts on plant growth, soil properties and microbiota. CHEMOSPHERE 2024; 352:141295. [PMID: 38309605 DOI: 10.1016/j.chemosphere.2024.141295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Hierarchically porous magnetic biochar (HMB) had been found to act as an effective amendment to remediate cadmium (Cd) in water and soil in a previous study, but the effects on wheat growth, Cd uptake and translocation mechanisms, and soil microorganisms were unknown. Therefore, soil Cd form transformation, soil enzyme activity, soil microbial diversity, wheat Cd uptake and migration, and wheat growth were explored by adding different amounts of HMB to alkaline Cd-contaminated soil under pot experiments. The results showed that application of HMB (0.5 %-2.0 %) raised soil pH, electrical conductivity (EC) and available Fe concentration, decreased soil available Cd concentration (35.11 %-50.91 %), and promoted Cd conversion to less bioavailable Cd forms. HMB treatments could reduce Cd enrichment in wheat, inhibit Cd migration from root to stem, rachis to glume, glume to grain, and promote Cd migration from stem to leaf and stem to rachis. HMB (0.5 %-1.0 %) boosted antioxidant enzyme activity, reduced oxidative stress, and enhanced photosynthesis in wheat seedlings. Application of 1.0 % HMB increased wheat grain biomass by 40.32 %. Besides, the addition of HMB (0.5 %-1.0 %) could reduce soil Cd bioavailability, increase soil enzyme activity, and increase the abundance and diversity of soil bacteria. Higher soil EC brought forth by HMB (2.0 %) made the wheat plants and soil bacteria poisonous. This study suggests that applying the right amount of HMB to alkaline Cd-contaminated soil could be a potential remediation strategy to decrease Cd in plants' edible parts and enhance soil quality.
Collapse
Affiliation(s)
- Haichao Fu
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China
| | - Long Wang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, PR China, Tianjin 300191, China
| | - Shiwu Xiong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Fuqing Sui
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China
| | - Hongen Liu
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China
| | - Chang Li
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China
| | - Guangxin Li
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China
| | - Ran Duan
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China
| | - Peng Zhao
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China.
| |
Collapse
|
7
|
Liu Q, Ding Y, Lai Y, Long Y, Shi H, Liu M. The Immobilization Mechanism of Inorganic Amendments on Cu and Cd in Polluted Paddy Soil in Short/Long Term. TOXICS 2024; 12:157. [PMID: 38393252 PMCID: PMC10892406 DOI: 10.3390/toxics12020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
This study investigated the impact of soil colloidal characteristics on the transfer patterns of different Cu and Cd speciation in contaminated soil treated with three different amendments: lime (L), zero-valent iron (ZVI), and attapulgite (ATP). It seeks to clarify the activation hazards and aging processes of these modifications on Cu and Cd. Compared with the control (CK), the available Cu concentrations treated with amendments reduced in the short term (6 months) by 96.49%, 5.54%, and 89.78%, respectively, and Cd declined by 55.43%, 32.31%, and 93.80%, respectively. Over a 12-year period, there was no significant change in the immobile effect with L, while Cu and Cd fell by 19.06% and 40.65% with ZVI and by 7.63% and 40.78% with ATP. Short- and long-term increases in the readily reducible iron and manganese oxide fraction of Cu and Cd were accompanied by a considerable rise in the concentrations of amorphous iron oxide in the soil and colloid after amendment treatment. This suggested that Cu and Cd were immobilized and stabilized in part by amorphous iron oxide.
Collapse
Affiliation(s)
- Qing Liu
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China; (Q.L.); (Y.L.); (Y.L.)
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China;
| | - Yuan Ding
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China; (Q.L.); (Y.L.); (Y.L.)
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China;
| | - Yuqi Lai
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China; (Q.L.); (Y.L.); (Y.L.)
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China;
| | - Yan Long
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China; (Q.L.); (Y.L.); (Y.L.)
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China;
| | - Hong Shi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China;
- Jiangxi Key Laboratory of Agricultural Efficient Water-Saving and Non-Point Source Pollution Preventing, Jiangxi Central Station of Irrigation Experiment, Nanchang 330063, China
| | - Min Liu
- Jiangxi Ecological Environment Monitoring Center, Nanchang 330039, China
| |
Collapse
|
8
|
Wang K, Wang S, Zhang X, Wang W, Wang X, Kong F, Xi M. The amelioration and improvement effects of modified biochar derived from Spartina alterniflora on coastal wetland soil and Suaeda salsa growth. ENVIRONMENTAL RESEARCH 2024; 240:117426. [PMID: 37898228 DOI: 10.1016/j.envres.2023.117426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
Exotic species Spartina alterniflora (S. alterniflora) are widely invaded in the coastal zones of China and threaten the native ecosystem functions. In this study, phosphorus-magnesium modified BC (P-Mg modified BC) included PA-Mg-BC and DAP-Mg-BC derived from S. alterniflora were successfully prepared by co-pyrolysis of biomass and diammonium phosphate (DAP) or phosphoric acid (PA) and magnesium oxide (MgO). The preparation process markedly improved the surface morphologies, P loading amount, and P-containing functional groups of modified BC. The characterization results indicated that stable and low-solubility Mg-P complex formed on the surface of PA-Mg-BC and DAP-Mg-BC, which delayed the rapid release of P. Moreover, the MgO improved the buffering capacity of PA-Mg-BC and DAP-Mg-BC to competitive anions (SO42- and CO32-) during P release. Meanwhile, pot experiment showed that the suitable applications of PA-Mg-BC and DAP-Mg-BC could improve soil quality and fertility by enhancing SOC, DOC, TN, TP and AP contents, as well as β-glucosidase activities. The amended soil pH and salinity compared to the original soil also declined through precipitation and acid-base neutralization. In addition, P-Mg modified BC could improve bacterial community structure and promote the growth and biomass of Suaeda salsa (S. salsa). This study could provide a feasible method for realizing ecological restoration of coastal wetland and resource utilization of S. alterniflora.
Collapse
Affiliation(s)
- Kang Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Xin Zhang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Wenyue Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Xiaoyan Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China.
| | - Min Xi
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
9
|
Sanaei D, Sarmadi M, Dehghani MH, Sharifan H, Ribeiro PG, Guilherme LRG, Rahimi S. Towards engineering mitigation of leaching of Cd and Pb in co-contaminated soils using metal oxide-based aerogel composites and biochar. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2110-2124. [PMID: 37916297 DOI: 10.1039/d3em00284e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Applications of metal-based nanomaterials for the remediation of heavy metal (HM) contaminated environments are of great importance. The ability of metal oxide-based carbon aerogel composite to immobilize HMs in multi-metal contaminated soils has not yet been investigated, particularly under acidic conditions. Herein, we investigate the performance of metal oxides (Sr0.7 Mn0.3 Co0.5 Fe0.5O3-δ)-based carbon aerogel composite (MO-CAg) compared with coconut coil fiber biochar (CCFB) and carbon aerogel (CAg) for Cd and Pb immobilization in contaminated soil. The MO-CAg, applied at 2% (w/w), significantly decreased Pb leaching by 67-75% and Cd by 60-65%, CAg decreased Cd by 54% and Pb by 46%, while biochar decreased Cd by 40-44% and Pb by 43%. The addition of MO-CAg altered Cd and Pb geochemical fractions by increasing their residual fraction, i.e., stabilized both metals compared to the control. This presents a comprehensive elaboration on the probable reaction interactions between the MO-Cag and heavy metals, including a combination of (co)precipitation, and reduction-oxidation as the predominant mechanisms of metal stabilization with MO-CAg. Moreover, MO-CAg increased Pb and Cd stabilization in soils by strengthening the bonding between metal oxides and Cd/Pb. By imbedding MO into the CAg, in MO-CAg, the immobilization of Cd(II) and Pb(II) occurred through inner-sphere complexation, while with CCFB and CAg metals, immobilization occurred through outer-sphere complexation. MO-CAg is a promising and highly efficient material that could be recommended for the remediation of Cd- and Pb-contaminated soils in subsequent studies.
Collapse
Affiliation(s)
- Daryoush Sanaei
- Faculty of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sarmadi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad H Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Science, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sharifan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, Texas, USA
| | - Paula G Ribeiro
- Instituto Tecnológico Vale, Boaventura da Silva 955, Belém, PA 66055090, Brazil
| | - Luiz R G Guilherme
- School of Agricultural Science, Federal University of Lavras, Lavras, MG, Brazil
| | - Sajjad Rahimi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
10
|
An M, Chang D, Wang X, Wang K. Protective effects of polymer amendment on specific metabolites in soil and cotton leaves under cadmium contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115463. [PMID: 37714036 DOI: 10.1016/j.ecoenv.2023.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Polymer materials have great potential for soil heavy metal contamination remediation, but the metabolic mechanism by which polymer amendments regulate the responses of soil-plant systems to cadmium (Cd) stress is still unclear. To clarify the metabolic mechanism by which a self-developed soluble polymer amendment (PA) remediates Cd contamination in cotton fields, the common and differential metabolites in soil and cotton leaves were analyzed during the critical period of cotton growth (flowering and bolling stage) in a field experiment. The results showed that Cd stress increased Cd concentration in the soil-cotton system, and reduced enzyme activity in soil and cotton leaves. Besides, Cd stress also reduced the abundance of α-linolenic acid in soil and the abundance of 2-Oxoarginine and S-Adenosylmethionine in cotton leaves. These ultimately led to reductions in weight, boll number, yield, and fiber elongation. However, the application of PA to the Cd-contaminated soil significantly reduced the soil exchangeable Cd (Ex-Cd) concentration by 41.43%, and increased the boll number, yield, and fiber strength by 14.17%, 21.04%, and 19.89%, respectively compared with the Cd treatment. The results of metabolomic analysis showed that PA application mainly affected the Nicotinate and nicotinamide metabolism pathway, Lysine degradation pathway, and Arginine and proline metabolism pathway in cotton leaves and soil. Besides, in these metabolic pathways, succinic acid semialdehyde of cotton leaves, saccharopine of soil, and S-Adenosylmethionine of soil and cotton had the most significant response to PA application. Therefore, the application of PA to Cd-contaminated soil can increase soil and cotton leaf enzyme activity and cotton yield (boll number and seed cotton yield) and quality (fiber strength), and maintain soil-plant material balance by regulating the distribution of Cd ions and key metabolites in the soil-cotton system. This study will deepen our understanding of the metabolic mechanism of PA remediating Cd-contaminated cotton fields, and provide a technical reference for the remediation of heavy metal contamination in drip-irrigated cotton fields in arid areas.
Collapse
Affiliation(s)
- Mengjie An
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, Xinjiang 830046, PR China
| | - Doudou Chang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Xiaoli Wang
- Xinjiang Agricultural Vocational Technical College, Changji, Xinjiang 831100, PR China.
| | - Kaiyong Wang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| |
Collapse
|
11
|
Schnackenberg A, Billmann M, Bidar G, Douay F, Pelfrêne A. Is the co-application of self-produced compost and natural zeolite interesting to reduce environmental and toxicological availability in metal-contaminated kitchen garden soils? ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4737-4760. [PMID: 36928804 DOI: 10.1007/s10653-023-01505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Composting can turn organic waste into a valuable soil amendment that can improve physical, chemical, and biological soil quality. Compost amendments can also contribute to the remediation of areas anthropogenically degraded by metals. However, it is well known that compost, particularly self-produced compost, can show enrichment in metals. An experimental study was conducted to examine the short- and long-term distribution and the mobility of metals in soils amended with a self-produced compost when it was added alone or in combination with different doses of a natural zeolite to soil. The aim was also to study the interest of managing moderately metal-contaminated kitchen garden soils by assessing the chemical extractability, phytoavailability, and oral bioaccessibility of metals. When zeolite was added to compost alone, it had the tendency to better reduce extractability of Cd and Zn at 25%, and those of Pb at 15%. When the self-produced compost alone or in co-application with zeolite at these doses was applied to soils, the results showed (1) a decrease of NH4NO3-extractable Zn; (2) a reduction of Pb environmental availability, but not Pb bioaccessibility, and (3) an increase of ryegrass biomass. Nevertheless, the risk posed by the self-produced compost was minimal when applied at the proper rate (0.6% w/w). In the selected experimental conditions, the study recommends that self-produced compost be mixed with 15% zeolite to maximize vegetal biomass and minimize environmental risk. The question of sustainability of the results with repeated compost addition is also raised.
