1
|
Beloki Ezker I, Yuan B, Bohlin-Nizzetto P, Borgen AR, Wang T. Polychlorinated alkanes in indoor environment: A review of levels, sources, exposure, and health implications for chlorinated paraffin mixtures. CHEMOSPHERE 2024; 365:143326. [PMID: 39306115 DOI: 10.1016/j.chemosphere.2024.143326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Abstract
Polychlorinated n-alkanes (PCAs) are the main components of chlorinated paraffins (CPs) mixtures, that have been commonly grouped into short-chain (SCCPs, C10-13), medium-chain (MCCPs, C14-17), and long-chain (LCCPs, C18-30) CPs. PCAs pose a significant risk to human health as they are broadly present in indoor environments and are potentially persistent, bioaccumulative, and toxic. The lack of specific terminology and harmonization in analytical methodologies for PCA analysis complicates direct comparisons between studies. The present work summarizes the different methodologies applied for the analysis of PCAs in indoor dust, air, and organic films. The large variability between the reviewed studies points to the difficulties to assess PCA contamination in these matrices and to mitigate risks associated with indoor exposure. Based on our review of physicochemical properties of PCAs and previously reported sum of measurable S/M/LCCPs levels, the homologue groups PCAs-C10-13 are found to be mostly present in the gas phase, PCAs-C14-17 in particulate matter and organic films, and PCAs-C≥18 in settled dust. However, we emphasized that mapping PCA sources and distribution in the indoors is highly dependent on the individual homologues. To further comprehend indoor PCA distribution, we described the uses of PCA in building materials and household products to apportion important indoor sources of emissions and pathways for human exposure. The greatest risk for indoor PCAs were estimated to arise from dermal absorption and ingestion through contact with dust and CP containing products. In addition, there are several factors affecting indoor PCA levels and exposure in different regions, including legislation, presence of specific products, cleaning routines, and ventilation frequency. This review provides comprehensive analysis of available indoor PCA data, the physicochemical properties, applied analytical methods, possible interior sources, variables affecting the levels, human exposure to PCAs, as well as need for more information, thereby providing perspectives for future research studies.
Collapse
Affiliation(s)
- Idoia Beloki Ezker
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Bo Yuan
- Department of Chemistry, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| | | | | | - Thanh Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden; Department of Thematic Studies - Environmental Change, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
2
|
Tahir A, Abbasi NA, He C, Ahmad SR, Baqar M, Qadir A. Spatial distribution and ecological risk assessment of short and medium chain chlorinated paraffins in water and sediments of river Ravi, Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171964. [PMID: 38537810 DOI: 10.1016/j.scitotenv.2024.171964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Short (SCCPs) and medium (MCCPs) chain chlorinated paraffins being the emerging organic pollutants have raised serious concerns due to their widespread use and related human health risks. However, their occurrence in aquatic bodies like rivers and associated damage to ecological integrity is yet unknown in some regions of the world. The current study is the first ever assessment of SCCPs and MCCPs in sediment and water of river Ravi, Pakistan. Spatial occurrence and associated ecological risks were investigated from sediments (n = 16) and composite water samples (n = 8) collected at eight locations along the stretch of river Ravi. The concentrations of SCCPs and MCCPs varied from below limit of detection (
Collapse
Affiliation(s)
- Areej Tahir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Naeem Akhtar Abbasi
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan.
| | - Chang He
- Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane 4102, Australia; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
3
|
Tahir A, Abbasi NA, He C, Ahmad SR. Exposure and human health risk assessment of chlorinated paraffins in indoor and outdoor dust from a metropolitan city, Lahore, Pakistan. CHEMOSPHERE 2024; 347:140687. [PMID: 37952823 DOI: 10.1016/j.chemosphere.2023.140687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Chlorinated paraffins (CPs) are widely used in commercial products due to their stability and durability and are subsequently released in the environment posing serious health risks in human population. In this study, dust samples from indoor and outdoor settings of residential, commercial and industrial zones as well as from vehicles were collected from a metropolitan city, Lahore, Pakistan. A total of 83 dust samples were analyzed for short (SCCPs) and medium (MCCPs) chained CPs through quadrupole time of flight mass spectrometer in atmospheric pressure chemical ionization (APCI QToF-MS) mode. The median concentrations of ƩCPs (C10-17) in outdoor dust were higher than indoor dust in industries (0.97 vs 0.48 μg/g), and residential areas (0.70 vs 0.13 μg/g) while lower in commercial areas (0.28 vs 0.44 μg/g) reflecting their higher prevalence in industrial and residential zones. The vehicular dust had median ƩCPs of 0.16 μg/g which was similar to residential indoor dust. Overall, ƩSCCPs were dominant among all zones with C10,12 and Cl7-8 as abundant carbon and chlorine congeners in both indoor and outdoor dusts. No significant correlations were observed between indoor and outdoor dust for ƩSCCPs and ƩMCCPs indicating their varying exposure. Health hazard index and margin of exposure revealed that toddlers were at higher risk compared to adults as a results of CPs exposure from both indoor and outdoor environments. This is the first ever assessment of CPs in Pakistan reflecting higher prevalence of SCCPs than MCCPs in dust of local environment posing some serious health consequences hence needed intensive investigation and effective management.
