1
|
Ding S, Li X, Qiao X, Liu Y, Wang H, Ma C. Identification and screening of priority pollutants in printing and dyeing industry wastewater and the importance of these pollutants in environmental management in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124938. [PMID: 39265766 DOI: 10.1016/j.envpol.2024.124938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
At present, priority pollutants in printing and dyeing wastewater have attracted increasing attention, but their types and limits in the wastewater discharge standards for China's dyeing and finishing industry are still lacking. This study selected 9 printing and dyeing enterprises in a region of Zhejiang Province as the research objects. Through literature collection, field investigations, and chemical analysis, combined with industry priority pollutant screening technology, 103 and 21 characteristic pollutants were selected as preliminary and supplementary lists of priority pollutants, respectively. The results of the pollutant category analysis revealed that 55% of the pollutants on the preliminary list included carcinogens, and 29% of the pollutants on the supplementary list included alcohols. According to the four rules for in-depth screening, a total of 23 indicators (excluding those in GB 4287-2012 and its revised versions) were selected as the final list of priority pollutants, most of which were polycyclic aromatic hydrocarbons (PAHs) but also included a small number of lipid substances, such as bis (2-ethylhexyl) phthalate. The screening of these indicators not only provides data support for the expansion of water pollution control indicators and the determination of their limits in China's printing and dyeing industry, but also promotes the supplementation and improvement of the sewage discharge standard system in related industries.
Collapse
Affiliation(s)
- Shuai Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaocui Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Chunmeng Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
2
|
Garcia VSG, Tominaga FK, Rosa JM, Borrely SI. Emerging pollutants in textile wastewater: an ecotoxicological assessment focusing on surfactants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27817-27828. [PMID: 38517631 DOI: 10.1007/s11356-024-32963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Water and several chemicals, including dyestuffs, surfactants, acids, and salts, are required during textile dyeing processes. Surfactants are harmful to the aquatic environment and induce several negative biological effects in exposed biota. In this context, the present study aimed to assess acute effects of five surfactants, comprising anionic and nonionic classes, and other auxiliary products used in fiber dyeing processes to aquatic organisms Vibrio fischeri (bacteria) and Daphnia similis (cladocerans). The toxicities of binary surfactant mixtures containing the anionic surfactant dodecylbenzene sulfonate + nonionic fatty alcohol ethoxylate and dodecylbenzene sulfonate + nonionic alkylene oxide were also evaluated. Nonionic surfactants were more toxic than anionic compounds for both organisms. Acute nonionic toxicity ranged from 1.3 mg/L (fatty alcohol ethoxylate surfactant) to 2.6 mg/L (ethoxylate surfactant) for V. fischeri and from 1.9 mg/L (alkylene oxide surfactant) to 12.5 mg/L (alkyl aryl ethoxylated and aromatic sulfonate surfactant) for D. similis, while the anionic dodecylbenzene sulfonate EC50s were determined as 66.2 mg/L and 19.7 mg/L, respectively. Both mixtures were very toxic for the exposed organisms: the EC50 average in the anionic + fatty alcohol ethoxylate mixture was of 1.0 mg/L ± 0.11 for V. fischeri and 4.09 mg/L ± 0.69 for D. similis. While the anionic + alkylene oxide mixture, EC50 of 3.34 mg/L for D. similis and 3.60 mg/L for V. fischeri. These toxicity data suggested that the concentration addition was the best model to explain the action that is more likely to occur for mixture for the dodecylbenzene sulfonate and alkylene oxide mixtures in both organisms. Our findings also suggest that textile wastewater surfactants may interact and produce different responses in aquatic organisms, such as synergism and antagonism. Ecotoxicological assays provide relevant information concerning hazardous pollutants, which may then be adequately treated and suitably managed to reduce toxic loads, associated to suitable management plans.
Collapse
Affiliation(s)
| | - Flávio Kiyoshi Tominaga
- Instituto de Pesquisas Energéticas E Nucleares, Centro de Tecnologia das Radiações, IPEN/CNEN, São Paulo, Brazil
| | | | - Sueli Ivone Borrely
- Instituto de Pesquisas Energéticas E Nucleares, Centro de Tecnologia das Radiações, IPEN/CNEN, São Paulo, Brazil
| |
Collapse
|
3
|
Liu J, Yang F, Cai Y, Lu G, Li Y, Li M, Fan L, Gao L. Unveiling the existence and ecological hazards of trace organic pollutants in wastewater treatment plant effluents across China. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:21-29. [PMID: 38162869 PMCID: PMC10757255 DOI: 10.1016/j.eehl.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2024]
Abstract
The presence of trace organic pollutants in the effluent of wastewater treatment plants (WWTPs) poses considerable risks to aquatic organisms and human health. A large-scale survey of 302 trace organic pollutants in the effluent of 46 Chinese WWTPs was conducted to gain an improved understanding of their occurrence and ecological risks. The survey data showed that 216 compounds in 11 chemical classes had been detected in effluents. The sum concentrations of the trace contaminants in effluent ranged from 1,392 ng/L to 35,453 ng/L, with the maximum concentration of perfluoroalkyl substances (PFASs) recorded as the highest (30,573 ng/L), which was markedly less than the reported 185,000 ng/L for the 38 American WWTPs. The concentration of bisphenol analogs (BPs) was up to 4,422 ng/L, significantly higher than those reported in France, Germany, Japan, Korea, and the U.S. PFASs and BPs were the major pollutants, accounting for 59% of the total pollution. Additionally, a total of 119 contaminants were found to have ecological risks (RQ > 0.01). Among these, 23 contaminants (RQ > 1.0) warrant higher attention and should be prioritized for removal. This study lists valuable information for controlling contaminants with higher priority in WWTP effluent in China.
