1
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Falandysz J, Hart A, Rose M, Anastassiadou M, Eskes C, Gergelova P, Innocenti M, Rovesti E, Whitty B, Nielsen E. Risks for animal and human health related to the presence of polychlorinated naphthalenes (PCNs) in feed and food. EFSA J 2024; 22:e8640. [PMID: 38476320 PMCID: PMC10928787 DOI: 10.2903/j.efsa.2024.8640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
EFSA was asked for a scientific opinion on the risks for animal and human health related to the presence of polychlorinated naphthalenes (PCNs) in feed and food. The assessment focused on hexaCNs due to very limited data on other PCN congeners. For hexaCNs in feed, 217 analytical results were used to estimate dietary exposures for food-producing and non-food-producing animals; however, a risk characterisation could not be performed because none of the toxicological studies allowed identification of reference points. The oral repeated dose toxicity studies performed in rats with a hexaCN mixture containing all 10 hexaCNs indicated that the critical target was the haematological system. A BMDL20 of 0.05 mg/kg body weight (bw) per day was identified for a considerable decrease in the platelet count. For hexaCNs in food, 2317 analytical results were used to estimate dietary exposures across dietary surveys and age groups. The highest exposure ranged from 0.91 to 29.8 pg/kg bw per day in general population and from 220 to 559 pg/kg bw per day for breast-fed infants with the highest consumption of breast milk. Applying a margin of exposure (MOE) approach, the estimated MOEs for the high dietary exposures ranged from 1,700,000 to 55,000,000 for the general population and from 90,000 to 230,000 for breast-fed infants with the highest consumption of breast milk. These MOEs are far above the minimum MOE of 2000 that does not raise a health concern. Taking account of the uncertainties affecting the assessment, the Panel concluded with at least 99% certainty that dietary exposure to hexaCNs does not raise a health concern for any of the population groups considered. Due to major limitations in the available data, no assessment was possible for genotoxic effects or for health risks of PCNs other than hexaCNs.
Collapse
|
2
|
Son JY, Khuman SN, Park MK, Lee HY, Kim CS, Lee IS, Choi SD. Distributions of PCDD/Fs, PCBs, and PCNs in coastal sediments collected from major industrial bays in South Korea. MARINE POLLUTION BULLETIN 2024; 200:116160. [PMID: 38377865 DOI: 10.1016/j.marpolbul.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 02/22/2024]
Abstract
Polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polychlorinated naphthalenes (PCNs) were assessed in coastal sediments from industrial bays in South Korea to evaluate the pollution levels and their environmental impact. The mean sediment concentrations of Σ17 PCDD/Fs, Σ18 PCBs, and Σ15 PCNs were 198 ± 140, 3427 ± 7037, and 85 ± 336 pg/g dw, respectively. Generally, pollutant concentrations in the inner bay were higher than those in the outer bay, indicating the influence of industrial emissions and harbor activities. The primary sources were identified as steel manufacturing and wastewater treatment plants for PCDD/Fs, harbor and shipbuilding activities for PCBs, and combustion-related sources for PCNs. Notably, PCDD/F concentrations exceeded sediment guideline values. The combined effects of PCDD/Fs and PCBs demonstrated adverse impacts on aquatic organisms. Hence, the release of toxic pollutants into the marine environment could have potential biological effects due to the combined impact of these various compounds.