Collapse
Affiliation(s)
- Areej Tahir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Naeem Akhtar Abbasi
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan.
| | - Chang He
- Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, 4102, Australia
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
He C, Thai PK, Bertrand L, Jayarathne A, van Mourik L, Phuc DH, Banks A, Mueller JF, Wang XF. Calibration and Application of PUF Disk Passive Air Samplers To Assess Chlorinated Paraffins in Ambient Air in Australia, China, and Vietnam. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21061-21070. [PMID: 37939218 DOI: 10.1021/acs.est.3c06703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Ambient air samples were collected in Brisbane (Australia), Dalian (China), and Hanoi (Vietnam) during Mar 2013-Feb 2018 using polyurethane foam based passive air samplers. A sampling rate calibration experiment was conducted for chlorinated paraffins (CPs, i.e., short-chain, medium-chain, and long-chain CPs), where the sampling rates were 4.5 ± 0.7, 4.8 ± 0.3, and 4.8 ± 2.1 m3 day-1 for SCCPs, MCCPs, and LCCPs, respectively. The atmospheric concentration of CPs was then calculated and the medians of ∑CPs were 0.079, 1.0, and 0.89 ng m-3 in Brisbane, Dalian, and Hanoi, respectively. The concentration of CPs in Brisbane's air remained at low levels, with no significant differences observed between the city background site and the city center site, indicating limited usage and production of CPs in this city. The highest concentration of MCCPs was detected in Dalian, while the highest concentration of SCCPs was detected in Hanoi. A decrease of SCCP concentration and an increase of MCCPs' were found in Brisbane's air from 2016 to 2018, while increasing trends for both SCCPs and MCCPs were observed in Dalian. These results indicated impacts from different sources of CPs in the investigated cities.
Collapse
Affiliation(s)
- Chang He
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Phong K Thai
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Lidwina Bertrand
- CIBICI- CONICET and Universidad Nacional de Córdoba, Facultad Ciencias Químicas, Dpto. Bioquímica Clínica, 5000 Córdoba, Argentina
| | - Ayomi Jayarathne
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Louise van Mourik
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Dam Hoang Phuc
- Hanoi University of Science and Technology, Hanoi 10999, Viet Nam
| | - Andrew Banks
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
- Racing Science Centre, Queensland Racing Integrity Commission, 4010 Brisbane, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Xianyu Fisher Wang
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| |
Collapse
|
5
|
McGrath TJ, Poma G, Hutinet S, Fujii Y, Dodson RE, Johnson-Restrepo B, Muenhor D, Dervilly G, Cariou R, Covaci A. An international investigation of chlorinated paraffin concentrations and homologue distributions in indoor dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121994. [PMID: 37302785 DOI: 10.1016/j.envpol.2023.121994] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
In this study, very short-, short-, medium-, and long-chain chlorinated paraffins (vSCCPs, SCCPs, MCCPs and LCCPs, respectively) were measured in 40 indoor dust samples from four countries including Japan (n = 10), Australia (n = 10), Colombia (n = 10) and Thailand (n = 10). Homologues of the chemical formula CxH(2x+2-y)Cly ranging C6-36 and Cl3-30 were analysed using liquid chromatography coupled to Orbitrap high resolution mass spectrometry (LC-Orbitrap-HRMS) and integrated using novel custom-built CP-Seeker software. CPs were detected in all dust samples with MCCPs the dominant homologue group in all countries. Overall median ∑SCCP, ∑MCCP and ∑LCCP (C18-20) concentrations determined in dust samples were 30 μg/g (range; 4.0-290 μg/g), 65 μg/g (range; 6.9-540 μg/g) and 8.6 μg/g (range; <1.0-230 μg/g), respectively. Of the quantified CP classes, overall concentrations were generally highest in the samples from Thailand and Colombia, followed by Australia and Japan. vSCCPs with C≤9 were detected in dust from each country with an overall frequency of 48%, while LCCPs (C21-36) were present in 100% of samples. Estimated daily intakes (EDIs) calculated for SCCPs and MCCPs relating to ingestion of contaminated indoor dust were considered not to represent health risks based on currently available toxicological data using the margin of exposure (MOE) approach. To the authors' knowledge, this study provides the first data on CPs in indoor dust from Japan, Colombia and Thailand, and is among the first reports of vSCCPs in indoor dust, globally. These findings indicate that further toxicological data and the availability of appropriate analytical standards are needed to evaluate the potential for negative health outcomes deriving from exposure to vSCCPs and LCCPs.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium; Oniris, INRAE, LABERCA, 44300, Nantes, France.
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| | | | - Yukiko Fujii
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium; Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | | | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, University of Cartagena, Cartagena, 130015, Colombia
| | - Dudsadee Muenhor
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Health Impact Assessment Research Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
6
|
Zhang J, Liao H, Chen Y, Li X, Chen R, Han S, Liu S, Yin S. Concentrations and homologue patterns of SCCPs and MCCPs in the serum of the general population of adults in Hangzhou, China. CHEMOSPHERE 2023:139131. [PMID: 37285971 DOI: 10.1016/j.chemosphere.2023.139131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/12/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Due to their ubiquitous presence in the environment and humans, chlorinated paraffins (CPs) are a major environmental and public health concern. CPs are known to persist, bioaccumulate and potentially threaten human health, but reports on their internal exposure in the adult general population are still scarce. In this study, serum samples collected from adults living in Hangzhou, China, were quantified for SCCPs and MCCPs using GC-NCI-MS methods. A total of 150 samples were collected and subjected to analysis. ∑SCCPs were detected in 98% of the samples with a median concentration of 721 ng/g lw. MCCPs were found in all serum samples with a median concentration of 2210 ng/g lw, indicating that MCCPs were the dominant homologous group. For SCCPs and MCCPs, ∑C10 and ∑C14 were found to be the dominant carbon chain length homologues. Our results showed that age, BMI and lifestyle were not found to be significantly associated with internal exposure to CPs for the samples in this study. Based on PCA analysis, an age-specific distribution of CP homologues was observed. This suggests that internal exposure to CPs in the general population is related to exposure scenarios and history. The results of this study may contribute to a better understanding of the internal exposure to CPs in the general population and may provide a direction for the investigation of the source of exposure to CPs in the environment and daily life.
