1
|
Shi B, Cheng X, Pan J, Jiang S, Kang Y, Wang L, Xie J. Impact of water depth and flow velocity on organic matter removal and nitrogen cycling in floating constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176731. [PMID: 39368508 DOI: 10.1016/j.scitotenv.2024.176731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The configuration of water depth (WD) and flow velocity (FV) in floating constructed wetlands (FCWs) reflects the complex interactions between hydraulic conditions and wastewater treatment performance. Properly configuring hydraulic conditions can optimize performance. This study explored the removal and degradation of organic matter and nitrogen (N) in FCWs with three different WDs (50 cm (SD), 70 cm (MD), and 95 cm (DD)) under four FV conditions (0, 0.3, 1.0, and 1.5 m/d). It also analyzed the regulatory effects of hydraulic conditions on microbial community structure to provide new insights for configuring hydraulic conditions in FCWs. The results indicate that variations in WD and FV do not significantly affect COD removal (p > 0.05), with removal efficiency (RE) consistently reaching 90 % across all conditions. However, hydraulic conditions do influence the degradation rate (k) of COD, with increased FV enhancing the k in MD and DD. In contrast, WD significantly impacts the removal of NH4+-N (p < 0.05), with RE in SD exceeding 80 % across all four FVs. The primary reason is that increased WD reduced the abundance of nitrifying bacteria (Nitrosomonas and Nitrospira) and functional genes (hao and pmoABC-amoABC). Meanwhile, increased WD and FV significantly enriched the denitrifying bacteria genera (such as Massilia, Bacillus, Ensifer, and Rhodobacter) and certain functional genes (nap and nir), favoring the denitrification process and enhancing the dissimilatory nitrate reduction to ammonium (DNRA) process. Furthermore, microbial community diversity, richness, and the number of operational taxonomic units (OTUs) were highest in SD, but decreased with increased WD. This is mainly related to changes in oxygen (O2) transmission and nutrient concentration. These findings help us understand the mechanisms by which hydraulic regulation affects the removal of organic matter and N in FCWs. They also propose potential solutions from a hydraulics perspective to enhance N removal.
Collapse
Affiliation(s)
- Baoshan Shi
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510640, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510640, China.
| | - Junheng Pan
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Shenqiong Jiang
- China Construction Southwest Institute Southern Design and Construction Engineering Co., Ltd, Guangzhou 510700, China
| | - Yongde Kang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Longwei Wang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
2
|
Tran PYN, Dao TVH, Vo TKQ, Nguyen TAC, Nguyen TMX, Tran CS, Nguyen TYP, Le LT, Tra VT, Phan NN, Lens PNL, Bui XT. Enhanced pollution removal from canal water by coupling aeration to floating treatment wetlands. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-12. [PMID: 39258771 DOI: 10.1080/15226514.2024.2401957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Floating treatment wetlands (FTWs) are natural solutions for purifying polluted water, providing a green surface area and improving city landscape. This study investigated if the efficiency of FTWs can be improved by aeration for treating contaminated canal water. The three used plant species were Canna generalis, Phragmites australis, and Cyperus alternifolius. The experiment was carried out in three FTWs with aeration and three without aeration to compare the removal for COD, NH4+-N, E. coli, PO43--P, and Fe. In the aerated FTWs, air blowers were installed to run at two different air flow rates of 2.5 L min-1 (Batch 1) and 1.0 L min-1 (Batch 2). Aeration increased the dissolved oxygen concentrations in each tank, which came over 6.5 mg L-1 in both batches. This study sheds light on the positive impact of aeration has on COD and NH4+-N removal: these are nearly three-fold higher compared to non-aeration conditions and reached approximately 99% (1.7-log reduction) for E. coli removal. Additionally, the plant growth rate in the aerated FTWs was higher than in the non-aerated ones. The average shoot growth rate of Phragmites australis was 0.76 cm d-1 for the aerated FTW which was two-fold higher compared to the non-aerated one.
Collapse
Affiliation(s)
- Pham-Yen-Nhi Tran
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam
| | - Thi-Viet-Huong Dao
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade (HUIT), Ho Chi Minh City, Vietnam
| | - Tran-Anh-Chi Nguyen
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam
| | - Thi-Mai-Xuan Nguyen
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam
| | - Cong-Sac Tran
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam
| | - Thi-Yen-Phuong Nguyen
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam
| | - Linh-Thy Le
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ho Chi Minh City, Vietnam
| | - Van-Tung Tra
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Vietnam
| | - Nhu-Nguyet Phan
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam
- Faculty of Environment, University of Science, Ho Chi Minh City, Vietnam
| | - Piet N L Lens
- National University of Ireland Galway, Galway, Ireland
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Vo TDH, Vo TKQ, Tran PYN, Dao TVH, Hoang QH, Le LT, Phan NN, Ngo TDT, Lens PNL, Bui XT. Floating treatment wetlands to improve the water quality of the Hang Bang canal, Ho Chi Minh City, Vietnam: Effect of plant species. CHEMOSPHERE 2024; 362:142786. [PMID: 38977251 DOI: 10.1016/j.chemosphere.2024.142786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Floating treatment wetlands (FTWs) are artificial platforms that allow aquatic emergent plants to grow in water. Aquatic macrophytes and microorganisms attached to plant roots contribute to the remediation of the contaminated water through physicochemical and biological processes. The pollutant removal treatment performance is affected by various factors, including the plant species. In this study, several plant species, i.e. Canna generalis, Phragmites australis, Pennisetum purpureum, Cyperus alternifolius rottb, Kyllinga brevifolia rottb, and Cyperus ordoratus were investigated for their potential to clean-up water from the Hang Bang canal in Ho Chi Minh City (Vietnam). Canna generalis, Phragmites australis, and Cyperus alternifolius were found to be suitable for FTWs with the highest performance compared to that of other plant species investigated. The organic and nitrogen removal rates amounted to 48-70 g COD m-3 d-1 and 0.7-1.2 g N m-3 d-1, respectively, whereas the reduction of pathogens was around 1.86-3.00 log. Furthermore, FTW systems bring other benefits such as improving ecosystem functioning and biodiversity, producing value-added products from plant biomass, as well as attracting the attention of communities, thus increasing social acceptance of environmental technology interventions.
Collapse
Affiliation(s)
- Thi-Dieu-Hien Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, 700000, Viet Nam
| | - Pham-Yen-Nhi Tran
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City 700000, Viet Nam
| | - Thi-Viet-Huong Dao
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City 700000, Viet Nam
| | - Quang-Huy Hoang
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Saigon University, Ho Chi Minh City 700000, Viet Nam
| | - Linh-Thy Le
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ward 11, District 5, Ho Chi Minh City, Viet Nam
| | - Nhu-Nguyet Phan
- Faculty of Environment, University of Science, Vietnam National University Ho Chi Minh City, Viet Nam
| | - Thuy Diem Trang Ngo
- Department of Environmental Sciences, College of Environment and Natural Resources, Can Tho University, Can Tho, Viet Nam
| | - Piet N L Lens
- National University of Ireland Galway, University Road, Galway H91 TK33, Ireland.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
4
|
Choudhury MI, Nilsson JE, Hylander S, Hauber M, Ehde PM, Weisner SEB, Liess A. Enhancing nitrogen removal through macrophyte harvest and installation of woodchips-based floating beds in surface-flow constructed wetlands. CHEMOSPHERE 2024; 359:142284. [PMID: 38719124 DOI: 10.1016/j.chemosphere.2024.142284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Wetland management maintains nitrogen (N) removal capacity in mature and overgrown constructed wetlands (CWs). We evaluated whether CW management by macrophyte harvesting, and subsequent installation of woodchips-based floating beds (WFBs) planted with Glyceria maxima and Filipendula ulmaria improved N removal. In sixteen heavily overgrown experimental CWs, we applied four treatments: i) only macrophyte harvesting, ii) 5% of the harvested-CW surface covered with WFBs, iii) 20% WFBs cover, and iv) a control treatment (heavily overgrown). N removal was determined in all wetlands at nine occasions. Plant biomass accrual, N assimilation, and denitrification genes nirS, nirK, nosZI and nosZII on plant roots and woodchips from WFBs were estimated. Macrophyte harvesting improved N removal of heavily overgrown CWs, whereas subsequent WFB installation only sometimes improved N removal. Mean N removal efficiencies (± standard deviation) overall were 41 ± 15 %, 45 ± 20 %, 46 ± 16 % and 27 ± 8.3 % for treatments i to iv, respectively. Relative biomass production, root length and root surface area for G.maxima (mean ± standard deviation: 234 ± 114 %, 40 ± 6.5 cm, 6308 ± 1059 cm2g-1, respectively) were higher than those for F. ulmaria (63 ± 86 %, 28 ± 12 cm, 3131 ± 535 cm2g-1, respectively) whereas biomass N assimilation was higher for F. ulmaria (1.8 ± 0.9 gNm-2 of WFB) than for G. maxima (1.3 ± 0.5 gNm-2 of WFB). Denitrification gene abundance was higher on plant roots than on woodchips while G. maxima hosted higher root denitrification gene abundance than F. ulmaria. We conclude that macrophyte harvesting improves N removal in heavily overgrown CWs. WFBs installation has the potential to support plant growth and denitrification in surface-flow constructed wetlands. Further studies need to evaluate the long-term effects of macrophyte harvesting and WFB installation on N removal in CWs.