Collapse
Affiliation(s)
- Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yuanfei Cai
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Linhua Fan
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Li Gao
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria 8001, Australia
| |
Collapse
|
4
|
Zhao J, Cai L, Zhang A, Li G, Zhang Y, Filatova I, Liu Y. Simultaneous remediation of diesel-polluted soil and promoted ryegrass growth by non-thermal plasma pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169295. [PMID: 38110099 DOI: 10.1016/j.scitotenv.2023.169295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
The remediation of petroleum-polluted soil has garnered significant global attention. In this study, a pot-culture experiment was conducted to assess the feasibility of using non-thermal plasma (NTP) as an efficient and economic-friendly pretreatment method in the phytoremediation of diesel-polluted soil. The remediation effectiveness was evaluated via both the removal of diesel and the ryegrass growth. Specifically, at the 50th d of ryegrass growth, the increase of diesel removal efficiency with NTP pretreatment ranged from 16 % to 30 %. Moreover, both clean and diesel-polluted soils pretreated by NTP promoted the growth of ryegrass in shoot lengths and biomass especially after the 35th d. It was found that nitrate nitrogen fixed by NTP not only stimulated the nitrate reductase activities in leaves and promoted plant growth, but also was transformed to more ammonia nitrogen for organism life activity. Subsequent investigation proved that the related nitrogen-metabolism activities of microbes were enriched in rhizosphere soils with NTP pretreatment. Furthermore, NTP treatment increased the abundance of beneficial microbial communities in diesel soil rhizosphere on the 42nd d of growth period. In addition, changes in the proportions of soil dissolved organic matter indicated enhanced nutrient cycling in soils with NTP pretreatment. These promotional effects underscored the contribution of NTP pretreatment in rapidly detoxifying diesel-contaminated soil within 10 min and accelerated the establishment of ryegrass ecosystem. This study provides valuable insights into the role of nitrogen fixation and offers an efficient and promising advanced approach for the phytoremediation of diesel-polluted soil with NTP pretreatment.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Guoqing Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yinyin Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Irina Filatova
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Prospekt Nezavisimosti, BY-220072 Minsk, Belarus
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Zhu D, Ge C, Sun Y, Yu H, Wang J, Sun H. Identification of organic pollutants and heavy metals in natural rubber wastewater and evaluation its phytotoxicity and cytogenotoxicity. CHEMOSPHERE 2024; 349:140503. [PMID: 37939923 DOI: 10.1016/j.chemosphere.2023.140503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/24/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
The natural rubber industry consumes large volumes of water and annually releases wastewater with rich organic and inorganic loads. This wastewater is allowed for soil irrigation in developing countries. However, the pollutant composition in wastewater and its environmental effects remain unclear. Therefore, we aimed to assess the wastewater's physicochemical parameters, toxic organic pollutants, heavy metals, and phytotoxic and cytogenotoxic. The result revealed that values of comprehensive wastewater parameters were recorded as chemical oxygen demand (187432.1 mg/L), pH (4.23), total nitrogen (1157.1 mg/L), ammonia nitrogen (1113.0 mg/L), total phosphorus (1181.2 mg/L), Zn (593.3 mg/L), Cr (0.6127 mg/L), and Ni (0.2986 mg/L). The organic compounds detected by LC-MS were salbostatin, sirolimus, Gibberellin A34-catabolite, 1-(sn-glycero-3-phospho)-1D-myo-inositol, and methyldiphenylsilane. The toxicity of the identified toxic chemicals and heavy metals was confirmed by onion and mung bean phytotoxicity characterization tests. The wastewater affected the germination of mung bean seeds, reduced or inhibited the growth of onions, and induced various chromosomal aberrations in root apical meristems. Our study shows that the treatment of natural rubber wastewater needs to be improved, and the feasibility of irrigating soil with wastewater needs to be reconsidered.
Collapse
Affiliation(s)
- Dayu Zhu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Ying Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Huamei Yu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Jun Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Hongfei Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
6
|
Lin X, Zhou Q, Xu H, Chen H, Xue G. Advances from conventional to biochar enhanced biotreatment of dyeing wastewater: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167975. [PMID: 37866601 DOI: 10.1016/j.scitotenv.2023.167975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
DW (Dyeing wastewater) contains a large amount of dye organic compounds. A considerable proportion of dye itself or its intermediate products generated during wastewater treatment process exhibits CMR (Carcinogenic/Mutagenic/Toxic to Reproduction) toxicity. Compared with physicochemical methods, biological treatment is advantageous in terms of operating costs and greenhouse gas emissions, and has become the indispensable mainstream technology for DW treatment. This article reviews the adsorption and degradation mechanisms of dye organic compounds in wastewater and analyzed different biological processes, ranging from traditional methods to processes enhanced by biochar (BC). For traditional biological processes, microbial characteristics and communities were discussed, as well as the removal efficiency of different bioreactors. BC has adsorption and redox electron mediated effects, and coupling with biological treatment can further enhance the process of biosorption and degradation. Although BC coupled biological treatment shows promising dye removal, further research is still needed to optimize the treatment process, especially in terms of technical and economic competitiveness.
