1
|
Tiwari S, Phoolmala, Goyal S, Yadav RK, Chaturvedi RK. Bisphenol-F and Bisphenol-S (BPF and BPS) Impair the Stemness of Neural Stem Cells and Neuronal Fate Decision in the Hippocampus Leading to Cognitive Dysfunctions. Mol Neurobiol 2024; 61:9347-9368. [PMID: 38635025 DOI: 10.1007/s12035-024-04160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Neurogenesis occurs throughout life in the hippocampus of the brain, and many environmental toxicants inhibit neural stem cell (NSC) function and neuronal generation. Bisphenol-A (BPA), an endocrine disrupter used for surface coating of plastic products causes injury in the developing and adult brain; thus, many countries have banned its usage in plastic consumer products. BPA analogs/alternatives such as bisphenol-F (BPF) and bisphenol-S (BPS) may also cause neurotoxicity; however, their effects on neurogenesis are still not known. We studied the effects of BPF and BPS exposure from gestational day 6 to postnatal day 21 on neurogenesis. We found that exposure to non-cytotoxic concentrations of BPF and BPS significantly decreased the number/size of neurospheres, BrdU+ (proliferating NSC marker) and MAP-2+ (neuronal marker) cells and GFAP+ astrocytes in the hippocampus NSC culture, suggesting reduced NSC stemness and self-renewal and neuronal differentiation and increased gliogenesis. These analogs also reduced the number of BrdU/Sox-2+, BrdU/Dcx+, and BrdU/NeuN+ co-labeled cells in the hippocampus of the rat brain, suggesting decreased NSC proliferation and impaired maturation of newborn neurons. BPF and BPS treatment increases BrdU/cleaved caspase-3+ cells and Bax-2 and cleaved caspase protein levels, leading to increased apoptosis in hippocampal NSCs. Transmission electron microscopy studies suggest that BPF and BPS also caused degeneration of neuronal myelin sheath, altered mitochondrial morphology, and reduced number of synapses in the hippocampus leading to altered cognitive functions. These results suggest that BPF and BPS exposure decreased the NSC pool, inhibited neurogenesis, induced apoptosis of NSCs, caused myelin degeneration/synapse degeneration, and impaired learning and memory in rats.
Collapse
Affiliation(s)
- Saurabh Tiwari
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Phoolmala
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shweta Goyal
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ranjeet Kumar Yadav
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajnish Kumar Chaturvedi
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Alarcón R, Alegre AL, Rivera O, Dioguardi G, Zenclussen ML, Muñoz-de-Toro M, Luque EH, Ingaramo PI. Altered ovarian reserve in Ewe lambs exposed to a glyphosate-based herbicide. CHEMOSPHERE 2024; 363:142895. [PMID: 39067823 DOI: 10.1016/j.chemosphere.2024.142895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Glyphosate-based herbicides (GBHs) are considered endocrine disruptors that affect the female reproductive tract of rats and ewe lambs. The present study aimed to investigate the impact of neonatal exposure to a low dose of a GBH on the ovarian follicular reserve of ewe lambs and the response to a gonadotropic stimulus with porcine FSH (pFSH). To this end, ewe lambs were orally exposed to an environmentally relevant GBH dose (1 mg/kg/day) or vehicle (Control) from postnatal day (PND) 1 to PND14, and then some received pFSH (50 mg/day) between PND41 and 43. The ovaries were dissected, and follicular types and gene expression were assessed via RT-PCR. The treatments did not affect the body weight of animals, but pFSH increased ovarian weight, not observed in GBH-exposed lambs. GBH-exposed lambs showed decreased Estrogen receptor-alpha (56%), Progesterone receptor (75%), Activin receptor II (ACVRII) (85%), and Bone morphogenetic protein 15 (BMP15) (88%) mRNA levels. Control lambs treated with pFSH exhibited downregulation of Follistatin (81%), ACVRII (77%), BMP15 (93%), and FSH receptor (FSHr) (72%). GBH-exposed lambs treated with pFSH displayed reduced ACVRII (68%), BMP15 (81%), and FSHr (50%). GBH-exposed lambs also exhibited decreased Anti-Müllerian hormone expression in primordial and antral follicles (27%) and (54%) respectively) and reduced Bone morphogenetic protein 4 (31%) expression in primordial follicles. Results suggest that GBH disrupts key follicular development molecules and interferes with pFSH action in ovarian receptors, decreasing the ovarian reserve. Future studies should explore whether this decreased ovarian reserve impairs adult ovarian function and its response to superovulation stimuli.