Collapse
Affiliation(s)
- Ji-Young Son
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sanjenbam Nirmala Khuman
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min-Kyu Park
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ho-Young Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chul-Su Kim
- UNIST Environmental Analysis Center (UEAC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - In-Seok Lee
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Tongyeong 53085, Republic of Korea
| | - Sung-Deuk Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; UNIST Environmental Analysis Center (UEAC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
3
|
Gebru TB, Zhang Q, Dong C, Hao Y, Li C, Yang R, Li Y, Jiang G. The long-term spatial and temporal distributions of polychlorinated naphthalene air concentrations in Fildes Peninsula, West Antarctica. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132824. [PMID: 37890383 DOI: 10.1016/j.jhazmat.2023.132824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
The knowledge of polychlorinated naphthalenes (PCNs) in the Antarctic atmosphere is quite limited compared to the Arctic. PCNs are a global concern because of their PBT characteristics (i.e., persistent, bioaccumulative, and toxic) and severe and often deadly biological effects on people and other animals. Therefore, the present study used a passive air sampling method to conduct long-term air monitoring of PCNs for almost a decade from 2013 to 2022, specifically on Fildes Peninsula, situated on King George Island, located in West Antarctica. The median sum of mono-CNs to octa-CN concentration (∑75PCNs) in the Antarctic atmosphere was 12.4 pg/m3. In terms of homologues, mono-CNs to tri-CNs predominated. Among these, the prevalent congeners observed were PCN-1 and PCN-2, originating from mono-CNs, followed by PCN-5/7 from di-CNs, and PCN-24/14 from tri-CNs, respectively. Between 2013 and 2022, the total levels of PCNs were found to have decreased approximately fourfold. Ratio analyses and principal component analysis (PCA) showed that the long-range atmospheric transport and combustion-related sources as the potential PCN sources in the study area. This paper provides the most up-to-date temporal trend analysis of PCNs in the Antarctic continent and is the first to document all 75 congeners (mono-CNs to octa-CN homologue groups).
Collapse
Affiliation(s)
- Tariku Bekele Gebru
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle 231, Ethiopia
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfen Hao
- State Key Laboratory of Precision Blasting, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Cui Li
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Lee HH, Lee S, Lee M, Moon HB. Spatial and temporal trends in polychlorinated naphthalenes in sediment from Ulsan and Onsan Bays of Korea: Potential sources and ecotoxicological concerns. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6793-6806. [PMID: 36151356 DOI: 10.1007/s10653-022-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Few studies have been conducted on spatial and temporal trends in polychlorinated naphthalenes (PCNs) in coastal environments. Here, we describe 18 PCN congeners found in surface and dated sediment samples collected from highly industrialized bays of Korea. Measurable levels of PCN congeners were detected in all sediment samples, suggesting concurrent and historical contamination. The highest PCN concentrations were observed in sediment from rivers, streams, and the inner portions of the bays, which are surrounded by industrial complexes and commercial harbors. CNs 73, 66/67, and 52 were dominant in surface and dated sediment samples. Congener patterns and diagnostic ratios revealed that PCN contamination is originated from combustion processes and the use of polychlorinated biphenyl (PCB) technical mixtures. PCN concentrations in dated sediment increased from the 1980s to the mid-2000s and then decreased to 2015. Although the toxic equivalent (TEQ) levels of PCNs in our study did not exceed sediment quality guidelines proposed by international authorities, the cumulative risks from the TEQ concentrations of polychlorinated dibenzo-p-dioxins, furans, PCBs, and PCNs can be expected for benthic organisms.
Collapse
Affiliation(s)
- Ha-Hyun Lee
- Department of Marine Science and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sunggyu Lee
- Marine Environment Research Division, National Institute of Fisheries Science (NIFS), Busan, 46083, Republic of Korea
| | - Moonjin Lee
- Maritime Safety and Environmental Research Division, Korea Research Institute of Ships and Ocean Engineering, Daejeon, 34103, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
5
|
Nath A, Ojha PK, Roy K. Computational modeling of aquatic toxicity of polychlorinated naphthalenes (PCNs) employing 2D-QSAR and chemical read-across. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106429. [PMID: 36842883 DOI: 10.1016/j.aquatox.2023.106429] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/06/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Polychlorinated naphthalenes (PCNs) are produced from a variety of industrial sources, and they reach the aquatic ecosystems by the dry-wet deposition from the atmosphere and also by the drainage from the land surfaces. Then the PCNs can be transmitted through the food chain to humans and show toxic effects on different aquatic animals as well as humans. Considering this scenario, it is an obligatory task to explore the toxicity data of PCNs more deeply for the species of an aquatic ecosystem (green algae-Daphnia magna-fish), and to extrapolate those data for humans. But the toxicity data for different aquatic species are quite limited. The laboratory experimentations are complicated and ethically troublesome to fill toxicity data gaps; therefore, different in silico methods (e.g., QSAR, quantitative read-across predictions) are emerging as crucial ways to fill the data gaps and hazard assessments. In the present study, we developed individual toxicity models as well as interspecies models from the 75 PCN toxicity data against three aquatic species (green algae-Daphnia magna-fish) by employing easily interpretable 2D descriptors; these models were validated rigorously employing different globally accepted internal and external validation metrics. Then we interpreted the modelled descriptors mechanistically with the endpoint values for better understanding. And finally, we endeavored to improve the prediction quality in terms of external validation metrics by employing a novel quantitative read-across approach by pooling the descriptors from the developed individual QSAR models.