Collapse
Affiliation(s)
- Xumeng Lin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qifan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huanghuan Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200000, China.
| |
Collapse
|
7
|
Jan S, Mishra AK, Bhat MA, Bhat MA, Jan AT. Pollutants in aquatic system: a frontier perspective of emerging threat and strategies to solve the crisis for safe drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113242-113279. [PMID: 37864686 DOI: 10.1007/s11356-023-30302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023]
Abstract
Water is an indispensable natural resource and is the most vital substance for the existence of life on earth. However, due to anthropogenic activities, it is being polluted at an alarming rate which has led to serious concern about water shortage across the world. Moreover, toxic contaminants released into water bodies from various industrial and domestic activities negatively affect aquatic and terrestrial organisms and cause serious diseases such as cancer, renal problems, gastroenteritis, diarrhea, and nausea in humans. Therefore, water treatments that can eliminate toxins are very crucial. Unfortunately, pollution treatment remains a difficulty when four broad considerations are taken into account: effectiveness, reusability, environmental friendliness, and affordability. In this situation, protecting water from contamination or creating affordable remedial techniques has become a serious issue. Although traditional wastewater treatment technologies have existed since antiquity, they are both expensive and inefficient. Nowadays, advanced sustainable technical approaches are being created to replace traditional wastewater treatment processes. The present study reviews the sources, toxicity, and possible remediation techniques of the water contaminants.
Collapse
Affiliation(s)
- Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | | | - Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India.
| |
Collapse
|
8
|
Feng Z, Yang Z, Yang S, Xiong H, Ning Y, Wang C, Li Y. Current status and future challenges of chlorobenzenes pollution in soil and groundwater (CBsPSG) in the twenty-first century: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111748-111765. [PMID: 37843707 DOI: 10.1007/s11356-023-29956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
The global industrial structure had undertaken significant changes since the twenty-first century, making a severe problem of chlorobenzene pollution in soil and groundwater (CBsPSG). CBsPSG receives increasing attention due to the high toxicity, persistence, and bioaccumulation of chlorobenzenes. To date, despite the gravity of this issue, no bibliometric analysis (BA) of CBsPSG does exist. This study fills up the gap by conducting a BA of 395 articles related to CBsPSG from the Web of Science Core Collection database using CiteSpace. Based on a comprehensive analysis of various aspects, including time-related, related disciplines, keywords, journal contribution, author productivity, and institute and country distribution, the status, development, and hotspots of research in the field were shown visually and statistically. Moreover, this study has also delved into the environmental behavior and remediation techniques of CBsPSG. In addition, four challenges (unequal research development, insufficient cooperation, deeply mechanism research, and developing new technologies) have been identified, and corresponding suggestions have been proposed for the future development of research in the field. Afterwards, the limitations of BA were discussed. This work provides a powerful insight into CBsPSG, enabling to quickly identify the hotspot and direction of future studies by relevant researchers.
Collapse
Affiliation(s)
- Zhi Feng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zhe Yang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Sen Yang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Hanxiang Xiong
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yu Ning
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Changxiang Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yilian Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
9
|
Castillo-Suárez LA, Sierra-Sánchez AG, Linares-Hernández I, Martínez-Miranda V, Teutli-Sequeira EA. A critical review of textile industry wastewater: green technologies for the removal of indigo dyes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-38. [PMID: 37360556 PMCID: PMC10041522 DOI: 10.1007/s13762-023-04810-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/22/2022] [Accepted: 01/27/2023] [Indexed: 06/28/2023]
Abstract
The denim textile industry represents an important productive sector. It generates wastewater with low biodegradability due to the presence of persistent pollutants, which can produce toxic and carcinogenic compounds; therefore, wastewater treatment reduces risks to aquatic life and public health. This paper presents a review of 172 papers regarding textile industry wastewater treatment for the removal of contaminants, especially indigo dyes used in the denim industry, in the context of green technologies. The physicochemical characteristics of textile wastewater, its environmental and health impacts, and the permissible limit regulations in different countries were reviewed. Biological, physicochemical and advanced oxidation processes for the removal of indigo dyes were reviewed. The goal of this study was to analyze the characteristics of green technologies; however, the research does not clearly demonstrate an effect on energy consumption savings, carbon footprint decreases, and/or waste generation. Advanced oxidation processes showed the highest color removal efficiency (95 and 97% in synthetic or real wastewater, respectively). Photocatalysis and Fenton reactions were the most efficient processes. None of the revised works presented results regarding upscaling for industrial application, and the results should be discussed in terms of the guidelines and maximum permissible limits established by international legislation. New technologies need to be developed and evaluated in a sustainable context with real wastewater.