Collapse
Affiliation(s)
- Ashley Schnackenberg
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE Laboratoire de Génie Civil et geo-Environnement, 59000, Lille, France.
| | - Madeleine Billmann
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE Laboratoire de Génie Civil et geo-Environnement, 59000, Lille, France
| | - Géraldine Bidar
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE Laboratoire de Génie Civil et geo-Environnement, 59000, Lille, France
| | - Francis Douay
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE Laboratoire de Génie Civil et geo-Environnement, 59000, Lille, France
| | - Aurélie Pelfrêne
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE Laboratoire de Génie Civil et geo-Environnement, 59000, Lille, France
| |
Collapse
|
12
|
Xu Z, Nie N, Liu K, Li Q, Cui H, Du H. Analog soil organo-ferrihydrite composites as suitable amendments for cadmium and arsenic stabilization in co-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162929. [PMID: 36934932 DOI: 10.1016/j.scitotenv.2023.162929] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Remediation of CdAs co-contaminated soils has long been considered a difficult problem to solve, as Cd and As have distinctly different metallic characters. Amending contaminated soils with traditional single passivation materials may not always work well in the stabilization of both Cd and As. Here, we reported that analog soil organo-ferrihydrite composites made with either living or non-living organics (bacterial cells or humic acid) could achieve stabilization of both Cd and As in contaminated soils. BCR and Wenzel sequential extractions showed that organo-ferrihydrite, particularly at 1 wt% loading, shifted liable Cd and As to more stable phases. Organo-ferrihydrite amendments significantly (p < 0.05) increased soil urease, alkaline phosphatase and catalase enzyme activities. With organo-ferrihydrite amendments, the bioavailable fraction of Cd decreased to 35.3 % compared with the control (65.1 %), while the bioavailable As declined from 29.4 % to 12.4%. Soil pH, microbial community abundance and diversity were almost unaffected by organo-ferrihydrite. Ferrihydrite and organo fractions both contributed to direct Cd-binding, while the organo fraction probably maintained the Fe-bound As via lowering ferrihydrite phase transformation. Compared to pure ferrihydrite, organo-ferrihydrite composites performed better not only in reducing liable Cd and As, but also in maintaining soil quality and ecosystem functions. This study demonstrates the applications of organo-ferrihydrite composites in eco-friendly remediation of CdAs contaminated soils, and provides a new direction in selecting appropriate soil amendments.
Collapse
Affiliation(s)
- Zelin Xu
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China; College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Ning Nie
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Kaiyan Liu
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Qi Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haojie Cui
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Huihui Du
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China.
| |
Collapse
|
13
|
Ma B, Shao S, Ai L, Chen S, Zhang L. Influences of biochar with selenite on bacterial community in soil and Cd in peanut. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114742. [PMID: 37032575 DOI: 10.1016/j.ecoenv.2023.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/06/2023] [Accepted: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) pollution in crops seriously affects the ecosystem and human health. Effective measures should be employed to reduce the absorption and accumulation of cadmium in crops. Currently, there are many pieces of research on the application of biochar (BC) and selenium (Se) alone to the remediation of soil Cd pollution; however, few investigations have been devoted to the application of BC and Se together to the remediation of soil Cd pollution. The peanut was taken as the target crop to explore the effects of exogenous selenium and biochar on the remediation of soil Cd pollution. The response of the soil bacterial community to two levels of Cd concentration and its relationship with soil properties and Cd availability are methodically investigated. This study sets two cadmium pollution concentrations of low Cd (5 mg/ kg) and high Cd (20 mg/kg), as well as six treatments: blank, BC, soil Se, soil Se-BC, leaf Se, and leaf Se-BC. The achieved results revealed that both Se and BC could noticeably enhance the yield of peanut seeds and reduce the Cd content in peanut seeds. Among them, Se-BC treatment on soil exhibits the most influence, which reduces the Cd content by 47.86%. Se and BC also affect the physical and chemical properties of soil and remarkably magnify the content of soil available phosphorus, organic matter, soil pH, and soil conductivity. For instance, then effect is detected in the case of applying selenium biochar to soil, leading to an increase of about 64.38%, 72.62%, 2.64%, and 61.15%, respectively, and reducing the content of soil available cadmium by 21.02%. Redundancy analysis confirms that these properties enhance the abundance of dominant bacteria Actinobacteria, Proteobacteria, and Chloroflexi. The correlation analysis also indicates that Saccharimonadales, Bacillus, Arthrobacter, and other bacteria with the function of reducing the bioavailability of cadmium in soil reveal a considerable positive correlation with the variations of physical and chemical properties. In general, exogenous Se and BC incorporate to drop the content of available Cd in the soil through direct passivation, passivation caused by soil environmental change, and passivation caused by altering the soil microbial community structure; as a result, the migration and enrichment of Cd in peanut seeds are blocked and reduced. Moreover, the mixed application of BC and soil Se exhibits the best effect.
Collapse
Affiliation(s)
- Bing Ma
- School of Environment and Science, Qingdao Agriculture University, Qingdao 266109, China
| | - Shiwei Shao
- School of Environment and Science, Qingdao Agriculture University, Qingdao 266109, China
| | - Liuhuan Ai
- School of Environment and Science, Qingdao Agriculture University, Qingdao 266109, China
| | - Shiyao Chen
- School of Environment and Science, Qingdao Agriculture University, Qingdao 266109, China
| | - Lei Zhang
- School of Environment and Science, Qingdao Agriculture University, Qingdao 266109, China.
| |
Collapse
|
14
|
Wei B, Peng Y, Jeyakumar P, Lin L, Zhang D, Yang M, Zhu J, Ki Lin CS, Wang H, Wang Z, Li C. Soil pH restricts the ability of biochar to passivate cadmium: A meta-analysis. ENVIRONMENTAL RESEARCH 2023; 219:115110. [PMID: 36574793 DOI: 10.1016/j.envres.2022.115110] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/30/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Soil acidification is the main cause for aggravation of soil cadmium (Cd) pollution. Biochar treatment can increase the soil pH and decrease the Cd availability in soils. However, there is limited information in literature on the comprehensive assessment of the response of Cd fractions to biochar. Therefore, in the present meta-analysis study, we evaluate the response of Cd fractions to biochar application in soils with different pH and to further examine the effect of physicochemical properties of biochar on Cd. Results from the overall analysis indicated that biochar treatment increased the soil pH by 7.0%, thereby decreasing the amount of available Cd (37.3%). In acidic soil, biochar significantly reduced the acid-soluble fraction (Acid-Cd) of Cd by 36.8%, while Oxidizable fraction of Cd (Oxid-Cd, 20.9%) and Residual fraction of Cd (Resid-Cd, 22.2%) were significantly increased. In neutral soils, only Acid-Cd was significantly reduced (33.0%) in the presence of biochar. In alkaline soils, biochar caused significant reduction in Acid-Cd of 12.4% and an increase in Oxid-Cd and Resid-Cd of 26.6% and 47.8%, respectively. Further, our findings showed that biochar with cation exchange capacity >100 cmol+/kg effectively decreased Acid-Cd (32.4%), while biochar with the percentage of hydrogen <2% was more contributory in increasing Resid-Cd (64.3%). These results demonstrate the importance of soil pH in regulating the biological effectiveness of Cd in soil and the complexation between the functional groups of biochar and Cd, and provide key information for the remediation of Cd pollution in soils with different pH by biochar.
Collapse
Affiliation(s)
- Beilei Wei
- College of Agronomy, Guangxi University, Nanning, 530000, Guangxi, China; State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530000, China
| | - Yunchang Peng
- College of Agronomy, Guangxi University, Nanning, 530000, Guangxi, China; State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530000, China
| | - Paramsothy Jeyakumar
- Environmental Science Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Longxin Lin
- College of Agronomy, Guangxi University, Nanning, 530000, Guangxi, China; State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530000, China
| | - Dongliang Zhang
- College of Agronomy, Guangxi University, Nanning, 530000, Guangxi, China; State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530000, China
| | - Meiyan Yang
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, 528200, China
| | - Jinning Zhu
- Nanjing Institute of Product Quality Inspection, No. 3 Jialingjiang East Street, Nanjing, 210019, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Ziting Wang
- College of Agronomy, Guangxi University, Nanning, 530000, Guangxi, China; State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530000, China.
| | - Chong Li
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, 528200, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
15
|
Luo Y, Tan C, He Y, Chen Y, Wan Z, Fu T, Wu Y. Rhizosphere activity induced mobilization of heavy metals immobilized by combined amendments in a typical lead/zinc smelter-contaminated soil. CHEMOSPHERE 2023; 313:137556. [PMID: 36528153 DOI: 10.1016/j.chemosphere.2022.137556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The persistence of the stabilization effect of amendments on heavy metals (HMs) is of great concern when they are used for remediating HM-contaminated soil. Here, pot experiments were conducted to investigate the effects of two consecutive seasons of vegetable cultivation on the mobilization of HMs (Cu, Pb, Zn, and Cd) immobilized by different application ratios (0, 20, 40, and 80 g kg-1, labelled C0, C2, C4, and C8) of a combined amendments (lime: sepiolite: biochar: humic acid = 2:2:1:1). The results showed that HM bioavailability decreased with increasing application ratios of the combined amendments in control (CK) treatments. The DOC contents, HM bioavailability, and HM contents in the leaves of vegetables increased, but the pH decreased during two consecutive seasons of vegetable cultivation; however, the HM bioavailability in the C2, C4, and C8 treatments was lower than that in the C0 treatments with vegetables. Catalase, urease, alkaline phosphatase, and dehydrogenase activities in the combined amendment treatments with and without vegetables were decreased compared to those in the C0 treatments. The relative abundances of the dominant bacterial phyla in the different treatments were Actinobacteria > Proteobacteria > Chloroflexi > Acidobacteria > Gemmatimonadetes > Bacteroidetes for the first season and Proteobacteria > Actinobacteria > Chloroflexi > Acidobacteria > Bacteroidetes > Gemmatimonadetes for the second season. Correlations showed that the pH and DOM properties during two consecutive seasons of vegetable cultivation were important factors influencing HM bioavailability, enzyme activity, and bacterial community composition. The bacterial community composition shift indirectly influenced the mobilization of HMs immobilized by the combined amendments. Thus, rhizosphere activity induced the mobilization of HMs immobilized by combined amendments during two consecutive seasons of vegetable cultivation.