Collapse
Affiliation(s)
- Maidul I Choudhury
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-39182, Kalmar, Sweden; Machinery Laboratory, Vattenfall R&D, 81470, Älvkarleby, Sweden
| | - Josefin E Nilsson
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, Box 823, 301 18 Halmstad, Sweden; Department of Ecology and Genetics, Uppsala University, Box 256, 751 05 Uppsala, Sweden
| | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Marc Hauber
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Per Magnus Ehde
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, Box 823, 301 18 Halmstad, Sweden
| | - Stefan E B Weisner
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, Box 823, 301 18 Halmstad, Sweden
| | - Antonia Liess
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, Box 823, 301 18 Halmstad, Sweden.
| |
Collapse
|
5
|
Mao J, Hu G, Deng W, Zhao M, Li J. Industrial wastewater treatment using floating wetlands: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5043-5070. [PMID: 38150162 DOI: 10.1007/s11356-023-31507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Industrial wastewater generated from various production processes is often associated with elevated pollutant concentrations and environmental hazards, necessitating efficient treatment. Floating wetlands (FWs) have emerged as a promising and eco-friendly solution for industrial wastewater treatment, with numerous successful field applications. This article comprehensively reviews the removal mechanisms and treatment performance in the use of FWs for the treatment of diverse industrial wastewaters. Our findings highlight that the performance of FWs relies on proper plant selection, design, aeration, season and temperature, plants harvesting and disposal, and maintenance. Well-designed FWs demonstrate remarkable effectiveness in removing organic matter (COD and BOD), suspended solids, nutrients, and heavy metals from industrial wastewater. This effectiveness is attributed to the intricate physical and metabolic interactions between plants and microbial communities within FWs. A significant portion of the reported applications of FWs revolve around the treatment of textile and oily wastewater. In particular, the application reports of FWs are mainly concentrated in temperate developing countries, where FWs can serve as a feasible and cost-effective industrial wastewater treatment technology, replacing high-cost traditional technologies. Furthermore, our analysis reveals that the treatment efficiency of FWs can be significantly enhanced through strategies like bacterial inoculation, aeration, and co-plantation of specific plant species. These techniques offer promising directions for further research. To advance the field, we recommend future research efforts focus on developing novel floating materials, optimizing the selection and combination of plants and microorganisms, exploring flexible disposal methods for harvested biomass, and designing multi-functional FW systems.
Collapse
Affiliation(s)
- Jianliang Mao
- School of Engineering, Environmental Engineering Program, University of Northern British Columbia (UNBC), 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada
| | - Guangji Hu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wei Deng
- School of Engineering, Environmental Engineering Program, University of Northern British Columbia (UNBC), 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada
| | - Min Zhao
- School of Life and Environmental Sciences, Wenzhou University (WZU), Wenzhou, 325035, Zhejiang Province, China
- WZU-UNBC Joint Research Institute of Ecology and Environment, Wenzhou University (WZU), Wenzhou, 325035, Zhejiang Province, China
| | - Jianbing Li
- School of Engineering, Environmental Engineering Program, University of Northern British Columbia (UNBC), 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada.
- WZU-UNBC Joint Research Institute of Ecology and Environment, Wenzhou University (WZU), Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
6
|
Wei C, Su F, Yue H, Song F, Li H. Spatial distribution characteristics of denitrification functional genes and the environmental drivers in Liaohe estuary wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1064-1078. [PMID: 38030842 DOI: 10.1007/s11356-023-30938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
Genes nirS, nirK, and nosZ are specific for the denitrification process, which is associated with greenhouse gas N2O emission. The abundances and diversities of community containing these three genes are usually used as a common index to reflect the denitrification process, and they would be affected by differences in environmental factors caused by changes from warm to cold conditions. The quantification of denitrification in natural wetlands is complex, and straightforward identification of spatial distribution and drivers affecting the process is still developing. In this study, the bacterial communities, gene diversities, and relative abundances involved in denitrification were investigated in Liaohe Estuary Wetland. We analyzed the relative abundances, diversities, and communities of bacteria containing the three genes at warm and cold conditions using Illumina MiSeq sequencing and detected the potential environmental factors influencing their distribution by using a random forest algorithm. There are great differences in the community composition of the bacteria containing genes nirS, nirK, and nosZ. All the abundant taxa of nirS and nirK communities belonged to phylum Proteobacteria. Compared with the community composition of bacteria containing nirS and nirK, the community of bacteria containing nosZ is more diverse, and the subdivision taxa of phylum Euryarchaeota was also abundant in the community containing nosZ. The distribution characteristics of the relative abundance of nirS and nirK showed obvious differences both at warm and cold climate conditions. The oxidation-reduction potential, nitrite nitrogen, and salinity were detected as potential variables that might explain the diversity of nirS. The total nitrogen and nitrite nitrogen were the important variables for predicting the relative abundance of nirS at warm climate condition, while oxidation-reduction potential and pH contributed to the diversity of nirS at cold condition. The bulk density of sediment was detected as a potential variable affecting the relative abundance of nirK at warm and cold conditions, and diversity of nirK at warm condition, while nitrite nitrogen was detected as an important environmental factor for predicting the diversity of nirK at cold condition. Overall, our results show that the key environmental factors, which affect the relative abundance, diversity, and community of bacteria containing the functional denitrification genes, are not exactly the same, and the diversities of nirS, nirK, and nosZ have a higher environmental sensitivity than their relative abundances.
Collapse
Affiliation(s)
- Chao Wei
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, Liaoning, China
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, Liaoning, China
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang, 110866, Liaoning, China
| | - Fangli Su
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, Liaoning, China.
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, Liaoning, China.
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang, 110866, Liaoning, China.
| | - Hangyu Yue
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Fei Song
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, Liaoning, China
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, Liaoning, China
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang, 110866, Liaoning, China
| | - Haifu Li
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, Liaoning, China
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, Liaoning, China
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang, 110866, Liaoning, China
| |
Collapse
|
7
|
Vo TKQ, Vo TDH, Ntagia E, Amulya K, Nguyen NKQ, Tran PYN, Ninh NTT, Le SL, Le LT, Tran CS, Ha TL, Pham MDT, Bui XT, Lens PNL. Pilot and full scale applications of floating treatment wetlands for treating diffuse pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165595. [PMID: 37467995 DOI: 10.1016/j.scitotenv.2023.165595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Floating treatment wetlands (FTW) are nature-based solutions for the purification of open water systems such as rivers, ponds, and lakes polluted by diffuse sources as untreated or partially treated domestic wastewater and agricultural run-off. Compared with other physicochemical and biological technologies, FTW is a technology with low-cost, simple configuration, easy to operate; has a relatively high efficiency, and is energy-saving, and aesthetic. Water remediation in FTWs is supported by plant uptake and the growth of a biofilm on the water plant roots, so the selection of the macrophyte species is critical, not only to pollutant removal but also to the local ecosystem integrity, especially for full-scale implementation. The key factors such as buoyant frame/raft, plant growth support media, water depth, seasonal variation, and temperature have a considerable role in the design, operation, maintenance, and pollutant treatment performance of FTW. Harvesting is a necessary process to maintain efficient operation by limiting the re-pollution of plants in the decay phase. Furthermore, the harvested plant biomass can serve as a green source for the recovery of energy and value-added products.