Collapse
Affiliation(s)
- Jianyun Zhang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hanyu Liao
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yanhong Chen
- Division of Health Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xue Li
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Rong Chen
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shufen Han
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shuren Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China; Toxicological Centre, Universiteit Antwerpen, Wilrijk, 2610, Belgium.
| |
Collapse
|
7
|
Wang XT, Wang CL, Zhou Y, Ren GF, Fu R, An J. Short- and medium-chain chlorinated paraffins in urban road dust of Shanghai, China: concentrations, source apportionment and human exposure assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3789-3804. [PMID: 36580188 DOI: 10.1007/s10653-022-01453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/11/2022] [Indexed: 06/01/2023]
Abstract
Chlorinated paraffins (CPs) are ubiquitous anthropogenic contaminants that have been found in various environmental media. The objective of this study was to determine concentrations, spatial distribution, possible sources and potential health risk of SCCPs and MCCPs in urban road dust collected from Shanghai, China. The concentrations ranged from 9.74 to 11,400 ng g-1 for ΣSCCPs, 44.1 to 49,900 ng g-1 for ΣMCCPs and 53.9 to 61,400 ng g-1 for total CPs, respectively. MCCPs were the dominant component in all road dust, averagely accounting for 82.8% of total CPs. The concentrations of CPs in dust collected from traffic and commercial areas were significantly higher than those from campus, industrial, park and residential areas (p < 0.01), which could be attributed to tire wear in heavy traffic. All dust samples were divided into two groups by hierarchical cluster analysis for both SCCPs and MCCPs, and the most abundant homologue groups in most samples were C10Cl7-10 and C13Cl7-9 for SCCPs, and C14Cl7-9 and C15Cl8-9 for MCCPs. Correlation analysis showed that all carbon homologues in road dusts were highly correlated each other, suggesting SCCPs and MCCPs in dust maybe came from similar sources. Three sources for CPs in dust samples were apportioned by the PMF model; their relative contributions to the total CPs burden in dust were 25.6% for factor 1 (commercial CP mixture), 13.7% for factor 2 (long-distance transport) and 60.7% for factor 3 (commercial CP mixture). The median estimated daily intakes of total CPs via road dust were 1.78 × 10-5 for children and 3.0 × 10-6 mg kg-1 day-1 for adults, respectively. Quantitative risk assessment using non-cancer hazard index and total margin of exposure of total CPs indicated that total CPs at the present level in road dust pose no significant risk for both children and adults in Shanghai.
Collapse
Affiliation(s)
- Xue-Tong Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng-Lin Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai, 200040, China
| | - Guo-Fa Ren
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Rui Fu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
8
|
Mu YW, Cheng D, Zhang CL, Zhao XL, Zeng T. The potential health risks of short-chain chlorinated paraffin: A mini-review from a toxicological perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162187. [PMID: 36781137 DOI: 10.1016/j.scitotenv.2023.162187] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are ubiquitously distributed in various environmental matrics due to their wide production and consumption globally in the past and ongoing production and use in some developing countries. SCCPs have been detected in various human samples including serum, milk, placenta, nail, and hair, and internal SCCP levels were found to be positively correlated with biomarkers of some diseases. While the environmental occurrence has been reported in a lot of studies, the toxicity and underlying molecular mechanisms of SCCPs remain largely unknown. The current tolerable daily intakes (TDIs) recommended by the world health organization/international programme on chemical safety (WHO/IPCS, 100 μg/kg bw/d) and the UK Committee on Toxicity (COT, 30 μg/kg bw/d) were obtained based on a no observed adverse effect level (NOAEL) of SCCP from the repeated-dose study (90 d exposure) in rodents performed nearly 40 years ago. Importantly, the health risks assessment of SCCPs in a variety of studies has shown that the estimated daily intakes (EDIs) may approach and even over the established TDI by UK COT. Furthermore, recent studies revealed that lower doses of SCCPs could also result in damage to multiple organs including the liver, kidney, and thyroid. Long-term effects of SCCPs at environmental-related doses are warranted.
Collapse
Affiliation(s)
- Ying-Wen Mu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiu-Lan Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
9
|
Yin S, McGrath TJ, Cseresznye A, Bombeke J, Poma G, Covaci A. Assessment of silicone wristbands for monitoring personal exposure to chlorinated paraffins (C 8-36): A pilot study. ENVIRONMENTAL RESEARCH 2023; 224:115526. [PMID: 36813067 DOI: 10.1016/j.envres.2023.115526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs) are a major environmental concern due to their ubiquitous presence in the environment. Since human exposure to CPs can significantly differ among individuals, it is essential to have an effective tool for monitoring personal exposure to CPs. In this pilot study, silicone wristbands (SWBs) were employed as a personal passive sampler to measure time-weighted average exposure to CPs. Twelve participants were asked to wear a pre-cleaned wristband for a week during the summer of 2022, and three field samplers (FSs) in different micro-environments were also deployed. The samples were then analyzed for CP homologs by LC-Q-TOFMS. In worn SWBs, the median concentrations of quantifiable CP classes were 19 ng/g wb, 110 ng/g wb, and 13 ng/g wb for ∑SCCPs, ∑MCCPs, and ∑LCCPs (C18-20), respectively. For the first time, lipid content is reported in worn SWBs, which could be a potential impact factor in the kinetics of the accumulation process for CPs. Results showed that micro-environments were key contributors to dermal exposure to CPs, while a few outliers suggested other sources of exposure. CP exposure via dermal contact showed an increased contribution and thus poses a nonnegligible potential risk to humans in daily life. Results presented here provide proof of concept of the use of SWBs as a cheap and non-invasive personal sampler in exposure studies.
