1
|
Abdillah SFI, You SJ, Wang YF. Characterizing sector-oriented roadside exposure to ultrafine particles (PM 0.1) via machine learning models: Implications of covariates influences on sectors variability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124595. [PMID: 39053804 DOI: 10.1016/j.envpol.2024.124595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Ultrafine particles (UFPs; PM0.1) possess intensified health risk due to their smaller size and unique spatial variability. One of major emission sources for UFPs is vehicle exhaust, which varies based on the traffic composition in each type of roadside sector. The current challenge of epidemiological UFPs study is limited characterization ability due to expensive instruments. This study assessed the UFPs particle number concentrations (UFPs PNC) exposure dose for typical healthy adults and children at three different roadside sectors, including industrial roadside (IN), residential roadside (RS), and urban background (UB). Furthermore, this study also developed and utilized machine learning (ML) algorithms that could accurately characterize the UFPs exposure dose and explain the covariates effects on the model outputs, representing the intra-urban variability of UFPs between sectors. It was found that the average inhaled UFPs dose for healthy adults and children during off-peak season (warm period) were 1.71 ± 0.19 × 1010; 1.28 ± 0.22 × 1010; 1.09 ± 0.18 × 1010 #/hour and 1.33 ± 0.15 × 1010; 0.99 ± 0.17 × 1010; 0.86 ± 0.14 × 1010 #/hour at IN, RS, UB. Inhaled UFPs were mainly deposited in tracheobronchial (TB) respiratory fraction for adults (67.7%) and in alveoli (ALV) fraction for children (67.5%). Among three ML algorithms implemented in this study, XGBoost possessed the highest UFPs PNC exposure dose estimation performances with R2 = 0.965; 0.959; 0.929 & RMSE = 0.79 × 108; 0.54 × 108; 0.15 × 105 #/hour at IN, RS, and UB which then followed by multiple linear regression (MLR), and random forest (RF). Furthermore, SHAP analysis from the XGBoost model has successfully pointed out the spatial variability of each roadside sector by quantifying the approximated contributions of covariates to the model's output. Findings in this study highlighted the potential use of ML models as an alternative for preliminary particle exposure source apportionment.
Collapse
Affiliation(s)
- Sultan F I Abdillah
- Department of Civil Engineering, Chung Yuan Christian University, Zhongli, Taoyuan, 32023, Taiwan; Department of Environmental Engineering, Chung Yuan Christian University, Zhongli, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Zhongli, Taoyuan, 32023, Taiwan
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, Zhongli, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Zhongli, Taoyuan, 32023, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Zhongli, Taoyuan, 32023, Taiwan; Sustainable Environmental Education Center, Chung Yuan Christian University, Zhongli, Taoyuan, 32023, Taiwan.
| |
Collapse
|
2
|
Kisuka F, Hare C, Wu CY. Heat generation during oblique particle impact. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Pfleger E, Adrian C, Lutz R, Drexler H. Science communication on the public health risks of air pollution: a computational scoping review from 1958 to 2022. Arch Public Health 2023; 81:14. [PMID: 36739430 PMCID: PMC9898709 DOI: 10.1186/s13690-023-01031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/24/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Air pollutants are a health risk for the entire population. Particulate matter (PM) including the smallest fraction, ultra-fine particles (UFP), therefore continue to be the focus of scientific research in this area. To protect the population from the harmful effects of exposure to PM, communication and information of research results are of special relevance as individuals with heightened awareness of the harms of poor air quality are more likely to take action to improve their exposure. METHODS We conducted a scoping review of the scientific literature on science communication of public health information about risks associated with air pollutants to generate an initial over-view of existing research in this field. We searched the PubMed and Scopus databases and analyzed the data using a structured topic modeling (STM) approach. RESULTS The existing scientific literature dates back to 1958 but increases significantly from the 1990s onwards. Publications are mainly found in the discipline of environmental research and are primarily concerned with health effects. It is often stated that adequate communication of the results to the public would be important, but specific approaches are rare. Overall, the topic of risk communication seems to be underrepresented for both air pollutants and UFP. CONCLUSIONS To protect public health, it is important to conduct more intensive science and risk communication related to scientific findings on the risks of air pollutants. For adequate communication and information, further research is needed to provide specific approaches that also involve the affected population and take different target groups into account. In addition, the effectiveness of communication efforts should also be analyzed.