Collapse
Affiliation(s)
- Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh city 700000, Viet Nam
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Eleftheria Ntagia
- National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Kotamraju Amulya
- National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Ngoc-Kim-Qui Nguyen
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Pham-Yen-Nhi Tran
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Nguyen-Thanh-Tung Ninh
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Song-Lam Le
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Linh-Thy Le
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), ward 11, district 5, Ho Chi Minh City, Viet Nam
| | - Cong-Sac Tran
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - The-Luong Ha
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Mai-Duy-Thong Pham
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| | - Piet N L Lens
- National University of Ireland Galway, University Road, Galway H91 TK33, Ireland.
| |
Collapse
|
8
|
Yan Y, Chen Y, Wu X, Dang H, Zeng T, Ma J, Tang C. Enhanced nitrogen removal from rural domestic sewage via partial nitrification-anammox in integrated vertical subsurface flow constructed wetland. ENVIRONMENTAL RESEARCH 2023; 233:116338. [PMID: 37311474 DOI: 10.1016/j.envres.2023.116338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
This study aimed to improve the removal of nitrogen treating rural domestic sewage by developing a novel strategy for achieving partial nitrification-anammox (PNA) in an integrated vertical subsurface flow constructed wetland (VSFCW). The influent ammonia was oxidized to nitrite in the partial nitrification VSFCW (VSFCWPN), and 5 mg/L of hydroxylamine was added under the appropriate dissolved oxygen concentration level (1.2 ± 0.2 mg/L) to stabilize the average nitrite accumulation rate at 88.24% and maintain the effluent NO2--N/NH4+-N ratio at 1.26 ± 0.15. The effluent from VSFCWPN was introduced to the following chamber (VSFCWAN), where ammonia and nitrite were removed by the autotrophic anammox process. This implementation achieved high removal efficiencies for chemical oxygen demand, total nitrogen, and PO43--P, reaching 86.26%, 90.22%, and 78.94%, respectively, with influent concentrations of 120.75 mg/L, 60.02 mg/L, and 5.05 mg/L. Substrate samples were collected from 10 cm height (PN1, AN1) and 25 cm height (PN2, AN2). Microbial community analysis showed that Nitrosomonas dominated the community composition in VSFCWPN, with an increase from 1.61% in the inoculated sludgePN to 16.31% (PN1) and 12.09% (PN2). Meanwhile, Ca. Brocadia accounted for 44.81% (AN1) and 36.50% (AN2) in VSFCWAN. These results confirm the feasibility of the proposed strategy for establishing PNA and efficiently treating rural domestic sewage in an integrated VSFCW.
Collapse
Affiliation(s)
- Yuan Yan
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Yongzhi Chen
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
| | - Xinbo Wu
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hongzhong Dang
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Tianxu Zeng
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Jiao Ma
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Chenxin Tang
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
9
|
Nuruzzaman M, Anwar AHMF, Sarukkalige R. Computational fluid dynamics modeling of floating treatment wetland retrofitted stormwater pond: Investigation on design configurations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117746. [PMID: 36958285 DOI: 10.1016/j.jenvman.2023.117746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/05/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Floating Treatment Wetland (FTW) is a cost-effective and easy-to-retrofit device for stormwater treatment. Its treatment efficiency largely depends on the fraction of inflow entering FTW and the residence time within it. Thus hydrodynamics play a crucial role, which is affected by the design configurations of FTW and stormwater pond. Despite a spike in research on FTWs, very little is known about how various design configurations affect treatment efficiency by an FTW. Our study hypothesizes that relative positions of FTW geometry, FTW position and pond inlet-outlet have impact on the hydrodynamics and as a consequence, treatment efficiency. To explore these design features, we employed computational fluid dynamics (CFD) modeling conducted in ANSYS Fluent, validated by experimental data to examine the impact of the aforementioned design features. The results revealed that circular FTW geometry positioned near inlet coupled with center inlet-side outlet configuration achieved the highest removal (94.8%) for a non-dimensional removal rate of krtHRT = 20 (kr is the first order removal rate in per day, tHRT is the nominal hydraulic residence time of the pond in days). Far side inlet-side outlet configuration performed the worst due to profound promotion of short-circuiting. FTW positioned near inlet performed better (61.8% mass removal on an average) than center (42.7%) and near outlet positions (54.1%) for krtHRT = 20. Sensitivity analysis revealed that the treatment efficiency is most sensitive to inlet-outlet configurations. The design implications of this study will help practitioners achieving better water quality and ecological improvement goals.
Collapse
Affiliation(s)
- Md Nuruzzaman
- School of Civil and Mechanical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| | - A H M Faisal Anwar
- School of Civil and Mechanical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Ranjan Sarukkalige
- School of Civil and Mechanical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
10
|
Arslan M, Wilkinson S, Naeth MA, Gamal El-Din M, Khokhar Z, Walker C, Lucke T. Performance of constructed floating wetlands in a cold climate waste stabilization pond. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163115. [PMID: 37011671 DOI: 10.1016/j.scitotenv.2023.163115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023]
Abstract
Effectiveness of constructed floating wetlands (CFWs) is largely unknown for wastewater treatment in cold climates. An operational-scale CFW system was retrofitted into a municipal waste stabilization pond in Alberta, Canada. During the first year (Study I), insignificant performance was recorded for water quality parameters, although phyto-uptake of elements was evident. In Study II, doubling of the CFW area and addition of underneath aeration promoted plant uptake of elements, including nutrients and metals, following significant pollutant reduction in the water; 83 % of chemical oxygen demand, 80 % of carbonaceous biochemical oxygen demand, 67 % of total suspended solids, and 48 % of total Kjeldhal nitrogen. A mesocosm study, conducted in parallel to the pilot scale field study, confirmed the impact of both vegetation and aeration on water quality improvement. The phytoremediation potential was linked to accumulation within plant shoot and root biomass and was confirmed by mass balance. Bacterial community analyses reflected that heterotrophic nitrification, aerobic denitrification, complete denitrification, organic matter decomposition, and methylotrophy were dominant mechanisms in the CFW, likely resulting in successful transformation of organics and nutrients. CFWs appear to be a viable ecotechnology to treat municipal wastewater in Alberta; however, larger and aerated CFW systems are recommended to achieve maximum remediation. The study aligns with the United Nations Environment Program to scale up restoration of degraded ecosystems, and to improve conditions for water supply and biodiversity following recognition of 2021-2030 as the Decade on Ecosystem Restoration.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Sarah Wilkinson
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | - M Anne Naeth
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | | | - Christopher Walker
- Covey Associates Pty Ltd, Maroochydore, Qld 4560, Australia; University of South Australia, Science, Technology, Engineering and Mathematics (STEM), Scarce Resources and the Circular Economy (ScaRCE), Mawson Lakes, SA 5095, Australia
| | - Terry Lucke
- School of Engineering, Charles Sturt University, Australia; Covey Associates Pty Ltd, Maroochydore, Qld 4560, Australia
| |
Collapse
|
11
|
Chikogu Ameso V, Essandoh HMK, Donkor EA, Nwude MO. Comparative analysis of greywater pollutant removal efficiency with horizontal free water surface flow wetland with other wetland technologies. Heliyon 2023; 9:e17637. [PMID: 37539117 PMCID: PMC10395022 DOI: 10.1016/j.heliyon.2023.e17637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023] Open
Abstract
The reuse of treated wastewater for agriculture and other purposes is globally recognized as a reliable water source. Constructed wetlands are cost-effective and reliable green technologies for wastewater treatment, offering an environmentally friendly and affordable solution with minimal operational and maintenance requirements. This study assessed four wetland technologies (HFWSF, VFSF, VSSF, and HSSF) for treating greywater according to regulatory standards. The technologies effectively maintained pH levels, and both treated and untreated greywater samples met FEPA limits. They efficiently reduced dissolved and suspended particles, remaining below FEPA discharge limits for conductivity, TDS, turbidity, and TSS. However, elevated ammonia levels in both treated and untreated samples required additional treatment or mitigation. Sulphate levels were successfully mitigated, and phosphorus limits were met, with HFWSF already compliant even before treatment. Nitrate levels were reduced to meet FEPA limits, ensuring regulatory compliance. While BOD limits were met in both treated and untreated samples, untreated samples exceeded COD limits, necessitating more efficient treatment methods. HFWSF and HSSF complied with COD limits, whereas VFSF and VSSF did not. Both treated and untreated samples exceeded FEPA limits for oil and grease, indicating the need for additional treatment. Untreated samples exhibited high coliform contamination levels, underscoring the importance of effective treatment. However, all technologies successfully reduced coliform levels in treated samples, meeting FEPA limits and confirming treatment effectiveness. The combination of Typha (Domingensis) in the horizontal subsurface flow constructed wetland improved pollutant removal, nutrient removal, and contaminant elimination. Incorporating water Hyacinth (Eichhornia crassipes) with horizontal free water surface flow wetland technology demonstrated the highest efficacy in removing various pollutants. This combination outperformed other wetland technologies in effectively removing pollutants, including ammonia (60%), oil and grease (78.46%), COD (85%), TP (37.04%), FC (75%), and TC (79.59%), representing significant progress in greywater treatment.