Collapse
Affiliation(s)
- Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adam Cseresznye
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jasper Bombeke
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
10
|
Wu Y, Gao S, Zeng X, Liang Y, Liu Z, He L, Yuan J, Yu Z. Levels and diverse composition profiles of chlorinated paraffins in indoor dust: possible sources and potential human health related concerns. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01524-9. [PMID: 36881246 DOI: 10.1007/s10653-023-01524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs), a group of mixtures with different carbon chain lengths and chlorine contents, are widely used as plasticizers and flame retardants in various indoor materials. CPs could be released from CP-containing materials into the ambient environment and then enter the human body via inhalation, dust ingestion and dermal absorption, resulting in potential effects on human health. In this study, we collected residential indoor dust in Wuhan, the largest city in central China, and focused on the co-occurrence and composition profiles of CPs as well as the resultant human risk via dust ingestion and dermal absorption. The results indicated that CPs with C9-40 were ubiquity in indoor dust with medium-chain CPs (MCCPs, C14-17) as the main components (6.70-495 μg g-1), followed by short-chain CPs (SCCPs, C10-13) (4.23-304 μg g-1) and long-chain (LCCPs, C≥18) CPs (3.68-331 μg g-1). Low levels (not detected-0.469 μg g-1) of very short-chain CPs (vSCCPs, C9) were also found in partial indoor dust. The dominant homolog groups were C9 and Cl6-7 groups for vSCCPs, C13 and Cl6-8 groups for SCCPs, C14 and Cl6-8 groups for MCCPs, and C18 and Cl8-9 groups for LCCPs. Based on the measured concentrations, vSCCPs, SCCPs, MCCPs, and LCCPs posed limited human health risks to local residents via dust ingestion and dermal absorption.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Zhiyang Liu
- Institute of Atmospheric Environment, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Lixiong He
- Fujian Academy of Environmental Sciences, Fuzhou, 350013, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
11
|
Lu R, Xia D, Ma X, Zhao S, Liu Y, Sun Y. Short and medium-chain chlorinated paraffins in indoor dust from a multistory residential building in Beijing, China: Vertical distribution and potential health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160642. [PMID: 36470386 DOI: 10.1016/j.scitotenv.2022.160642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
In this study, we conducted a preliminary investigation of the vertical distribution and potential health risks of short and medium-chain chlorinated paraffins (SCCPs and MCCPs) in indoor dust from a multistory residential building in Beijing, China. Forty-eight SCCP and MCCP congener groups in dust from different floors of the multistory residential building were determined by two-dimensional gas chromatography coupled with electron capture negative ionization mass spectrometry. The concentration ranges for SCCPs and MCCPs in the dust samples were 0.0239-207 μg/g and 0.135-2903 μg/g, respectively. MCCPs were the dominant group, on average accounting for 76.8 % of ∑CPs. Generally, the concentrations of both SCCPs and MCCPs greatly decreased as the floor level increased, which indicated that the CP contamination was attributed to exogenous atmospheric transport and deposition. C13Cl7-8 and C14Cl7-8 were the dominant SCCP and MCCP congener groups, possibly indicating the use of industrial CP-52 products was the main source of CPs. In the worst-case scenario using the maximum concentrations of CPs, the daily intake of SCCPs for toddlers was of the same order of magnitude as the reference dose. It should be noted that CPs exposure may be more serious when indoor decorations, furniture, and various plastic products are taken into consideration. Overall, more attention should be paid to CPs exposure and control measures in high-rise buildings.
Collapse
Affiliation(s)
- Rongjing Lu
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Dan Xia
- School of Space and Environment, Beihang University, Beijing 100191, China.
| | - Xiao Ma
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Shuangshuang Zhao
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Yusong Liu
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Yifei Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
12
|
McGrath TJ, Christia C, Poma G, Covaci A. Seasonal variation of short-, medium- and long-chain chlorinated paraffin distribution in Belgian indoor dust. ENVIRONMENT INTERNATIONAL 2022; 170:107616. [PMID: 36370602 DOI: 10.1016/j.envint.2022.107616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated paraffins (CPs) are high production volume plasticizers and flame retardants, which have exhibited bioaccumulative and toxic properties. CPs may be released from treated consumer goods and bind with indoor dust, leading to human exposure via unintentional dust ingestion. In this study, the concentrations and homologue distribution of CPs were measured in 50 indoor dust samples collected in paired winter and summer sampling campaigns from 25 homes in Flanders, Belgium. Short-, medium- and long-chain CPs (SCCPs (C10-13), MCCPs (C14-17) and LCCPs (C18-20), respectively) were each detected in all Belgian indoor dust samples with overall median concentrations of 6.1 µg/g (range 0.61 to 120 µg/g), 45 µg/g (range 4.5 to 520 µg/g) and 4.5 µg/g (range 0.3 to 50 µg/g), respectively. Concentrations were significantly higher in the winter samples than summer for each of the three groups (p < 0.05). LCCPs homologues ranging from C21-32 were also detected in dust samples and accounted for approximately half of the LCCP relative abundance based on instrumental peak area, although a lack of appropriate analytical standards prevented quantification of these homologues. While clear sources of CP contamination in dust could not be identified, significant associations between concentrations of ∑SCCPs, ∑MCCPs and ∑LCCPs (C18-20) (p < 0.05) suggested the combined application within materials or products in homes. Based on typical exposure scenarios, estimated daily intake of ∑CPs (C10-20) for adults and toddlers were 14 and 270 ng/kg bw/day, respectively, though margin of exposure assessments for SCCPs and MCCPs indicated that adverse health effects were unlikely for all exposure scenarios. This study presents the first evidence of seasonal variation in the levels and distribution for each of the SCCP, MCCP and LCCP classes in indoor dust and highlights the urgent need for appropriate analytical standards for LCCP quantification.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Christina Christia
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
13
|
He C, van Mourik L, Brandsma S, Thai P, Wang X, Chen S, Thomas KV, Mueller JF. Semiquantitative Characterization of Bromo-chloro Paraffins and Olefins in the Australian Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12452-12459. [PMID: 35976999 DOI: 10.1021/acs.est.2c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A semiquantitative high-resolution mass spectrometry method was developed and applied to assess the occurrence of bromo-/chloro paraffins (BCPs) and olefins (BCOs) in the environment. More than 400 possible BCPs and BCO congener groups were detected in dust, air, and sewage sludge samples collected from Australia. Median chain analytes with the number of halogen atoms <7 (CnHmClxBry, 14 ≤ n ≤ 17, x + y < 7) prevailed in the dust and sludge samples, while short chain analytes (CnHmClxBry, 10 ≤ n ≤ 13, x + y < 7) predominated the air samples. The estimated concentrations of ∑BCPs and ∑BCOs in dust and sludge were approximately 20% that of the chlorinated paraffins (CPs) present, with the median concentrations of 5.4 μg/g (dust) and 0.18 μg/g (sludge) for ∑BCPs and 22 μg/g (in dust) and 0.50 μg/g (sludge) for BCOs. In the air samples, the concentrations of BCPs (0.020 pg/m3) and BCOs (0.032 pg/m3) were 3-4 orders of magnitudes lower than the concentrations of CPs (790 pg/m3). Significant correlations (P < 0.001) were found between the concentration of CPs, BCPs, and BCOs in all the matrices.
