1
|
Liang W, Luo T, Xue L, Kong S, Zou Y, Zheng Q, Zhou F. Evaluating the impact of microorganisms in the iron plaque and rhizosphere soils of Spartina alterniflora and Suaeda salsa on the migration of arsenic in a coastal tidal flat wetland in China. MARINE POLLUTION BULLETIN 2024; 207:116824. [PMID: 39128233 DOI: 10.1016/j.marpolbul.2024.116824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 07/12/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
The microorganism in rhizosphere systems has the potential to regulate the migration of arsenic (As) in coastal tidal flat wetlands. This study investigates the microbial community in the iron plaque and rhizosphere soils of Spartina alterniflora (S. alterniflora) and Suaeda salsa (S. salsa), as two common coastal tidal flat wetland plants in China, and determines the impact of the As and Fe redox bacteria on As mobility using field sampling and 16S rDNA high-throughput sequencing. The results indicated that As bound to crystalline Fe in the Fe plaque of S. salsa in high tidal flat. In the Fe plaque, there was a decrease in the presence of Fe redox bacteria, while the presence of As redox bacteria increased. Thus, the formation of Fe plaque proved advantageous in promoting the growth of As redox bacteria, thereby aiding in the mobility of As from rhizosphere soils to the Fe plaque. As content in the Fe plaque and rhizosphere soils of S. alterniflora was found to be higher than that of S. salsa. In the Fe plaque, As/Fe-reducing bacteria in S. alterniflora, and As/Fe-oxidizing bacteria in S. salsa significantly affected the distribution of As in rhizosphere systems. S. alterniflora has the potential to be utilized for wetland remediation purposes.
Collapse
Affiliation(s)
- Weihao Liang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| | - Ting Luo
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China.
| | - Lili Xue
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| | - Shen Kong
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| | - Yang Zou
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| | - Qining Zheng
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| | - Feng Zhou
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| |
Collapse
|
2
|
Ji Y, Xu J, Zhu L. Predicting laterite redox potential with iron activity and electron transfer term. CHEMOSPHERE 2023; 328:138519. [PMID: 36972875 DOI: 10.1016/j.chemosphere.2023.138519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/18/2023]
Abstract
Predicting the redox behavior of organic contaminants and heavy metals in soils is challenging because there are few soil redox potential (Eh) models. In particular, current aqueous and suspension models usually show a significant deviation for complex laterites with few Fe(II). Here, we measured the Eh of simulated laterites over a range of soil conditions (2450 tests). The impacts of soil pH, organic carbon, and Fe speciation on the Fe activity were quantified as Fe activity coefficients, respectively, using a two-step Universal Global Optimization method. Integrating these Fe activity coefficients and electron transfer terms into the formula significantly improved the correlation of measured and modeled Eh values (R2 = 0.92), and the estimated Eh values closely matched the relevant measured Eh values (accuracy R2 = 0.93). The developed model was further verified with natural laterites, presenting a linear fit and accuracy R2 of 0.89 and 0.86, respectively. These findings provide compelling evidence that integrating Fe activity into the Nernst formula could accurately calculate the Eh if the Fe(III)/Fe(II) couple does not work. The developed model could help to predict the soil Eh toward controllable and selective oxidation-reduction of contaminants for soil remediation.
Collapse
Affiliation(s)
- Yanping Ji
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Mei K, Liu J, Xue L, Xu J, Jiang W, Tan Z, Li A, Qu J, Yan C. Stimulation of oxalate root exudate in arsenic speciation and fluctuation with phosphate and iron in anoxic mangrove sediment. MARINE POLLUTION BULLETIN 2023; 189:114823. [PMID: 36931154 DOI: 10.1016/j.marpolbul.2023.114823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Mutual transformations of rhizospheric arsenic (As) in pollution-prone mangrove sediments affected by root exudate oxalate were simulated. This study focuses on the effect of oxalate on As release, mobilization, and phase speciation associated with P and Fe was examined under anoxic conditions in time-dependent changes. Results showed that oxalate addition significantly facilitated As-Fe-P release from As-contaminated mangrove sediments. Sediment As formed the adsorptive and the carbonate-binding fractionations, facilitating the re-adsorption processes. Solution As and As5+ correlated with NaOH-P positively but with NaHCO3-P and HCl-P negatively. Dominant Fe3+ (>84 %) from the amorphous Fe regulated suspension changes and then time-dependent co-precipitation with As and P. Sediment P formed strong complexes with Fe oxides and could be substituted for As via STEM analysis. Oxalate ligand exchange, competitive adsorption of oxalate, and Fe-reduced dissolution are confirmed to involve, allowing for an insight As/P/Fe mobilization and fate in mangrove wetland.
Collapse
Affiliation(s)
- Kang Mei
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| | - Liyang Xue
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jicong Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Wanlin Jiang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Zhiwen Tan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Anran Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jinyi Qu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Cerqueira B, Covelo EF, Rúa-Díaz S, Marcet P, Forján R, Gallego JLR, Trakal L, Beesley L. Contrasting mobility of arsenic and copper in a mining soil: A comparative column leaching and pot testing approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115530. [PMID: 35752005 DOI: 10.1016/j.jenvman.2022.115530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The remediation of legacy metal(loid) contaminated soils in-situ relies on the addition of [organic] amendments to reduce the mobility and bioavailability of metal(loid)s, improve soil geochemical parameters and restore vegetation growth. Two vermicomposts of food and animal manure waste origin (V1 and V2) were amended to an arsenic (As) and copper (Cu) contaminated mine soil (≤1500 mg kg-1). Leaching columns and pot experiments evaluated copper and arsenic in soil pore waters, as well as pH, dissolved organic carbon (DOC) and phosphate (PO43-) concentrations. The uptake of As and Cu to ryegrass was also measured via the pot experiment, whilst recovered biochars from the column leaching test were measured for metal sorption at the termination of leaching. Vermicompost amendment to soil facilitated ryegrass growth which was entirely absent from the untreated soil in the pot test. All amendment combinations raised pore water pH by ∼4 units. Copper concentrations in pore waters from columns and pots showed steep reductions (∼1 mg L-1), as a result of V1 & V2 compared to untreated soil (∼500 mg L-1). Combined with an increase in DOC and PO43-, As was mobilised an order of magnitude by V1. Biochar furthest reduced Cu in pore waters from the columns to <0.1 mg L-1, as a result of surface sorption. The results of this study indicate that biochar can restrict the mobility of Cu from a contaminated mine soil after other amendment interventions have been used to promote revegetation. However, the case of As, biochar cannot counter the profound impact of vermicompost on arsenic mobility.