Collapse
Affiliation(s)
- Vivien Chikogu Ameso
- Regional Water and Environmental Sanitation Centre, Kumasi (RWESCK) Department of Civil Engineering College of Engineering, Kwame Nkrumah University of Science and Technology, P.M.B UP, KNUST, Kumasi, Ghana
- Department of Water Resource and Environmental Management, National Water Resource, Institute (NWRI), P.M.B. 2309, Mando Road, Kaduna, Kaduna State, Nigeria
| | - Helen Michelle Korkor Essandoh
- Regional Water and Environmental Sanitation Centre, Kumasi (RWESCK) Department of Civil Engineering College of Engineering, Kwame Nkrumah University of Science and Technology, P.M.B UP, KNUST, Kumasi, Ghana
| | - Emmanuel Amponsah Donkor
- Regional Water and Environmental Sanitation Centre, Kumasi (RWESCK) Department of Civil Engineering College of Engineering, Kwame Nkrumah University of Science and Technology, P.M.B UP, KNUST, Kumasi, Ghana
| | - Michael Obiekwe Nwude
- Department of Water Resource and Environmental Management, National Water Resource, Institute (NWRI), P.M.B. 2309, Mando Road, Kaduna, Kaduna State, Nigeria
| |
Collapse
|
12
|
Rome M, Happel A, Dahlenburg C, Nicodemus P, Schott E, Mueller S, Lovell K, Beighley RE. Application of floating wetlands for the improvement of degraded urban waters: Findings from three multi-year pilot-scale installations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162669. [PMID: 36907411 DOI: 10.1016/j.scitotenv.2023.162669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 05/06/2023]
Abstract
Floating Treatment Wetlands (FTWs) are an emerging ecological engineering technology being applied the restoration of eutrophic urban water bodies. Documented water-quality benefits of FTW include nutrient removal, transformation of pollutants, and reduction in bacterial contamination. However, translating findings from short-duration lab and mesocosm scale experiments, into sizing criteria that might be applied to field installations is not straightforward. This study presents the results of three well established (>3 years) pilot-scale (40-280 m2) FTW installations in Baltimore, Boston, and Chicago. We quantify annual phosphorus removal through harvesting of above-ground vegetation and find an average removal rate of 2 g-P m-2. In our own study and in a review of literature, we find limited evidence of enhanced sedimentation as a pathway for phosphorus removal. In addition to water-quality benefits, FTW planted with native species, provide valuable wetland habitat; and theoretically improve ecological function. We document efforts to quantify the local effect of FTW installations on benthic and sessile macroinvertebrates, zooplankton, bloom-forming cyanobacteria, and fish. Data from these three projects suggest that, even on a small scale, FTW produce localized changes in biotic structure that reflect improving environmental quality. This study provides a simple and defensible method for sizing FTW for nutrient removal in eutrophic waterbodies. We propose several key research pathways which would advance our understanding of the effects FTW have on the ecosystem they are deployed in.
Collapse
Affiliation(s)
- McNamara Rome
- Northeastern University, Civil and Environmental Engineering, 400 Snell Engineering Center, 350 Huntington Ave, Boston, MA 02115, United States of America.
| | - Austin Happel
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, 1200 South DuSable Lake Shore Drive, Chicago, IL, 60605, United States of America
| | - Charmaine Dahlenburg
- National Aquarium, to 501 E Pratt Street, Baltimore, MD 21202, United States of America
| | - Phil Nicodemus
- Urban Rivers, 1550 N Kingsbury St, Chicago, IL 60642, United States of America
| | - Eric Schott
- University of Maryland, Center for Environmental Science, 701 E. Pratt St, IMET, Baltimore, MD 21202, United States of America
| | - Stephanie Mueller
- Urban Rivers, 1550 N Kingsbury St, Chicago, IL 60642, United States of America
| | - Kathryne Lovell
- University of Massachusetts Amherst. College of Engineering, 130 Natural Resources Road Marston Hall, Amherst, MA 01003, United States of America
| | - R Edward Beighley
- Northeastern University, Civil and Environmental Engineering, 400 Snell Engineering Center, 350 Huntington Ave, Boston, MA 02115, United States of America
| |
Collapse
|
13
|
Mufarrege MDLM, Di Luca GA, Carreras ÁA, Hadad HR, Maine MA, Campagnoli MA, Nocetti E. Response of Typha domingensis Pers. in floating wetlands systems for the treatment of water polluted with phosphorus and nitrogen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50582-50592. [PMID: 36800086 DOI: 10.1007/s11356-023-25859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/06/2023] [Indexed: 04/16/2023]
Abstract
The aims of this work were to evaluate the effects of P and N on the tolerance and root morphometry of Typha domingensis plants, and their implication in removal efficiency in floating treatment wetlands (FTWs). Pilot-scale plastic reactors containing plants, sediment, and tap water were arranged. FTWs consist of a plastic net, and buoyancy was provided by a PVC frame. After plant acclimation, 38 L of the synthetic effluent containing 10 mg L-1 N + 2 mg L-1 P was added to the reactors as follows: reactor A (with FTWs), reactor B (without FTWs), reactor BC (biological controls), and reactor CC (chemical control). Reactors were arranged in triplicate. During the experiment, three effluent dumps were made. The removals of SRP and TP were significantly higher in reactor A than in reactor B. N-NH4+ removal was not significantly different between reactors A and B, while N-NO3- removal from water was higher in reactor A than in reactor B. At the end of the experiment, chlorophyll concentration and aerial and submerged (roots and rhizomes) biomass increased significantly in reactor A. TP concentrations were not different between rhizomes and leaves, while the lowest concentrations were observed in roots. The TKN in tissues was significantly higher in roots and rhizomes than in aerial parts. In plants exposed to the experimental solution, the internal and external root morphology changed. The use of FTWs is a promising strategy for the sustainable treatment of nutrient polluted water bodies.
Collapse
Affiliation(s)
- María de Las Mercedes Mufarrege
- Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Santiago del Estero 2829, (3000) Santa Fe, Argentina.
| | - Gisela Alfonsina Di Luca
- Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Santiago del Estero 2829, (3000) Santa Fe, Argentina
| | - Ángeles Araceli Carreras
- Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Santiago del Estero 2829, (3000) Santa Fe, Argentina
| | - Hernán Ricardo Hadad
- Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Santiago del Estero 2829, (3000) Santa Fe, Argentina
| | - María Alejandra Maine
- Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Santiago del Estero 2829, (3000) Santa Fe, Argentina
| | - Marcelo Abel Campagnoli
- Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Santiago del Estero 2829, (3000) Santa Fe, Argentina
| | - Emanuel Nocetti
- Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Santiago del Estero 2829, (3000) Santa Fe, Argentina
| |
Collapse
|
14
|
Schwammberger PF, Tondera K, Headley TR, Borne KE, Yule CM, Tindale NW. Performance monitoring of constructed floating wetlands: Treating stormwater runoff during the construction phase of an urban residential development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161107. [PMID: 36587660 DOI: 10.1016/j.scitotenv.2022.161107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/30/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In the context of climate change and global trend towards greenfield urbanisation, stormwater and transported pollutants are expected to increase, impairing receiving environments. Constructed floating wetlands (CFWs) can improve stormwater retention pond performance. However, performance data are currently largely restricted to mesocosm experiments, limiting design enhancement fit for field implementation. The present 12-month field study aims to fill part of these gaps by identifying limitations and necessary design improvements for CFWs on a large retention pond/lake. Water in a 2.6-ha lake receiving stormwater from a 45-ha urban area under development in subtropical Queensland, Australia, was recirculated during dry weather periods to minimise algal growth and the risks of blooms. Pollutant removal efficiencies of two full-scale CFWs were evaluated during storm events and dry weather periods as a function of inlet and outlet pollutant concentrations, flow and rainfall. Inlet TSS and TN concentrations in runoff during the construction phase of the development exceeded required water quality limits while TP inflow concentrations were low and often below the detection limit. Median pollutant load reduction efficiencies during storm-events were - 20 % TSS, -2 % TN and 22 % TP at CFW1 and 51 % TSS, 3 % TN and 17 % TP at CFW2, respectively. TSS and TN concentration removal efficiencies at CFW1 were low and highly variable, partly due to low inlet concentrations, high flow velocities and short hydraulic retention times (<1 day). However, CFW1 significantly reduced TSS concentrations during dry weather periods. In contrast, CFW2 significantly reduced TSS concentrations during both storm events and during inter-event periods. This study highlights treatment limitations associated to the operational conditions of CFWs at field-scale not identifiable in a mesocosm-scale study. Further research is necessary to investigate treatment performance of CFWs during the operational phase of the development with higher nutrient levels.