Collapse
Affiliation(s)
- Elisabeth Pfleger
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestrasse 9 – 11, 91054 Erlangen, Germany
| | - Christoph Adrian
- Department of Economics and Social Sciences, Chair of Communication Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Findelgasse 7/9, 90402 Nürnberg, Germany
| | - Regina Lutz
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestrasse 9 – 11, 91054 Erlangen, Germany
| | - Hans Drexler
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestrasse 9 – 11, 91054 Erlangen, Germany
| |
Collapse
|
4
|
He R, Qiu Z. Exposure characteristics of ultrafine particles on urban streets and its impact on pedestrians. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:735. [PMID: 36068351 DOI: 10.1007/s10661-022-10453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
In order to investigate the pedestrian exposure characteristics of ultrafine particles (UFPs) on urban streets, both mobile and fixed-point monitoring experiments were conducted. A generalized additive model and a respiratory deposition dose model were used to quantify the influencing factors and potential harm of UFPs, respectively. The results showed that UFPs' hotspots were more likely to manifest at places where vehicles tend to cluster, namely at road intersections and bus stops. The pedestrian bridge had the lowest number concentration of UFPs in comparison with the pedestrian crossing and underground passage at the same intersection. Aboveground, a "weekend effect" acting upon urban streets and evidence for periodicity at the intersections were found. The UFPs' number concentration was comprehensively explained-about 62.7% of its variation-by traffic volume, wind speed, temperature, and relative humidity. The UFPs were mainly deposited in the alveolar region of the respiratory system, but the deposition doses of males exceeded those of females under the same conditions. Based on these findings, the study also provides appropriate suggestions for better managing traffic pollution sources, traffic infrastructure, and traffic organization.
Collapse
Affiliation(s)
- Rong He
- School of Transportation Engineering, Chang'an University, Yucai Road, Xi'an, 710064, Shaanxi, People's Republic of China
| | - Zhaowen Qiu
- School of Automobile, Chang'an University, Chang'an Road, Xi'an, 710064, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Cipoli YA, Targino AC, Krecl P, Furst LC, Alves CDA, Feliciano M. Ambient concentrations and dosimetry of inhaled size-segregated particulate matter during periods of low urban mobility in Bragança, Portugal. ATMOSPHERIC POLLUTION RESEARCH 2022; 13:101512. [PMID: 35974996 PMCID: PMC9371474 DOI: 10.1016/j.apr.2022.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The restrictive measures in place during the COVID-19 pandemic provided a timely scenario to investigate the effects of human activities on air quality, and the extent to which mobility reduction strategies can impact atmospheric pollutant levels. Real-time concentrations of PM1, PM2.5 and PM10 were measured using a mobile platform in a small city of Portugal, during morning and afternoon rush hours, in two distinct phases of the pandemic: emergency phase (cold period, lockdown) and calamity phase (warm period, less restricted). The Multiple-Path Particle Dosimetry Model (MPPD) was used to calculate the PM deposition for adults. Large spatio-temporal variabilities and pronounced changes in mean PM concentrations were observed, with lower concentrations in the calamity phase: PM1 = 2.33 ± 1.61 μg m-3; PM2.5 = 5.15 ± 2.77 μg m-3; PM10 = 23.30 ± 21.53 μg m-3 than in the emergency phase: PM1 = 16.85 ± 31.80 μg m-3; PM2.5 = 30.92 ± 31.93 μg m-3; PM10 = 111.27 ± 104.53 μg m-3. These changes are explained by a combination of meteorological factors and local emissions, mainly residential firewood burning. Regarding regional deposition, PM1 was the main contributor to deposition in the tracheobronchial (5%) and pulmonary (12%) regions, and PM10 in the head region (92%). In general, total deposition doses were higher for males than for females. This work quantitatively demonstrated that even with a 38% reduction in urban mobility during the lockdown, the use of firewood for residential heating is the main contributor to the high concentrations of PM and the respective inhaled dose.