Collapse
Affiliation(s)
- Chang He
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane 4102, Australia
| | - Louise van Mourik
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1087, Amsterdam 1081 HV, The Netherlands
| | - Sicco Brandsma
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1087, Amsterdam 1081 HV, The Netherlands
| | - Phong Thai
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane 4102, Australia
| | - Xianyu Wang
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane 4102, Australia
| | - Shuo Chen
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane 4102, Australia
| | - Kevin V Thomas
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane 4102, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane 4102, Australia
| |
Collapse
|
14
|
Wang K, Gao L, Zhu S, Liu X, Chen Q, Cui L, Qiao L, Xu C, Huang D, Wang S, Zheng M. Short- and medium-chain chlorinated paraffins in soil from an urban area of northern China: Levels, distribution, and homolog patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150833. [PMID: 34627908 DOI: 10.1016/j.scitotenv.2021.150833] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are persistent organic pollutants that are present in relatively high concentrations in various environmental media in China. Many studies have focused on chlorinated paraffins in soil from agricultural land and contaminated areas. There are limited data on the levels of chlorinated paraffins in soil from urban areas. In this study, to investigate the levels, distribution, and homolog patterns of chlorinated paraffins (CPs) in soil from a typical urban area, 130 soil samples were collected and combined to form 26 pooled samples. The samples were analyzed for 50 CP congener groups (C9-17Cl5-10). The concentration ranges for SCCPs, medium-chain CPs (MCCP), and chlorinated nonane paraffin (C9-CP) were 19-1456 ng/g (average: 234 ng/g), <10-385 ng/g (average: 54 ng/g), and 1-39 ng/g (average: 11 ng/g), respectively. The CP concentrations were not significantly correlated with the total organic carbon content (P > 0.05). Compared with other areas worldwide, the SCCP and C9-CP concentrations in soil in this area were at the medium level, and the concentrations of MCCPs were at a low level. The CP concentrations were higher in soil samples collected near factories and domestic garbage disposal sites. C10Cl6-7 were the main SCCP homologs and C14Cl7-8 were the main MCCP homologs. Principal component analysis showed that the sources of C9-CPs, SCCPs, and MCCPs in the soils were similar. Risk assessment showed that the concentrations of SCCPs and MCCPs in soil in this area did not pose a significant risk to soil organisms or human health.
Collapse
Affiliation(s)
- Kunran Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; China National Institute of Standardization, Beijing 100191, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment Hangzhou Institute for Advanced study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Shuai Zhu
- National Research Center for Geoanalysis, Beijing 100037, China
| | - Xia Liu
- China National Institute of Standardization, Beijing 100191, China
| | - Qianwen Chen
- China National Institute of Standardization, Beijing 100191, China
| | - Lili Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chi Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Di Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | |
Collapse
|
15
|
Ding L, Zhang S, Zhu Y, Zhao N, Yan W, Li Y. Overlooked long-chain chlorinated paraffin (LCCP) contamination in foodstuff from China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149775. [PMID: 34467914 DOI: 10.1016/j.scitotenv.2021.149775] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Data on long-chain chlorinated paraffins (LCCPs) is extremely sparse, despite their use and emission are increasing with the phasing out of short-chain chlorinated paraffins (SCCPs). In this study, we analyzed chlorinated paraffins (CPs) in foodstuff samples (551 pooled samples, 93 items) divided into eight categories collected from Jinan, Shandong Province of China, by atmospheric-pressure chemical ionization quadrupole time-of-flight mass spectrometry (APCI-qToF-MS), to investigate the occurrence, contamination patterns and homologue patterns of LCCPs in foodstuff commonly consumed in traditional Chinese diet. LCCP intake through diet was estimated as well. LCCPs were detected in all pooled samples with geometric mean (GM) concentrations ranging from 1.8 to 21.9 ng/g wet weight (ng/g ww), contributing to 9-28% of the total CP mass in the studied foodstuff categories. The contamination patterns of LCCPs differed from SCCPs and medium-chain chlorinated paraffins (MCCPs), as reflected by the patterns of mass distribution, and by the lack of correlations between LCCP and S/MCCP concentrations in various foodstuff categories. The homologue profiles of LCCPs were extremely complex and diverse, with frequent detection of C30-36Cl2-15 very-long-chain chlorinated paraffin (vLCCP) congeners. The homologue profiles of eggs stood out for their high abundance of C18-22Cl9-13 LCCP congeners. LCCPs contributed 6.0-25.2% (8.9% for median estimation) to the estimated dietary intake (EDI) for total CPs through diet based on estimations using different percentiles of CP concentrations. The median estimate of dietary LCCP intake for adults in Jinan was 287.9 ng/kg_bw/day, reaching ~10- to 100-fold of that in Sweden and Canada. Considering the continuing production, use and emission of LCCPs, as well as the similar toxicity effects induced by LCCPs as SCCPs and MCCPs, attention should be paid to the health risk posed by LCCPs, or all CPs as a class of contaminants.