Collapse
Affiliation(s)
- Peter F Schwammberger
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia.
| | | | - Tom R Headley
- Wetland & Ecological Treatment Systems Ltd, Nelson Bay, NSW 2315, Australia
| | - Karine E Borne
- National Institute of Water and Atmospheric Research, Private Bag 99940, Viaduct Harbour, Auckland 1010, New Zealand
| | - Catherine M Yule
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Neil W Tindale
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| |
Collapse
|
15
|
Sánchez-Galván G, Olguín EJ, Melo FJ, Jiménez-Moreno D, Hernández VJ. Pontederia sagittata and Cyperus papyrus contribution to carbon storage in floating treatment wetlands established in subtropical urban ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154990. [PMID: 35378179 DOI: 10.1016/j.scitotenv.2022.154990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Carbon sequestration is considered an ecosystem service of regulation provided by diverse ecosystems, including wetlands. It has been widely evaluated in the soil of natural wetlands while in constructed wetlands, there is scanty information. In Floating Treatment Wetlands (FTW) there is none. Previously, our research group reported the efficient performance of FTW in an urban polluted pond for two years. As a follow up, the aim of this work was to investigate the contribution of Cyperus papyrus and Pontederia sagittata to carbon storage (CS) in four FTW established in eutrophic urban ponds in a subtropical region. Plant growth, productivity, and CS were assessed in the aboveground biomass of C. papyrus and P. sagittata and the belowground biomass (root mix from C. papyrus and P. sagittata), throughout 26 months in 2 FTW with an area of 17.5 m2 (FTW1) and 33 m2 (FTW2) and throughout 19 months in 2 FTW with an area of 25 m2 (FTW3) and 33 m2 (FTW4), respectively. The macrophyte growth depended on various factors, such as the season, the plant species, and the location of the FTW. High relative growth rate values were found for both species (0.125 and 0.142 d-1 for P. sagittata and C. papyrus, respectively), especially during summer and early autumn. The highest values of productivity were 337 ± 125 gdw m-2d-1 for the aboveground biomass of C. papyrus in FTW2, 311 ± 96.90 gdwm-2d-1 for the aboveground of P. sagittata in FTW1, and 270 ± 107 gdw m-2d-1 for the belowground biomass in FTW2. The mean values of CS for P. sagittata found in FTW1 were 1.90 ± 0.94 kg m-2, while for C. papyrus in FTW2 they were 4.09 ± 0.73 kg m-2. The contribution of the belowground biomass to CS was also significant in FTW2 (4.58 ± 0.59 kg m-2).
Collapse
Affiliation(s)
- Gloria Sánchez-Galván
- Biotechnological Management of Resources Network, Institute of Ecology, Carretera Antigua a Coatepec # 351, El Haya, Xalapa, Veracruz 91073, Mexico.
| | - Eugenia J Olguín
- Biotechnological Management of Resources Network, Institute of Ecology, Carretera Antigua a Coatepec # 351, El Haya, Xalapa, Veracruz 91073, Mexico
| | - Francisco J Melo
- Biotechnological Management of Resources Network, Institute of Ecology, Carretera Antigua a Coatepec # 351, El Haya, Xalapa, Veracruz 91073, Mexico
| | - David Jiménez-Moreno
- Biotechnological Management of Resources Network, Institute of Ecology, Carretera Antigua a Coatepec # 351, El Haya, Xalapa, Veracruz 91073, Mexico
| | - Víctor J Hernández
- Biotechnological Management of Resources Network, Institute of Ecology, Carretera Antigua a Coatepec # 351, El Haya, Xalapa, Veracruz 91073, Mexico
| |
Collapse
|
16
|
Tirpak RA, Tondera K, Tharp R, Borne KE, Schwammberger P, Ruppelt J, Winston RJ. Optimizing floating treatment wetland and retention pond design through random forest: A meta-analysis of influential variables. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114909. [PMID: 35305357 DOI: 10.1016/j.jenvman.2022.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Floating treatment wetlands (FTWs), artificial systems constructed from buoyant mats and planted with emergent macrophytes, represent a potential retrofit to enhance the dissolved nutrient removal performance of existing retention ponds. Treatment occurs as water flows through the dense network of roots suspended in the water column, providing opportunities for pollutants to be removed via filtration, sedimentation, plant uptake, and adsorption to biofilms in the root zone. Despite several recent review articles summarizing the growing body of research on FTWs, FTW design guidance and strategies to optimize their contributions to pollutant removal from stormwater are lacking, due in part to a lack of statistical analysis on FTW performance at the field scale. A meta-analysis of eight international FTW studies was performed to investigate the influence of retention pond, catchment, and FTW design characteristics on effluent concentrations of nutrients and total suspended solids (TSS). Random forest regression, a tree-based machine learning approach, was used to model complex interactions between a suite of predictor variables to identify design strategies for both retention ponds and FTWs to enhance treatment of nutrient and sediment. Results indicate that pond design features, especially loading ratio and pond depth (which should be limited to 200:1 and 1.75 m, respectively), are most influential to effluent water quality, while the benefits of FTWs were limited to improving mitigation of phosphorus species and TSS which was primarily influenced by FTW coverage and planting density. Findings from this work inform wet retention pond and FTW design, as well as guidance on scenarios where FTW implementation is most appropriate, to improve dissolved nutrient and sediment removal in urban runoff.
Collapse
Affiliation(s)
- R Andrew Tirpak
- Dept. of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, USA.
| | | | | | - Karine E Borne
- IMT Atlantique, CNRS, GEPEA, UMR 6144, 4 Rue Alfred Kastler, F-44307, Nantes, France
| | - Peter Schwammberger
- School of Science and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Jan Ruppelt
- Institute for Environmental Engineering, RWTH Aachen University, D-52056, Aachen, Germany
| | - Ryan J Winston
- Dept. of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, USA; Dept. of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Awad J, Brunetti G, Juhasz A, Williams M, Navarro D, Drigo B, Bougoure J, Vanderzalm J, Beecham S. Application of native plants in constructed floating wetlands as a passive remediation approach for PFAS-impacted surface water. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128326. [PMID: 35101757 DOI: 10.1016/j.jhazmat.2022.128326] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Strategies for remediation of per- and polyfluoroalkyl substances (PFAS) generally prioritise highly contaminated source areas. However, the mobility of PFAS in the environment often results in extensive low-level contamination of surface waters across broad areas. Constructed Floating Wetlands (CFWs) promote the growth of plants in buoyant structures where pollutants are assimilated into plant biomass. This study examined the hydroponic growth of Juncus krausii, Baumea articulata and Phragmites australis over a 28-day period for remediation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) contaminated (0.2 µg/L to 30 µg/L) urban stormwater. With increasing PFOA and PFOS concentrations, accumulation in plant species increased although root and shoot distribution varied depending on PFAS functional group. Less PFOA than PFOS accumulated in plant roots (0.006-0.16 versus 0.008-0.68 µg/g), while more PFOA accumulated in the plant shoots (0.02-0.55 versus 0.01-0.16 µg/g) indicating translocation to upper plant portions. Phragmites australis accumulated the highest overall plant tissue concentrations of PFOA and PFOS. The NanoSIMS data demonstrated that PFAS associated with roots and shoots was absorbed and not just surface bound. These results illustrate that CFWs have the potential to be used to reduce PFAS contaminants in surface waters.
Collapse
Affiliation(s)
- John Awad
- University of South Australia, Science, Technology, Engineering and Mathematics (STEM), Mawson Lakes, SA 5095, Australia; CSIRO Land and Water, Waite Campus, Urrbrae, SA 5064, Australia
| | - Gianluca Brunetti
- University of South Australia, Science, Technology, Engineering and Mathematics (STEM), Mawson Lakes, SA 5095, Australia
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Mike Williams
- CSIRO Land and Water, Waite Campus, Urrbrae, SA 5064, Australia
| | - Divina Navarro
- CSIRO Land and Water, Waite Campus, Urrbrae, SA 5064, Australia
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | | | - Simon Beecham
- University of South Australia, Science, Technology, Engineering and Mathematics (STEM), Mawson Lakes, SA 5095, Australia
| |
Collapse
|
18
|
Almaamary EAS, Abdullah SRS, Ismail N'I, Idris M, Kurniawan SB, Imron MF. Comparative performance of Scirpus grossus for phytotreating mixed dye wastewater in batch and continuous pilot subsurface constructed wetland systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114534. [PMID: 35065382 DOI: 10.1016/j.jenvman.2022.114534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Dye is one of the pollutants found in water bodies because of the increased growth of the textile industry. In this study, Scirpus grossus was planted inside a constructed wetland to treat mixed dye (methylene blue and methyl orange)-containing wastewater under batch and continuous modes. The plants were exposed to various concentrations (0, 50, 75, and 100 mg/L) of mixed dye for 72 days (with hydraulic retention time of 7 days for the continuous system). Biological oxygen demand, chemical oxygen demand, total organic carbon, pH, temperature, ionic content, and plant growth parameters were measured. Results showed that S. grossus can withstand all the tested dye concentrations until the end of the treatment period. Color removal efficiencies of 86, 84, and 75% were obtained in batch mode, whereas 90%, 85%, and 79% were obtained in continuous mode for 50, 75, and 100 mg/L dye concentrations, respectively. Fourier-transform infrared analysis confirmed the transformation of dye compounds after treatment and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis showed that most of the intermediate compounds were not absorbed into plants but adsorbed onto the surface of the root structure.
Collapse
Affiliation(s)
- Enas Abdulqader Saeed Almaamary
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia.
| | - Nur 'Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Mushrifah Idris
- Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia.