Collapse
Affiliation(s)
- Yago Alonso Cipoli
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-253, Bragança, Portugal
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Admir Créso Targino
- Graduate Program in Environmental Engineering, Federal University of Technology, Londrina, PR, Brazil
| | - Patricia Krecl
- Graduate Program in Environmental Engineering, Federal University of Technology, Londrina, PR, Brazil
| | - Leonardo Campestrini Furst
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-253, Bragança, Portugal
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Célia Dos Anjos Alves
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-253, Bragança, Portugal
| | - Manuel Feliciano
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-253, Bragança, Portugal
| |
Collapse
|
6
|
Davulienė L, Khan A, Šemčuk S, Minderytė A, Davtalab M, Kandrotaitė K, Dudoitis V, Uogintė I, Skapas M, Byčenkienė S. Evaluation of Work-Related Personal Exposure to Aerosol Particles. TOXICS 2022; 10:405. [PMID: 35878311 PMCID: PMC9321620 DOI: 10.3390/toxics10070405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
Abstract
The effects of air pollution on the general public received much attention recently. Personal exposure and deposition fraction of aerosol particles were studied in Vilnius, Lithuania, focusing on individuals working in an office and driving to work. Aerosol monitoring in the urban background was found to give an indication of the minimum concentrations of particulate matter (PM) expected at urban roads, as these correspond to the lowest PM concentrations measured there. In March 2021, PM2.5 concentrations at the urban background monitoring station reached values above the annual limit of 5 μg/m3 the World Health Organization in 50% of cases. Our study shows significant differences in exposure to air pollution in a car cabin and in a modern office. According to the multiple-path particle dosimetry model, the exposure of the person in the office is about 14 times lower than driving a car, where the minute deposition dose for PM1 is 0.072 µg/min for the period when the PM2.5 concentration in the urban background reaches 10 µg/m³. Compared to the PM2.5 mass concentration at the urban background station, the mean PM2.5 concentration in the vehicle reaches values that are 2-3 times higher. During the working day, when driving takes less than 10% of the time considered (commuting plus working), PM exposure during driving accounts for about 80% of the PM exposure caused by PM concentration in the office.
Collapse
Affiliation(s)
- Lina Davulienė
- SRI Centre for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300 Vilnius, Lithuania; (A.K.); (S.Š.); (A.M.); (M.D.); (K.K.); (V.D.); (I.U.); (M.S.); (S.B.)
| | - Abdullah Khan
- SRI Centre for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300 Vilnius, Lithuania; (A.K.); (S.Š.); (A.M.); (M.D.); (K.K.); (V.D.); (I.U.); (M.S.); (S.B.)
| | - Sergej Šemčuk
- SRI Centre for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300 Vilnius, Lithuania; (A.K.); (S.Š.); (A.M.); (M.D.); (K.K.); (V.D.); (I.U.); (M.S.); (S.B.)
| | - Agnė Minderytė
- SRI Centre for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300 Vilnius, Lithuania; (A.K.); (S.Š.); (A.M.); (M.D.); (K.K.); (V.D.); (I.U.); (M.S.); (S.B.)
| | - Mehri Davtalab
- SRI Centre for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300 Vilnius, Lithuania; (A.K.); (S.Š.); (A.M.); (M.D.); (K.K.); (V.D.); (I.U.); (M.S.); (S.B.)
| | - Kamilė Kandrotaitė
- SRI Centre for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300 Vilnius, Lithuania; (A.K.); (S.Š.); (A.M.); (M.D.); (K.K.); (V.D.); (I.U.); (M.S.); (S.B.)