Collapse
Affiliation(s)
- Lei Ding
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Shiwen Zhang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Yuting Zhu
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China.
| | - Wenbao Yan
- Environmental Monitoring Station of Lanshan Branch of Rizhao Ecological and Environment Bureau, Jiaodingshan Road 539, Rizhao 276800, China
| | - Yahui Li
- Jinan Ecological Environmental Protection Grid Supervision Center, Lvyou Road 17199, Jinan 250098, China
| |
Collapse
|
16
|
Nevondo V, Okonkwo OJ. Status of short-chain chlorinated paraffins in matrices and research gap priorities in Africa: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52844-52861. [PMID: 34478051 PMCID: PMC8476396 DOI: 10.1007/s11356-021-15924-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Chlorinated paraffins (CPs) have been applied as additives in a wide range of consumer products, including polyvinyl chloride (PVC) products, mining conveyor belts, paints, sealants, adhesives and as flame retardants. Consequently, CPs have been found in many matrices. Of all the CP groups, short-chain chlorinated paraffins (SCCPs) have raised an alarming concern globally due to their toxicity, persistence and long-range transportation in the environment. As a result, SCCPs were listed in the Stockholm Convention on Persistent Organic Pollutants (POPs) in May 2017. Additionally, a limit for the presence of SCCPs in other CP mixtures was set at 1% by weight. CPs can be released into the environment throughout their life cycle; therefore, it becomes crucial to assess their effects in different matrices. Although about 199 studies on SCCP concentration in different matrices have been published in other continents; however, there are scarce/or limited studies on SCCP concentration in Africa, particularly on consumer products, landfill leachates and sediment samples. So far, published studies on SCCP concentration in the continent include SCCPs in egg samples, e-waste recycling area and indoor dust in Ghana and South Africa, despite absence of any production of SCCPs in Africa. However, there still remains a huge research gap in the continent of Africa on SCCPs. Consequently, there is a need to develop robust SCCP inventories in Africa since the Stockholm Convention has already developed guidance document in this respect. This review, therefore, examines the state of knowledge pertaining to the levels and trends of these contaminants in Africa and further provides research gaps that need to be considered in order to better understand the global scale of the contaminant.
Collapse
Affiliation(s)
- Vhodaho Nevondo
- Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, 175 Nelson Mandela Drive, Pretoria Central, 0001 South Africa
| | - Okechukwu Jonathan Okonkwo
- Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, 175 Nelson Mandela Drive, Pretoria Central, 0001 South Africa
| |
Collapse
|
17
|
He C, van Mourik L, Tang S, Thai P, Wang X, Brandsma SH, Leonards PEG, Thomas KV, Mueller JF. In vitro biotransformation and evaluation of potential transformation products of chlorinated paraffins by high resolution accurate mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124245. [PMID: 33082018 DOI: 10.1016/j.jhazmat.2020.124245] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated paraffins (CPs) are high production chemicals, which leads to their ubiquitous presence in the environment. To date, few studies have measured CPs in humans and typically at relatively low concentrations, despite indications that exposure may be high compared to various persistent organic pollutants. The aim of this study is to investigate the in vitro biotransformation of CPs by human liver fractions. We determined the changes of the CP concentrations after the enzymatic transformation with human liver microsomes using a two-tiered in vitro approach. CP concentrations decreased with human liver microsomes, with the decreases of 33-94% after incubating with different groups of enzymes for 2 h. The profiles of CP rapidly shifted after the incubation with human liver microsomes. In addition, the concentrations of CPs and the biotransformation products were tentatively measured using high-resolution mass spectrometric analysis, including very short CP (carbon chain length <10), alcohols, ketones, and carboxylic acids. C‒C bond cleavage is a potential transformation pathway for CPs, and ketones are potential products of CP biotransformation, especially for long-chain CPs (C>17). The ketone products may be investigated as CP exposure biomarker in biomonitoring studies.
Collapse
Affiliation(s)
- Chang He
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 4102 Brisbane, Australia.
| | - Louise van Mourik
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Shaoyu Tang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, 511700 Dongguan, China
| | - Phong Thai
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 4102 Brisbane, Australia
| | - Xianyu Wang
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 4102 Brisbane, Australia
| | - Sicco H Brandsma
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Pim E G Leonards
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 4102 Brisbane, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 4102 Brisbane, Australia
| |
Collapse
|
18
|
In vitro human cell-based TTR-TRβ CALUX assay indicates thyroid hormone transport disruption of short-chain, medium-chain, and long-chain chlorinated paraffins. Arch Toxicol 2021; 95:1391-1396. [PMID: 33555371 PMCID: PMC8032603 DOI: 10.1007/s00204-021-02994-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
Over the last decades, short-chain chlorinated paraffins (SCCPs), medium-chain chlorinated paraffins (MCCPs), and long-chain chlorinated paraffins (LCCPs) have become the most heavily produced monomeric organohalogen compound class of environmental concern. However, knowledge about their toxicology is still scarce, although SCCPs were shown to have effects on the thyroid hormone system. The lack of data in the case of MCCPs and LCCPs and the structural similarity with perfluoroalkyl substances (PFAS) prompted us to test CPs in the novel TTR-TR CALUX assay for their thyroid hormone transport disrupting potential. Four self-synthesized and additionally purified single chain length CP mixtures (C10-CPs, C11-CPs, C14-CPs and C16-CPs) and two each of industrial MCCP and LCCP products were tested in parallel with PFOA. All CP mixtures influenced the TTR binding of T4, giving activities of 1,300 to 17,000 µg/g PFOA equivalents and lowest observable effect concentrations (LOELs) of 0.95 to 0.029 mM/L incubate. Highest activities and lowest LOELs were observed for C16-CPs (48.3% Cl content, activity 17,000, LOEL 0.047 mM/L) and a LCCP mixture (71.7% Cl content; activity 10,000; LOEL 0.029 mM/L). A trend of higher activities and lower LOELs towards longer chains and higher chlorination degrees was implied, but could not be statistically confirmed. Irrespectively, the less well examined and current-use LCCPs showed the highest response in the TTR-TRβ CALUX assay.