Collapse
Affiliation(s)
- Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ana Laura Alegre
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oscar Rivera
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAS), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Gisela Dioguardi
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAS), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - María Laura Zenclussen
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
3
|
Coe ST, Chakraborty S, Faheem M, Kupradit K, Bhandari RK. A second hit by PFOS exposure exacerbated developmental defects in medaka embryos with a history of ancestral BPA exposure. CHEMOSPHERE 2024; 362:142796. [PMID: 38972462 PMCID: PMC11309894 DOI: 10.1016/j.chemosphere.2024.142796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Bisphenol-A (BPA), a known endocrine-disrupting chemical (EDC) in plastics and resins, has been found to induce heritable health effects in fish and mammals, affecting directly exposed individuals and indirectly their progenies in subsequent generations. It is not clearly understood if subsequent generations of the BPA-exposed ancestors have increased sensitivity to the second hit by the chemicals of emerging concern. To understand this, the present study examined the effects of developmental exposure to perfluorooctanesulfonic acid (PFOS), which has been a global contaminant recently, in embryos whose ancestors were exposed to BPA. Two lineages of medaka (Oryzias latipes) were established: 1) the BPA lineage in which the F0 generation was exposed to 10 μg/L BPA during early development and 2) the control lineage with no BPA exposure in the F0 generation. These lineages were raised up to the F4 generation without further exposure. The embryos of the F4 generation were exposed to PFOS at 0, 0.002, 0.02, 0.2, 2, and 20 mg/L concentrations. Early developmental defects resulting in mortality, delayed hatching, teratogenic phenotypes, and altered gene expression were examined in both lineages. The expression level of genes encoding DNA methyltransferases and genes responsible for oxidative stress defense were determined. Following environmentally relevant PFOS exposure, organisms with a history of BPA exposure displayed significant changes in all categories of developmental defects mentioned above, including increased expression of genes related to oxidative stress, compared to individuals without BPA exposure. The present study provides initial evidence that a history of ancestral BPA exposure can alter sensitivity to developmental disorders following the second hit by PFOS exposure. The variable of ancestral BPA exposure could be considered in mechanistic, medical, and regulatory toxicology, and can also be applied to holistic environmental equity research.
Collapse
Affiliation(s)
- Seraiah T Coe
- Department of Biology, University of North Carolina at Greensboro, NC, 27412, USA
| | - Sourav Chakraborty
- Department of Biology, University of North Carolina at Greensboro, NC, 27412, USA; Division of Biological Sciences, University of Missouri Columbia, MO, 65211, USA
| | - Mehwish Faheem
- Division of Biological Sciences, University of Missouri Columbia, MO, 65211, USA
| | - Karabuning Kupradit
- Department of Biology, University of North Carolina at Greensboro, NC, 27412, USA
| | - Ramji K Bhandari
- Division of Biological Sciences, University of Missouri Columbia, MO, 65211, USA.
| |
Collapse
|
4
|
Coperchini F, Teliti M, Greco A, Croce L, Rotondi M. Per-polyfluoroalkyl substances (PFAS) as thyroid disruptors: is there evidence for multi-transgenerational effects? Expert Rev Endocrinol Metab 2024; 19:307-315. [PMID: 38764236 DOI: 10.1080/17446651.2024.2351885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION The environmental spread of pollutants has led to a persistent exposure of living beings to multiple chemicals, by now become ubiquitous in the surrounding environment. Environmental exposure to these substances has been reported to cause multi- and/or transgenerational health effects. Per- and Polyfluorinated Substances (PFAS) raise great concern, given their known effects both as endocrine disruptors and potential carcinogens. The multi/trans-generational effects of different endocrine disruptors have been investigated by several studies, and harmful effects observed also for PFAS. AREAS COVERED This review examines the current data on the multi-trans-generational effects of PFAS, with a focus on their impact on the thyroid axis. The aim is to determine if there is evidence of potential multi-trans-generational effects of PFAS on the thyroid and/or if more research is needed. EXPERT OPINION PFAS exposure impacts thyroid homeostasis and can cross the placental barrier. In addition PFAS have shown multi-transgenerational effects in laboratory experiences and animal models, but thyroid disruptive effects of PFAS were also investigated only in a small number of these studies. Efforts are needed to study the adverse effects of PFAS, as not all PFAS are regulated and removal strategies are still being developed.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
| | - Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia, Italy
| |
Collapse
|
5
|