- Faculty of Physics, Vilnius University, Universiteto Str. 3, LT-01513 Vilnius, Lithuania
| | - Vadimas Dudoitis
- SRI Centre for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300 Vilnius, Lithuania; (A.K.); (S.Š.); (A.M.); (M.D.); (K.K.); (V.D.); (I.U.); (M.S.); (S.B.)
| | - Ieva Uogintė
- SRI Centre for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300 Vilnius, Lithuania; (A.K.); (S.Š.); (A.M.); (M.D.); (K.K.); (V.D.); (I.U.); (M.S.); (S.B.)
| | - Martynas Skapas
- SRI Centre for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300 Vilnius, Lithuania; (A.K.); (S.Š.); (A.M.); (M.D.); (K.K.); (V.D.); (I.U.); (M.S.); (S.B.)
| | - Steigvilė Byčenkienė
- SRI Centre for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300 Vilnius, Lithuania; (A.K.); (S.Š.); (A.M.); (M.D.); (K.K.); (V.D.); (I.U.); (M.S.); (S.B.)
| |
Collapse
|
7
|
Chen Y, Wang Y, Nenes A, Wild O, Song S, Hu D, Liu D, He J, Hildebrandt Ruiz L, Apte JS, Gunthe SS, Liu P. Ammonium Chloride Associated Aerosol Liquid Water Enhances Haze in Delhi, India. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7163-7173. [PMID: 35483018 PMCID: PMC9178790 DOI: 10.1021/acs.est.2c00650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 05/05/2023]
Abstract
The interaction between water vapor and atmospheric aerosol leads to enhancement in aerosol water content, which facilitates haze development, but its concentrations, sources, and impacts remain largely unknown in polluted urban environments. Here, we show that the Indian capital, Delhi, which tops the list of polluted capital cities, also experiences the highest aerosol water yet reported worldwide. This high aerosol water promotes secondary formation of aerosols and worsens air pollution. We report that severe pollution events are commonly associated with high aerosol water which enhances light scattering and reduces visibility by 70%. Strong light scattering also suppresses the boundary layer height on winter mornings in Delhi, inhibiting dispersal of pollutants and further exacerbating morning pollution peaks. We provide evidence that ammonium chloride is the largest contributor to aerosol water in Delhi, making up 40% on average, and we highlight that regulation of chlorine-containing precursors should be considered in mitigation strategies.
Collapse
Affiliation(s)
- Ying Chen
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K.
- College
of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QE, U.K.
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institut (PSI), Villigen 5232, Switzerland
| | - Yu Wang
- Institute
for Atmospheric and Climate Science, ETH
Zurich, Zurich 8006, Switzerland
| | - Athanasios Nenes
- School
of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale
de Lausanne, Lausanne 1015, Switzerland
- Center for
the Studies of Air Quality and Climate Change, Institute of Chemical
Engineering Sciences, Foundation for Research
and Technology Hellas, Patras 26504, Greece
| | - Oliver Wild
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K.
| | - Shaojie Song
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States
- College
of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Dawei Hu
- Centre
for Atmospheric Sciences, Department of Earth, Atmospheric and Environmental
Sciences, University of Manchester, Manchester M13 9PS, U.K.