Collapse
Affiliation(s)
- L. A. Castillo-Suárez
- Cátedras COMECYT. Consejo Mexiquense de Ciencia y Tecnología COMECYT, Paseo Colón Núm.: 112-A, Col. Ciprés, C.P. 50120 Toluca, Estado de México México
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Km. 14.5, Carretera, Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México México
| | - A. G. Sierra-Sánchez
- Cátedras COMECYT. Consejo Mexiquense de Ciencia y Tecnología COMECYT, Paseo Colón Núm.: 112-A, Col. Ciprés, C.P. 50120 Toluca, Estado de México México
| | - I. Linares-Hernández
- Cátedras COMECYT. Consejo Mexiquense de Ciencia y Tecnología COMECYT, Paseo Colón Núm.: 112-A, Col. Ciprés, C.P. 50120 Toluca, Estado de México México
| | - V. Martínez-Miranda
- Cátedras COMECYT. Consejo Mexiquense de Ciencia y Tecnología COMECYT, Paseo Colón Núm.: 112-A, Col. Ciprés, C.P. 50120 Toluca, Estado de México México
| | - E. A. Teutli-Sequeira
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Km. 14.5, Carretera, Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México México
| |
Collapse
|
10
|
Li F, Guo Z, Mao L, Feng J, Huang J, Tao H. Impact of Textile Industries on Surface Water Contamination by Sb and Other Potential Toxic Elements: A Case Study in Taihu Lake Basin, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3600. [PMID: 36834301 PMCID: PMC9963225 DOI: 10.3390/ijerph20043600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Contamination of industry-derived antimony (Sb) is currently of great concern. This study was conducted to identify the source of Sb together with other potential toxic elements (PTEs) in a typical industrial area in China and emphasize the contribution of Sb to ecological risk in the local aquatic environment. By investigating the distribution of nine PTEs in surface water in Wujiang County in dry and wet seasons, this study revealed that textile wastewater was the main source of Sb. The distribution of Sb (0.48~21.4 μg/L) showed the least seasonal variation among the nine elements. Factor analysis revealed that the factor that controlled Sb distribution is unique. In general, Sb was more concentrated in the southeastern part of the study area where there was a large number of textile industries, and was affected by the specific conductivity and total dissolved solids in water (p < 0.01). Sb concentration in 35.71% of samples collected from the drainage outlet exceeded the standard limit of 10 μg/L. Results from three pollution assessment methods suggested that >5% of the sampling sites were slightly too heavily polluted and Sb contributed the most. Therefore, it is necessary to strengthen the administrative supervision of local textile enterprises and elevate the local standard of textile wastewater emission.
Collapse
Affiliation(s)
| | | | - Lingchen Mao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | | | | | | |
Collapse
|
11
|
Fu L, Bin L, Luo Z, Huang Z, Li P, Huang S, Nyobe D, Fu F, Tang B. Spectral change of dissolved organic matter after extracted by solid-phase extraction and its feasibility in predicting the acute toxicity of polar organic pollutants in textile wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130344. [PMID: 36444059 DOI: 10.1016/j.jhazmat.2022.130344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Spectroscopic parameters can be used as proxies to effectively trace the occurrence of organic trace contaminants, but their suitability for predicting the toxicity of discharged industrial wastewater with similar spectra is still unknown. In this study, the organic contaminants in treated textile wastewater were subdivided and extracted by four commonly-used solid-phase extraction (SPE) cartridges, and the resulting spectral change and toxicity of textile effluent were analyzed and compared. After SPE, the spectra of the percolates from the four cartridges showed obvious differences with respect to the substances causing the spectral changes and being more readily adsorbed by the WAX cartridges. Non-target screening results showed source differences in organic micropollutants, which were one of the main contributors leading to their spectral properties and spectral variations after SPE in the effluents. Two fluorescence parameters (C1 and humic-like) identified by the excitation emission matrix-parallel factor analysis (EEM-PARAFAC) were closely correlated to the toxicity endpoints for Scenedesmus obliquus (inhibition ratios of cell growth and Chlorophyll-a synthesis), which can be applied to quantitatively predict the change of toxicity effect caused by polar organic pollutants. The results would provide novel insights into the spectral feature analysis and toxicity prediction of the residual DOM in industrial wastewater.
Collapse
Affiliation(s)
- Lingfang Fu
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China; National Key Laboratory of Water Environmental Simulation and Pollution Control, Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environmental of the People's Republic of China, Guangzhou 510535, China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Zhaobo Luo
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Zehong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Dieudonne Nyobe
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China.
| |
Collapse
|
12
|
Saravanakumar K, De Silva S, Santosh SS, Sathiyaseelan A, Ganeshalingam A, Jamla M, Sankaranarayanan A, Veeraraghavan VP, MubarakAli D, Lee J, Thiripuranathar G, Wang MH. Impact of industrial effluents on the environment and human health and their remediation using MOFs-based hybrid membrane filtration techniques. CHEMOSPHERE 2022; 307:135593. [PMID: 35809745 DOI: 10.1016/j.chemosphere.2022.135593] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/26/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The hazardous risk posed by industrial effluent discharge into the ecosystem has raised a plethora of environmental issues, public health, and safety concerns. The effluents from industries such as tanning, leather, petrochemicals, pharmaceuticals, and textiles are create significant stress on the aquatic ecosystem, which induces significant toxicity, involved in endocrine disruptions, and inhibits reproductive functions. Therefore, this review presented an overall abridgment of the effects of these effluents and their ability to synergize with modern pollutants such as pharmaceuticals, cosmetic chemicals, nanoparticles, and heavy metals. We further emphasize the metal organic framework (MOF) based membrane filtration approach for remediation of industrial effluents in comparison to the traditional remediation process. The MOF based-hybrid membrane filters provide higher reusability, better adsorption, and superior removal rates through the implication of nanotechnology, while the traditional remediation process offers poorer filtration rates and stability.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Shanali De Silva
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya, 10107, Sri Lanka.
| | | | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Archchana Ganeshalingam
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya, 10107, Sri Lanka.