Collapse
Affiliation(s)
- Beatriz Cerqueira
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain; Environmental and Geochemical Sciences Department, The James Hutton Institute, Craigiebuckler, Aberdeen AB158QH, UK.
| | - Emma F Covelo
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Sandra Rúa-Díaz
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Purificación Marcet
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Rubén Forján
- Environmental Biogeochemistry & Raw Materials Group and INDUROT, University of Oviedo, Mieres, Spain
| | - José Luis R Gallego
- Environmental Biogeochemistry & Raw Materials Group and INDUROT, University of Oviedo, Mieres, Spain
| | - Lukas Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic
| | - Luke Beesley
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic; Environmental and Geochemical Sciences Department, The James Hutton Institute, Craigiebuckler, Aberdeen AB158QH, UK
| |
Collapse
|
5
|
Ying H, Zhao W, Feng X, Gu C, Wang X. The impacts of aging pH and time of acid mine drainage solutions on Fe mineralogy and chemical fractions of heavy metals in the sediments. CHEMOSPHERE 2022; 303:135077. [PMID: 35623433 DOI: 10.1016/j.chemosphere.2022.135077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Fe (oxyhydr)oxides are the main components that accumulate heavy metals (HMs) in the acid mine drainage (AMD) sediments, but how the aging pH and time of AMD solution affects the Fe mineralogy and HMs speciation remains ambiguous. Herein, we determined the impacts of aging pH and time on the Fe mineralogy and chemical fractions of HMs in the sediments from Dabaoshan mining area using mineral characterizations, chemical extraction, and AMD solution incubation. For the natural AMD sediments, jarosite and goethite are the major Fe (oxyhydr)oxides in sample S1 with solution pH 2.68, while schwertmannite is dominant in sample S2 with solution pH 6.78, co-existing minor ferrihydrite. With increasing the AMD solution pH, the total contents of HMs (expect for As) and the reducible fraction of HMs (expect for Pb) in the sediments both increase. The HMs of Mn, Zn, Ni, and Cd are mainly associated with Fe (oxyhydr)oxides, while Pb possibly exists as Pb-bearing minerals (e.g., PbSO4) in the sediments. The oxidizable fraction of all HMs is negligible in both sediments. When the AMD solution of S1 was aged at different pHs, schwertmannite is dominant initially at all pHs, with a higher crystallinity being at a lower pH. With increasing aging time, the pre-formed schwertmannite transforms to goethite and jarosite at pH ≤ 3, while it keeps stable at pH 5 and 7 due to the accumulation of more HMs. These new insights are essential to assess the mobility and availability of HMs in the AMD-affected areas.
Collapse
Affiliation(s)
- Hong Ying
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wantong Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan, 430070, China
| | - Chunhao Gu
- Environmental Soil Chemistry Group, Delaware Environmental Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Xiaoming Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan, 430070, China.
| |
Collapse
|
6
|
Panthri M, Gupta M. An insight into the act of iron to impede arsenic toxicity in paddy agro-system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115289. [PMID: 35598452 DOI: 10.1016/j.jenvman.2022.115289] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Surplus research on the widespread arsenic (As) revealed its disturbing role in obstructing the metabolic function of plants. Also, the predilection of As towards rice has been an interesting topic. Contrary to As, iron (Fe) is an essential micronutrient for all life forms. Past findings propound about the enhanced As-resistance in rice plants during Fe supplementation. Thus, considering the severity of As contamination and resulting exposure through rice crops, as well as the studied cross-talks between As and Fe, we found this topic of relevance. Keeping these in view, we bring this review discussing the presence of As-Fe in the paddy environment, the criticality of Fe plaque in As sequestration, and the effectiveness of various Fe forms to overcome As toxicity in rice. This type of interactive analysis for As and Fe is also crucial in the context of the involvement of Fe in cellular redox activities such as oxidative stress. Also, this piece of work highlights Fe biofortification approaches for better rice varieties with optimum intrinsic Fe and limited As. Though elaborated by others, we lastly present the acquisition and transport mechanisms of both As and Fe in rice tissues. Altogether we suggest that Fe supply and Fe plaque might be a prospective agronomical tool against As poisoning and for phytostabilization, respectively.
Collapse
Affiliation(s)
- Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
7
|
Yin Y, Luo X, Guan X, Zhao J, Tan Y, Shi X, Luo M, Han X. Arsenic Release from Soil Induced by Microorganisms and Environmental Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084512. [PMID: 35457378 PMCID: PMC9027750 DOI: 10.3390/ijerph19084512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022]
Abstract
In rhizospheric soil, arsenic can be activated by both biological and abiotic reactions with plant exudates or phosphates, but little is known about the relative contributions of these two pathways. The effects of microorganisms, low-molecular-weight organic acid salts (LMWOASs), and phosphates on the migration of As in unrestored and nano zero-valent iron (nZVI)-restored soil were studied in batch experiments. The results show that As released by microbial action accounted for 17.73%, 7.04%, 92.40%, 92.55%, and 96.68% of the total As released in unrestored soil with citrate, phytate, malate, lactate, and acetate, respectively. It was only suppressed in unrestored soil with oxalate. In restored soil, As was still released in the presence of oxalate, citrate, and phytate, but the magnitude of As release was inhibited by microorganisms. The application of excess nZVI can completely inhibited As release processes induced by phosphate in the presence of microorganisms. Microbial iron reduction is a possible mechanism of arsenic release induced by microorganisms. Microorganisms and most environmental factors promoted As release in unrestored soil, but the phenomenon was suppressed in restored soil. This study helps to provide an effective strategy for reducing the secondary release of As from soils due to replanting after restoration.
Collapse
Affiliation(s)
- Yitong Yin
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Y.); (X.G.); (J.Z.); (Y.T.); (X.S.); (M.L.); (X.H.)
| | - Ximing Luo
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Y.); (X.G.); (J.Z.); (Y.T.); (X.S.); (M.L.); (X.H.)
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China
- Correspondence:
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Y.); (X.G.); (J.Z.); (Y.T.); (X.S.); (M.L.); (X.H.)
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jiawei Zhao
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Y.); (X.G.); (J.Z.); (Y.T.); (X.S.); (M.L.); (X.H.)
| | - Yuan Tan
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Y.); (X.G.); (J.Z.); (Y.T.); (X.S.); (M.L.); (X.H.)
| | - Xiaonan Shi
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Y.); (X.G.); (J.Z.); (Y.T.); (X.S.); (M.L.); (X.H.)
| | - Mingtao Luo
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Y.); (X.G.); (J.Z.); (Y.T.); (X.S.); (M.L.); (X.H.)
| | - Xiangcai Han
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Y.); (X.G.); (J.Z.); (Y.T.); (X.S.); (M.L.); (X.H.)