| | - Dantong Liu
- Department
of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianjun He
- State
Key Laboratory of Severe Weather & Key Laboratory of Atmospheric
Chemistry of CMA, Chinese Academy of Meteorological
Sciences, Beijing 100081, China
| | - Lea Hildebrandt Ruiz
- McKetta
Department of Chemical Engineering, The
University of Texas at Austin, Austin, Texas 78712, United States
| | - Joshua S. Apte
- Department
of Civil and Environmental Engineering, UC Berkeley, Berkeley, California 94720, United States
| | - Sachin S. Gunthe
- EWRE
Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Laboratory
for Atmospheric and Climate Sciences, Indian
Institute of Technology Madras, Chennai 600036, India
| | - Pengfei Liu
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30318, United States
| |
Collapse
|
8
|
Gao J, Qiu Z, Cheng W, Gao HO. Children's exposure to BC and PM pollution, and respiratory tract deposits during commuting trips to school. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113253. [PMID: 35121261 DOI: 10.1016/j.ecoenv.2022.113253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Although children have been identified as a vulnerable group highly susceptible to traffic-related air pollution, their exposure during school commutes to traffic-related pollutants and the relevant health impact is rarely studied. In this study, we measured black carbon (BC) and particulate matter (PM: PM1, PM2.5, and PM10) concentrations that children are exposed to during their multi-modal (walking, private cars, and e-bikes) commuting trips to schools in Xi'an, China. A multi-parameter inhalation rate assessment model was developed in combination with the Multi-Path Particle Dosimetry (MPPD) model to quantify the deposition dose in different parts of children's respiratory system (head, tracheobronchial (TB), pulmonary (PUL)). Results show that walking to school exposed children to the lowest PM1, PM2.5, and BC concentrations, whereas riding an e-bike led to significantly elevated exposure to PM1 and BC than the other two modes. This is due to children's closer proximity to vehicle tail pipe emissions when they bike to school on road or roadside. The PM and BC concentrations showed remarkable increases in comparison to background concentrations during children's school commutes. Urban background (UB) concentration, traffic volume (TV), time of day, and meteorological parameters could influence a child's personal exposure, and the impact of each factor vary across different transportation modes. Particle size of the pollutant affects its deposition site in the respiratory system. Deposition fractions (DFs) and deposition doses in the head region (DF > 50%) were the highest for PM and BC, for which fine particles (BC, PM1, and PM2.5) were then most easily deposited in the PUL region while coarse particles rarely reach PUL. Children inhaled higher doses of polluted air during active commuting (walking) than passive commuting (private cars, e-bikes), due to longer times of exposure coupled with more active breathing.
Collapse
Affiliation(s)
- Jingwen Gao
- School of Automobile, Chang'an University, Chang'an Road, Xi'an 710064 Shaanxi, PR China
| | - Zhaowen Qiu
- School of Automobile, Chang'an University, Chang'an Road, Xi'an 710064 Shaanxi, PR China.
| | - Wen Cheng
- China National Heavy Duty Truck Group Co., Ltd. (SINOTRUK), Huaao Road, Jinan, 250101 Shandong, PR China
| | - H Oliver Gao
- School of Civil and Environmental Engineering, Cornell University 468 Hollister Hall, Ithaca, 14853 NY, USA
| |
Collapse
|
9
|
Aesculetin Inhibits Airway Thickening and Mucus Overproduction Induced by Urban Particulate Matter through Blocking Inflammation and Oxidative Stress Involving TLR4 and EGFR. Antioxidants (Basel) 2021; 10:antiox10030494. [PMID: 33809902 PMCID: PMC8004275 DOI: 10.3390/antiox10030494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Particulate matter (PM) is a mixture of solid and liquid air pollutant particles suspended in the air, varying in composition, size, and physical features. PM is the most harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing diverse respiratory diseases. Aesculetin, a coumarin derivative present in the Sancho tree and chicory, is known to have antioxidant and anti-inflammatory effects in the vascular and immune system. However, its effect on PM-induced airway thickening and mucus hypersecretion is poorly understood. The current study examined whether naturally-occurring aesculetin inhibited airway thickening and mucus hypersecretion caused by urban PM10 (uPM10, particles less than 10 μm). Mice were orally administrated with 10 mg/kg aesculetin and exposed to 6 μg/mL uPM10 for 8 weeks. To further explore the mechanism(s) involved in inhibition of uPM10-induced mucus hypersecretion by aesculetin, bronchial epithelial BEAS-2B cells were treated with 1–20 µM aesculetin in the presence of 2 μg/mL uPM10. Oral administration of aesculetin attenuated collagen accumulation and mucus hypersecretion in the small airways inflamed by uPM10. In addition, aesculetin inhibited uPM10-evoked inflammation and oxidant production in lung tissues. Further, aesculetin accompanied the inhibition of induction of bronchial epithelial toll-like receptor 4 (TLR4) and epidermal growth factor receptor (EFGR) elevated by uPM10. The inhibition of TLR4 and EGFR accompanied bronchial mucus hypersecretion in the presence of uPM10. Oxidative stress was responsible for the epithelial induction of TLR4 and EGFR, which was disrupted by aesculetin. These results demonstrated that aesculetin ameliorated airway thickening and mucus hypersecretion by uPM10 inhalation by inhibiting pulmonary inflammation via oxidative stress-stimulated TLR4 and EGFR. Therefore, aesculetin may be a promising agent for treating airway mucosa-associated disorders elicited by urban coarse particulates.