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya, 60115, Indonesia.
| |
Collapse
|
19
|
Kurniawan SB, Ramli NN, Said NSM, Alias J, Imron MF, Abdullah SRS, Othman AR, Purwanti IF, Hasan HA. Practical limitations of bioaugmentation in treating heavy metal contaminated soil and role of plant growth promoting bacteria in phytoremediation as a promising alternative approach. Heliyon 2022; 8:e08995. [PMID: 35399376 PMCID: PMC8983376 DOI: 10.1016/j.heliyon.2022.e08995] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/30/2022] Open
Abstract
Bioaugmentation, the addition of cultured microorganisms to enhance the currently existing microbial community, is an option to remediate contaminated areas. Several studies reported the success of the bioaugmentation method in treating heavy metal contaminated soil, but concerns related to the applicability of this method in real-scale application were raised. A comprehensive analysis of the mechanisms of heavy metal treatment by microbes (especially bacteria) and the concerns related to the possible application in the real scale were juxtaposed to show the weakness of the claim. This review proposes the use of bioaugmentation-assisted phytoremediation in treating heavy metal contaminated soil. The performance of bioaugmentation-assisted phytoremediation in treating heavy metal contaminated soil as well as the mechanisms of removal and interactions between plants and microbes are also discussed in detail. Bioaugmentation-assisted phytoremediation shows greater efficiencies and performs complete metal removal from soil compared with only bioaugmentation. Research related to selection of hyperaccumulator species, potential microbial species, analysis of interaction mechanisms, and potential usage of treating plant biomass after treatment are suggested as future research directions to enhance this currently proposed topic.
Collapse
Affiliation(s)
- Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Nur Nadhirah Ramli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Jahira Alias
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya, 60115, Indonesia
- Corresponding author.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
- Corresponding author.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Ipung Fitri Purwanti
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
20
|
Allen DJ, Farrell M, Huang J, Reynolds C, Rupasinghe M, Mosley LM. Long-term water quality response to increased hydraulic loadings in a field-scale free water surface constructed wetland treating domestic effluent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114858. [PMID: 35287082 DOI: 10.1016/j.jenvman.2022.114858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/19/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
There is limited understanding of how constructed wetland (CW) water quality may change over time in response to increased wastewater nutrient and hydraulic loadings. We evaluated long-term water quality trends and drivers for a full-scale (8.19 ha) free water surface CW that was developed in 2001 for the treatment of increasing amounts of pre-treated domestic wastewater from the township of Mount Barker, South Australia. Water quality parameter concentrations and loads, hydraulic loadings rates, trend direction assessments (TDAs), and water quality parameter removal efficiencies were analysed over the study period. The wetland received an annual average loading rate of 947, 19644, 31039, 18140, 2985, and 807 kg year-1 for BOD5, TN, NH4-N, TKN-N, NOx-N, and TP respectively and removed on average 8%, 72%, 73%, 78%, 12% and -246% of these loadings respectively. The average influent concentrations for the study period were 2.6, 42.3, 40.6, 35.9, 9.0, and 1.9 mg L-1 for BOD5, TN, NH4-N, TKN-N, NOx-N, and TP respectively. Average concentration removal rates over the study period were 50%, 39%, 40%, 15%, -216% and -600.5% for TN, NH4-N, TKN-N, NOx-N, BOD5 and TP respectively, suggesting that nitrogen was only partly assimilated by the wetland and it was a source of organic material and phosphorus. Using seasonally and inflow rate adjusted data, TDAs predicted virtually certain increases in TN, NH4-N, and TKN-N influent concentrations over time, a decline in NOx-N, no trend in BOD5, and a possible decreasing trend in TP. The inflow explained variance accounted for approximately 50% of the variation in TN, NH4-N and TKN-N effluent concentrations. Annual removal efficiencies of N declined with increasing hydraulic loads, and hydraulic loading rates varied with management practices. Seasonal analysis showed that N removal was greater during summer and lower in winter. Due to local population growth and various management practices, hydraulic loading is variable and has often exceeded design targets. Our findings indicate the long-term performance of CWs need to be closely monitored, as water quality can deteriorate due to increased hydraulic loadings.
Collapse
Affiliation(s)
- Danielle J Allen
- School of Biological Sciences, University of Adelaide, Kaurna Country, Urrbrae, South Australia, 5064, Australia; CSIRO Agriculture & Food, Kaurna Country, Gate 4 Waite Road, Urrbrae, South Australia, 5064, Australia
| | - Mark Farrell
- CSIRO Agriculture & Food, Kaurna Country, Gate 4 Waite Road, Urrbrae, South Australia, 5064, Australia
| | - Jianyin Huang
- Scarce Resources and Circular Economy (ScaRCE) University of South Australia, Mawson Lakes Blvd, Kaurna Country, Mawson Lakes, South Australia, 5095, Australia
| | - Chris Reynolds
- Mount Barker District Council, 6 Dutton Road, Peramangk Country, Mount Barker, South Australia, 5251, Australia
| | - Madhawa Rupasinghe
- Mount Barker District Council, 6 Dutton Road, Peramangk Country, Mount Barker, South Australia, 5251, Australia
| | - Luke M Mosley
- School of Biological Sciences, University of Adelaide, Kaurna Country, Urrbrae, South Australia, 5064, Australia.
| |
Collapse
|
21
|
Nuruzzaman M, Anwar AHMF, Sarukkalige R, Sarker DC. Review of hydraulics of Floating Treatment Islands retrofitted in waterbodies receiving stormwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149526. [PMID: 34467926 DOI: 10.1016/j.scitotenv.2021.149526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Stormwater pollution causes an excessive influx of nutrients and metals to the receiving waterbodies (stormwater ponds, lakes, and rivers), which can cause eutrophication and metal toxicity. One of the most cost-effective and eco-friendly solutions to stormwater pollution is constructing Floating Treatment Islands (FTIs) within the waterbodies receiving stormwater runoff. Treatment efficiency of FTIs depends on many factors including plant species, temperature, detention time, and pollutant loading rate. Another important factor is FTI hydraulics, which determines the amount of inflow to the root zone and residence time, greatly impacting the treatment. However, only a few studies refer to the hydraulics of waterbodies retrofitted with FTIs. This paper reviews available literature on field-scale, laboratory-scale and numerical studies on the hydraulics of FTI retrofitted waterbodies. Because of limited knowledge on the factors affecting hydraulics of waterbodies retrofitted with FTIs, current practices cannot ensure maximum hydraulic performance of this system. This review paper identifies different factors affecting the FTI hydraulics, investigates knowledge gaps, and provides future research direction for hydraulically efficient design of FTIs to treat stormwater. It was found that there is a need to investigate the impact of new design parameters such as FTI shape, FTI coverage, inlet-outlet configurations, and shape of waterbody on the hydraulic performance of FTI retrofitted waterbodies. A lack of dimensional analysis on FTI retrofitted waterbodies in existing literature revealed that field-scale values were not properly scaled down in laboratory experiments. Although a few short-circuiting prevention mechanisms (SPMs) were used in different field-scale studies, those mechanisms may be vulnerable to short-circuiting in the vertical dimension. It was revealed that studying the role of eddy diffusion and gap layer for vertical short-circuiting can help designing better SPMs. This review also identified that further investigation is required to incorporate root flexibility in the current modeling approach of FTI retrofitted waterbodies.
Collapse
Affiliation(s)
- Md Nuruzzaman
- School of Civil and Mechanical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| | - A H M Faisal Anwar
- School of Civil and Mechanical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Ranjan Sarukkalige
- School of Civil and Mechanical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Dipok Chandra Sarker
- School of Civil and Mechanical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
22
|
Ruan W, Cai H, Xu X, Man Y, Wang R, Tai Y, Chen Z, Vymazal J, Chen J, Yang Y, Zhang X. Efficiency and plant indication of nitrogen and phosphorus removal in constructed wetlands: A field-scale study in a frost-free area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149301. [PMID: 34371418 DOI: 10.1016/j.scitotenv.2021.149301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Frost-free areas have suitable climate for wetland plant growth and constructed wetlands (CW) technology. Information on the quantification of plant biomass and uptake efficiency in field-scale CWs is limited in these climates. The removal efficiency of total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), and total suspended solids (TSS) in wastewater from sewage plants, domestic sewage, and an industrial park in 15 rural and urban CWs in Guangdong Province, China, with an average temperature of 30 °C was evaluated. The effects of influent concentration, hydraulic load, the wastewater's physicochemical properties, operating conditions, and plant uptake were analysed. The mean removal rates were 40.0%, 45.2%, 41.1%, and 71.7% for TN, TP, COD, and TSS, respectively, which were higher than the removal load of the field-scale CWs in temperate regions. Removal loads of TN, TP, COD, and TSS were highest in CWs that have been operating for 5-6 years, treating wastewater volumes of over 1 m3/m2·d. The removal efficiency was mainly related to the inflow concentration and less affected by the type of CWs. Nutrient accumulation trends were primarily linked to influent concentrations (TN: r2 = 0.89, P = 0.007; TP: r2 = 0.96, P = 0.001) and plant biomass (TN: r2 = 0.96, P = 0.001; TP: r2 = 0.92, P = 0.004). Plant biomass contributed 2%-29% and 2%-70%, respectively, to removing N and P in CWs. The average uptake concentration of N and P in aboveground plant organs (15.66 ± 4.44 mg N/g, 2.15 ± 1.18 mg P/g) was generally higher than that of other temperate plants. A strong relationship between TN and TP in the biomass was also observed; however, the relationship is only restricted by the influent TP concentration. Arundo donax is well-adapted for nutrient accumulation and adaptation and is an ideal wetland plant to purify wastewater in frost-free climates.