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India.
| | - Alwarappan Sankaranarayanan
- Department of Life Sciences, Sri Sathya Sai University for Human Excellence, Navanihal, Kalaburagi District, Karnataka, 585 313, India.
| | - Vishnu Priya Veeraraghavan
- Centre Of Molecular Medicine and Diagnostics ( COMManD), Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, 600048, India.
| | - Jooeun Lee
- Kangwon Center for Systems Imaging, Chuncheon, 24341, Republic of Korea.
| | - Gobika Thiripuranathar
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya, 10107, Sri Lanka.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
13
|
Liu M, Lv J, Qin C, Zhang H, Wu L, Guo W, Guo C, Xu J. Chemical fingerprinting of organic micropollutants in different industrial treated wastewater effluents and their effluent-receiving river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156399. [PMID: 35660429 DOI: 10.1016/j.scitotenv.2022.156399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Industry wastewater is considered one of the worst polluters of our precious water ecologies. However, the types of pollutants present in wastewater from industrial wastewater treatment plants (IWTPs) are still unclear. In this study, a simple and effective chemical fingerprinting method for checking the source-sink relationships among different industrial wastewaters and their effluent-receiving river was established. 107, 228, 155, and 337 chemicals were screened out in wastewater from electronics, steel, textile, and printing and dyeing plants, respectively. Chemical fingerprinting of the detected chemicals was performed, and results showed that aromatic compounds were the most prevalent among the pollutant categories (i.e., 56, 189, and 168 in electronics, iron and steel, and printing and dyeing plants, respectively). The traceability analysis of the chemicals selected in the effluent determined the characteristic pollutants of different industrial enterprises. Sixty-eight compounds were identified as the characteristic pollutants in the different process stages of wastewater of the four IWTPs. Of the 84 effluent-receiving river water signature pollutants, 47.6% (n = 40) were also detected in the effluent from the four IWTPs. Effective screening of organic pollutants in industrial wastewater and determining their sources will help accelerate the improvement of industrial wastewater treatment technology.
Collapse
Affiliation(s)
- Mingyuan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenghua Qin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Linlin Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
14
|
Ou G, Hu Q, Nyobe D, Bin L, Li P, Fu F, Huang S, Tang B. Towards deep purification of secondary textile effluent by using a dynamic membrane process: Pilot-scale verification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152699. [PMID: 34973321 DOI: 10.1016/j.scitotenv.2021.152699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/27/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The present investigation used regular powered activated carbon (PAC) as the dynamic membrane (DM) material and successfully built-up a pilot-scale DM system for deep purification of the secondary textile effluent, which aimed at verifying the technical and economic feasibility of the DM with real secondary textile effluent. The hydrodynamic experiments indicated that the filtration resistance gradually increased along with the operation of DM system, and among which, the PAC size was the most important influencing factor. More dosage and smaller sized PAC were beneficial to enhance the purification effect of micro-organic pollutants, but they simultaneously improved the operational costs, which implied that the adoption of DM materials should comprehensively consider the removal results and the type and dosage of DM materials for obtaining an optimal result, and the operational costs would be drastically reduced by regenerating the wasted PAC. More than 50% residual micro-organic pollutants were further removed by the system, and they were mainly some aliphatic and aromatic compounds, which were the main refractory organic pollutants in most textile effluents. It was also proved by the pilot-scale DM study that the removed residual pollutants from the secondary textile effluent were mainly aromatic protein II. Due to the contained complex functional groups in their molecular structure, soluble microbial metabolites were relatively easier to be removed by the DM layer.
Collapse
Affiliation(s)
- Guanglin Ou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Quan Hu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Dieudonne Nyobe
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China.
| |
Collapse
|
15
|
Zhu P, Luo D, Zhao H, Xu J, Lin J, Zhang Y. Fabrication of a Novel BiVO4/NiFe2O4/ATP Composite Photocatalyst with Enhanced Visible Light Photocatalytic Performance for Degradation of Malachite Green. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427221100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Jennings E, Kremser A, Han L, Reemtsma T, Lechtenfeld OJ. Discovery of Polar Ozonation Byproducts via Direct Injection of Effluent Organic Matter with Online LC-FT-ICR-MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1894-1904. [PMID: 35007417 DOI: 10.1021/acs.est.1c04310] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Effluent organic matter (EfOM), a major ozone consumer during wastewater ozonation, is a complex mixture of natural and anthropogenic organic molecules. Ozonation of EfOM adds to molecular complexity by introducing polar and potentially mobile ozonation byproducts (OBPs). Currently, nontargeted direct infusion (DI) ultrahigh resolution mass spectrometry (e.g. FT-ICR-MS) is used to study OBPs but requires sample extraction, limiting the accessible polarity range of OBPs. To better understand the impact of ozonation on EfOM and the formation of polar OBPs, nonextracted effluent was analyzed by direct injection onto a reversed-phase liquid chromatography system (RP-LC) online hyphenated with an FT-ICR-MS. Over four times more OBPs were detected in nonextracted EfOM compared to effluent extracted with solid phase extraction and measured with DI-FT-ICR-MS (13817 vs 3075). Over 1500 highly oxygenated OBPs were detected exclusively in early eluting fractions of nonextracted EfOM, indicating polar OBPs. Oxygenation of these newly discovered OBPs is higher than previously found, with an average molecular DBE-O value of -3.3 and O/C ratio of 0.84 in the earliest eluting OBP fractions. These polar OBPs are consistently lost during extraction but may play an important role in understanding the environmental impact of ozonated EfOM. Moreover, 316 molecular formulas classified as nonreactive to ozone in DI-FT-ICR-MS can be identified with LC-FT-ICR-MS as isomers with varying degrees of reactivity, providing for the first time experimental evidence of differential reactivity of complex organic matter isomers with ozone.