- Yantai Coastal Zone China Geological Survey, Yantai 264000, China
| |
Collapse
|
8
|
Zhang Y, Shi G, Wu W, Ali A, Wang H, Wang Q, Xu Z, Qi W, Li R, Zhang Z. Magnetic biochar composite decorated with amino-containing biopolymer for phosphorus recovery from swine wastewater. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127980] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Wu J, Liang J, Björn LO, Li J, Shu W, Wang Y. Phosphorus-arsenic interaction in the 'soil-plant-microbe' system and its influence on arsenic pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149796. [PMID: 34464787 DOI: 10.1016/j.scitotenv.2021.149796] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Elevated arsenic (As) in soil is of public concern due to the carcinogenicity. Phosphorus (P) strongly influences the adsorption, absorption, transport, and transformation of As in the soil and in organisms due to the similarity of the chemical properties of P and As. In soil, P, particularly inorganic P, can release soil-retained As (mostly arsenate) by competing for adsorption sites. In plant and microbial systems, P usually reduces As (mainly arsenate) uptake and affects As biotransformation by competing for As transporters. The intensity and pattern of PAs interaction are highly dependent on the forms of As and P, and strongly influenced by various biotic and abiotic factors. An understanding of the PAs interaction in 'soil-plant-microbe' systems is of great value to prevent soil As from entering the human food chain. Here, we review PAs interactions and the main influential factors in soil, plant, and microbial subsystems and their effects on the As release, absorption, transformation, and transport in the 'soil-plant-microbe' system. We also analyze the application potential of P fertilization as a control for As pollution and suggest the research directions that need to be followed in the future.
Collapse
Affiliation(s)
- Jingwen Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jieliang Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lars Olof Björn
- Department of Biology, Lund University, Lund SE-22362, Sweden
| | - Jintian Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wensheng Shu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yutao Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
10
|
Moulick D, Samanta S, Sarkar S, Mukherjee A, Pattnaik BK, Saha S, Awasthi JP, Bhowmick S, Ghosh D, Samal AC, Mahanta S, Mazumder MK, Choudhury S, Bramhachari K, Biswas JK, Santra SC. Arsenic contamination, impact and mitigation strategies in rice agro-environment: An inclusive insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149477. [PMID: 34426348 DOI: 10.1016/j.scitotenv.2021.149477] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) contamination and its adverse consequences on rice agroecosystem are well known. Rice has the credit to feed more than 50% of the world population but concurrently, rice accumulates a substantial amount of As, thereby compromising food security. The gravity of the situation lays in the fact that the population in theAs uncontaminated areas may be accidentally exposed to toxic levels of As from rice consumption. In this review, we are trying to summarize the documents on the impact of As contamination and phytotoxicity in past two decades. The unique feature of this attempt is wide spectrum coverages of topics, and that makes it truly an interdisciplinary review. Aprat from the behaviour of As in rice field soil, we have documented the cellular and molecular response of rice plant upon exposure to As. The potential of various mitigation strategies with particular emphasis on using biochar, seed priming technology, irrigation management, transgenic variety development and other agronomic methods have been critically explored. The review attempts to give a comprehensive and multidiciplinary insight into the behaviour of As in Paddy -Water - Soil - Plate prospective from molecular to post-harvest phase. From the comprehensive literature review, we may conclude that considerable emphasis on rice grain, nutritional and anti-nutritional components, and grain quality traits under arsenic stress condition is yet to be given. Besides these, some emerging mitigation options like seed priming technology, adoption of nanotechnological strategies, applications of biochar should be fortified in large scale without interfering with the proper use of biodiversity.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Plant Stress Biology and Metabolomics Laboratory Central Instrumentation Laboratory (CIL), Assam University, Silchar 788 011, India.
| | - Suman Samanta
- Division of Agricultural Physics, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India.
| | - Sukamal Sarkar
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India.
| | - Arkabanee Mukherjee
- Indian Institute of Tropical Meteorology, Dr Homi Bhabha Rd, Panchawati, Pashan, Pune, Maharashtra 411008, India.
| | - Binaya Kumar Pattnaik
- Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University), Pune, Maharashtra, India.
| | - Saikat Saha
- Nadia Krishi Vigyan Kendra, Bidhan Chandra Krishi Viswavidyalaya, Gayeshpur, Nadia 741234, West Bengal, India.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India.
| | - Dibakar Ghosh
- Division of Agronomy, ICAR-Indian Institute of Water Management, Bhubaneswar 751023, Odisha, India.
| | - Alok Chandra Samal
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India.
| | - Subrata Mahanta
- Department of Chemistry, NIT Jamshedpur, Adityapur, Jamshedpur, Jharkhand 831014, India.
| | | | - Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory Central Instrumentation Laboratory (CIL), Assam University, Silchar 788 011, India.
| | - Koushik Bramhachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India.
| | - Jayanta Kumar Biswas
- Department of Ecological Studies and International Centre for Ecological Engineering, University of Kalyani, Kalyani, West Bengal, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India.
| |
Collapse
|
11
|
Pan Y, Chen J, Gao K, Lu G, Ye H, Wen Z, Yi X, Dang Z. Spatial and temporal variations of Cu and Cd mobility and their controlling factors in pore water of contaminated paddy soil under acid mine drainage: A laboratory column study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148523. [PMID: 34157528 DOI: 10.1016/j.scitotenv.2021.148523] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Acid mine drainage (AMD) poses a potential threat to human health worldwide, due to its high content of inorganic contaminants including heavy metals. Nevertheless, AMD is commonly used for irrigation of paddy soils. To determine the extent to which AMD affects contaminant levels in such practices, the effect of continuous AMD flooding on pH, redox potential Eh and the migration of Cu and Cd in contaminated paddy soil was studied in column experiments. By means of simulated AMD, dynamic changes of Cu and Cd concentrations in pore water were measured and the controlling factors pH, Eh and presence of Fe, dissolved organic carbon and sulfate were determined over a period of 60 days. Minerals in the soil were assessed by means of an Eh-pH diagram and solid-phase mineral detection. During continuous flooding with AMD-simulated water the soil pH increased, while Eh decreased over time. After 60 days the soil pH stabilized. Cu and Cd concentrations in the pore water negatively correlated with pH and with sulfate concentrations. Five-step sequential extraction illustrated that the fraction of exchangeable Cu increased significantly during AMD flooding. The overall content of Cu increased from initially 0.29 mg/g to 0.41 mg/g, while the content of Cd decreased from 9.2 mg/g to approximately 7.2 mg/g. Mobility factors were calculated and these conformed that Cd mobility significantly increased in contaminated soils during continuous AMD flooding. Our findings indicate that the release of Cu and Cd under AMD flooding can increase potential environmental risks, even though they lead to formation of metal sulfide deposits under anaerobic conditions. The presented data improves our understanding of the impact of overlying water conditions on the mobility of toxic metals in contaminated paddy soils.