Collapse
Affiliation(s)
- Weifeng Ruan
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Hongbo Cai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Xiaomin Xu
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Ying Man
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Rui Wang
- College of Life Science, Sichuan Normal University, Chengdu 610041, China
| | - Yiping Tai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Jan Vymazal
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Juexin Chen
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Yang Yang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| | - Xiaomeng Zhang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| |
Collapse
|
23
|
Kurniawan SB, Ahmad A, Said NSM, Imron MF, Abdullah SRS, Othman AR, Purwanti IF, Hasan HA. Macrophytes as wastewater treatment agents: Nutrient uptake and potential of produced biomass utilization toward circular economy initiatives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148219. [PMID: 34380263 DOI: 10.1016/j.scitotenv.2021.148219] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/05/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
Macrophytes have been widely used as agents in wastewater treatment. The involvement of plants in wastewater treatment cannot be separated from wetland utilization. As one of the green technologies in wastewater treatment plants, wetland exhibits a great performance, especially in removing nutrients from wastewater before the final discharge. It involves the use of plants and consequently produces plant biomasses as treatment byproducts. The produced plant biomasses can be utilized or converted into several valuable compounds, but related information is still limited and scattered. This review summarizes wastewater's nutrient content (macro and micronutrient) that can support plant growth and the performance of constructed wetland (CW) in performing nutrient uptake by using macrophytes as treatment agents. This paper further discusses the potential of the utilization of the produced plant biomasses as bioenergy production materials, including bioethanol, biohydrogen, biogas, and biodiesel. This paper also highlights the conversion of plant biomasses into animal feed, biochar, adsorbent, and fertilizer, which may support clean production and circular economy efforts. The presented review aims to emphasize and explore the utilization of plant biomasses and their conversion into valuable products, which may solve problems related to plant biomass handling during the adoption of CW in wastewater treatment plants.
Collapse
Affiliation(s)
- Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Azmi Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Department of Polytechnic Education and Community College, Ministry of Higher Education, 62100 Putrajaya, Malaysia.
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Ipung Fitri Purwanti
- Department of Environmental Engineering, Faculty of Civil Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| |
Collapse
|
24
|
Sharma R, Vymazal J, Malaviya P. Application of floating treatment wetlands for stormwater runoff: A critical review of the recent developments with emphasis on heavy metals and nutrient removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146044. [PMID: 33689897 DOI: 10.1016/j.scitotenv.2021.146044] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Floating treatment wetlands (FTWs) are increasingly gaining popularity due to a set of valuable features like wastewater remediation under varied conditions, ecosystem quality preservation, landscape conservation, and aesthetic benefits. FTW is a phyto-technology in which macrophytes grow on a floating raft with their roots in permanent contact with water and remove pollutants via several physicochemical-biological processes. FTW is highly capable of overcoming technical and operational challenges that come way in stormwater treatment due to the erratic nature of hydrologic and input pollutant loads because this innovative buoyant hydroponic design can move up and down with fluctuating water levels in the stormwater pond and can treat highly variable flows. Plants and biofilms attached to the roots hanging beneath the floating mat play a pivotal role in FTWs. The present review encompasses the concept of FTWs, their structural designs, relevance in stormwater management, and mechanism of plant uptake for pollutant removal. The role of FTWs to remove heavy metals and nutrients is also critically analyzed. Understanding hydraulics and other parameters of FTW is vital to effective design. Hence, the role of vegetation coverage, vegetation type, sorption media, aeration frequency, and intensity, and plant density to enhance system efficiency is also highlighted. Due to their operational flexibility and environmentally friendly working with no additional burden on existing urban land use, FTWs entice broad international interest and offer a coherent solution for stormwater management. MAIN FINDINGS: The review delivers state-of-the-art analysis of the current understanding of hydraulics and other parameters of FTWs, and associated mechanisms to enhance the treatment efficiency of FTWs for nutrients and heavy metals removal.
Collapse
Affiliation(s)
- Rozi Sharma
- Department of Environmental Sciences, University of Jammu, Jammu 180006, J&K, India
| | - Jan Vymazal
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamýcká 129, 16521 Praha 6, Czech Republic
| | - Piyush Malaviya
- Department of Environmental Sciences, University of Jammu, Jammu 180006, J&K, India.
| |
Collapse
|
25
|
Using Constructed Floating Wetlands to Remove Nutrients from a Waste Stabilization Pond. WATER 2021. [DOI: 10.3390/w13131746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study reports the biomass accumulation, plant nutrient concentration, and nutrient uptake rates of plants in a constructed floating wetland (CFW) installed for a sewage treatment application in Australia. Plant biomass accumulation was estimated based on field samplings throughout the duration of the study. Analysis of samples of each plant species was also completed to estimate the mean plant tissue nutrient content. The plant biomass accumulation estimate and the mean plant tissue nutrient concentration were then used to estimate the total nutrient uptake for each species. Each of the species were found to differ in biomass accumulation and plant tissue nutrient concentration and the distribution of biomass and nutrients between the shoots and roots. The nutrient uptake rates varied between the species, with B. articulata having the greatest nutrient uptake rates (shoots: N, 104 ± 31.5 g/m2, P, 12.9 ± 3.87 g/m2; roots: N, 23.9 ± 7.23 g/m2, P, 5.54 ± 1.67 g/m2). Harvesting of the four CFW islands after 375 days of growth removed an estimated 23.2 kg of N and 2.97 kg of P. The results of this study indicate that the use of CFWs with carefully selected plant species can successfully remove significant amounts of nutrients from domestic wastewater.
Collapse
|
26
|
Wang J, Chen G, Fu Z, Qiao H, Liu F. Assessing wetland nitrogen removal and reed (Phragmites australis) nutrient responses for the selection of optimal harvest time. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111783. [PMID: 33349513 DOI: 10.1016/j.jenvman.2020.111783] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Wetlands play an important role in reducing the impact of nitrogen pollution on natural aquatic environments. However, during the plant wilting period (winter) there will inevitably be a reduction in nitrogen removal from wetlands. Understanding optimum harvest time will allow the use of management practices to balance the trade-off between nitrogen removal and the sustainability of wetlands. In this study, we investigated wetland nitrogen removal and reed (Phragmites australis) nutrient responses for two years [first year: influent total nitrogen (TN) 17.6-34.7 mg L-1; second year: influent TN 3.2-10.0 mg L-1] to identify the optimal harvest time: before wilting, mid-wilting, or late wilting. Harvesting decreased wetland nitrogen removal in both years, with later harvest time producing a smaller decrease in TN and ammonium-nitrogen (NH4+-N) removal. In addition to harvest before wilting, aboveground reed harvest at mid-wilting harvested more nutrients [carbon (C) 7.9%, nitrogen (N) 46.6% and phosphorus (P) 43.6%] in the first year, while harvest at late wilting harvested more nutrients (C 4.9%, N 7.8% and P 24.1%) in the second year, although this was not statistically significant. The late wilting harvest caused fewer disturbances to root stoichiometric homeostasis in the first year, while mid-wilting harvest promoted root nutrient availability in the second year. In addition, redundancy analysis (RDA) showed that root stoichiometry was interrelated with wetland nitrogen removal. Our results suggest that optimal harvest time was late wilting on the basis of wetland nitrogen removal, or either mid- or late wilting according to reed nutrient response to influent nitrogen concentration in some years. Our results provide crucial information for winter wetlands management.
Collapse
Affiliation(s)
- Junli Wang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China.
| | - Guifa Chen
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Zishi Fu
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Hongxia Qiao
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Fuxing Liu
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China.
| |
Collapse
|
27
|
Rigotti JA, Paqualini JP, Rodrigues LR. Root growth and nutrient removal of Typha domingensis and Schoenoplectus californicus over the period of plant establishment in a constructed floating wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8927-8935. [PMID: 33410026 DOI: 10.1007/s11356-020-11681-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Constructed floating wetlands have been employed worldwide to treat effluents and to ameliorate water quality of water resources. However, the period of macrophyte establishment into the hydroponic functioning has not been specifically addressed. This paper reports root growth and nutrient removal of Typha domingensis and Schoenoplectus californicus in a floating structure without growth substrates over the period of 11 weeks of macrophyte establishment. The experiment was conducted in mesocosm with two replicas of each specie. Weekly batches were applied with three different concentrations of a synthetic effluent. Root growth was measured to evaluate the macrophyte adaptation. Physicochemical parameters were weekly monitored, and total nitrogen, nitrate, total phosphorus, and orthophosphate were quantified to assess nutrient removal. Both species have adapted to the floating structure, but T. domingensis presented superior root growth in relation to S. californicus. No significant differences were found during the application of first two synthetic solutions. As to solution 3, significant differences between input and output values were found to total phosphorus (F = 9.948, df = 1, p = 0.008), nitrate (F = 5.990, df = 1, p = 0.031), and total nitrogen (F = 40.212, df = 1, p < 0.0001). Removal efficiency of T. domingensis ranged from 4 to 31% for total nitrogen and from 8 to 15% for total phosphorus. S. californicus, on the other hand, varied its removal efficiency from - 6 to 5% and 2 to 12% for total nitrogen and total phosphorus, respectively. Time period of macrophyte establishment varied between species, and it was an important factor that contributed to the increase of nutrient removal rates and root growth.