Collapse
Affiliation(s)
- Elaine Jennings
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Arina Kremser
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Limei Han
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Institute of Analytical Chemistry, University of Leipzig, 04103, Leipzig, Germany
| | - Oliver J Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- ProVIS-Centre for Chemical Microscopy, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
17
|
Wang K, Liu H, Wang Y, Zhao D, Zhai J. Study on the Flocculation Performance of a Cationic Starch‐Based Flocculant on Humic Substances in Textile Dyeing Wastewater. STARCH-STARKE 2022. [DOI: 10.1002/star.202100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kexu Wang
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Hongfei Liu
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Yating Wang
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Dishun Zhao
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Jianhua Zhai
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| |
Collapse
|
18
|
Wang C, Yuan Z, Sun Y, Yao X, Li R, Li S. Effect of Chronic Exposure to Textile Wastewater Treatment Plant Effluents on Growth Performance, Oxidative Stress, and Intestinal Microbiota in Adult Zebrafish ( Danio rerio). Front Microbiol 2021; 12:782611. [PMID: 34899664 PMCID: PMC8656261 DOI: 10.3389/fmicb.2021.782611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/28/2021] [Indexed: 01/30/2023] Open
Abstract
The ever-increasing production and processing of textiles will lead to greater risks of releasing pollutants into the environment. Textile wastewater treatment plants (TWTPs) effluent are an important source of persistent toxic pollutants in receiving water bodies. The effects of specific pollutants on organisms are usually studied under laboratory conditions, and therefore, comprehensive results are not obtained regarding the chronic combined effects of pollutants under aquatic environmental conditions. Thus, this study aimed to determine the combined effects of TWTP effluents on the growth performance, oxidative stress, inflammatory response, and intestinal microbiota of adult zebrafish (Danio rerio). Exposure to TWTP effluents significantly inhibited growth, exacerbated the condition factor, and increased the mortality of adult zebrafish. Moreover, markedly decreases were observed in the activities of antioxidant enzymes, such as CAT, GSH, GSH-Px, MDA, SOD, and T-AOC, mostly in the intestine and muscle tissues of zebrafish after 1 and 4 months of exposure. In addition, the results demonstrated that TWTP effluent exposure affected the intestinal microbial community composition and decreased community diversity. Slight changes were found in the relative abundance of probiotic Lactobacillus, Akkermansia, and Lactococcus in zebrafish guts after chronic TWTP effluent exposure. The chronic toxic effects of slight increases in opportunistic pathogens, such as Mycoplasma, Stenotrophomonas, and Vibrio, deserve further attention. Our results reveal that TWTP effluent exposure poses potential health risks to aquatic organisms through growth inhibition, oxidative stress impairment of the intestine and muscles, and intestinal microbial community alterations.
Collapse
Affiliation(s)
- Chun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Zixi Yuan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Yingxue Sun
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Ruixuan Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Shuangshuang Li
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
19
|
Darvishi Cheshmeh Soltani R, Naderi M, Boczkaj G, Jorfi S, Khataee A. Hybrid metal and non-metal activation of Oxone by magnetite nanostructures co-immobilized with nano-carbon black to degrade tetracycline: Fenton and electrochemical enhancement with bio-assay. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Wang Q, Unno M, Liu H. Silsesquioxane-Based Triphenylamine-Linked Fluorescent Porous Polymer for Dyes Adsorption and Nitro-Aromatics Detection. MATERIALS 2021; 14:ma14143851. [PMID: 34300768 PMCID: PMC8306194 DOI: 10.3390/ma14143851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
In order to enrich hybrid materials, a novel fluorescent silsesquioxane-based polymer (denoted as PCS-OTS) was synthesized by Friedel-Crafts reaction starting from octavinylsilsesquioxane (OVS) with triphenylamine-functionalized silsesquioxane monomer (denoted as OTS) with AlCl3 as catalyst. PCS-OTS possessed a high surface area of 816 m2/g and a unique bimodal pore structure. The triphenylamine unit endowed PCS-OTS with excellent luminescence, which made it act as a sensitive chemical sensor and detect p-nitrophenol with high sensitivity (KSV = 81,230 M-1). Moreover, PCS-OTS can significantly remove dyes, and the respective adsorption capacity for Rhodamine B (RB), Congo red (CR) and Methyl Orange (MO) is 1935, 1420 and 155 mg/g. Additionally, it could simultaneously remove multiple dyes from water by simple filtration and be easily regenerated. This hybrid porous polymer can be a good choice for water treatment.
Collapse
Affiliation(s)
- Qingzheng Wang
- Key Laboratory of Special Functional Aggregated Materials, School of Chemistry and Chemical Engineering, Ministry of Education Shandong University, 27 Shanda Nanlu, Jinan 250100, China;
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Masafumi Unno
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
- Correspondence: (M.U.); (H.L.)
| | - Hongzhi Liu
- Key Laboratory of Special Functional Aggregated Materials, School of Chemistry and Chemical Engineering, Ministry of Education Shandong University, 27 Shanda Nanlu, Jinan 250100, China;
- Key Laboratory of Organosilicon and Materials Technology of the Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (M.U.); (H.L.)