Collapse
Affiliation(s)
- Yan Pan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jinfan Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Kun Gao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Han Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zining Wen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Lab of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
12
|
Gao P, Huang J, Wang Y, Li L, Sun Y, Zhang T, Peng F. Effects of nearly four decades of long-term fertilization on the availability, fraction and environmental risk of cadmium and arsenic in red soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113097. [PMID: 34186318 DOI: 10.1016/j.jenvman.2021.113097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Fertilizers are important for agricultural production because they can effectively promote crop productivity. However, long-term fertilization can cause heavy metal accumulation in soils and crops. This study utilized sequential extraction, the diffusive gradient in the thin films (DGT) technique and risk assessment models to estimate the effects of the longest long-term fertilization (38 years) in China on cadmium (Cd) and arsenic (As) accumulation in soils. The treatments included no fertilization (CK); inorganic nitrogen, phosphorus, and potassium fertilization (NPK); manure fertilization (M); and NPK plus M cofertilization (NPKM). The results indicated that the soils treated with NPKM, M and NPK had significantly increased total and available concentrations of Cd and As after 38 years of long-term fertilization. Cd mainly originates from cattle manure, while As originates from phosphate fertilizer. Sequential extraction results indicated that the application of manure increased the acid/exchangeable fraction (F1) and organic matter-bound fraction (F3) of Cd and As. The risk assessment results showed that the environmental risks of both Cd and As increased during long-term fertilization, and Cd contamination in the soil was at a moderate-high level, while As remained at a relatively low level. According to the calculations of the maximum numbers of years of soil productivity and rice production, Cd was labile and accumulated in the soils, and As was more labile than Cd in terms of accumulating in rice, indicating that the true risk from As in rice is higher than that from Cd. Controlling the heavy metals in fertilizers, mitigating effective amendments, and identifying plant types that accumulate low amounts of contaminants may be good choices for cleaner crop production.
Collapse
Affiliation(s)
- Peng Gao
- Institute of Agro-environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| | - Jing Huang
- Agro-ecosystem of the National Field Experiment Station, Qiyang, Hunan, 426182, China
| | - Yu Wang
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Lijuan Li
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Yuanyuan Sun
- Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Guiyang, Guizhou, 550025, China
| | - Tuo Zhang
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China; Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China.
| | - Fuyuan Peng
- Institute of Agro-environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China.
| |
Collapse
|
13
|
High arsenic levels increase activity rather than diversity or abundance of arsenic metabolism genes in paddy soils. Appl Environ Microbiol 2021; 87:e0138321. [PMID: 34378947 DOI: 10.1128/aem.01383-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arsenic (As) metabolism genes are generally present in soils but their diversity, relative abundance, and transcriptional activity in response to different As concentrations remain unclear, limiting our understanding of the microbial activities that control the fate of an important environmental pollutant. To address this issue, we applied metagenomics and metatranscriptomics to paddy soils showing a gradient of As concentrations to investigate As resistance genes (ars) including arsR, acr3, arsB, arsC, arsM, arsI, arsP, and arsH as well as energy-generating As respiratory oxidation (aioA) and reduction (arrA) genes. Somewhat unexpectedly, the relative DNA abundances and diversity of ars, aioA, and arrA genes were not significantly different between low and high (∼10 vs ∼100 mg kg-1) As soils. By comparison to available metagenomes from other soils, geographic distance rather than As levels drove the different compositions of microbial communities. Arsenic significantly increased ars genes abundance only when its concentration was higher than 410 mg kg-1. In contrast, between low and high As soils, metatranscriptomics revealed a significant increase in transcription of ars and aioA genes, which are induced by arsenite, the dominant As species in paddy soils, but not arrA genes, which are induced by arsenate. These patterns appeared to be community-wide as opposed to taxon-specific. Collectively, our findings advance understanding of how microbes respond to high As levels and the diversity of As metabolism genes in paddy soils and indicated that future studies of As metabolism in soil, or other environments, should include the function (transcriptome) level. IMPORTANCE Arsenic (As) is a toxic metalloid pervasively present in the environment. Microorganisms have evolved the capacity to metabolize As, and As metabolism genes are ubiquitously present in the environment even in the absence of high concentrations of As. However, these previous studies were carried out at the DNA level and thus, the activity of the As metabolism genes detected remains essentially speculative. Here, we show that the high As levels in paddy soils increased the transcriptional activity rather than the relative DNA abundance and diversity of As metabolism genes. These findings advance our understanding of how microbes respond to and cope with high As levels and have implications for better monitoring and managing an important toxic metalloid in agricultural soils and possibly other ecosystems.
Collapse
|
14
|
Li S, Chen S, Wang M, Lei X, Zheng H, Sun X, Wang L, Han Y. Redistribution of iron oxides in aggregates induced by pe + pH variation alters Cd availability in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142164. [PMID: 33207519 DOI: 10.1016/j.scitotenv.2020.142164] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
In this study, the effect of unstable pe + pH levels on the transformation of Fe oxides in different-sized soil fractions and its impact on Cd speciation were explored. Paddy soil samples collected from two locations in China were cultivated for two months under one of four pe + pH conditions: flooding + N2 (T1), flooding (T2), 70% water holding capacity (T3), and 70% water holding capacity + O2 (T4). Chemical analysis and X-ray diffraction (XRD) were used to identify the mineralogical phases and species of Fe and Cd in paddy soils. The results show that the decrease of soil pe + pH level favored the transformation of well-crystallized Fe oxides (Fec), such as hematite and goethite, into poorly-crystallized (Feo) and organically-complexed (Fep) forms. The transformation promoted the binding of Cd to Fe oxides and was primarily responsible for up to a 41.8% decrease of soil DTPA (diethylenetriaminepentaacetic acid)-extractable-Cd content. In addition, the decline in pe + pH value reduced Fe concentrations in soil particle fractions of 0.2-2-mm (17.8%-30.6%) and <0.002-mm (20.7%-31.7%) of the two flooding treatments. The decreased Fe concentrations were closely associated with less Fec contents in these same fractions and more Feo and Fep in coarser aggregates (P < 0.01). Importantly, the increase in contents of Feo and Fep in the 0.002-2 mm fraction were significantly correlated with content of Fe-/Mn-oxide-bound Cd (OX-Cd) in larger particle-size fractions (P < 0.01). Furthermore, the increasing content of OX-Cd played a crucial role in reducing DTPA-Cd content. This study demonstrates that low pe + pH values favor the transformation of crystalline Fe oxides into a poorly-crystallized and organically-complexed phase, which facilitates Cd accumulation in coarser aggregates and enhances Cd stability in paddy soils.