Collapse
Affiliation(s)
- Youfa Luo
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China.
| | - Chuanjing Tan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yu He
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yulu Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Zuyan Wan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Tianling Fu
- The New Rural Development Research Institute, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
16
|
Liu J, Zhao M, Zhao Y, Zhang C, Liu W, Wang Z, Zhou Q, Liang X. Mechanism of mercapto-modified palygorskite in reducing soil Cd activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159372. [PMID: 36244493 DOI: 10.1016/j.scitotenv.2022.159372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Mercapto-modified palygorskite (MP) is an efficient novel amendment with superior ability to decrease soil Cd bioavailability, but the unclear immobilization mechanism has become the bottleneck of its performance improvement and precise application. In order to clarify the Cd reducing mechanism of MP, long-term and short-term soil incubation with three types of soils (paddy soil, alluvial soil and yellow mountain soil) and sorption verification experiments were conducted to investigate the dynamic process of soil labile Cd impacted by MP and the synergetic effects on labile Fe, Mn, S and dissolved organic carbon via in-situ diffusive gradients in thin-films and soil solution sampling techniques. MP with four dosages rapidly and continuously decreased soil labile Cd contents by 14.50 % ∼ 89.16 % in long-term incubation, meanwhile low-dosage MP reduced soil labile Fe and Mn contents, but high-dosage MP increased their contents. With MP dosages increased, the effects of Fe-Mn oxides on soil labile Cd content gradually weakened. MP effectively promoted the reduction of Fe adsorbed by clay minerals and enhanced their ability to adsorb Cd. Short-term incubation showed that MP could decline soil labile Cd by 7.17 % ∼ 44.74 %, especially at the dosage 0.4 %. MP was a reduction catalyst to facilitate Fe reduction, which profited for clay minerals adsorbing Cd. The sorption experiments indicated that 0.30 % MP could adsorb 73.34 % Cd2+, promote the release of Fe2+ from the soil, and stimulate the ability of clay minerals to adsorb Cd. The results revealed that MP decreased soil labile Cd content within 2 d, and MP made soil Cd activity change out of the influence of soil Fe/Mn redox system. The mechanism will be beneficial for the large-scale application of MP in safe utilization of Cd contaminated soil.
Collapse
Affiliation(s)
- Jiang Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Meng Zhao
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chuangchuang Zhang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wenjing Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zhen Wang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qiwen Zhou
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Xuefeng Liang
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
17
|
Xu T, Xi J, Ke J, Wang Y, Chen X, Zhang Z, Lin Y. Deciphering soil amendments and actinomycetes for remediation of cadmium (Cd) contaminated farmland. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114388. [PMID: 36508810 DOI: 10.1016/j.ecoenv.2022.114388] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Soil heavy metal pollution is one of the most serious environmental problems in China, especially cadmium (Cd), which has the most extensive contaminated soil coverage. Therefore, more economical and efficient remediation methods and measures are needed to control soil Cd contamination. In this study, different amendments (biochar (B), organic fertilizer (F), lime (L)) and actinomycetes (A) inoculants were applied to Cd contaminated farmland to explore their effects on wheat growth. Compared with Control, all treatments except A treatment were able to significantly increase the underground parts dry mass of wheat, with the highest increase of 57.19 %. The results showed that the B treatment significantly increased the plant height of wheat by 3.45 %. All treatments increased wheat SOD activity and chlorophyll content and reduced the MDA, which contributes to wheat stress resistance under Cd contamination. F, L and AF treatments can significantly reduce the Cd content in wheat above- and underground parts by up to 56.39 %. Soil amendments can modify the physical and chemical properties of the soil, which in turn affects the absorption of Cd by wheat. Moreover, the addition of soil amendments significantly affects the composition and structure of the rhizospheric soil bacterial community at the wheat jointing stage. The application of organic fertilizer increases the richness and diversity of the bacterial community, while lime makes it significantly decreases it. T-test and microbiome co-occurrence networks show that actinomycetes could not only effectively colonize in local soil, but also effectively enhance the complexity and stability of the rhizosphere microbial community. Considering the practical impact of different treatments on wheat, soil microorganisms, economic benefits and restoration of soil Cd contamination, the application of organic fertilizer and actinomycetes in Cd contaminated soil is a more ideal remediation strategy. This conclusion can be further verified by studying larger repair regions and longer consecutive repair cycles to gain insight into the repair mechanism.
Collapse
Affiliation(s)
- Tengqi Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Jiao Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Jihong Ke
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yufan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Xiaotian Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
18
|
Liu M, Tan X, Zheng M, Yu D, Lin A, Liu J, Wang C, Gao Z, Cui J. Modified biochar/humic substance/fertiliser compound soil conditioner for highly efficient improvement of soil fertility and heavy metals remediation in acidic soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116614. [PMID: 36419293 DOI: 10.1016/j.jenvman.2022.116614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Fertile and uncontaminated soil with appropriate pH is crucial in terms of the agricultural sustainable development. Herein, a compound soil conditioner containing chitosan modified straw biochar (CBC), kitchen waste compost product-derived humic substance (HS), NPK compound fertiliser (NPK-CF) was prepared to simultaneously adjust acidic soil pH, improve fertility, and immobilize heavy metal. The results exhibited that the best Pb and NH4+ adsorption performance was obtained in CBC with chitosan:biochar of 1:5. Then, the acid soil pH was improved from 5.03 to 6.66 in the presence of CBC/HS (5:5) with 3% addition weight (the mass ratio of conditioner to soil). Meanwhile, compared with the control, the contents of organic matter, available nitrogen, and available phosphorus significantly increased by 52.4%, 92.6%, and 136.3%, respectively. Moreover, Pb was highly efficient immobilised by CBC, and the concentration of Pb in the soil was decreased by 55.2%. The optimal growth trend of ryegrass was obtained in the presence of 3% addition weight (the mass ratio of conditioner to soil) CBC/HS (CBC:HS = 5:5) combined with 60% of the recommended NPK-CF application weight, which was mainly contributed by the improvement of the soil microbial abundance and community structure diversity. The addition of CBC/HS could effectively reduce the addition of NPK-CF and contribute to simultaneous controlling nitrogen loss, releasing phosphorus, immobilising Pb, adjusting pH, improving soil quality and controlling nonpoint pollution.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Mingxia Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Dayang Yu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jiaoxian Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Chunyan Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Zhiyun Gao
- Chinese Academy of Environmental Planning, Joint Research Center for Eco-environment of the Yangtze River Economic Belt, Beijing, 100012, China.
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
19
|
Liu Q, Chen Z, Wu Y, Huang L, Munir MAM, Zhou Q, Wen Z, Jiang Y, Tao Y, Feng Y. Inconsistent effects of a composite soil amendment on cadmium accumulation and consumption risk of 14 vegetables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71810-71825. [PMID: 35604595 DOI: 10.1007/s11356-022-20939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Organic and inorganic mixtures can be developed as immobilizing agents that could reduce heavy metal accumulation in crops and contribute to food safety. Here, inorganic materials (lime, L; zeolite, Z; and sepiolite, S) and organic materials (biochar, B, and compost, C) were selectively mixed to produce six composite soil amendments (LZBC, LSBC, LZC, LZB, LSC, and LSB). Given the fact that LZBC showed the best performance in decreasing soil Cd availability in the incubation experiment, it was further applied in the field condition with 14 vegetables as the test crops to investigate its effects on crop safety production in polluted greenhouse. The results showed that LZBC addition elevated rhizosphere soil pH by 0.1-2.0 units and reduced soil Cd availability by 1.85-37.99%. Both the biomass and the yields of edible parts of all vegetables were improved by LZBC addition. However, LZBC addition differently affected Cd accumulation in edible parts of the experimental vegetables, with the observation that Cd contents were significantly reduced in Allium fistulosum L., Amaranthus tricolor L., and Coriandrum sativum Linn., but increased in the three species of Lactuca sativa. Further health risk assessment showed that LZBC application significantly decreased daily intake of metal (DIM), health risk index (HRI), and target hazard quotient (THQ) for Cd in Allium fistulosum L., Amaranthus tricolor L., and Coriandrum sativum Linn., whereas increased all the indexes in Lactuca sativa. Our results showed that the effect of a composite amendment on Cd accumulation in different vegetables could be divergent and species-dependent, which suggested that it is essential to conduct a pre-experiment to verify applicable species for a specific soil amendment designed for heavy metal immobilization.
Collapse
Affiliation(s)
- Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhiqin Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lukuan Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Mehr Ahmed Mujtaba Munir
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qiyao Zhou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zheyu Wen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yugen Jiang
- Hangzhou Fuyang Agricultural Technology Extension Center, Fuyang, 311400, People's Republic of China
| | - Yi Tao
- Huzhou Ruibosi Testing Technology Co., Ltb, Huzhou, 313000, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
20
|
Li R, Xu J, Luo J, Yang P, Hu Y, Ning W. Spatial distribution characteristics, influencing factors, and source distribution of soil cadmium in Shantou City, Guangdong Province. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114064. [PMID: 36087470 DOI: 10.1016/j.ecoenv.2022.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
A total of 511 topsoils and 139 deep soil samples were collected to analyze the distribution characteristics, regional differentiation factors, and contamination sources of Cd in Shantou City, and to assess its environmental, ecological, and human health risks. We used a combination of multivariate statistics and geostatistics to quantify the distribution and level of Cd contamination in the study area, and an absolute principal component scores-multiple linear regression model to resolve the sources of contamination and their contribution values, combined with the health risk model to assess the human health risk from each source. The result exhibited that the average value of soil Cd content was 0.100 mg/kg, which was lower than the threshold value of soil environmental quality standard, but higher than the 0.070 mg/kg background value of soil. The high-value areas of surface Cd content in the study area were distributed in the western, northern, and northeastern parts of Shantou, and the source of Cd in the soil was a mix of anthropogenic and natural contamination. The non-carcinogenic and carcinogenic risks of heavy metal Cd exposure pathways are: oral ingestion > dermal contact > inhalation. The human health risk posed by Cd is below the reference threshold, indicating that the Cd contents in the soil have no unacceptable health risk to the residents. Among industrial sources, natural sources, and unknown sources with potential carcinogenic and non-carcinogenic risks, natural sources were the main source of contamination for adults and children. Among the different soil types, paddy, and red soils had relatively high Cd content, and among the different soil-forming parent materials, the Cd content in soils developed on Quaternary sediments was significantly higher than that other parent materials. Among the different land use types, the Cd content of soil for construction land was the highest. This study provides a scientific foundation and reference for the prevention of soil Cd contamination in Shantou City and the analysis of soil contamination sources in areas with similar contamination patterns.
Collapse
Affiliation(s)
- Ruyi Li
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Jing Xu
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan 430100, China.
| | - Pan Yang
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Yuwei Hu
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Wenjing Ning
- College of Resources and Environment, Yangtze University, Wuhan 430100, China.