Collapse
Affiliation(s)
- Jucimara Andreza Rigotti
- Postgraduate Program in Water Resources and Environmental Sanitation, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Joana Postal Paqualini
- Postgraduate Program in Water Resources and Environmental Sanitation, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucia Ribeiro Rodrigues
- Postgraduate Program in Water Resources and Environmental Sanitation, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
28
|
Ng AJ, Sheehan NP, Martinez E, Murray K, McCollum C, Flagg T, Boyle J, Bier P. Distributed treatment systems. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1418-1424. [PMID: 32574412 DOI: 10.1002/wer.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
This section presents a review of the scientific literature published in 2019 on topics relating to distributed treatment systems. This review is divided into the following sections: constituent removal, treatment technologies, planning and treatment management, and other topics. PRACTITIONER POINTS: Highlights changes and innovation in removal techniques and technologies in water treatment. Reviews management systems of distributed treatment systems. Discusses point-of-use treatment systems.
Collapse
Affiliation(s)
- Andrew J Ng
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Nathaniel P Sheehan
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Erick Martinez
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York, USA
| | - Kyle Murray
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Caleb McCollum
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Tim Flagg
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - John Boyle
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Peter Bier
- U.S. Army Combined Arms Center, Fort Leavenworth, Kansas, USA
| |
Collapse
|
29
|
Martinez-Guerra E, Ghimire U, Nandimandalam H, Norris A, Gude VG. Wetlands for environmental protection. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1677-1694. [PMID: 32744347 DOI: 10.1002/wer.1422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
This article presents an update on the research and practical demonstration of wetland-based treatment technologies for protecting water resources and environment covering papers published in 2019. Wetland applications in wastewater treatment, stormwater management, and removal of nutrients, metals, and emerging pollutants including pathogens are highlighted. A summary of studies focusing on the effects of vegetation, wetland design and operation strategies, and process configurations and modeling, for efficient treatment of various municipal and industrial wastewaters, is included. In addition, hybrid and innovative processes with wetlands as a platform treatment technology are presented.
Collapse
Affiliation(s)
- Edith Martinez-Guerra
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Umesh Ghimire
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| | - Hariteja Nandimandalam
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| | - Anna Norris
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| | - Veera Gnaneswar Gude
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
30
|
Colares GS, Dell'Osbel N, Wiesel PG, Oliveira GA, Lemos PHZ, da Silva FP, Lutterbeck CA, Kist LT, Machado ÊL. Floating treatment wetlands: A review and bibliometric analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136776. [PMID: 31991269 DOI: 10.1016/j.scitotenv.2020.136776] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 05/28/2023]
Abstract
Floating treatment wetlands (FTWs) have attained tremendous popularity for water purification purposes. Through this phyto-technology, naturally occurring macrophytes are allowed to grow on the water surface on a buoyant raft or a rigid support, keeping the plant roots permanently in contact with the water and removing pollutants via several processes. The objective of this study was to review studies that have developed FTWs and to perform a bibliometric analysis using three keywords: "Floating", "Treatment" and "Wetlands". From bibliometric analysis using VOSviewer software and the Web of Science database, it was possible to verify the number of publications over the years and the countries and authors with the most published articles on these systems and other related terms. Subsequently, a review was performed on the main mechanisms of pollutant removal by FTWs as well as experiences and recommendations for major design and operating aspects for their application, such as water depth, hydraulic retention time (HRT), floating mat, water surface coverage, artificial aeration, plant selection and pruning or harvesting. It was verified that FTWs are a potential technology for treating several wastewater types and water remediation under different conditions. Even with the increasing number of publications in recent years, many design and operation aspects related to system performance still demand more research in order to better understand the relations between macrophytes and other pollutant removal mechanisms and to thereby improve the treatment efficiency of FTW systems.
Collapse
Affiliation(s)
- Gustavo S Colares
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Naira Dell'Osbel
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Patrik G Wiesel
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Gislayne A Oliveira
- Postgraduate Program in Water Resources and Environmental Sanitation, Federal University of Rio Grande do Sul, Av, Bento Gonçalves, 91501-970 Porto Alegre, RS, Brazil
| | - Pedro Henrique Z Lemos
- Industrial Chemistry Program, Chemistry Department, University of Santa Cruz do Sul, RS, Brazil
| | - Fagner P da Silva
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Carlos A Lutterbeck
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Lourdes T Kist
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil
| | - Ênio L Machado
- Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul 96815-900, Brazil.
| |
Collapse
|
31
|
Schwammberger PF, Yule CM, Tindale NW. Rapid plant responses following relocation of a constructed floating wetland from a construction site into an urban stormwater retention pond. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134372. [PMID: 31683220 DOI: 10.1016/j.scitotenv.2019.134372] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
This study compared plant growth, nutrient partitioning and total nutrient uptake by tall sedge (Carex appressa) plants in large-scale Constructed Floating Wetlands (CFWs). Two CFWs with a total area of 2088 m2 were installed in a 2.6 ha man-made urban lake to treat stormwater runoff during the construction phase of a 45-ha residential development. After 12 months of operation, parts of the CFWs, with a total area of 147 m2, were removed from the urban lake and relocated into a well-established 0.127-ha stormwater retention pond at another site. Biomass and nutrient concentrations of C. appressa shoots above the floating mat and roots below the mat were analysed at both sites 12, 16 and 25 months after initial planting. Plants at the urban lake maintained an extensive root network but there was no increase in total plant biomass at 16 and 25 months after planting. In contrast, the relocated plants in the stormwater pond showed extensive shoot growth but a significant decline in root biomass. C. appressa at the urban lake removed and sequestered 1.00 ± 1.04 g m-2 N, 0.11 ± 0.07 g m-2 P and 1.03 ± 0.81 g m-2 K while plants at the pond removed 11.20 ± 2.29 g m-2 N, 1.37 ± 0.26 g m-2 P and 16.13 ± 2.88 g m-2 K during 12 and 25 months after planting. This study demonstrated that C. appressa adapted rapidly to changes in nutrient availability. The implications are interesting as nutrient levels can be low in constructed lakes during the initial phase of urban developments but can increase rapidly as the development progresses. The study demonstrated multiple benefits of CFWs for stormwater treatment during the early construction stages of an urban development and the potential benefits of relocating and establishing CFWs in existing stormwater retention ponds and lakes.
Collapse
Affiliation(s)
- Peter F Schwammberger
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia.
| | - Catherine M Yule
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Neil W Tindale
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| |
Collapse
|
32
|
Wang Y, Sun B, Gao X, Li N. Development and evaluation of a process-based model to assess nutrient removal in floating treatment wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133633. [PMID: 31386953 DOI: 10.1016/j.scitotenv.2019.133633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Modelling is a useful tool for comprehensively describing the processes occurring in floating treatment wetlands (FTWs). However, temperature effects and phosphorus dynamics are not considered in the current FTW models. Therefore, a process-based model comprised of a plant growth submodel, a nitrogen dynamic submodel and a phosphorus dynamic submodel was developed to understand the complicated processes occurring in FTWs. The model was fully calibrated using a mesocosm FTW system operated for 168 days. Global sensitivity analysis revealed that nitrogen removal performance was predominantly sensitive to parameters representing plant characteristics and microbial activity. Because of the high concentration of organic matter, mineralization and sedimentation played important roles in nitrogen and phosphorus removal. In addition, the coprecipitation rate of phosphate also had a significant influence on phosphorus removal performance. When further investigation was applied to understand the behavior of the model, the ratio of nitrogen to phosphorus in plant tissue was found to be an indicator of the nutrient limitation in the water column. Furthermore, the model illustrated that both FTW operating conditions and plant characteristic parameters exerted an important influence on nitrogen removal and plant uptake contribution. Therefore, the selection of appropriate operating conditions and plant species can achieve high nutrients removal and make effective use of plants in FTWs. The model provides a useful tool for assessing the nutrients removal performance of FTWs and for evaluating strategies for them in design and operation.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300072, China.
| | - Bowen Sun
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300072, China.
| | - Xueping Gao
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300072, China.
| | - Na Li
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300072, China.
| |
Collapse
|