Collapse
Affiliation(s)
- Aniket Nath
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, India
| | - Probir Kumar Ojha
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, India.
| |
Collapse
|
6
|
Du Y, Xu X, Liu Q, Lin L, Wang D. Contamination and sources of polychlorinated naphthalenes in the surface sediments of Chaobai River, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113934. [PMID: 35999757 DOI: 10.1016/j.ecoenv.2022.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
In aquatic systems, sediment is both a sink for persistent organic pollutants (POPs) and a potential source of POPs release. Consequently, it is important to understand the pollution characteristics and sources of polychlorinated naphthalenes (PCNs) as POPs of Stockholm Convention in sediment for control of the ecological risk. Atmospheric deposition is a potential source of PCNs in sediment. However, there is no clear report on the contribution of atmospheric deposition to PCNs in sediments. In this study, the Chaobai River in China was selected because it is an important drinking water source that is not affected by wastewater discharge. Surface sediments from the river were analyzed for 75 PCN congeners by using high resolution gas chromatography combined with high resolution mass spectrometry. The total PCNs concentration ranged from 54 to 2266 (mean: 402) pg/g. The toxic equivalent quantity of 19 PCNs in surface sediments was 9.69 × 10-2, and CN73, CN66/CN67, and CN63 had the largest contributions to this value. Dichlorinated and trichlorinated naphthalenes were the dominant homologs. The PCN data from the sediment samples in this study were combined with data for PCNs in ambient air from a literature, which has a good match with this study in both temporal and spatial scales. The contribution of atmospheric deposition to PCNs in the surface sediment was evaluated by comparing congener characteristics and correlation analysis. Our study indicated atmospheric transportation and deposition are important pathways for transport of PCNs into surface sediments.
Collapse
Affiliation(s)
- Yanjun Du
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention,100021 Beijing, China
| | - Xiong Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Quanzhen Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lihua Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
7
|
Wang C, Dong S, Wang P, Hao Y, Wang R, Zhang S, Wang Y, Wang P, Zhang Q, Jiang G. A pilot evaluation on the toxicokinetics and bioaccumulation of polychlorinated naphthalenes in laying hens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155454. [PMID: 35472355 DOI: 10.1016/j.scitotenv.2022.155454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Knowledge of the transfer features of polychlorinated naphthalenes (PCNs), a class of emerging persistent organic pollutants (POPs), is still lacking concerning the environment-feed-food transfer chain of farm animals. We conducted a controlled feeding experiment with laying hens fed fly ash-contaminated diets to investigate the toxicokinetics and bioaccumulation of PCNs (tri- to octa-CNs) in the hen eggs and tissues. The eggs showed increasing PCNs levels after 14 days of oral exposure, which gradually decreased during the 28-day depuration period but still exceeded the initial levels. The apparent one-compartment half-life of ∑63PCNs in the eggs was 28.9 days, which was comparable to those of other dioxin-like compounds. The uptake and depuration rates of PCN congeners in the eggs were 0.002-0.010 and 0.016-0.079 days-1 in eggs, respectively. The depuration rates were decreased with the n-octanol/water partition coefficients (logKOW), indicating that the eggs retained more lipophilic congeners, whereas the uptake rates increased with the logKOW, indicating the faster deposition of the more lipophilic PCNs in eggs during the exposure period. The transfer rates of PCN congeners ranged from 0.27%-23.0%, indicating the transfer potential of PCNs from feed to eggs. Additionally, the PCN distribution in the laying hens at the end of the exposure showed tissue-specific accumulation, with the high levels of PCNs in the liver, spleen, and ovum. Positive correlations between the transfer factors (Ctissue/Cfeed) and the logKOW suggested that more lipophilic PCN congeners tended to accumulate in the tissues. After quantitatively assessing the feed-to-food transfer of PCNs in laying hens, our results highlight the risk of exposure to PCNs in the food supply chain.