| |
Collapse
|
21
|
Mei C, Wang H, Cai K, Xiao R, Xu M, Li Z, Zhang Z, Cui J, Huang F. Characterization of soil microbial community activity and structure for reducing available Cd by rice straw biochar and Bacillus cereus RC-1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156202. [PMID: 35623534 DOI: 10.1016/j.scitotenv.2022.156202] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The combination of biochar and specific bacteria has been widely applied to remediate Cadmium-contaminated soil. But little is known about how such composites affect the dynamic distribution of metal fractions. This process is accompanied by the alternations of soil properties and microbial community structures. Composite of rice straw biochar and Bacillus cereus RC-1 were applied to investigate its impacts on Cd alleviation and soil microbial diversity and structure. The bacterial/biochar composite treatment decreased the fraction of HOAc-extractable Cd by 38.82%, and increased residual Cd by 23.95% compared to the untreated control. Moreover, compared with the untreated control, the composite treatment significantly increased the soil pH by about 1.5 units, and the activities of catalase, urease and invertase enzymes were increased by 42.39%, 30.50% and 31.20%, respectively. Composite treatment increased soil bacterial and fungal alpha diversity, the relative abundance of Bacillus, Streptomyces, Arthrobacter, and Aspergillus species were also increased. Mantel test and correlation analysis indicated that the effects associated with fungal communities in influencing soil properties were lower than that those of bacterial communities by different treatment. Aggregated boosted tree (ABT) models analysis showed that soil chemical proprieties (as determined by SOM, CEC, AN, etc.,) contributed over 50% of the changes in bacterial and fungal communities by the composite treatment. The co-occurrence network results showed that all treatments enhanced the correlation between OUT groups and improved the possible relationships in the bacterial and fungal communities, especially the interrelationships between bacteria and fungi after the Cd fractions stabilized. These findings provide a new insight to optimal strategies for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Chuang Mei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Heng Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Kunzheng Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Rongbo Xiao
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Meili Xu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zishan Li
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhenyan Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Jingyi Cui
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Fei Huang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
22
|
Wei T, Li H, Yashir N, Li X, Jia H, Ren X, Yang J, Hua L. Effects of urease-producing bacteria and eggshell on physiological characteristics and Cd accumulation of pakchoi (Brassica chinensis L.) plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63886-63897. [PMID: 35469379 DOI: 10.1007/s11356-022-20344-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Soil cadmium (Cd) contamination resulting from anthropogenic activity poses severe threats to food safety and human health. In this study, a pot experiment was performed to evaluate the possibility of using urease-producing bacterium UR21 and eggshell (ES) waste for improving the physiological characteristics and reducing Cd accumulation of pakchoi (Brassica chinensis L.) plants. UR21 has siderophore and IAA production ability. The application of UR21 and ES individually or in combination could improve the root and shoot length, and fresh and dry weight of pakchoi plants under Cd stress. In Cd + ES + UR21-treated plants, the dry weight of shoot and root were increased by 61.54% and 72.73%, respectively. The chlorophyll a, chlorophyll b, and carotenoid content were increased by 52.19%, 42.95%, and 95.56% in Cd + ES + UR21-treated plants. Meanwhile, the H2O2 and MDA content were decreased while the SOD and POD activity were increased, and an increase of soluble protein level in pakchoi plants was observed under Cd + ES + UR21 treatment. Importantly, eggshell and UR21 alone or in combination induced a decline of Cd content in pakchoi plants, especially that Cd + ES + UR21 treatment decreased Cd content in shoot and root by 26.96% and 42.91%, respectively. Meanwhile, the soil urease and sucrase activities were enhanced. Generally, the combined application of ureolytic bacteria UR21 and eggshell exhibited better effects than applied them individually in terms of alleviating Cd toxicity in pakchoi plants. Our findings may give a unique perspective for an eco-friendly and sustainable strategy to remediate heavy metal-polluted soils.
Collapse
Affiliation(s)
- Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Hong Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Noman Yashir
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Xian Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Xinhao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Jing Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Li Hua
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China.
| |
Collapse
|
23
|
Wang W, Lu T, Liu L, Yang X, Li X, Qiu G. Combined remediation effects of biochar, zeolite and humus on Cd-contaminated weakly alkaline soils in wheat farmland. CHEMOSPHERE 2022; 302:134851. [PMID: 35533934 DOI: 10.1016/j.chemosphere.2022.134851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/16/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Threats posed by Cd-contaminated arable soils to food security have attracted increasing attention. The combination of organic and inorganic amendments has been extensively applied to immobilize Cd in paddy soils. However, the regulatory mechanism of Cd fractionation under these combined amendments and the effect on wheat Cd accumulation remain unclear in upland soils. In this work, different combinations of organic and inorganic amendments were prepared with biochar, zeolite and humus, and the Cd-immobilization mechanism was also investigated in field experiments. The results demonstrated that the mixture of biochar, zeolite and humus had excellent Cd immobilization performance in highly Cd-contaminated (4.26 ± 1.25 mg kg-1) weakly alkaline soils, resulting in 76.5-84.8% decreases in soil available Cd. The contribution of single components to Cd immobilization in the combined amendment follows the order of humus > biochar > zeolite. The combined amendment converted the acid soluble Cd to the Cd bound to the reducible fraction with higher stability, thereby decreasing Cd bioavailability. The maximum Cd decrease rate in wheat roots, straw and grains could reach 68.2%, 45.0% and 59.3%, respectively, and the Cd content in grains (0.098 mg kg-1) was lower than the food security standards of China (0.1 mg kg-1). Wheat planting for two successive years in a large-scale field further verified the superior Cd immobilization performance and stability of the combined amendment in moderately to slightly Cd-contaminated soil. The present study provides references for the remediation of Cd-contaminated weakly alkaline upland soils and certain guidance for safe food production.
Collapse
Affiliation(s)
- Weihua Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Xiong Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Xuanzhen Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
24
|
Deng S, An Q, Ran B, Yang Z, Xu B, Zhao B, Li Z. Efficient remediation of Mn 2+ and NH 4+-N in co-contaminated water and soil by Acinetobacter sp. AL-6 synergized with grapefruit peel biochar: Performance and mechanism. WATER RESEARCH 2022; 223:118962. [PMID: 35970107 DOI: 10.1016/j.watres.2022.118962] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Electrolysis manganese slag produced in industrial manganese production causes massive leachate containing heavy metal Mn2+ and inorganic NH4+-N, which causes serious hazard to the water body and soil. A cost-effective alternative to address the multiple pollution is urgently needed. This study investigated the synergy of grapefruit peel biochar (BC) and strain AL-6 to remediate Mn2+ and NH4+-N in sequencing batch bioreactor (SBR) and soil column. The results showed that, in SBR, under the condition of C/N 5, temperature 30°C, BC and strain AL-6 showed fabulous performance to remove Mn2+ (99.3%) and NH4+-N (97.7%). The coexisting ions Mg2+ and Ca2+ had no effects on the removal of Mn2+ and COD, however, 23.3% removal efficiency of NH4+-N was curtailed. Characterization found that the presence of MnCO3 confirmed the adsorption of Mn2+ by functional groups action, and gas chromatography indicated that BC and strain AL-6 promoted the reduction of N2O and organic carbon. In addition, BC and strain AL-6 helped to immobilize 799.41 mg L-1 of Mn2+ and 320 mg L-1 of NH4+-N after 45 d in the soil column. And the determination of TOC, CEC, pH, Eh, soil enzymatic activity (catalase and urease), and microbial diversity and abundance confirmed that BC and strain AL-6 increased the soil fertility and bioavailability of pollutants. Totally, BC and strain AL-6 possess great potential to remediate Mn2+ and NH4+-N pollution in water and soil.
Collapse
Affiliation(s)
- Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China.
| | - Binbin Ran
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zihao Yang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Bohan Xu
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Bin Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
25
|
Yang J, Li G, Xia M, Chen Y, Chen Y, Kumar S, Sun Z, Li X, Zhao X, Hou H. Combined effects of temperature and nutrients on the toxicity of cadmium in duckweed (Lemna aequinoctialis). JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128646. [PMID: 35325863 DOI: 10.1016/j.jhazmat.2022.128646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Global anthropogenic changes are altering the temperature and nutrients of the ecosystem, which might also affect the extent of cadmium (Cd) toxicity in organisms. This study aimed to investigate the combined effects of temperature and nutrient availability (here, nitrogen [N] and phosphorus [P]) on Cd toxicity in duckweed (Lemna aequinoctialis). The growth parameters, nutrient uptake, and Cd tolerance of plantlets reached their highest values for duckweed grown in medium with 28 mg/L N and 2.4 mg/L P (N:P = 11.67) at 25 °C under 1 mg/L CdCl2 exposure. Raising the temperature (from 18 °C to 25 °C) and levels of N and P (from 0.01 N/P to 2 N/P) enhanced photosynthetic capacity and nutrient uptake, thus promoting plant growth and diluting the toxic effects of Cd. Although Cd uptake increased with increasing temperature, duckweed with relatively high biomass exhibited a lower accumulation of the toxic metal because their growth rate exceeded Cd uptake rate. Increasing N and P supply also enhanced the tolerance of duckweed to Cd by limiting Cd bioavailability. Our study therefore suggests the importance of combined effects from temperature and nutrients for Cd toxicity and provides novel insights for a comprehensive analysis of Cd toxicity associated with the environmental factors of a particular ecosystem.
Collapse
Affiliation(s)
- Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Manli Xia
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yimeng Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sunjeet Kumar
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoliang Sun
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhe Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
26
|
Wang Z, Pan X, Kuang S, Chen C, Wang X, Xu J, Li X, Li H, Zhuang Q, Zhang F, Wang X. Amelioration of Coastal Salt-Affected Soils with Biochar, Acid Modified Biochar and Wood Vinegar: Enhanced Nutrient Availability and Bacterial Community Modulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127282. [PMID: 35742528 PMCID: PMC9223450 DOI: 10.3390/ijerph19127282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/04/2023]
Abstract
As an important part of the ecological environment, degraded coastal soils urgently require efficient and eco-friendly soil amendment. Biochar and wood vinegar have been proved to be effective soil amendments, and acid-modified biochar has great potential in ameliorating the degraded coastal saline-alkali soil. However, the effects of individual or combined application of biochar (BC), acid-modified biochar (ABC), and wood vinegar (WV) on coastal saline-alkali soil are unknown. Hence, biochar, wood vinegar, and acid-modified biochar were prepared by pyrolysis of poplar wood. The properties of biochar were characterized, and soil incubation experiments were conducted. The results showed that ABC decreased the soil alkalinity by acid-base neutralization and improved the soil fertility by increasing the nutrients (C, N, P). ABC provided a more suitable environment and changed the abundance and diversity of soil microorganisms. ABC increased the relative contents of specific families (e.g., Pseudomonadaceae and Sphingomonadaceae), which had strong ecological linkages in the C, N, and P cycles and organic matter degradation. The results indicated that WV had little effect on coastal saline-alkali soil, whereas individual and combined application of biochar (especially ABC) showed an efficient remediation effect. Our preliminary study demonstrated that the ABC could be a suitable solution for ameliorating degraded coastal saline-alkali soils.
Collapse
Affiliation(s)
- Zhangjun Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266001, China; (Z.W.); (C.C.); (X.W.); (J.X.); (X.L.); (H.L.); (Q.Z.); (F.Z.)
- R & D Center for Marine Instruments and Apparatuses, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
- Shandong SCICOM Shenguang Technology Co., Ltd., Qingdao 266300, China
| | - Xin Pan
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266001, China; (Z.W.); (C.C.); (X.W.); (J.X.); (X.L.); (H.L.); (Q.Z.); (F.Z.)
- Correspondence: (X.P.); (S.K.); Tel.: +86-532-58628657 (X.P.); +86-532-88959332 (S.K.)
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Correspondence: (X.P.); (S.K.); Tel.: +86-532-58628657 (X.P.); +86-532-88959332 (S.K.)
| | - Chao Chen
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266001, China; (Z.W.); (C.C.); (X.W.); (J.X.); (X.L.); (H.L.); (Q.Z.); (F.Z.)
- R & D Center for Marine Instruments and Apparatuses, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
- Shandong SCICOM Shenguang Technology Co., Ltd., Qingdao 266300, China
| | - Xiufen Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266001, China; (Z.W.); (C.C.); (X.W.); (J.X.); (X.L.); (H.L.); (Q.Z.); (F.Z.)
- Shandong SCICOM Shenguang Technology Co., Ltd., Qingdao 266300, China
| | - Jie Xu
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266001, China; (Z.W.); (C.C.); (X.W.); (J.X.); (X.L.); (H.L.); (Q.Z.); (F.Z.)
| | - Xianxin Li
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266001, China; (Z.W.); (C.C.); (X.W.); (J.X.); (X.L.); (H.L.); (Q.Z.); (F.Z.)