Meng L, Ouyang Z, Chen Y, Huang C, Yu Y, Fan R. Low-dose BPA-induced neuronal energy metabolism dysfunction and apoptosis mediated by PINK1/parkin mitophagy pathway in juvenile rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172655. [PMID: 38653419 DOI: 10.1016/j.scitotenv.2024.172655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA) is related to neurological disorders involving mitochondrial dysfunction, while the mechanism remains elusive. Therefore, we explored it through in vitro and in vivo experiments. In vitro, hippocampal neurons derived from neonatal rats of different genders were exposed to 1-100 nM and 100 μM BPA, autophagy activator Rapa and inhibitor 3-MA for 7 d. The results suggested that even nanomolar BPA (1-100 nM) disturbed Ca2+ homeostasis and damaged the integrity of mitochondrial cristae in neurons (p < 0.05). Furthermore, BPA increased the number of autophagic lysosomes, LC3II/LC3I ratio, and p62 expression, and decreased parkin expression (p < 0.05), suggesting that the entry of damaged mitochondria into autophagic pathway was prompted, while the autophagic degradation pathway was blocked. This further disrupts neuronal energy metabolism and promotes neuronal apoptosis. However, Rapa attenuated the adverse effects caused by BPA, while 3-MA exacerbated these reactions. In vivo, exposure of juvenile rats to 0.5, 50, 5000 μg/kg‧bw/day BPA during PND 7-21 markedly impaired the structure of hippocampal mitochondria, increased the number of autophagosomes, the rate of neuronal apoptosis, and the expression levels of pro-apoptotic proteins Cyt C, Bax, Bak1, and Caspase3, and decreased the expression of anti-apoptotic protein Bcl2 (p < 0.05). Particularly, male rats are more sensitive to low-dose BPA than females. Overall, environmental-doses BPA can induce the imbalance of energy metabolism in hippocampal neurons via PINK1/parkin mitophagy, thereby inducing their apoptosis. Importantly, this study provides a theoretical basis for attenuating BPA-related neurological diseases.
Collapse
Affiliation(s)
- Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yuxin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chengmeng Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
6
|
Liu ZH, Xia Y, Ai S, Wang HL. Health risks of Bisphenol-A exposure: From Wnt signaling perspective. ENVIRONMENTAL RESEARCH 2024; 251:118752. [PMID: 38513750 DOI: 10.1016/j.envres.2024.118752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Human beings are routinely exposed to chronic and low dose of Bisphenols (BPs) due to their widely pervasiveness in the environment. BPs hold similar chemical structures to 17β-estradiol (E2) and thyroid hormone, thus posing threats to human health by rendering the endocrine system dysfunctional. Among BPs, Bisphenol-A (BPA) is the best-known and extensively studied endocrine disrupting compound (EDC). BPA possesses multisystem toxicity, including reproductive toxicity, neurotoxicity, hepatoxicity and nephrotoxicity. Particularly, the central nervous system (CNS), especially the developing one, is vulnerable to BPA exposure. This review describes our current knowledge of BPA toxicity and the related molecular mechanisms, with an emphasis on the role of Wnt signaling in the related processes. We also discuss the role of oxidative stress, endocrine signaling and epigenetics in the regulation of Wnt signaling by BPA exposure. In summary, dysfunction of Wnt signaling plays a key role in BPA toxicity and thus can be a potential target to alleviate EDCs induced damage to organisms.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Shu Ai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
7
|
Zhang Y, Yan C, Xie Q, Wu B, Zhang Y. Exposure to bisphenol A affects transcriptome-wide N6-methyladenine methylation in ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116071. [PMID: 38354435 DOI: 10.1016/j.ecoenv.2024.116071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Bisphenol A (BPA) is an endocrine disruptor of potential reproductive toxicities. Increasingly research elucidated that BPA exposure to the environment would change the epigenetic modifications of transcriptome, but the mechanism by which BPA affects m6A methylation in interfering with female reproductive health remains uncertain. Therefore, this study preliminarily proposed and tested the hypothesis that BPA exposure alters the m6A modification level in transcripts in female ovarian granulosa cells. After BPA was exposed to granulosa cells for 24 h, RNA methylation related regulatory genes (such as METTL3, METTL14, ALKBH5, FTO) and the global m6A levels showed significant differences. Next, we applied MERIP-seq analysis to obtain information on the genome-wide m6A modification changes and identified 1595 differentially methylated mRNA transcripts, and 50 differentially methylated lncRNA transcripts. Further joint analysis of gene common expression showed that 33 genes were hypermethylated and up-regulated, 71 were hypermethylated and down-regulated, 49 were hypomethylated and up-regulated, and 20 were hypomethylated and down-regulated. Enriched Gene Ontology (GO) and biological pathway analysis revealed that these unique genes were mainly enriched in lipid metabolism, cell proliferation, and apoptosis related pathways. Six of these genes (mRNAs IMPA1, MCOLN1, DCTN3, BRCA2, and lncRNAs MALAT1, XIST) were validated using RT-qPCR and IGV software. Through comprehensive analysis of epitranscriptome and protein-protein interaction (PPI) data, lncRNAs MALAT1 and XIST are expected to serve as new markers for BPA interfering with the female reproductive system. In brief, these data show a novel and necessary connection between the damage of BPA exposure on female ovarian granulosa cells and RNA methylation modification.