| |
Collapse
|
21
|
Shindhal T, Rakholiya P, Varjani S, Pandey A, Ngo HH, Guo W, Ng HY, Taherzadeh MJ. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 2020; 12:70-87. [PMID: 33356799 PMCID: PMC8806354 DOI: 10.1080/21655979.2020.1863034] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Rapid industrialization has provided comforts to mankind but has also impacted the environment harmfully. There has been severe increase in the pollution due to several industries, in particular due to dye industry, which generate huge quantities of wastewater containing hazardous chemicals. Although tremendous developments have taken place for the treatment and management of such wastewater through chemical or biological processes, there is an emerging shift in the approach, with focus shifting on resource recovery from such wastewater and also their management in sustainable manner. This review article aims to present and discuss the most advanced and state-of-art technical and scientific developments about the treatment of dye industry wastewater, which include advanced oxidation process, membrane filtration technique, microbial technologies, bio-electrochemical degradation, photocatalytic degradation, etc. Among these technologies, microbial degradation seems highly promising for resource recovery and sustainability and has been discussed in detail as a promising approach. This paper also covers the challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Toral Shindhal
- Paryavaran Bhavan, Gujarat Pollution Control Board , Gandhinagar, India.,Biotechnology Department, Kadi Sarva Vishwavidyalaya , Gandhinagar, India
| | - Parita Rakholiya
- Paryavaran Bhavan, Gujarat Pollution Control Board , Gandhinagar, India.,Biotechnology Department, Kadi Sarva Vishwavidyalaya , Gandhinagar, India
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board , Gandhinagar, India
| | - Ashok Pandey
- Centre of Innovation and Translation Research, CSIR-Indian Institute of Toxicology Research , Lucknow, India
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney , Sydney, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney , Sydney, Australia
| | - How Yong Ng
- Department of Civil & Environmental Engineering, National University of Singapore, Environmental Research Institute , Singapore, Singapore
| | | |
Collapse
|
22
|
Fu L, Bin L, Cui J, Nyobe D, Li P, Huang S, Fu F, Tang B. Tracing the occurrence of organophosphate ester along the river flow path and textile wastewater treatment processes by using dissolved organic matters as an indicator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137895. [PMID: 32208263 DOI: 10.1016/j.scitotenv.2020.137895] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Organophosphate esters (OPEs) are frequently detected in wastewater and receiving river, but their occurrence is hard to be quickly and effectively responded. In this study, the relevant OPEs and dissolved organic matters (DOMs) data were obtained from two textile wastewater treatment plants (WWTPs) with different processes and a 15 km stretch of river receiving the treated textile wastewater. UV-Vis absorption and fluorescence spectroscopy combined with peak-picking and fluorescence regional integration (FRI) methods were used to characterize DOM components in these samples. The results showed that OPEs concentrations were not always consistent with that of DOM, but were related to their physico-chemical properties and sources. Correlation and regression analysis indicated that the FRI pattern could be considered for tracing the occurrence of organophosphate diesters derived from multiple pollutants in river water, and reflected the emerging of moderate or high removal organophosphate triesters in WWTPs. Difference in the sources and DOM compositions was the main contributor to the correlation difference of OPEs and DOM in the two types of processes. The treatment technique also played important roles in the co-occurrence of OPEs and DOM in different WWTPs. This study would be beneficial to develop in-situ monitoring for the dynamic change of emerging contaminants along with a river flow path and from WWTPs, respectively.
Collapse
Affiliation(s)
- Lingfang Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Jiao Cui
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Dieudonne Nyobe
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China.
| |
Collapse
|
23
|
Yuan Y, Ning XA, Zhang Y, Lai X, Li D, He Z, Chen X. Chlorobenzene levels, component distribution, and ambient severity in wastewater from five textile dyeing wastewater treatment plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110257. [PMID: 32088547 DOI: 10.1016/j.ecoenv.2020.110257] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Chlorobenzenes (CBs) present in synthetic dyes are discharged into natural waters during the treatment of textile dyeing wastewater, which may have adverse effects on human and environment. In this study, the existence and removal of 12 CBs in different units of five treatment plants were examined. The ecological risk of CBs in textile dyeing wastewater was assessed by ambient severity (AS) and risk quotients (RQs). The results showed that trichlorobenzene, tetrachlorobenzene, pentachlorobenzene and hexachlorobenzene were ubiquitous in textile dyeing wastewater, and their distribution was similar. In one of the plants, the content of hexachlorobenzene was found to be as high as 9.277 μg/L in the raw water, which was an oil-water mixture. In other plants, there was no significant difference in the content and composition of CBs among influent and effluent suggesting that the conventional wastewater treatment plants cannot improve the existence of them. Monochlorobenzene and dichlorobenzene were not detected, which may have been related to strong volatility, biochemical properties, and weak instrument sensitivity. In the treatment process and effluent, trichlorobenzene is the main pollutant and accounted for 39.51% of all CB. CB removal was found only in the anaerobic system, while the aerobic system did not have the corresponding removal effect on CB and total organic carbon. According to ecological risk assessment, CBs in effluent has not been found the significant potential harm to human health (AS < 1), but posed moderate ecological risk to aquatic ecosystem (RQs > 0.1).