- R & D Center for Marine Instruments and Apparatuses, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
| | - Hui Li
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266001, China; (Z.W.); (C.C.); (X.W.); (J.X.); (X.L.); (H.L.); (Q.Z.); (F.Z.)
| | - Quanfeng Zhuang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266001, China; (Z.W.); (C.C.); (X.W.); (J.X.); (X.L.); (H.L.); (Q.Z.); (F.Z.)
| | - Feng Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266001, China; (Z.W.); (C.C.); (X.W.); (J.X.); (X.L.); (H.L.); (Q.Z.); (F.Z.)
| | - Xiao Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China;
| |
Collapse
|
27
|
Palansooriya KN, Sang MK, Igalavithana AD, Zhang M, Hou D, Oleszczuk P, Sung J, Ok YS. Biochar alters chemical and microbial properties of microplastic-contaminated soil. ENVIRONMENTAL RESEARCH 2022; 209:112807. [PMID: 35093312 DOI: 10.1016/j.envres.2022.112807] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 05/06/2023]
Abstract
The occurrence of microplastics (MPs) in soils can negatively affect soil biodiversity and function. Soil amendments applied to MP-contaminated soil can alter the overall soil properties and enhance its functions and processes. However, little is known about how soil amendments improve the quality of MP-contaminated soils. Thus, the present study used a microcosm experiment to explore the potential effects of four types of biochar on the chemical and microbial properties of low-density polyethylene (LDPE) MP-contaminated soil under both drought and well-watered conditions. The results show that the biochars altered soil pH, electrical conductivity (EC), available phosphorous, and total exchangeable cations (TEC) with some variability depending on the biochar type. Oilseed rape straw (OSR)-derived biochars increased soil pH, EC, and TEC under both water conditions with the highest values of 7.94, 0.54 dS m-1 and 22.0 cmol(+) kg-1, respectively. Soil enzyme activities varied under all treatments; in particular, under drought conditions, the fluorescein diacetate activity increased in soils with high temperature (700 °C) biochar. The application of soft wood pellet biochar (700 °C) to MP-contaminated soil increased urease activity by 146% under well-watered conditions. OSR-derived biochars significantly reduced soil acid phosphatase activity under both water conditions. With biochar supplementation, the diversity indices of the bacterial community increased in well-watered soil but not in soil under drought conditions. The abundance of bacterial phyla, such as Firmicutes, Proteobacteria, Actinobacteria, Dictyoglomi, and Gemmatimonadetes, was relatively high in all treatments. Biochar application resulted in negligible variations in bacterial communities under drought conditions but significant variations under well-watered conditions. The findings of this study imply that biochar can be used as a soil amendment to improve the overall soil quality of MP-contaminated soil, but its impact varies depending on the pyrolysis feedstock and temperature. Thus, selecting a suitable biochar is important for improving the soil quality in MP-contaminated soils.
Collapse
Affiliation(s)
- Kumuduni Niroshika Palansooriya
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Mee Kyung Sang
- Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration, Wanju, 55365, South Korea
| | | | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310028, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Sklodowska University, Lublin, 20-031, Poland
| | - Jwakyung Sung
- Department of Crop Science, College of Agriculture, Life Science and Environmental Chemistry, Chungbuk National University, Cheongju, Chungcheongbuk-do, 28644, South Korea.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
28
|
Zhang P, Xue B, Jiao L, Meng X, Zhang L, Li B, Sun H. Preparation of ball-milled phosphorus-loaded biochar and its highly effective remediation for Cd- and Pb-contaminated alkaline soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152648. [PMID: 34963592 DOI: 10.1016/j.scitotenv.2021.152648] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Pyrolytic biochar is a good material for remediating soils contaminated with heavy metals; however, it exhibits strong alkalinity, which easily causes soil alkalization and fertility reduction. Herein, a series of novel biochar materials (BPBCs) were prepared by combined ball milling and phosphorus (P)-loading. The optimized BPBC were fabricated in the basis of Cd and Pb adsorption capacities of the biochar, with pyrolysis at 700 °C, ball milling for 12 h and the addition of 5% red P (BPBC700). Ball milling could effectively grind pristine biochar into submicron particles and nanoscale P particles could be uniformly loaded on BPBC700. Moreover, the oxidative conversion of red P into phosphorus oxides, phosphoric acid and (hydro)phosphates was promoted due to reactions with the carbonates, alkaline minerals and O-containing functional groups of biochar. These reactions also decreased the biochar and soil pH to nearly neutral by acid-base neutralization. Pot experiments showed that BPBC700 had better effects than the pristine or ball-milled biochar in improving soil properties (e.g., cation exchange capacity and organic carbon), increasing the concentrations of soil nutrients (e.g., N and P), promoting alkaline phosphatase, catalase and urease activities, decreasing soil mobility and plant accumulation of Cd and Pb, and alleviating Cd and Pb stress on maize plants. Thus, BPBC is a promising and ecofriendly amendment to enhance its adsorption ability on Cd and Pb, soil quality and plant productivity in contaminated soil.
Collapse
Affiliation(s)
- Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Bing Xue
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Le Jiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xingying Meng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Lianying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Beixing Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
29
|
Zulfiqar U, Jiang W, Xiukang W, Hussain S, Ahmad M, Maqsood MF, Ali N, Ishfaq M, Kaleem M, Haider FU, Farooq N, Naveed M, Kucerik J, Brtnicky M, Mustafa A. Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2022; 13:773815. [PMID: 35371142 PMCID: PMC8965506 DOI: 10.3389/fpls.2022.773815] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/02/2022] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is a major environmental contaminant due to its widespread industrial use. Cd contamination of soil and water is rather classical but has emerged as a recent problem. Cd toxicity causes a range of damages to plants ranging from germination to yield suppression. Plant physiological functions, i.e., water interactions, essential mineral uptake, and photosynthesis, are also harmed by Cd. Plants have also shown metabolic changes because of Cd exposure either as direct impact on enzymes or other metabolites, or because of its propensity to produce reactive oxygen species, which can induce oxidative stress. In recent years, there has been increased interest in the potential of plants with ability to accumulate or stabilize Cd compounds for bioremediation of Cd pollution. Here, we critically review the chemistry of Cd and its dynamics in soil and the rhizosphere, toxic effects on plant growth, and yield formation. To conserve the environment and resources, chemical/biological remediation processes for Cd and their efficacy have been summarized in this review. Modulation of plant growth regulators such as cytokinins, ethylene, gibberellins, auxins, abscisic acid, polyamines, jasmonic acid, brassinosteroids, and nitric oxide has been highlighted. Development of plant genotypes with restricted Cd uptake and reduced accumulation in edible portions by conventional and marker-assisted breeding are also presented. In this regard, use of molecular techniques including identification of QTLs, CRISPR/Cas9, and functional genomics to enhance the adverse impacts of Cd in plants may be quite helpful. The review's results should aid in the development of novel and suitable solutions for limiting Cd bioavailability and toxicity, as well as the long-term management of Cd-polluted soils, therefore reducing environmental and human health hazards.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Wenting Jiang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Wang Xiukang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Nauman Ali
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Naila Farooq
- Department of Soil and Environmental Science, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
30
|
Qian X, Lü Q, He X, Wang Y, Li H, Xiao Q, Zheng X, Lin R. Pseudomonas sp. TCd-1 significantly alters the rhizosphere bacterial community of rice in Cd contaminated paddy field. CHEMOSPHERE 2022; 290:133257. [PMID: 34906525 DOI: 10.1016/j.chemosphere.2021.133257] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) pollution of paddy soils is one of the main concerns causing food security and environmental problems. Microbial bioremediation is an effective and eco-friendly measure that uses microbes to reduce Cd accumulation in crops. Additionally, rhizosphere bacterial communities also act essential roles in crop tolerance of heavy metals. However, the effects of inoculations with Cd resistant bacteria on crop rhizosphere bacterial communities under Cd exposure are largely unknown. In this study, we used high-throughput 16S rRNA gene sequencing technologies to explore the community structure and co-occurrence network of the rhizosphere bacterial communities associated with the rice crop under different Cd treatments and the application of Cd-tolerant strain Pseudomonas sp. TCd-1. We found that the strain TCd-1 both significantly reduced the rhizobacterial alpha diversity and changed the beta diversity. PERMANOVA and NMDS analysis showed that Cd stress and TCd-1 strain could act as strong environmental filters resulting in observable differentiation of rhizobacterial community composition among different groups. In addition, RDA results indicated that the rhizosphere pH, root Cd content, catalase (CAT), urease (URE), gibberellic acid (GA3) exert significant association with rhizosphere bacterial assembly. PICRUSt analysis revealed that the TCd-1 strain improved the metabolic capacity of rhizosphere bacteria under Cd stress. Furthermore, co-occurrence network topological features and keystone taxa also varied among different groups. This study could provide necessary insights into developing an efficient bioremediation and safe production of rice crops in Cd contaminated paddy fields with the application of Pseudomonas sp. TCd-1 strain, as well as advance our understanding of the principles of rhizosphere bacterial community assembly under Cd stress.
Collapse
Affiliation(s)
- Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qixin Lü
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaosan He
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yujie Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hanzhou Li
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Qingtie Xiao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinyu Zheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruiyu Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
31
|
An M, Hong D, Chang D, Zhang C, Fan H, Wang K. Polymer amendment regulates cadmium migration in cadmium contaminated cotton field: Insights from genetic adaptation and phenotypic plasticity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151075. [PMID: 34687702 DOI: 10.1016/j.scitotenv.2021.151075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Polymer materials have been widely used in the remediation of soil heavy metal contamination for their good performance in the absorption of metal ions. To reveal the effect of polymer amendment (PA) on the remediation of cadmium-contaminated cotton fields, the cadmium (Cd) fractions in soil, Cd concentration in cotton organs, bioconcentration factor (BCF) of Cd, translocation factor (TF) of Cd, and the antioxidant capacity and photosynthesis of functional leaves were evaluated combining with the transcriptomic and metabolomic analyses, in barrel experiments in the field at the flowering and boll-forming stage of cotton. The results showed that, cotton improved the tolerance to Cd through self-regulation in Cd-contaminated soil. The expression of oxoglutaric acid and jasmonic acid were down-regulated by the application of PA to improve the photosynthetic rate (7.71%-46.20%), chlorophyll content (17.59%-63.18%), chlorophyll fluorescence (7.66%-32.25%), and antioxidant enzyme activity (15.49%-45.50%) of functional leaves, and the down-regulation of the expression of jasmonic acid and up-regulation of the expression of stearic acid reduced the exchangeable Cd concentration in the soil, which reduced the transport of Cd from the root to the bolls (54.39%). Thereby, the balance of the genetic adaptation and phenotypic plasticity of cotton was achieved, and the cell structure of leaves was restored. This study deepens our understanding of the molecular mechanism of PA in the remediation of Cd contamination in cotton fields, and provides guidance for the remediation of heavy metal contamination in farmland soil and agricultural safety under drip irrigation.