Collapse
Affiliation(s)
- Shanshan Li
- Key Laboratory of Plant Nutrition and Fertilizer, Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shibao Chen
- Key Laboratory of Plant Nutrition and Fertilizer, Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Meng Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaoqin Lei
- Key Laboratory of Plant Nutrition and Fertilizer, Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Han Zheng
- Key Laboratory of Plant Nutrition and Fertilizer, Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaoyi Sun
- Key Laboratory of Plant Nutrition and Fertilizer, Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lifu Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yun Han
- Key Laboratory of Plant Nutrition and Fertilizer, Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
15
|
Liu Q, Tang J, Li X, Lin Q, Xiao R, Zhang M, Yin G, Zhou Y. Effect of lignosulfonate on the adsorption performance of hematite for Cd(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139952. [PMID: 32534277 DOI: 10.1016/j.scitotenv.2020.139952] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Lignin is a precursor of humus in soil and sediment. Lignin can be separated from vascular plants in the form of lignosulfonate via pulping processes. On the other hand, composites of iron oxide and organic matter can adsorb heavy metals, and thus influence the migration of these heavy metals in the environment. In this paper, a hematite/lignosulfonate composite (HLS) was prepared via coprecipitation to compare the adsorption performance of hematite (α-Fe2O3) toward Cd(II) before and after the incorporation of lignosulfonate (LS). The HLS is found to exhibit a weakly crystalline structure and possess a large number of nanoscale particles. Specific surface area of HLS (291.97 m2/g) is about 11 times that of α-Fe2O3, and the pore volume of HLS (0.22 cm3/g) is twice that of α-Fe2O3. The adsorption of Cd(II) is well illustrated by the pseudo-second-order adsorption kinetics and the initial adsorption rate (h) of HLS is 13.83 times that of α-Fe2O3. The maximum adsorption capacities are significantly improved from 4.89-6.35 mg/g (α-Fe2O3) to 39.03-53.65 mg/g (HLS). A greater affinity and more favorable association between Cd(II) and HLS is observed via fitting models. The incorporation of LS provides HLS with significantly better adsorption properties toward Cd(II) than α-Fe2O3, as is further confirmed by FT-IR and XPS characterization. Fe-O-O-H and Fe-O-H structures as well as more hydroxyl groups are observed, which promote the adsorption performance since the process are mainly influenced by complexation via coordination bonds.
Collapse
Affiliation(s)
- Qianjun Liu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jiepeng Tang
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiang Li
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qintie Lin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Rongbo Xiao
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Min Zhang
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Guangcai Yin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yangmei Zhou
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
16
|
Gao X, Peng Y, Guo L, Wang Q, Guan CY, Yang F, Chen Q. Arsenic adsorption on layered double hydroxides biochars and their amended red and calcareous soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:111045. [PMID: 32778322 DOI: 10.1016/j.jenvman.2020.111045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Highly efficient amendments for controlling arsenic (As) pollution in soils are imperative to improve soil quality and enhance food production. In the present study, corn stalk biochar was functionalized with three kinds of layered double hydroxides (i.e., Mg-Al-LDH, Zn-Al-LDH, and Cu-Al-LDH) using a simple co-precipitation method. The synthesized LDH biochar composites (LDH@BCs) exhibited better adsorption capacity and affinity for As due to their enhanced anion exchange capacity and reactive surface hydroxyl groups identified by XRD, FTIR and XPS. Arsenic (As) bioavailability and leaching characteristics of spiked red and calcareous soils (150 mg As/kg) amended with or without LDH@BCs were investigated using soil column. The Zn-Al-LDH@BC decreased the As (V) migration and increased pak choi (Brassica chinensis L.) growth in both red and calcareous soil. These results indicated that LDH modified biochar is an effective way to overcome the shortfalls of unmodified biochar in mitigating the As contamination and provide a basis for further exploring the potential of biochar-based soil amendments for environmental remediation.
Collapse
Affiliation(s)
- Xing Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yutao Peng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Guo
- National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China
| | - Qiong Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Improving Quality of Arable Land, Beijing, 100081, China
| | - Chung-Yu Guan
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
17
|
Ouyang X, Ma J, Weng L, Chen Y, Wei R, Zhao J, Ren Z, Peng H, Liao Z, Li Y. Immobilization and release risk of arsenic associated with partitioning and reactivity of iron oxide minerals in paddy soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36377-36390. [PMID: 32562227 DOI: 10.1007/s11356-020-09480-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
The consumption of agricultural products grown on paddy soils contaminated with toxic element has a detrimental effect on human health. However, the processes and mechanisms of iron (Fe) mineral-associated arsenic (As) availability and As reactivity in different paddy soil profiles are not well understood. In this study, the fractions, immobilization, and release risk of As in eleven soil profiles from the Changzhutan urban agglomeration in China were investigated; these studied soils were markedly contaminated with As. Sequential extraction experiments were used to analyze fractions of As and Fe oxide minerals, and kinetic experiments were used to characterize the reactivity of Fe oxide minerals. The results showed that concentrations of total As and As fractions had a downward trend with depth, but the average proportions of As fractions only showed relatively small changes, which implied that the decrease in the total As concentrations influenced the changes in fraction concentrations along the sampling depth. Moreover, we found that easily reducible Fe (Feox1) mainly controlled the reductive dissolution of the Fe oxides, which suggest that the reductive dissolution process could potentially release As during the flooded period of rice production. In addition, a high proportion of As was specifically absorbed As (As-F2) (average 20.4%) in paddy soils, higher than that in other soils. The total organic carbon (TOC) content had a positive correlation with the amount of non-specifically bound As (As-F1) (R = 0.56), which means that TOC was one factor that affected the As extractability in the As-F1. Consequently, high inputs of organic fertilizers may elevate the release of As and accelerate the diffusion of As. Graphical abstract.