Collapse
Affiliation(s)
- Chu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Pu Wang
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yanfen Hao
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Su Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaxin Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Li C, Zhang L, Yang Q, Wu Y, Zheng M, Yang L, Lyu B, Liu X, Jin R, Sun Y, Chen C, Yang Y, Qin L, Lin B, Li D, Li J, Liu G. Comprehensive Evaluation of Dietary Exposure and Health Risk of Polychlorinated Naphthalenes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5520-5529. [PMID: 35417140 DOI: 10.1021/acs.est.1c08614] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intake from food is considered an important route of human exposure to polychlorinated naphthalenes. To our knowledge, several studies have quantified dietary exposure but only in European countries and measuring only a few of the 75 congeners. In addition, the influence of source diversity on human exposure has seldom been assessed. We analyzed 192 composite food samples composed of 17,280 subsamples from 24 provinces in China to measure the concentrations of polychlorinated naphthalenes and estimate their daily intake and potential health risks on a national scale. The estimated cancer risk was in the range of 6.8 × 10-8 to 4.6 × 10-7. We compared our findings for 75 congeners with reports in the literature that quantified only 12 congeners. We estimate that these 12 congeners contribute only approximately 4% to the total mass daily intake of polychlorinated naphthalenes and 70% to the total toxic equivalent quantity, indicating underestimation of dietary exposure. The contributions of combustion-associated congeners to the total concentrations of polychlorinated naphthalenes were in the range of 31-52%, suggesting that the ongoing unintentional release of these compounds from industrial thermal processes is an important factor in polychlorinated naphthalene contamination and human exposure in China.
Collapse
Affiliation(s)
- Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing 100022, P. R. China
| | - Qiuting Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment, Beijing 100022, P. R. China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Bing Lyu
- China National Center for Food Safety Risk Assessment, Beijing 100022, P. R. China
| | - Xiaoyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Yuxiang Sun
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Changzhi Chen
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Yujue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Bingcheng Lin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Da Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jingguang Li
- China National Center for Food Safety Risk Assessment, Beijing 100022, P. R. China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| |
Collapse
|
9
|
Wang X, Han Y, Cao J, Yan H. Headspace solid-phase-microextraction using a graphene aerogel for gas chromatography–tandem mass spectrometry quantification of polychlorinated naphthalenes in shrimp. J Chromatogr A 2022; 1672:463012. [DOI: 10.1016/j.chroma.2022.463012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
|
10
|
Rong Y, Hassan MM, Ouyang Q, Chen Q. Lanthanide ion (Ln 3+ )-based upconversion sensor for quantification of food contaminants: A review. Compr Rev Food Sci Food Saf 2021; 20:3531-3578. [PMID: 34076359 DOI: 10.1111/1541-4337.12765] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022]
Abstract
The food safety issue has gradually become the focus of attention in modern society. The presence of food contaminants poses a threat to human health and there are a number of interesting researches on the detection of food contaminants. Upconversion nanoparticles (UCNPs) are superior to other fluorescence materials, considering the benefits of large anti-Stokes shifts, high chemical stability, non-autofluorescence, good light penetration ability, and low toxicity. These properties render UCNPs promising candidates as luminescent labels in biodetection, which provides opportunities as a sensitive, accurate, and rapid detection method. This paper intended to review the research progress of food contaminants detection by UCNPs-based sensors. We have proposed the key criteria for UCNPs in the detection of food contaminants. Additionally, it highlighted the construction process of the UCNPs-based sensors, which includes the synthesis and modification of UCNPs, selection of the recognition elements, and consideration of the detection principle. Moreover, six kinds of food contaminants detected by UCNPs technology in the past 5 years have been summarized and discussed fairly. Last but not least, it is outlined that UCNPs have great potential to be applied in food safety detection and threw new insight into the challenges ahead.