Collapse
Affiliation(s)
- Mengjie An
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Dashuang Hong
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Doudou Chang
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Chunyuan Zhang
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Hua Fan
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| | - Kaiyong Wang
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| |
Collapse
|
32
|
Qu J, Wei S, Liu Y, Zhang X, Jiang Z, Tao Y, Zhang G, Zhang B, Wang L, Zhang Y. Effective lead passivation in soil by bone char/CMC-stabilized FeS composite loading with phosphate-solubilizing bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127043. [PMID: 34479084 DOI: 10.1016/j.jhazmat.2021.127043] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Bioremediation by phosphate-solubilizing bacteria (PSB) has attracted extensive attentions due to its economical and eco-friendly properties for lead (Pb) passivation in soil. Herein, bone char (BC) supported biochemical composite (CFB1-P) carrying advantages of BC, PSB, iron sulfide (FeS) and carboxymethyl cellulose (CMC) was designed and applied to Pb passivation. The composite at a mass ratio of BC:CMC:FeS = 1:1:1 possessed high passivation efficiency (65.47%), and has been demonstrated to offer appropriate habitat environment for PSB to defend against Pb(II) toxicity, thus enhancing the phosphate-solubilizing amount of PSB to 140.72 mg/L for passivating Pb(II). Batch experiments showed that the CFB1-P possessed excellent adsorption properties with maximal monolayer Pb(II) uptake of 452.99 mg/g during an extensive pH range of 2.0-6.0. Furthermore, by applying CFB1-P dosage of 3% into Pb-contaminated soil, the labile Pb fractions were reduced from 29.05% to 6.47% after simulated remediation of 10 days, and converted into steady fractions. The CFB1-P was demonstrated to achieve high Pb(II) passivation through combined functions of chemical precipitation, complexation, electrostatic attraction and biomineralization, accompanied by the formation of more stable crystal structures, for instance, Pb5(PO4)3OH, Pb3(PO4)2 and PbS. These results suggested CFB1-P as a potential alternative for efficient remediation of Pb-contaminated soil.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuqi Wei
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinmiao Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
33
|
Yu H, Zhang Y, Zhan J, Tang C, Zhang X, Huang H, Ye D, Wang Y, Li T. A composite amendment benefits rice (Oryza sativa L.) safety and production in cadmium-contaminated soils by unique characteristics after oxidation modification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150484. [PMID: 34597966 DOI: 10.1016/j.scitotenv.2021.150484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
In-situ immobilization is an effective strategy for Cd remediation and food safety, while some modifications are necessary to improve immobilization efficiency. In this study, a composite amendment (RFW) derived from rice straw biochar (RSB), fly ash (FA), and white marble (WM) was modified by oxidization (RFW-O) and pyrolysis (RFW-P). The RFW-O showed stronger Cd2+ sorption ability than RFW and RFW-P due to larger BET surface area and more oxygen containing-functional groups. Complexation and iron exchange were the two main processes of Cd2+ sorption on RFW-O. As a result, the application of RFW-O significantly reduced Cd availability in soils by 10.11-26.24% along with increased soil pH. It was found to be optimal to apply the RFW-O at a dosage of 2.5 wt% for 15 days before transplantation. After RFW-O application, Cd concentrations in brown rice decreased by 40.49% and 41.59% for pot and field experiment, respectively, and were less than 0.2 mg kg-1. The catalase, dehydrogenase, acid phosphatase and alkaline phosphatase activities in soils increased significantly. Moreover, RFW-O showed no significant effect on rice yield and quality. The RFW-O is thereby considered to be an ideal amendment for in-situ immobilization of Cd-contaminated soils for rice safety and production in practice.
Collapse
Affiliation(s)
- Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Yunhong Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Juan Zhan
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chan Tang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| |
Collapse
|
34
|
Zhang Y, Huang H, Yu H, Zhan J, Ye D, Zheng Z, Zhang X, Wang Y, Li T. The changes of rhizosphere characteristics contributed to enhanced Pb accumulation in Athyrium wardii (Hook.) Makino after nitrilotriacetic acid application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6184-6193. [PMID: 34436720 DOI: 10.1007/s11356-021-15476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Chelant-assisted phytoremediation may modify plant rhizosphere, which is closely related to heavy metal (HM) accumulation in plants. This work focused on the effects of nitrilotriacetic acid (NTA) on rhizosphere characteristics to investigate the mechanisms of lead (Pb) accumulation in Athyrium wardii (Hook.) Makino with exposure to 800 mg kg-1 Pb. After NTA application, Pb accumulation in the underground part of A. wardii increased by 14.3%, accompanying with some changes for the rhizosphere soils. Soil pH decreased by 0.37 units, and the dissolved organic carbon (DOC) content in the rhizosphere soils significantly increased by 7.6%. The urease, acid phosphatase, and catalase activities in the rhizosphere soils significantly increased by 104.8%, 19.7%, and 27.1%, respectively. However, a slight inhibition on microbial activities was observed in the rhizosphere of A. wardii after NTA application. Soil respiration decreased by 8.9%, and microbial biomass carbon decreased by 8.9% in the rhizosphere soils, indicating that NTA addition might recruit some microorganisms to maintain rhizosphere functions in Pb-contaminated soils while inhibiting others with low tolerance to Pb. Results suggest that lower pH, more DOC exudation, and higher soil enzyme activities after NTA application contributed to the increase of Pb accumulation in A. wardii. This study gave some preliminary evidence for NTA-assisted Pb remediation by A. wardii by modifying rhizosphere characteristics.
Collapse
Affiliation(s)
- Yunhong Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Juan Zhan
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
35
|
Wei T, Yashir N, An F, Imtiaz SA, Li X, Li H. Study on the performance of carbonate-mineralized bacteria combined with eggshell for immobilizing Pb and Cd in water and soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2924-2935. [PMID: 34382171 DOI: 10.1007/s11356-021-15138-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Microbially induced carbonate precipitation (MICP) is an advanced bioremediation approach to remediate heavy metal (HM)-contaminated water and soil. In this study, metal-tolerant urease-producing bacterial isolates, namely, UR1, UR16, UR20, and UR21, were selected based on their urease activity. The efficiency of these isolates in water for Pb and Cd immobilizations was explored. Our results revealed that UR21 had the highest removal rates of Pb (81.9%) and Cd (65.0%) in solution within 72 h through MICP. The scanning electron microscopy-energy-dispersive x-ray and x-ray diffraction analysis confirmed the structure and the existence of PbCO3 and CdCO3 crystals in the precipitates. In addition, the strain UR21, in combination with urea/eggshell waste (EGS) or both, was further employed to investigate the effect of MICP on soil enzymatic activity, chemical fractions, and bioavailability of Pb and Cd. The outcomes indicated that the applied treatments reduced the proportion of soluble-exchangeable-Pb and -Cd, which resulted in an increment in carbonate-bound Pb and Cd in the soil. The DTPA-extractable Pb and Cd were reduced by 29.2% and 25.2% with the treatment of UR21+urea+EGS as compared to the control. Besides, the application of UR21 and EGS significantly increased the soil pH, cation exchange capacity, and enzyme activities. Our findings may provide a novel perceptive for an eco-friendly and sustainable approach to remediate heavy metal-contaminated environment through a combination of metal-resistant ureolytic bacterial strain and EGS.
Collapse
Affiliation(s)
- Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| | - Noman Yashir
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Fengqiu An
- College of Environmental and Chemical Engineering, Polytechnic University, Xi'an, 710048, China
| | - Syed Asad Imtiaz
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Xian Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Hong Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
36
|
Ribeiro PG, Aragão OODS, Martins GC, Rodrigues M, Souza JMP, Moreira FMDS, Li YC, Guilherme LRG. Hydrothermally-altered feldspar reduces metal toxicity and promotes plant growth in highly metal-contaminated soils. CHEMOSPHERE 2022; 286:131768. [PMID: 34426129 DOI: 10.1016/j.chemosphere.2021.131768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Novel green technologies for soil remediation have been focusing on altering soil properties and improving soil health. Hydrothermally-altered feldspar (HYP, HydroPotash), recently developed, is being related as both an efficient amendment to immobilize heavy metals in soils and a plant nutrients source, consisting in a promising technology for revegetation of contaminated sites. In order to evaluate the effectiveness of using HYP for phytostabilization programs, two different soils (Technosol and Oxisol) collected from a smelting site were amended with increasing doses of HYPs (HYP-1 and HYP-2): 15, 30, 60, and 120 Mg ha-1. For comparison, a control (soil without amendment) and a soil amended with zeolite (clinoptilolite) were also included as treatments. After 90 days of incubation, HYPs decreased up to 83.8 % of Cd availability and reduced exchangeable Al up to 100 %. HydroPotash increased pH, cation exchange capacity, and contents of potassium, calcium, and phosphorus, as well as microbial biomass carbon, and fluorescein diacetate hydrolysis of soils. Andropogon gayanus, Eucalyptus grandis, and Heterocondylus vitalbae started growing from the dose of 15 Mg ha-1 HYPs in the Oxisol and 60 Mg ha-1 HYPs in the Technosol. Principal component analysis indicates that plant shoot dry weight was negatively correlated with extractable Cd and Zn and positively with pH, CEC, and Ca content. Besides promoting plant growth, HYPs reduced heavy metals (Cd and Zn) absorption by plants, indicating that HYP has potential use as an amendment in phytostabilization programs.
Collapse
Affiliation(s)
- Paula Godinho Ribeiro
- Federal University of Lavras, Department of Soil Science, School of Agriculture, Lavras, Minas Gerais, Brazil
| | | | | | - Marcos Rodrigues
- APT - Advanced Potash Technologies Ltd., 89 Nexus Way, Grand Cayman, KY1-9007, Cayman Islands
| | - Jean Michel Pereira Souza
- Federal University of Lavras, Department of Soil Science, School of Agriculture, Lavras, Minas Gerais, Brazil
| | | | - Yuncong C Li
- Department of Soil and Water Sciences, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL, 33031, USA
| | | |
Collapse
|
37
|
Liu Q, Chen Z, Huang L, Mujtaba Munir MA, Wu Y, Wang Q, Ma L, Xu S, Wen Z, Feng Y. The effects of a combined amendment on growth, cadmium adsorption by five fruit vegetables, and soil fertility in contaminated greenhouse under rotation system. CHEMOSPHERE 2021; 285:131499. [PMID: 34265715 DOI: 10.1016/j.chemosphere.2021.131499] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) exposure is related to a multitude of adverse health outcomes because food crops grown on Cd-polluted soil are widely consumed by the public. The present study investigates the different application techniques of a combined amendment (lime + zeolite + biochar + compost, LZBC) for soil Cd immobilization effect on growth performance, Cd uptake by the second season crops, and soil quality in greenhouse vegetable production (GVP) under a rotation system. Five fruit vegetables were cultivated as the second season crop in the same plots which have been used for pakchoi as the first season crop (with or without LZBC application). The results indicated that LZBC with the consecutive application (T3) promoted crops biomass and fruit yield the most, followed by LZBC with the second crop application (T2) and LZBC with the first crop application (T1). LZBC application showed increasing rhizosphere soil pH and improvement in soil fertility of all crops including available nitrogen, available phosphorus, available potassium, organic matter, and cation exchange capacity. LZBC had positive influences on soluble sugar, soluble protein, and vitamin C in edible parts of 5 vegetables. Cd contents in fruit, shoot, and root of eggplant, pimento, cowpea, and tomato except cucumber were reduced by adding LZBC. As for the economic performance, T3 had the highest output/input ratio in general. Overall, these results demonstrated that T3 was dramatically more effective for minimizing health risk, increasing production, and facilitating sustainable utilization of soil under the Cd-contaminated GVP system.
Collapse
Affiliation(s)
- Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhiqin Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lukuan Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Mehr Ahmed Mujtaba Munir
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yingjie Wu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qiong Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Luyao Ma
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shunan Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zheyu Wen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
38
|
Wang G, Du W, Xu M, Ai F, Yin Y, Guo H. Integrated Assessment of Cd-contaminated Paddy Soil with Application of Combined Ameliorants: A Three-Year Field Study. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:1236-1242. [PMID: 34164721 DOI: 10.1007/s00128-021-03289-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Cadmium accumulation in rice is a major source of Cd exposure in humans worldwide. A three-year field experiment was conducted to investigate the ecological safety and long-term stability of biochar combined with lime or silicon fertilizer for Cd immobilization in a polluted rice paddy. The results showed that the application of combined ameliorants could reduce the Cd content in brown rice to meet the Chinese maximum permissible limit for Cd content in food products (0.2 mg/kg). In addition, such amendments stimulated metabolic pathways in soil bacteria, including carbon metabolism, citrate cycle, pyruvate metabolism, biosynthesis of amino acids, and glycolysis/gluconeogenesis, revealing improvements in soil biological activity and soil health. Therefore, the results provide a practical strategy for the safe utilization of farmland with mild levels of heavy metal pollution.
Collapse
Affiliation(s)
- Guobing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
- Joint International Research Centre for Critical Zone Science, University of Leeds and Nanjing University, Nanjing University, 210023, Nanjing, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Meiling Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
- Joint International Research Centre for Critical Zone Science, University of Leeds and Nanjing University, Nanjing University, 210023, Nanjing, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
- Joint International Research Centre for Critical Zone Science, University of Leeds and Nanjing University, Nanjing University, 210023, Nanjing, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
- Joint International Research Centre for Critical Zone Science, University of Leeds and Nanjing University, Nanjing University, 210023, Nanjing, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China.