Collapse
|
10
|
Voliotis A, Bezantakos S, Besis A, Shao Y, Samara C. Mass dose rates of particle-bound organic pollutants in the human respiratory tract: Implications for inhalation exposure and risk estimations. Int J Hyg Environ Health 2021; 234:113710. [PMID: 33618174 DOI: 10.1016/j.ijheh.2021.113710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022]
Abstract
To date, little is known about the effective doses of airborne particulate matter (PM) and PM-bound hazardous organic components to the human respiratory tract (HRT). In the light of this, here we provide particle mass dose rates (dose per hour of exposure) of PM and a suite of PM-bound hazardous organic compounds in the HRT for two population age groups (adults & children). More specifically, the mass dose rates of PM and PM-bound polycyclic aromatic hydrocarbons (PAHs), nitrated-PAH (NPAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) were estimated at two urban sites using a multiple path particle dosimetry model. We find that, in most cases, the total mass doses are following similar variations across sites and seasons as their ambient total concentrations, however their distribution in the HRT is a function of the particle size distributions and the physiological parameters of each age group. More specifically, the majority of the deposited mass of PM and all the chemical components investigated was accumulated in the upper airways instead of the lungs. We further show that children, due to their different physiology, are more susceptible and receive larger fraction of the total mass doses in the deepest parts of the lungs compared to the adults' group. Comparing the traditional method for estimating the inhalation risk, which is based on the ambient concentration of pollutants, and a modified version using the mass dose in the HRT, we find that the former may overestimate the reported risks. The results presented here provide a novel dataset composed by previously undetermined doses of hazardous airborne particulate organic components in the HRT and demonstrate that alternative health risk estimation approaches may capture some variabilities that are traditionally overlooked.
Collapse
Affiliation(s)
- Aristeidis Voliotis
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Centre for Atmospheric Science, Department of Earth and Environmental Sciences, The University of Manchester, M139PL, Manchester, United Kingdom.
| | - Spyridon Bezantakos
- Advanced Integrated Technology Solutions and Services (ADITESS) LTD, Nicosia, 2064, Cyprus; Energy Environment and Water Research Center, The Cyprus Institute, Nicosia, 1645, Cyprus
| | - Athanasios Besis
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Yunqi Shao
- Centre for Atmospheric Science, Department of Earth and Environmental Sciences, The University of Manchester, M139PL, Manchester, United Kingdom
| | - Constantini Samara
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
11
|
Liu X, Kong S, Yan Q, Liu H, Wang W, Chen K, Yin Y, Zheng H, Wu J, Qin S, Liu J, Feng Y, Yan Y, Liu D, Zhao D, Qi S. Size-segregated carbonaceous aerosols emission from typical vehicles and potential depositions in the human respiratory system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114705. [PMID: 32408080 DOI: 10.1016/j.envpol.2020.114705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Particles emitted from five typical types of vehicles (including light-duty gasoline vehicles, LDG; heavy-duty gasoline vehicles, HDG; diesel buses, BUS; light-duty diesel vehicles, LDD and heavy-duty diesel vehicles, HDD) were collected with a dilution sampling system and an electrical low-pressure impactor (ELPI+, with particle sizes covering fourteen stages from 6 nm to 10 μm) on dynamometer benches. The mass concentrations and emission factors (EF) for organic carbon (OC) and elemental carbon (EC) were obtained with a DRI Model 2001 thermal/optical carbon analyzer. A respiratory deposition model was used to calculate the deposition fluxes of size-segregated carbonaceous aerosols in human respiratory system. Results indicated that the OC produced from LDG mainly existed in the size range of 2.5-10 μm, while EC from HDG enriched in 0.94-2.5 μm. For diesel vehicles, both OC and EC concentrations peaked at 0.094-0.25 μm. The OC/EC ratios for PM2.5 varied from different types of vehicles, from 0.61 to 8.35. The primary emissions from LDD and HDD exhibited high OC/EC ratios (>3), suggesting that using OC/EC higher than 2 to indicate the formation of secondary organic aerosol (SOA) was not universal. The emission factors for OC and EC of LDG (HDG) in PM10 were 1.78 (3.14) mg km-1 and 0.88 (4.32) mg km-1, respectively. The OC2 and OC3 were the main section (over 60%) of OC emitted from all the five types of vehicles. EC1 was the most abundant EC fraction of LDG (76.9%), while EC2 dominated for other types of vehicles (more than 62%). About 60% of the OC in ultrafine particles could be deposited in the alveoli. Diesel EC mainly could be deposited in the alveolar region. It is necessary to control the emission of ultrafine particles and diesel EC.