Collapse
Affiliation(s)
- Yiqian Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xun-An Ning
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yaping Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaojun Lai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Danping Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zili He
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaohui Chen
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
24
|
Nyobe D, Ye J, Tang B, Bin L, Huang S, Fu F, Li P, Hu Q. Build-up of a continuous flow pre-coated dynamic membrane filter to treat diluted textile wastewater and identify its dynamic membrane fouling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 252:109647. [PMID: 31600685 DOI: 10.1016/j.jenvman.2019.109647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/19/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
This research built up a continuous dynamic flow filter membrane to treat diluted textile wastewater and basically investigated dynamic membrane fouling mechanism. By pre-depositing particles activated carbon (PAC) on membrane support material (MSM), a thin layer was formed on its surface, which showed excellent results in removing organic pollutants from diluted textile wastewater. Experimental data were regressed by the Langmuir, Freundlich, Temkin, Dubinin-Radushkevich (D-R) and Sips isotherm models. The three two-parameter isotherms (Temkin, D-R and Freundlich) were the models that best fitted, with respectively 0.977, 0.975 and 0.973 regression coefficients. D-R model has registered the maximum calculated adsorption capacity Qmd, cal. = 45.499 mg/g and the mean energy which was required to adsorb 1 mol of MB dye by the DM layer E = 4.249 kJ/mol; indicating the energy distribution onto heterogeneous surface of a physical adsorption process. Furthermore, kinetic models results showed that MB adsorption onto PAC at different initial concentrations follows the pseudo-second order. The obtained results also indicated that a flexible DM layer with different thickness can be formed from different amount of PAC pre-deposited on MSMs, which demonstrated that it was convenient to adjust the required DM thickness to filtrate a known initial concentration for >99% organic pollutants removal efficiency rate. However, DM fouling occurred on small pores MSMs; which resulted in an increase of the filtration pressure what have affected the filtration performance. PAC and MSMs surface morphology and texture structure, before and after filtration, were visualized respectively by Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infra-Red and Attenuated Total Reflectance (FTIR/ATR). From these experimental results, a sustainable flux (>6.85 × 10-5 m/s) was established to discriminate no fouling from fouling conditions based on flux and TMP trends variance.
Collapse
Affiliation(s)
- Dieudonne Nyobe
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou, 510006, PR China.
| | - Jianwen Ye
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou, 510006, PR China.
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou, 510006, PR China.
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou, 510006, PR China.
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou, 510006, PR China.
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou, 510006, PR China.
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou, 510006, PR China.
| | - Quan Hu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou, 510006, PR China.
| |
Collapse
|
25
|
Song Y, Hu Q, Sun Y, Li X, Wan H, Zang L, Jiang K, Gao C. The feasibility of UF-RO integrated membrane system combined with coagulation/flocculation for hairwork dyeing effluent reclamation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:45-54. [PMID: 31306876 DOI: 10.1016/j.scitotenv.2019.07.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
This paper aims to validate the feasibility of hairwork dyeing effluent (HDE) reclamation using an ultrafiltration (UF)-reverse osmosis (RO) integrated membrane system combined with coagulation-flocculation and sedimentation acquiring the highest possible product water recovery rate along with both satisfactory separation performance and well controlled membrane fouling. Under the circumstance of only physical cleaning involved, the laboratory-scale test yielded a higher and satisfactory reuse ratio of 76% for HDE, and the corresponding RO product as reclaimed water contained only 223 mg·L-1 of TDS, 3.87 mg·mL-1 of DOC and 10.3 mg·mL-1 of total hardness, which was obviously better than the quality of existing feedwater in hairwork dyeing process. After each processing unit, the distributions of fulvic (region III) and humic (region V) organics decreased continuously, while an overall rising trend in distribution of protein-like organics (regions I and II) was observed. Contact angle for the fouled UF and RO membranes significantly increased by 19.5° and decreased by 19.7°, respectively, which suggested that different polarity of organic or inorganic adsorption rather than membrane roughness was the main factors affecting wetting properties of the fouled employed membranes. Both ATR-FTIR and XPS spectra indicated that organic fouling on UF membrane surface under harsh condition (RUF = 90%) was mild and tolerable, whereas a surprising amount of hydrophilic micromolecular organics riched in carboxyl and hydroxyl functional groups were absorbed on RO membrane surface after permeation.
Collapse
Affiliation(s)
- Yuefei Song
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China.
| | - Qihua Hu
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Yueke Sun
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Xifan Li
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Huilin Wan
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Ling Zang
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China.
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
26
|
Yang X, Liu H. Diphenylphosphine-Substituted Ferrocene/Silsesquioxane-Based Hybrid Porous Polymers as Highly Efficient Adsorbents for Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26474-26482. [PMID: 31259524 DOI: 10.1021/acsami.9b07874] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The study describes the synthesis of two porous hybrid polymers (abbreviated as DPPF-HPP and DPPOF-HPP) from the Friedel-Crafts reaction of octavinylsilsesquioxane with 1,1'-bis(diphenylphosphine)ferrocene (DPPF) and 1,1'-bis(diphenylphosphine oxide)ferrocene (DPPOF), respectively. DPPF-HPP and DPPOF-HPP possess surface areas of about 890 and 780 m2 g-1, respectively, as well as similar pore structures of the coexisting micropores and mesopores. They are excellent materials for high adsorption of different dyes with adsorption capacities of 2280 mg g-1 for Congo Red and 1440 mg g-1 for Crystal Violet. DPPF-HPP also shows a strong affinity to adsorb Hg2+ ions (300 mg g-1). These materials show no sign of degradation under repeated cycles and thus offer potential for wastewater treatment.
Collapse
Affiliation(s)
- Xiaoru Yang
- Key Laboratory of Special Functional Aggregated Materials Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Hongzhi Liu
- Key Laboratory of Special Functional Aggregated Materials Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| |
Collapse
|