Collapse
Affiliation(s)
- Yawen Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Kang Q, Bao S, Chen B. Phototransformation of three polychlorinated naphthalenes on surface of atmospheric particulate matter. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124895. [PMID: 33418299 DOI: 10.1016/j.jhazmat.2020.124895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Polychlorinated naphthalenes (PCNs) are a new class of persistent organic pollutants. Photoconversion is an important pathway for their transformation in the environment. In this work, silica gel was used to simulate atmospheric mineral particles, and the photochemical reaction of three PCNs 1-chloronaphthalene (CN-1), 2-chloronaphthalene (CN-2) and 2,3-dichloronaphthalene (CN-10)) on silica gel surface was studied under the irradiation of high-pressure mercury lamp, the phototransformation intermediates and pathways of PCNs were investigated, effects of reactive oxygen species (ROS, ·OH, 1O2 and O2-·) were proved by free radical scavenging method and the effects of co-existing components (water, inorganic ions and fulvic acid) were examined. The results showed that all the three PCNs could be photochemical degraded on silica gel surface. The order of the apparent rate constants was CN-2 ≈ CN-1 > CN-10. ROS accelerated the photochemical reaction. The three PCNs didn't produce completely identical photoproducts, but all underwent a series of reactions such as reductive dechlorination, hydroxylation, oxidation, decarboxylation and ring opening. In addition, for the photoconversion of CN-1, the presence of water, NO3- or fulvic acid all promoted the photochemical transformation, while the presence of Cu2+ had an inhibitory effect.
Collapse
Affiliation(s)
- Qiao Kang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Siqi Bao
- College of New Energy and Environment, Jilin University, Changchun 130012, China; School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|
12
|
Choo G, Wang W, Cho HS, Kim K, Park K, Oh JE. Legacy and emerging persistent organic pollutants in the freshwater system: Relative distribution, contamination trends, and bioaccumulation. ENVIRONMENT INTERNATIONAL 2020; 135:105377. [PMID: 31841807 DOI: 10.1016/j.envint.2019.105377] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
In this study, a comprehensive investigation was performed to understand the overall occurrence, relative distribution, and bioaccumulation of seven different groups of POPs, comprising 27 polybrominated diphenyl ethers (PBDEs), 76 polychlorinated biphenyls (PCBs), 23 organochlorine pesticides (OCPs), three hexabromocyclododecanes (HBCDs), and 13 perfluoroalkyl substances (PFASs) as legacy POPs, and 41 polychlorinated naphthalenes (PCNs) and 24 short-chain chlorinated paraffins (SCCPs) as emerging POPs, by monitoring crucian carp, sediment, and river water in the freshwater system. Among the targeted POPs, SCCPs were predominant in sediment and crucian carp (more than 95%), while a dominance of PFASs was observed in river water (92%). Principal component analysis revealed four different groups/patterns of POPs in all media: one for PBDEs, PCBs, and OCPs, another for HBCDs and PFASs, and the two others for PCNs and SCCPs. Also, sexually dimorphic growth-dependent accumulation of legacy POPs was observed in crucian carp such that POPs concentration increased with increasing fish size and males recorded significantly higher levels of POPs compared to females.
Collapse
Affiliation(s)
- Gyojin Choo
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wenting Wang
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeon-Seo Cho
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 61186, Republic of Korea
| | - Kyungtae Kim
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Kyunghwa Park
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|