Collapse
|
19
|
Zhou Y, van Leeuwen SPJ, Knobloch M, Dirks C, Weide Y, Bovee TFH. Impurities in technical mixtures of chlorinated paraffins show AhR agonist properties as determined by the DR-CALUX bioassay. Toxicol In Vitro 2021; 72:105098. [PMID: 33476717 DOI: 10.1016/j.tiv.2021.105098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Chlorinated paraffins (CPs) are produced at more than one million tons per year. Technical CPs mixtures may contain impurities, which end up in consumer products. In the present study, 17 technical CPs mixtures were investigated for the potential occurrence of potential impurities. By applying the DR-CALUX bioassay, 3 out of 17 technical mixtures were shown to elicit responses at 4 h exposure time, but much lower at 48 h. Constitutional defined CPs materials did not show responses. Subsequently different groups of known AhR-agonists and compounds suspected to be present in technical CPs mixtures were investigated. Benzene, (poly)chlorobenzene, non-dioxin like polychlorinated naphthalenes (PCNs), and three-ringed polyaromatic hydrocarbons (PAHs) did not result in a significant response at 4 h or 48 h. TCDD, non-ortho PCBs, dioxin-like PCNs, four or five ringed PAHs and their chlorinated analogues resulted in a significant response. TCDD and the non-ortho PCBs showed the highest potency and stability, while dioxin-like PCNs, PAHs, and the chlorinated PAHs were clearly inactivated (metabolized) at longer incubation. Altogether, the present findings substantiate that AhR-mediated responses of CPs technical mixtures in the DR-CALUX bioassay are caused by impurities, most likely some intermediate stable AhR-agonists such as dioxin-like PCNs or (chlorinated) PAHs. The current study shows that impurities in CPs technical mixtures need to be investigated for assessing the safety of technical CPs mixtures.
Collapse
Affiliation(s)
- Yao Zhou
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE, building 123, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands; Technical Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, No. 1208, Minsheng Rd, Shanghai, China.
| | - Stefan P J van Leeuwen
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE, building 123, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands.
| | - Marco Knobloch
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
| | - Caroline Dirks
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE, building 123, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands.
| | - Yoran Weide
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE, building 123, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands.
| | - Toine F H Bovee
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE, building 123, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands.
| |
Collapse
|
20
|
Du X, Zhou Y, Li J, Wu Y, Zheng Z, Yin G, Qiu Y, Zhao J, Yuan G. Evaluating oral and inhalation bioaccessibility of indoor dust-borne short- and median-chain chlorinated paraffins using in vitro Tenax-assisted physiologically based method. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123449. [PMID: 32683154 DOI: 10.1016/j.jhazmat.2020.123449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 05/22/2023]
Abstract
Though ingestion and inhalation of dust have been suggested as important exposure routes contributing chlorinated paraffins (CPs) build-up in humans, the bioaccessibility of dust-borne CPs in the organ environment has not been well-studied, which may hinder an accurate estimation of exposure risks. In this study, the ingestion and inhalation bioaccessibility of dust-borne short- and median-chain CPs (SCCPs and MCCPs) was assessed using (colon-extended) physiologically based extraction test with the addition of Tenax. The ingestion bioaccessibility of SCCPs 51.5 %Cl, SCCPs 63 %Cl, MCCPs 42 %Cl, and MCCPs 57 %Cl was in ranges of 21.1-44.0 %, 11.7-45.8 %, 21.9-36.6 %, and 7.9-32.9 %, respectively. Multiple linear regression analysis demonstrated statistically significant associations of ingestion bioaccessibility with carbon chain length and chlorine substitution. The ingestion bioaccessibility of CPs also increased with co-existence of carbohydrate/protein. The inhalation bioaccessibility of SCCPs (16.7-38.7 % in artificial lysosomal fluid and 15.5-34.1 % in modified Gamble solution) was significantly higher than MCCPs (<5 %), and varied with dust particle size/total organic carbon content. Our study indicates that modest bioaccessible fractions of CPs in dust should be taken into account to refine the estimation of human exposure, and their bioaccessibility may be affected by CP molecular size, nutritional content and dust property.
Collapse
Affiliation(s)
- Xinyu Du
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jun Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
| | - Yan Wu
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - Ziye Zheng
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Ge Yin
- Shimadzu (China) Co., LTD, Shanghai, 200233, China
| | - Yanling Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guoli Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
21
|
Wang K, Gao L, Zhu S, Cui L, Qiao L, Xu C, Huang D, Zheng M. Spatial distributions and homolog profiles of chlorinated nonane paraffins, and short and medium chain chlorinated paraffins in soils from Yunnan, China. CHEMOSPHERE 2020; 247:125855. [PMID: 31935577 DOI: 10.1016/j.chemosphere.2020.125855] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 05/22/2023]
Abstract
To preliminarily investigate the occurrence, spatial distributions, homolog compositions, and ecological risks of chlorinated paraffins (CPs) in Yunnan, China, 110 soil samples were collected from an area part of Yunnan, representative of the whole Yunnan area, where had similar characteristics to most parts of Yunnan and 22 pooled soil samples were analyzed for 50 CP congener groups (C9-17Cl5-10). The chlorinated nonane paraffin (C9-CP), short chain (SCCP), and medium chain chlorinated paraffin (MCCP) concentrations in soil samples were 8-109 ng/g (average 39 ng/g), 79-948 ng/g (average 348 ng/g), and 20-1206 ng/g (average 229 ng/g), respectively. The C9-CP homologs contributed 5%-16% of the C9-13-CP concentrations in soils. No significant correlation was found between CP concentrations and the total organic carbon content (P > 0.05). The CP levels in soils from Yunnan were at a medium level compared with those in other areas worldwide. Human activity and atmosphere deposition would influence the levels and spatial distributions of CPs in this area. The concentrations of CPs in east area were higher than those in west area. C10Cl6-7 were the major SCCP congeners and C14Cl6-7 were the major MCCP congeners. Principal component analysis indicated that SCCPs and MCCPs came from different sources. A preliminary risk assessment indicated that these concentrations of CPs in soil from Yunnan do not pose a significant ecological risk for soil organisms.