Collapse
Affiliation(s)
- Xi Liu
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Qin Yan
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Haibiao Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wei Wang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Kui Chen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yan Yin
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Huang Zheng
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Jian Wu
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Si Qin
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Jinhong Liu
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yunkai Feng
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yingying Yan
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Dantong Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Delong Zhao
- Beijing Weather Modification Office, Beijing, 100089, China
| | - Shihua Qi
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
12
|
Jew K, Herr D, Wong C, Kennell A, Morris-Schaffer K, Oberdörster G, O'Banion MK, Cory-Slechta DA, Elder A. Selective memory and behavioral alterations after ambient ultrafine particulate matter exposure in aged 3xTgAD Alzheimer's disease mice. Part Fibre Toxicol 2019; 16:45. [PMID: 31771615 PMCID: PMC6878709 DOI: 10.1186/s12989-019-0323-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/25/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A growing body of epidemiological literature indicates that particulate matter (PM) air pollution exposure is associated with elevated Alzheimer's disease (AD) risk and may exacerbate AD-related cognitive decline. Of concern is exposure to the ultrafine PM (UFP) fraction (≤100 nm), which deposits efficiently throughout the respiratory tract, has higher rates of translocation to secondary organs, like brain, and may induce inflammatory changes. We, therefore, hypothesize that exposure to UFPs will exacerbate cognitive deficits in a mouse model of AD. The present study assessed alterations in learning and memory behaviors in aged (12.5 months) male 3xTgAD and non-transgenic mice following a 2-week exposure (4-h/day, 4 days/week) to concentrated ambient UFPs using the Harvard ultrafine concentrated ambient particle system (HUCAPS) or filtered air. Beginning one month following exposure, locomotor activity, spatial learning and memory, short-term recognition memory, appetitive motivation, and olfactory discrimination were assessed. RESULTS No effects on locomotor activity were found following HUCAPS exposure (number concentration, 1 × 104-4.7 × 105 particles/cm3; mass concentration, 29-132 μg/m3). HUCAPS-exposed mice, independent of AD background, showed a significantly decreased spatial learning, mediated through reference memory deficits, as well as short-term memory deficits in novel object recognition testing. AD mice displayed diminished spatial working memory, potentially a result of olfactory deficits, and short-term memory. AD background modulated HUCAPS-induced changes on appetitive motivation and olfactory discrimination, specifically enhancing olfactory discrimination in NTg mice. Modeling variation in appetitive motivation as a covariate in spatial learning and memory, however, did not support the conclusion that differences in motivation significantly underlie changes in spatial learning and memory. CONCLUSIONS A short-term inhalation exposure of aged mice to ambient UFPs at human-relevant concentrations resulted in protracted (testing spanning 1-6.5 months post-exposure) adverse effects on multiple memory domains (reference and short-term memory) independent of AD background. Impairments in learning and memory were present when accounting for potential covariates like motivational changes and locomotor activity. These results highlight the need for further research into the potential mechanisms underlying the cognitive effects of UFP exposure in adulthood.
Collapse
Affiliation(s)
- Katrina Jew
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Denise Herr
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Candace Wong
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Andrea Kennell
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Keith Morris-Schaffer
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience and Del Monte Neuroscience Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- Department of Neurology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|