Collapse
Affiliation(s)
- Xiaoxue Ouyang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Rongfei Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junying Zhao
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zongling Ren
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Peng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zhongbin Liao
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
18
|
Tang Y, Xie Y, Lu G, Ye H, Dang Z, Wen Z, Tao X, Xie C, Yi X. Arsenic behavior during gallic acid-induced redox transformation of jarosite under acidic conditions. CHEMOSPHERE 2020; 255:126938. [PMID: 32388258 DOI: 10.1016/j.chemosphere.2020.126938] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Jarosite is an important scavenger for arsenic (As) due to its strong adsorption capacity and ability to co-precipitate metal(loid)s in acid mine drainage (AMD) environments. When subjected to natural organic matter (NOM), metastable jarosite may undergo dissolution and transformation, affecting the mobility behavior of As. Therefore, the present study systematically explored the dissolution and transformation of jarosite, and the consequent redistribution of coprecipitated As(V) under anoxic condition in the presence of a common phenolic acid-gallic acid (GA). The results suggested that As(V) incorporating into the jarosite structure stabilized the mineral and inhibited the dissolution process. Jarosite persisted as the dominant mineral phase at pH 2.5 up to 60 d, though a large amount of structural Fe(III) was reduced by GA. However, at pH 5.5, jarosite mainly transformed to ferrohexahydrite (FeSO4·6H2O) with GA addition, while the principal end-product was goethite in GA-free system. The dissolution process enhanced As(V) mobilization into aqueous and surface-complexed phase at pH 2.5, while co-precipitated fraction of As(V) remained dominant under pH 5.5 condition. Result of XPS indicated that no reduction of As(V) occurred during the interaction between GA and As(V)-bearing jarosite, which would limit the toxicity to the environment. The reductive process involved that GA promoted the dissolution of jarosite via the synergistic effect of ligand and reduction, following by GA and release As(V) competing for active sites on mineral surface. The findings demonstrated that phenolic groups in NOM can exert great influence on the stability of jarosite and partitioning behavior of As(V).
Collapse
Affiliation(s)
- Yuanjun Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yingying Xie
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
| | - Han Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
| | - Zining Wen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xueqin Tao
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Chunsheng Xie
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Deng Y, Weng L, Li Y, Chen Y, Ma J. Redox-dependent effects of phosphate on arsenic speciation in paddy soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114783. [PMID: 32428817 DOI: 10.1016/j.envpol.2020.114783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Evaluating speciation of arsenic (As) is essential to assess its risk in paddy soils. In this study, effects of phosphate on speciation of As in six paddy soils differing in redox status were studied over a range of pH (pH 3-9) and different background calcium (Ca) levels by batch adsorption experiments and speciation modeling. Contrasting effects of phosphate on As speciation were observed in suboxic and anoxic soils. Under suboxic conditions, phosphate inhibited Fe and As reduction probably due to stabilization of Fe-(hydr)oxides, but increased soluble As(V) concentration as a result of competitive adsorption between As(V) and phosphate. In anoxic soils, phosphate stimulated Fe and As reduction and caused increases of As(III) in soil solution under both acidic and neutral/alkaline pH. The LCD (Ligand and Charge Distribution) and NOM-CD (Natural Organic Matter-Charge Distribution) model can describe effects of pH, calcium and phosphate on As speciation in these paddy soils. The results suggest that phosphate fertilization may decrease (at low pH) or increase (at neutral/alkaline pH) As mobility in paddy soils under (sub)oxic conditions, but under anoxic conditions and in phosphorus deficient soils phosphate fertilization may strongly mobilize As by promoting microbial activities.
Collapse
Affiliation(s)
- Yingxuan Deng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Department of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands.
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; College of Natural Resources & Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yali Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jie Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| |
Collapse
|
20
|
Luo C, Routh J, Dario M, Sarkar S, Wei L, Luo D, Liu Y. Distribution and mobilization of heavy metals at an acid mine drainage affected region in South China, a post-remediation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138122. [PMID: 32408435 DOI: 10.1016/j.scitotenv.2020.138122] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Dabaoshan Mine Site (DMS) is the largest polymetallic mine in South China. The Hengshi River flowing next to DMS receives acid mine wastes leaching from the tailings pond and run-off from a treatment plant, which flows into the Wengjiang River. This study focuses on spatiotemporal distribution and mobilization of As, Cd, Pb, and Zn along the Hengshi River, groundwater, fluvial sediments, and soils, with a focus on As due to its high toxicity and the fact that mining is one of the main sources of contamination. Geochemical analyses (heavy metals, grain-size, X-ray diffraction, organic carbon and sulfur content) followed by geochemical modeling (PHREEQC) and statistical assessment were done to determine the physicochemical characteristics, toxicity risks, and behavior of heavy metals. Near the tailings pond, heavy metal concentrations in surface water were 2-100 times higher than the Chinese surface water standard for agriculture. Although water quality during the dry season has improved since the wastewater treatment plant started, heavy metal concentrations were high during rainy season. In groundwater, heavy metal concentrations were low and pose little risks. Soils along the Hengshi River were disturbed and they did not show any specific trends. The potential ecological risk of heavy metals was ranked as Cd > As > Cu > Pb > Zn in sediments and Cd > Cu > Pb > As > Zn in soils indicating multi-metal contamination and toxicity. As(III) was the predominant species in surface water during the dry season, whereas As(V) dominated during the rainy season. Arsenic levels in most sites exceeded the Chinese soil standard. Although As is assumed to have a moderate ecological risk in sediments and low risk in soils, anthropogenic activities, such as mining and land-use changes contribute to the release of As and other heavy metals and pose a risk for local residents.
Collapse
Affiliation(s)
- Chen Luo
- Department of Thematic Studies - Environmental Change, Linköping University, Linköping SE-58183, Sweden; Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou CN-510006, China
| | - Joyanto Routh
- Department of Thematic Studies - Environmental Change, Linköping University, Linköping SE-58183, Sweden; Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou CN-510006, China.
| | - Mårten Dario
- Department of Thematic Studies - Environmental Change, Linköping University, Linköping SE-58183, Sweden
| | - Soumyajit Sarkar
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Lezhang Wei
- Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou CN-510006, China
| | - Dinggui Luo
- Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou CN-510006, China
| | - Yu Liu
- Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou CN-510006, China
| |
Collapse
|
21
|
Gong Y, Qu Y, Yang S, Tao S, Shi T, Liu Q, Chen Y, Wu Y, Ma J. Status of arsenic accumulation in agricultural soils across China (1985-2016). ENVIRONMENTAL RESEARCH 2020; 186:109525. [PMID: 32330770 DOI: 10.1016/j.envres.2020.109525] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Based on 1677 published studies, 1648 sites across China collected from 1985 to 2016 were used to research the concentrations of arsenic in agricultural soils. In order to understand the status of arsenic pollution in agricultural soils in China over the past three decades, and to learn about the arsenic stocks in agricultural soils in various regions, and compared the relationship with annual arsenic emissions in China, and finally evaluated the potential ecological risks and human health risks. The median arsenic concentration in the surface agricultural soils of China was 10.40 mg Kg-1, and it ranged from 0.4 mg Kg-1 to 175.8 mg Kg-1. The inventory of arsenic in Chinese agricultural surface soils was estimated to be 3.71 × 106 t. In this study, the arsenic concentrations were found to be higher in Central, South, and Southwest China than those in other regions. The trend of arsenic pollution in agricultural soils has gradually increased over the past three decades. However, the growth rate of arsenic concentrations pollution in farmlands agricultural in China slowed during 2012-2016. The ecological risk index and geoaccumulation index revealed that arsenic in Chinese agricultural soil poses a low risk to the ecosystem. For human health assessment, the dietary pathway was the main pathway of exposure to arsenic in farmland soil of China. However, children's soil intake also contributed 34.48% to the exposure to arsenic, owing to their behavior. This study can provide a reference for the management of arsenic agricultural pollution in farmland soils in China.