- Joint International Research Centre for Critical Zone Science, University of Leeds and Nanjing University, Nanjing University, 210023, Nanjing, China.
| |
Collapse
|
39
|
Wang W, Lu T, Liu L, Yang X, Sun X, Qiu G, Hua D, Zhou D. Zeolite-supported manganese oxides decrease the Cd uptake of wheat plants in Cd-contaminated weakly alkaline arable soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126464. [PMID: 34323733 DOI: 10.1016/j.jhazmat.2021.126464] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Cd pollution in arable soils has posed serious threats to food safety and human health. Mn oxides and Mn oxide-based materials have been widely applied to the removal of heavy metals for their high adsorption capacity, especially in water treatment. However, the performance and stability of Mn oxide-based materials and the underlying mechanism of Cd immobilization in upland soils remain unclear. Here, zeolite-supported Mn oxides were used as amendment to investigate their impact on the availability of soil Cd in wheat pot experiments. The decrease in soil available Cd content (by 44.3%) and increase in soil available Mn content (by 61.9%) significantly inhibited Cd accumulation in wheat plant tissues under the application of zeolite-supported Mn oxides. The exchangeable Cd was transformed to more stable fractionation of Fe-Mn oxide bound Cd, and the maximum decrease of Cd content in wheat grains, straw and roots reached 65.0%, 11.7% and 55.3%, respectively. Besides, zeolite-supported Mn oxides exhibited high chemical stability and stable Cd immobilization performance in two successive years of wheat pot experiments. These findings improve our understanding of Mn oxide-based materials for soil remediation and indicate that zeolite-supported Mn oxides have great potential for the remediation of Cd-contaminated alkaline upland soils.
Collapse
Affiliation(s)
- Weihua Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiong Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.
| | - Dangling Hua
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, Henan Province, China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
40
|
Dong Q, Liu Y, Liu G, Guo Y, Yang Q, Shi J, Hu L, Liang Y, Yin Y, Cai Y, Jiang G. Aging and phytoavailability of newly introduced and legacy cadmium in paddy soil and their bioaccessibility in rice grain distinguished by enriched isotope tracing. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125998. [PMID: 33975165 DOI: 10.1016/j.jhazmat.2021.125998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Phytoavailability of Cadmium (Cd) plays a critical role in its accumulation in soil-rice systems. However, differential aging and phytoavailability of newly introduced Cd (CdN) and legacy Cd (CdL) in the soil-rice system remains unknown. Moreover, distinguishing their aging and phytoavailability is challenging. Enriched 112Cd isotope was introduced into a series of pot experiments, combined with sequential extraction and isotope dilution (110Cd isotopic spike), to investigate the aging and distribution of CdN and CdL under different treatments. The treatments included simulated acid rain, slaked lime, and biochar. CdN aged quickly than CdL in flooded soil and its availability was similar to that of CdL after tillering stage. The grain Cd contents were positively correlated to Cd concentrations in the overlying water. Acid rain reduced the soil pH, increasing the grain Cd, while slaked lime reduced grain Cd content. The acidic biochar used in this study increased grain Cd, possibly through soil acidification-induced Cd release. The differences in bioaccumulation and translocation factors between CdN and CdL in rice plants under slaked lime and biochar treatments suggested their different in vivo complexations and translocations. Analysis of bioaccessibility of CdN and CdL in rice grains provided valuable insights regarding human Cd exposure.
Collapse
Affiliation(s)
- Qiang Dong
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingqing Yang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
41
|
Bilias F, Nikoli T, Kalderis D, Gasparatos D. Towards a Soil Remediation Strategy Using Biochar: Effects on Soil Chemical Properties and Bioavailability of Potentially Toxic Elements. TOXICS 2021; 9:184. [PMID: 34437502 PMCID: PMC8402515 DOI: 10.3390/toxics9080184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022]
Abstract
Soil contamination with potentially toxic elements (PTEs) is considered one of the most severe environmental threats, while among remediation strategies, research on the application of soil amendments has received important consideration. This review highlights the effects of biochar application on soil properties and the bioavailability of potentially toxic elements describing research areas of intense current and emerging activity. Using a visual scientometric analysis, our study shows that between 2019 and 2020, research sub-fields like earthworm activities and responses, greenhouse gass emissions, and low molecular weight organic acids have gained most of the attention when biochar was investigated for soil remediation purposes. Moreover, biomasses like rice straw, sewage sludge, and sawdust were found to be the most commonly used feedstocks for biochar production. The effect of biochar on soil chemistry and different mechanisms responsible for PTEs' immobilization with biochar, are also briefly reported. Special attention is also given to specific PTEs most commonly found at contaminated soils, including Cu, Zn, Ni, Cr, Pb, Cd, and As, and therefore are more extensively revised in this paper. This review also addresses some of the issues in developing innovative methodologies for engineered biochars, introduced alongside some suggestions which intend to form a more focused soil remediation strategy.
Collapse
Affiliation(s)
- Fotis Bilias
- Soil Science Laboratory, Soil Science and Agricultural Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Thomai Nikoli
- Laboratory of Soil Science and Plant Diagnostics, Mediterranean Agronomic Institute of Chania, 73100 Chania, Greece;
| | - Dimitrios Kalderis
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133 Chania, Greece;
| | - Dionisios Gasparatos
- Laboratory of Soil Science and Agricultural Chemistry, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
42
|
Zhao H, Huang X, Liu F, Hu X, Zhao X, Wang L, Gao P, Li J, Ji P. Potential of a novel modified gangue amendment to reduce cadmium uptake in lettuce (Lactuca sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124543. [PMID: 33223317 DOI: 10.1016/j.jhazmat.2020.124543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
In this study, the modified gangue (GE) was prepared by calcination at lower temperatures using potassium hydroxide (KOH) as the activating agent. The field emission scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray fluorescence (XRF) methods were employed to analyze the physicochemical characteristics of GE before and after the modification. Besides, the GE and commercial zeolite (ZE) were compared in the remediation of Cd-contaminated soil in field experiments. The results showed that both the GE and ZE had positive effects on the stabilization of Cd, decreasing the available Cd by 21.2-33.9% and 22.1-28.2%, respectively, while no significant difference was observed between the two amendments, indicating that the modification of GE was successful. Moreover, the application of GE decreased the Cd mobilization and uptake in lettuce shoot and root by 54.9-61.5% and 9.3-13.2%, respectively, and at the same time, the bio-available Cd decreased by 20.9-34.5%. Moreover, with the addition of GE, activities of urease and alkaline phosphatase increased in soil, while the peroxidase and superoxide dismutase activities were notably reduced in plants. Therefore, GE could be used as an effective amendment for the alleviation of Cd accumulation and toxicity, and thereby improve food safety.
Collapse
Affiliation(s)
- Hanghang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Original Agro-environmental Pollution Prevention and Control, Ministry of Agriculture/Tianjin Key Laboratory of Agro-environment and Safe-product, Tianjin 300191, China
| | - Xunrong Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Fuhao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiongfei Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xin Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Pengcheng Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Scientific Laboratory of Heyang Agricultural Environment and Farmland Cultivation, Ministry of Agriculture and Rural Affairs, Weinan 714000, Shaanxi, China
| | - Jingtian Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; The First Geological and Mineral Survey Institute of Henan Bureau of Geology and Mineral Exploration and Development, Applied Engineering Technology Research Center of Ecology and Exploration Geochemistry, Luoyang 471003, Henan, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China.
| |
Collapse
|
43
|
Wang Y, Zheng X, He X, Lü Q, Qian X, Xiao Q, Lin R. Effects of Pseudomonas TCd-1 on rice (Oryza sativa) cadmium uptake, rhizosphere soils enzyme activities and cadmium bioavailability under cadmium contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112249. [PMID: 33975222 DOI: 10.1016/j.ecoenv.2021.112249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/09/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Microbial remediation is a promising technique to reduce Cd accumulation in rice (Oryza sativa). In present study, a set of pot experiments were conducted to evaluate the effects of Cd-tolerate Pseudomonas TCd-1 inoculation on rice Cd uptake, soil enzyme activities and Cd bioavailability in the rhizosphere soils under Cd contaminated conditions. The results showed that at the ripening stage, with the inoculation of TCd-1, Cd contents in root, culm, leaf, hull and brown rice significantly reduced by 60.7%, 47.7%, 50.6%, 58.1% and 47.9%, respectively, and the cadmium bioconcentration factor (BCF) of rice lowered by 66.2% under 5 mg kg-1 Cd treatment. At the meantime, in the rhizosphere soils, pH increased by 0.05, the contents of exchangeable Cd (EX-Cd) and Fe-Mn oxides (OX-Cd) increased by 107.8% and 33.5%, whereas organic matter (OM-Cd) and residual (Res-Cd) decreased by 31.9% and 60.0%, respectively. The activity of acid phosphatase (ACP) increased by 28.3%, catalase (CAT), saccharase (SUC) activity decreased by 28.5% and 26.0%. Similarly, the Cd contents in root, culm, leaf, hull and brown rice reduced by 42.1%, 42.5%, 58.0%, 50.3%, and 68.8%, respectively, and the BCF lowered by 57.1%, under 10 mg kg-1 Cd treatment. Simultaneously, the soil pH increased by 0.06, the activities of CAT, SUC, urease (URE), ACP decreased by 26.4%, 34.6%, 63.8% and 15.3%, respectively. Furthermore, the correlation analysis showed that the inoculation of TCd-1 changed the correlation between rice Cd content and the biomass of roots, leaves, soil pH, CAT, PPO, URE activities, OM-Cd in rhizosphere soils. It suggested that Pseudomonas TCd-1 effectively reduced Cd uptake and Cd accumulation in rice was closely linked to the changes of soil pH, enzyme activities and Cd availability.
Collapse
Affiliation(s)
- Yujie Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Zheng
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaosan He
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qixin Lü
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Qian
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingtie Xiao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ruiyu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
44
|
Distributions of Particle Sizes in Black Soil and Their Environmental Significance in Northeast China. SUSTAINABILITY 2021. [DOI: 10.3390/su13073706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, black soil has decreased and degenerated heavily due to complicated functions of natural and artificial factors. Hence, characterizing distributions of particle sizes in black soil and their environmental influencing factors is important for understanding black soil degradation. A total of 116 surface soil samples in the top 20 cm from a typical black soil region in northeastern China were collected, and the spatial distribution of particle size parameters were characterized. Particle size-sensitive components were extracted quantitatively using the log-normal distribution function, and their environmental implications were investigated. The contents of black soil mechanical composition ranged from 7.8% to 79.3% for clay, 17.7% to 80.3% for silt, and 0% to 73.7% for sand, respectively. Median particle size ranged from 1.71 to 142.67 μm, with a coefficient of variation of 60%, indicating silt accounted for the majority of the composition. Four environmentally sensitive components were identified, including long-distance transported airborne deposits of clay dust (C1), successions from local parent materials (C2), short-distance deposits of silt particles (C3), and a component strongly disturbed by human activities (C4). C1 and C2 had relatively low variations, with C1 exhibiting the smallest variation, and C2 contributing highest proportion, showing no significant differences across all samples. C3 widely existed across samples, suggesting common wind erosion within the black soil region. C3 and C4 varied spatially, which was caused by the low vegetation coverage and high human disturbance of agricultural topsoil. The results suggest that windbreaks should be encouraged to reduce wind erosion in the black soil regions.