Collapse
Affiliation(s)
- Kunran Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shuai Zhu
- National Research Center for Geoanalysis, Beijing, 100037, China
| | - Lili Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chi Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | |
Collapse
|
22
|
van Mourik LM, Toms LML, He C, Banks A, Hobson P, Leonards PEG, de Boer J, Mueller JF. Evaluating age and temporal trends of chlorinated paraffins in pooled serum collected from males in Australia between 2004 and 2015. CHEMOSPHERE 2020; 244:125574. [PMID: 32050349 DOI: 10.1016/j.chemosphere.2019.125574] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 05/22/2023]
Abstract
Chlorinated paraffins (CPs) are high production volume chemicals of which some show resistance to environmental degradation, long-rang transport, bioaccumulation and toxicity potential. Information regarding their presence in humans is limited, including their human bioaccumulation potential. The present study aimed to evaluate CP levels in human serum from Australia in order to better understand their exposure and current pollution status as well as trends associated with age and time between 2004 and 2015. For this, we selected a male sub-group of the Australian population under 60 years old (n = 16 pools, total 1600 serum samples). While long-chain CP (C18-20) and most short-chain CP (C10-13, SCCPs) levels were below method detection limits (MDL), medium-chain CPs (C14-17, MCCPs) were found in most serum samples (detection frequency 94%) as well as CPs with a carbon chain length of nine (detection frequency 76%). The levels of ΣSCCPs and ΣMCCPs ranged from <MDL-140 and <MDL-520 ng/g lipid weight (lw), respectively, with a median value of 97 ng/g lw for SCCPs and 190 ng/g lw for MCCPs. Analysis by age stratification did not identify any trends but an increase of a factor of 2 in MCCPs levels was observed over time (p < 0.05). Plotting the MCCP/SCCP ratio of all available data in humans over time showed also an increasing trend, including for China. The reported levels are relatively low considering the levels reported in environmental media from Australia such which raises the question to what extent CPs accumulate in humans. Future studies on this aspect are required.
Collapse
Affiliation(s)
- Louise M van Mourik
- The University of Queensland, Queensland Alliance for Environmental Health Science (QAEHS), 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia; Vrije Universiteit, Department of Environment and Health, Faculty of Sciences, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Leisa-Maree L Toms
- The University of Queensland, Queensland Alliance for Environmental Health Science (QAEHS), 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia; School of Public Health and Social Work and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, 4059, Australia
| | - Chang He
- The University of Queensland, Queensland Alliance for Environmental Health Science (QAEHS), 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Andrew Banks
- The University of Queensland, Queensland Alliance for Environmental Health Science (QAEHS), 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Peter Hobson
- Sullivan and Nicolaides Pathology, 24 Hurworth Street, Bowen Hills 4006, Queensland, Australia
| | - Pim E G Leonards
- Vrije Universiteit, Department of Environment and Health, Faculty of Sciences, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Jacob de Boer
- Vrije Universiteit, Department of Environment and Health, Faculty of Sciences, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Jochen F Mueller
- The University of Queensland, Queensland Alliance for Environmental Health Science (QAEHS), 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| |
Collapse
|
23
|
Brits M, de Boer J, Rohwer ER, De Vos J, Weiss JM, Brandsma SH. Short-, medium-, and long-chain chlorinated paraffins in South African indoor dust and cat hair. CHEMOSPHERE 2020; 238:124643. [PMID: 31473532 DOI: 10.1016/j.chemosphere.2019.124643] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 05/22/2023]
Abstract
Polychlorinated n-alkanes or chlorinated paraffins (CPs) contain a magnitude of structural isomers and are categorized as short-chain (SCCPs), medium-chain (MCCPs), and long-chain (LCCPs) CPs, according to the carbon chain lengths. In this study the ƩSCCPs, ƩMCCPs, and ƩLCCP concentrations are reported for South African indoor dust and pet cat hair. The median concentrations of the ƩCPs (C9-C37) ranged from 33 to 663 μg/g for freshly collected dust (FD), 36-488 μg/g for dust collected from household vacuum cleaner bags (VD), and 1.2-15 μg/g for cat hair (CH) samples. MCCPs were the dominant CP group, followed by SCCPs and LCCPs. The ƩMCCP concentration ranged from 13 to 498 μg/g in dust and 0.6-6.5 μg/g in cat hair. SCCPs with shorter carbon chains and lower chlorine substitution were observed in cat hair. LCCPs with carbon chains > C20 were detected in dust and hair samples, possibly indicating the use of wax grade LCCP formulations. Non-traditional Kendrick mass defect plots were used to obtain information on the magnitude of CPs and provide evidence of possible interfering compounds. This is the first report on the occurrence of SCCPs, MCCPs, and LCCPs in the South African indoor environment.
Collapse
Affiliation(s)
- Martin Brits
- Department of Environment and Health, Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands; Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa; National Metrology Institute of South Africa (NMISA), CSIR Campus, Meiring Naude Road, Pretoria, 0040, South Africa.
| | - Jacob de Boer
- Department of Environment and Health, Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Egmont R Rohwer
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Jayne De Vos
- National Metrology Institute of South Africa (NMISA), CSIR Campus, Meiring Naude Road, Pretoria, 0040, South Africa
| | - Jana M Weiss
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
| | - Sicco H Brandsma
- Department of Environment and Health, Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| |
Collapse
|
24
|
Wang X, Zhu J, Xue Z, Jin X, Jin Y, Fu Z. The environmental distribution and toxicity of short-chain chlorinated paraffins and underlying mechanisms: Implications for further toxicological investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133834. [PMID: 31416033 DOI: 10.1016/j.scitotenv.2019.133834] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 05/20/2023]
Abstract
Short-chain chlorinated paraffin (SCCP) pollution has become a global threat. Much attention has been paid to their environmental occurrence and toxicity. In this review, we summarized the wide distribution of SCCPs in various environmental matrices and biota, including human beings. Toxicokinetics and the toxicities of SCCPs, including lethality, hepatotoxicity, developmental toxicity, carcinogenicity, endocrine- and metabolism-disrupting effects, and immunomodulatory effects have been considered. The mechanisms of SCCP toxicity are mainly related to oxidative stress, metabolic disturbance, endocrine disruption and binding to biomacromolecules. In the future, further studies of SCCPs should focus on searching for their novel toxicity targets, and uncovering their toxic effects using transcriptomics, proteomics, metabolomics, and mutigenerational toxicity.
Collapse
Affiliation(s)
- Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zimeng Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xini Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|