Collapse
Affiliation(s)
- Yiwei Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yajing Qu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shuhui Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shiyang Tao
- South China Institute of Environmental Sciences, MEE, Guangzhou, 510655, China
| | - Taoran Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qiyuan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yixiang Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yihang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
22
|
Dradrach A, Karczewska A, Szopka K. Arsenic accumulation by red fescue (Festuca rubra) growing in mine affected soils - Findings from the field and greenhouse studies. CHEMOSPHERE 2020; 248:126045. [PMID: 32050316 DOI: 10.1016/j.chemosphere.2020.126045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/12/2020] [Accepted: 01/26/2020] [Indexed: 05/04/2023]
Abstract
Soils strongly enriched in arsenic in historical mining sites pose the environmental risk. Phytostabilization is a reasonable method for their remediation. A suitability of red fescue (Festuca rubra L.) for this purpose was examined. Plant and soil material was collected from four study objects: mine dumps in Złoty Stok and Czarnów and two areas formerly flooded by tailings. Total As in soils ranged 72-48900 mg/kg, while the shoots and roots of red fescue contained 1.5-65.5 and 2.3-824 mg/kg As, respectively. Bioaccumulation BAF and translocation TF factors were typical for excluders, however, in most cases, As in shoots exceeded 4 mg/kg, an EU threshold for As in fodder. A greenhouse experiment, that involved treatment with mineral fertilizers, manure, and forest litter, was performed to closer examine the factors governing As uptake by red fescue. A stress-resistant cultivar Leo-Pol was used as a test plant. Grass shoots were harvested after 6 and 12 weeks. Manure treatment increased strongly As extractability but did not increase As uptake by plants. Though, As concentrations in plants were in the pot experiment by manifold higher than those in the field. Particularly high (66.5-1580 mg/kg) was As in the second shoot harvest. Differences between the field and greenhouse data indicate that the populations of red fescue, that develop in As rich sites, are specifically As-tolerant. Possible mechanisms of tolerance are discussed. The conclusion is that the commercial cultivar, despite declared stress-resistance, cannot be used for phytostabilization of barren As-rich soils.
Collapse
Affiliation(s)
- Agnieszka Dradrach
- Wrocław University of Environmental and Life Sciences, Institute of Agroecology and Plant Production, pl. Grunwaldzki 24a, 50-350, Wrocław, Poland
| | - Anna Karczewska
- Wrocław University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection, ul. Grunwaldzka 53, 50-357, Wrocław, Poland.
| | - Katarzyna Szopka
- Wrocław University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection, ul. Grunwaldzka 53, 50-357, Wrocław, Poland
| |
Collapse
|
23
|
Dradrach A, Karczewska A, Szopka K, Lewińska K. Accumulation of Arsenic by Plants Growing in the Sites Strongly Contaminated by Historical Mining in the Sudetes Region of Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3342. [PMID: 32403438 PMCID: PMC7246468 DOI: 10.3390/ijerph17093342] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/25/2022]
Abstract
The uptake of As by various plants growing in highly enriched sites was examined in order to identify potential As accumulators and to assess the risk associated with As presence in plant shoots. Representative samples of 13 plant species, together with soil samples, were collected from various sites affected by historical As mining: mine and slag dumps, tailings and contaminated soils with As concentrations in a range 72-193,000 mg/kg. Potentially and actually soluble As forms, extracted with 0.43 M HNO3 and, 1M NH4NO3 were examined in relation to As concentrations in plant roots and shoots. The latter differed strongly among the species and within them and were in the ranges 2.3-9400 mg/kg and 0.5-509 mg/kg, respectively. The majority (over 66%) of plant samples had As shoot concentrations above 4 mg/kg, an upper safe limit for animal fodder. The uptake of As by plants correlated well with total and extractable soil As, though As concentrations in plants could not be predicted based on soil parameters. Equisetum spp. and C. epigejos indicated a particularly strong accumulation of As in shoots, while A. capillaris, and H. lanatus showed a limited As root-to-shoot transfer, apparently associated with species-related tolerance to As.
Collapse
Affiliation(s)
- Agnieszka Dradrach
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-350 Wrocław, Poland;
| | - Anna Karczewska
- Institute of Soil Science and Environmental Protection, Wrocław University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wrocław, Poland;
| | - Katarzyna Szopka
- Institute of Soil Science and Environmental Protection, Wrocław University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wrocław, Poland;
| | - Karolina Lewińska
- Department of Soil Science and Remote Sensing of Soils, Adam Mickiewicz University in Poznań, ul. Krygowskiego 10, 61-680 Poznań, Poland;
| |
Collapse
|
24
|
Sedimentation and Transport of Different Soil Colloids: Effects of Goethite and Humic Acid. WATER 2020. [DOI: 10.3390/w12040980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Soil colloids significantly facilitate the transport of contaminants; however, little is known about the effects of highly reactive iron oxide and the most representative organic matter on the transport of soil colloids with different physicochemical properties. This study investigated the effects of goethite (GT) and humic acid (HA) on the sedimentation and transport of soil colloids using settling and column experiments. The stability of soil colloids was found to be related to their properties and decreased in the following order: black soil colloids (BSc) > yellow soil colloids (YSc) > fluvo-aquic soil colloids (FSc). Organic matter increased the stability of BSc, and ionic strength (Ca2+) promoted the deposition of FSc. Colloids in individual and GT colloids (GTc) coexistence systems tended to stabilize at high pH and showed a pH-dependence whereby the stability decreased with decreasing pH. The interaction of GTc and kaolinite led to a dramatic sedimentation of YSc at pH 4.0. HA enhanced the stability of soil colloids, especially at pH 4.0, and obscured the pH-dependent sedimentation of soil colloids. The transport ability of soil colloids was the same as their stability. The addition of GT retarded the transport of soil colloids, which was quite obvious at pH 7.0. This retardation effect was attributed to the transformation of the surface charge of sand from negative to positive, which increased the electrical double-layer attraction. Although sand coated with GT–HA provided more favorable conditions for the transport of soil colloids in comparison to pure sand, the corresponding transport was relatively slow. This suggests that the filtration effect, heterogeneity, and increased surface roughness may still influence the transport of soil colloids.