Collapse
|
45
|
Zhang D, Li T, Ding A, Wu X. Effects of an additive (hydroxyapatite-bentonite-biochar) on Cd and Pb stabilization and microbial community composition in contaminated vegetable soil. RSC Adv 2021; 11:12200-12208. [PMID: 35423762 PMCID: PMC8697084 DOI: 10.1039/d1ra00565k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
A two-year pot experiment was conducted with a pimiento-celery cabbage (Capsicum annuum L.-Brassica pekinensis) rotation in acidic soil contaminated with Cd and Pb, which was amended with 0.0, 1.0, 2.5, 5.0 and 10.0% (w/w) premixtures of hydroxyapatite, bentonite and biochar combinations (HTB, in a ratio of 1 : 2 : 2). The results showed that the application of HTB at 2.5-10.0% significantly increased soil pH and organic carbon by an average of 10.38-17.60% and 35.60-55.34% during the two years, respectively. Compared to the control treatment, 1.0-10.0% HTB decreased the available Cd and Pb concentrations by 40.92-77.53% and 41.60-82.79% on average, respectively. In addition, the diversity and richness of the soil bacterial community improved after the two-year application of HTB. The relative abundances of Acidobacteria, Bacteroidetes and Chloroflexi increased under the HTB treatments, while those of Proteobacteria and Actinobacteria decreased. Redundancy analysis (RDA) and regression analysis indicated that soil pH and Cd and Pb availability were important factors shaping the soil bacterial community. The Cd and Pb concentrations in the edible parts of pimiento and celery cabbage decreased as the HTB application rate increased and met the Food Quality Standard in each season when the HTB application rate was 5.0% or higher. Higher rates of HTB (5.0% and 10.0%) not only ensured the quality of vegetables, but also significantly promoted pimiento and celery cabbage growth. Overall, these results indicated that the application of HTB, especially at a rate of 5.0%, could be an effective way to immobilize Cd and Pb, improve soil quality and ensure vegetables produced in acidic contaminated soil are safe for human consumption.
Collapse
Affiliation(s)
- Di Zhang
- Nanjing XiaoZhuang University Nanjing 211171 People's Republic of China
| | - Ting Li
- Nanjing XiaoZhuang University Nanjing 211171 People's Republic of China
| | - Aifang Ding
- Nanjing XiaoZhuang University Nanjing 211171 People's Republic of China
| | - Xiaoxia Wu
- Nanjing XiaoZhuang University Nanjing 211171 People's Republic of China
| |
Collapse
|
46
|
Dong Q, Liu Y, Liu G, Guo Y, Yang Q, Shi J, Hu L, Liang Y, Yin Y, Cai Y, Jiang G. Enriched isotope tracing to reveal the fractionation and lability of legacy and newly introduced cadmium under different amendments. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123975. [PMID: 33265016 DOI: 10.1016/j.jhazmat.2020.123975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
The newly introduced Cd (CdN) has different environmental fates than legacy Cd (CdL) and how to distinguish them in soil under different amendments is crucial for understanding natural aging and engineered remediation of Cd pollution in soil. In this study, enriched stable isotope tracer (112Cd) was introduced to distinguish the fate of CdN and CdL in paddy soil under pH adjustment and quicklime, slaked lime, and biochar amendments. The behaviors of CdN and CdL were studied during 56 days of flooding incubation through overlying water analysis, sequential extraction fractionation and lability (exchangeable pool probed by 110Cd isotopic spike) assessment. The results showed that soil pH is the main driving factor controlling the partition of both CdN and CdL in overlying water. During the incubation, CdN transformed quickly from soluble fraction to residual fraction under all treatments. In addition, at the end of the incubation, CdN concentrations in residual fraction were much higher than that of CdL, suggesting a more thorough aging of CdN than CdL. The labile CdN (ECdN) under pH adjustment and biochar amendment decreased during incubation and ECdN% was essentially the same with that of ECdL% after 28 days, indicating the aging equilibrium of exchangeable pool of CdN.
Collapse
Affiliation(s)
- Qiang Dong
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States of America
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingqing Yang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States of America
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
47
|
Raiesi F, Dayani L. Compost application increases the ecological dose values in a non-calcareous agricultural soil contaminated with cadmium. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:17-30. [PMID: 33070239 DOI: 10.1007/s10646-020-02286-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Soil cadmium (Cd) pollution resulting from anthropogenic activities has become a major concern for microbial and biochemical functions that are critical for soil quality and ecosystem sustainability. Organic amendments can reduce Cd toxicity to the microbial community and enzymatic activity in Cd-polluted soils and thus would increase the ecological dose (ED) values. However, there has been less focus on the effect of organic amendments on microbial and biochemical responses to Cd toxicity in non-calcareous soils using the concept ED. The aim of this study was to assess the impact of compost application on microbial activity, microbial biomass, turnover rates of carbon and nitrogen, and enzymatic activities as the key ecological functions in a non-calcareous soil spiked with different Cd concentrations (0-200 mg kg-1). Results showed that soil amendment with compost decreased Cd availability by 48-76%, depending on the total soil Cd content. The application of compost reduced the negative influence of Cd eco-toxicity on most soil microbial and biochemical functions by 20-122%, depending on the Cd level and the assay itself. The ED values, derived from the sigmoidal dose-response and kinetic models, were 1.10- to 2.24-fold higher in the compost-amended soils than the unamended control soils at all Cd levels. In conclusion, the potential risks associated with high levels of Cd pollution can be alleviated for microbial and biochemical indicators of soil quality/health with application of 2500 kg ha-1 compost as a cost-effective source of organic matter to non-calcareous soils. The findings would have some useful implications for organic matter-limited non-calcareous soils polluted with Cd.
Collapse
Affiliation(s)
- Fayez Raiesi
- Department of Soil Science and Engineering, Faculty of Agriculture, Shahrekord University, P.O. Box 115, Shahrekord, Iran.
| | - Leila Dayani
- Department of Soil Science and Engineering, Faculty of Agriculture, Shahrekord University, P.O. Box 115, Shahrekord, Iran
| |
Collapse
|
48
|
Wang G, Zhang Q, Du W, Lin R, Li J, Ai F, Yin Y, Ji R, Wang X, Guo H. In-situ immobilization of cadmium-polluted upland soil: A ten-year field study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111275. [PMID: 32920316 DOI: 10.1016/j.ecoenv.2020.111275] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 05/21/2023]
Abstract
In-situ immobilization is an effective and economically viable strategy for remediation of soil extensively polluted with heavy metals. The long-term sustainability is critical for the remediation practice. In the present study, a ten-year experiment was performed in a Cd-polluted agricultural field to evaluate the long-term stability of lime, silicon fertilizer (SF), fused calcium magnesium phosphate fertilizer (FCMP), bone charcoal, steel slag, and blast furnace slag with one-off application. All amendments had no significant effect on biomass but significantly reduced Cd uptake by Artemisia selengensis at higher dose. Among them, SF and FCMP applied at 1% could reduce Cd uptake by more than 40% to meet the Chinese maximum permissible limit for Cd content in food products (50 μg kg-1). These amendments stimulated high Cd immobilization by increasing the soil pH and decreasing the soil acid-extractable Cd content, which were closely associated with Cd uptake. In addition, the two amendments altered the soil microbial structure and stimulated metabolism pathways, including amino acid, carbohydrate, and lipid metabolism, which are beneficial for soil function and quality. The results proved that SF and FCMP at 1% are stable and ecologically safe amendments, suitable for long-term Cd immobilization, and provide a strategy to mitigate the risk of food product contamination in heavy-metal-polluted soil.
Collapse
Affiliation(s)
- Guobing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Qingquan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210036, China.
| | - Renzhang Lin
- Penghu Town, Quanzhou City People's Government, Quanzhou, 362609, China.
| | - Jiahua Li
- Jiangsu Maritime Safety Administration, Nanjing, 210009, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Xiaorong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
49
|
Lu H, Wu Y, Liang P, Song Q, Zhang H, Wu J, Wu W, Liu X, Dong C. Alkaline amendments improve the health of soils degraded by metal contamination and acidification: Crop performance and soil bacterial community responses. CHEMOSPHERE 2020; 257:127309. [PMID: 32535363 DOI: 10.1016/j.chemosphere.2020.127309] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Soil degradation due to heavy metal contamination and acidification has negative effects on soil health and crop growth. Many previous studies have tried to improve the growth of crops and decrease their metal uptake. The recovery of soil health, however, has rarely been focused in soil remediation. In this study, a pot trial was conducted with lettuce (Lactuca sativa L.) growing in heavy metal contaminated and acidic soils, to examine the effects of alkaline amendments (limestone, LS; calcium magnesium phosphate fertilizer, Pcm) and organic amendments (cow manure compost, CMC; biochar, BC) on the growth of lettuce and on the availability of heavy metals, enzyme activities, and bacterial community structures in the soils. The results showed that, in comparison with the CMC and BC treatments, LS and Pcm were more effective at improving lettuce growth and reducing metal concentrations in shoots. Urease and catalase activities in LS and Pcm amended soils were consistently higher than in those with CMC and BC. Additionally, the alkaline amendments dramatically improved the bacterial diversity and shaped more favorable bacterial community structures. Proteobacteria and Gemmatimonadetes were predominant in soils amended with alkaline treatments. The beneficial bacterial genera Gemmatimonas and f_Gemmatimonadaceae, which are vital for phosphate dissolution, microbial nitrogen metabolism, and soil respiration, were also enriched. The results suggest that alkaline amendments were superior to organic amendments, and thus may be useful for the future recovery of soil functions and health under heavy metal contamination and low pH.
Collapse
Affiliation(s)
- Huilin Lu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou, 510655, PR China
| | - Yingxin Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou, 510655, PR China
| | - Puxing Liang
- Foshan Institute of Agricultural Sciences, Foshan, 528145, PR China
| | - Qingmei Song
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou, 510655, PR China
| | - Huixi Zhang
- Foshan Institute of Agricultural Sciences, Foshan, 528145, PR China
| | - Jiahui Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou, 510655, PR China
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou, 510655, PR China.
| | - Xiaowen Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou, 510655, PR China
| | - Changxun Dong
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
50
|
Zhou C, Yuan H, Ning C, Li S, Xia Z, Zhu M, Ma Q, Yu W. Evaluation of Different Types and Amounts of Amendments on Soil Cd Immobilization and its Uptake to Wheat. ENVIRONMENTAL MANAGEMENT 2020; 65:818-828. [PMID: 32239252 DOI: 10.1007/s00267-020-01287-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Using amendments is a cost-effective method to soil cadmium (Cd) remediation, whereas knowledge about how different amendments and rates affect remediation efficiency remains limited. This study aimed to evaluate the impacts of different types and amounts of amendments on soil Cd immobilization and its uptake by plants. Biochar (BC), zeolite (ZE), humic acid (HA), superphosphate (SP), lime (L), and sodium sulfide (SS) were applied at three rates (low, medium, and high) ranging from 0.5 to 5%. The concentration of CaCl2-extractable Cd was considerably affected by the amendments, except HA, and the high doses achieved better immobilization effects than the low doses did. The addition of amendments decreased weak acid soluble Cd by 4.1-44.0% but slightly increased the fractions of oxidizable and residual Cd. These amendments (except BC and HA dose of 1%) decreased Cd accumulation in grains by 1.3-68.8% and (except SP) in roots by 16.3-65.5% compared with the control. The SP efficiently immobilized Cd but posed a potential soil acidification risk. Moreover, SS treatment increased the soil electrical conductivity (EC) value and restricted the growth of wheat, possibly due to high-salt stress. BC, ZE, and L exerted significant effects on the reduction in available Cd as the application rate increased. These amendments enhanced Cd immobilization mainly by changing Cd availability in soil and influencing its redistribution in different fractions in soil and root uptake by plants. This study concluded that BC-5%, ZE-1%, and L-0.5% can be used for Cd immobilization in acidic or neutral soils.
Collapse
Affiliation(s)
- Changrui Zhou
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Yuan
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Chuanchuan Ning
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Shuailin Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zhuqing Xia
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengmeng Zhu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Ma
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Wantai Yu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|