Collapse
|
25
|
Cui H, Zhang X, Wu Q, Zhang S, Xu L, Zhou J, Zheng X, Zhou J. Hematite enhances the immobilization of copper, cadmium and phosphorus in soil amended with hydroxyapatite under flooded conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134590. [PMID: 31791791 DOI: 10.1016/j.scitotenv.2019.134590] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 04/14/2023]
Abstract
Hydroxyapatite (HA) is often applied as chemical amendment in soils contaminated with trace metals such as copper (Cu) and cadmium (Cd). Large amounts of iron oxides in red soil may interacts with phosphate released from HA and influence trace metal immobilization of HA. Here we simulated a red paddy soil with 1-5% wt iron oxides by adding hematite and evaluated the Cu and Cd availability in soil amended with HA under flooded conditions. Changes in phosphorus and iron oxide fractions were also evaluated after a 42-day flooding incubation experiment. Results showed that the addition of HA-only and hematite-only decreased soil redox potential and increased pore water pH compared to the control. HA combined with hematite could effectively decrease phosphate, Cu and Cd in soil pore water compared to HA-only. Additionally, HA combined with hematite could also increase soil pH and decrease soil CaCl2-extractable Cu and Cd. In particular, HA combined with 5% hematite was most effective in reducing soil exchangeable fractions of Cu and Cd by 53.7% and 65.6% compared to the control, respectively. The addition of HA-only increased water-soluble phosphorus, NaHCO3-extractable inorganic phosphorus, NaOH-extractable inorganic phosphorus, and HCl-extractable phosphorus. Conversely, HA combined with hematite treatments decreased NaHCO3-extractable inorganic phosphorus by 11.3-43.0% compared to HA-only. Vivianite and metal-phosphate precipitates were not observed using the Visual MINTEQ model, X-ray diffraction, and chemical analysis. The addition of hematite with or without HA increased free and crystal iron oxide fractions, while it substantially enhanced amorphous iron oxides in the soil. Thus, this study indicates that soil with high hematite content could enhance Cu and Cd immobilization while decreasing phosphorus availability in the red paddy soil amended with HA under the flooded conditions.
Collapse
Affiliation(s)
- Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China
| | - Xue Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Qiugang Wu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Shiwen Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Lei Xu
- College of Environmental Science and Tourism, Nanyang Normal University, Nanyang 473000, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China
| | - Xuebo Zheng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China.
| |
Collapse
|
26
|
Gao K, Jiang M, Guo C, Zeng Y, Fan C, Zhang J, Reinfelder JR, Huang W, Lu G, Dang Z. Reductive dissolution of jarosite by a sulfate reducing bacterial community: Secondary mineralization and microflora development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1100-1109. [PMID: 31470473 DOI: 10.1016/j.scitotenv.2019.06.483] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/13/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
Jarosite is an iron-hydroxysulfate mineral commonly found in acid mine drainage (AMD). Given its strong adsorption capacity and its ability to co-precipitation with heavy metals, jarosite is considered a potent scavenger of contaminants in AMD-impacted environments. Sulfate-reducing bacteria (SRB) play an important role in the reductive dissolution of jarosite; however, the mechanism involved has yet to be elucidated. In this study, an indigenous SRB community enriched from the Dabaoshan mine area (Guangdong, China) was employed to explore the mechanism of the microbial reduction of jarosite. Different cultures, with or without dissolved sulfate and the physical separation of jarosite from bacteria by dialysis bags, were examined. Results indicate that the reduction of jarosite by SRB occurred via an indirect mechanism. In systems with dissolved sulfate, lactate was incompletely oxidized to acetate coupled with the reduction of SO42- to S2-, which subsequently reduced the Fe3+ in jarosite, forming secondary minerals including vivianite, mackinawite and pyrite. In systems without dissolved sulfate, jarosite dissolution occurred prior to reduction, and similar secondary minerals formed as well. Extracellular polymeric substances secreted by SRB appeared to facilitate the release of sulfate from jarosite. Structural sulfate in the solid phase of jarosite may not be available for SRB respiration. Although direct contact between SRB and jarosite is not necessary for mineral reduction, wrapping jarosite into dialysis bags suppressed the reduction to a certain extent. Microbial community composition differed in direct contact treatments and physical separation treatments. Physical separation of the SRB community from jarosite mineral supported the growth of Citrobacter, while Desulfosporosinus dominated in direct contact treatments.
Collapse
Affiliation(s)
- Kun Gao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Mengge Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Yufei Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Cong Fan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Junhui Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
27
|
Ma J, Lei M, Weng L, Li Y, Chen Y, Islam MS, Zhao J, Chen T. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution. CHEMOSPHERE 2019; 227:614-623. [PMID: 31009868 DOI: 10.1016/j.chemosphere.2019.04.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
The mining and smelting of lead-zinc (Pb-Zn) ores cause widespread As contamination. The fractions and colloidal distribution of As associated with Fe oxide minerals in Pb-Zn mine-contaminated soils have not been well understood. In this study, As fractions associated with Fe oxide minerals in Pb-Zn tailings- and smelter-contaminated soils were compared using sequential extraction techniques. Kinetic experiments were conducted to characterize the reactivity of Fe oxide minerals. The distribution of As and Fe oxide minerals in soil colloids were analyzed. The results show that in mining-contaminated soils (both tailings and smelter) the relatively active fraction (amorphous hydrous oxide-bound As, AsF3) has a strong relationship with easily reducible Fe (Feox1). In smelter-contaminated soils, relatively stable fractions (crystalline hydrous oxide-bound As, AsF4) were closely associated with reducible Fe (Feox2). Although the average proportions of specifically-bound As (AsF2) and AsF3 in contaminated soils were similar, high As release in tailings-contaminated soils was observed because of the high reactivity of Fe oxide minerals in those soils compared with that in smelter-contaminated soils. Some slightly polluted soils with high pH and TOC concentrations formed As-bearing colloidal suspensions. Especially in smelter-contaminated soils, many small-sized soil colloids could facilitate As migration with surface runoff or vertical transport.
Collapse
Affiliation(s)
- Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Mei Lei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Md Shafiqul Islam
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Junying Zhao
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China
| |
Collapse
|