Collapse
Affiliation(s)
- Yuxia Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Congcong Yan
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qian Xie
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Yingchun Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
8
|
Wang C, He C, Xu S, Gao Y, Wang K, Liang M, Hu K. Bisphenol A triggers apoptosis in mouse pre-antral follicle granulosa cells via oxidative stress. J Ovarian Res 2024; 17:20. [PMID: 38229135 PMCID: PMC10790560 DOI: 10.1186/s13048-023-01322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA), an endocrine disrupting chemical with weak estrogenic and anti-androgenic activity, is widely present in various environmental media and organisms. It has certain reproductive toxicity and can cause a variety of female reproductive system diseases. Although BPA-stimulated apoptosis of granulosa cells has been widely elaborated, the effect of BPA on mouse pre-antral follicle granulosa cells (mpGCs) has not been well elucidated. RESULTS In this study, the results of live-dead cell staining showed that high concentrations of BPA severely impaired mpGCs growth viability and affected the cell cycle transition of mpGCs. We confirmed that BPA promotes the production of reactive oxygen species (ROS) and facilitates oxidative stress in mpGCs. In addition, immunofluorescence, transmission electron microscopy, and flow cytometry experiments demonstrated that BPA treatment for mpGCs resulted in apoptotic features, such as rounding, cytoplasmic crinkling, and mitochondrial damage. This was accompanied by a large production of ROS and apoptosis-inducing factor (AIF) translocation from the mitochondria to the nucleus. RNA-seq data showed that several apoptosis-related pathways were enriched in the high concentration BPA-treated group compared with the normal group, such as the p53 pathway, MAPK pathway, etc. CONCLUSIONS: These results suggest that cells undergo oxidative stress effects and apoptosis after BPA treatment for mpGCs, which affects normal follicle development. The potential mechanism of BPA-induced female reproductive toxicity was elucidated, while providing a research basis for the prevention and treatment of female reproductive diseases.
Collapse
Affiliation(s)
- Chen Wang
- School of Life Science, Bengbu Medical University, Bengbu, 233030, China
| | - Chaofan He
- School of Life Science, Bengbu Medical University, Bengbu, 233030, China
| | - Shumin Xu
- School of Life Science, Bengbu Medical University, Bengbu, 233030, China
| | - Yuanyuan Gao
- School of Life Science, Bengbu Medical University, Bengbu, 233030, China
| | - Kaixian Wang
- School of Life Science, Bengbu Medical University, Bengbu, 233030, China
| | - Meng Liang
- School of Life Science, Bengbu Medical University, Bengbu, 233030, China.
| | - Ke Hu
- School of Life Science, Bengbu Medical University, Bengbu, 233030, China.
| |
Collapse
|
9
|
Shi J, Hu KL, Li XX, Ge YM, Yu XJ, Zhao J. Bisphenol a downregulates GLUT4 expression by activating aryl hydrocarbon receptor to exacerbate polycystic ovary syndrome. Cell Commun Signal 2024; 22:28. [PMID: 38200540 PMCID: PMC10782693 DOI: 10.1186/s12964-023-01410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) levels are high in women with polycystic ovary syndrome (PCOS). The mechanism by which BPA induces abnormal glucose metabolism in PCOS patients is largely unknown. METHODS Serum and urine samples were collected from women with and without PCOS (control) at the reproductive medicine center with informed consent. Non-PCOS patients who received in vitro fertilization were recruited for collection of ovarian follicular fluid and granular cells. Wild-type C57BL/6 and AhR -/- mice were used to verify the effects of BPA on PCOS. Real-time PCR, western blotting, and ELISA were conducted to analyze the function of BPA. Chip-qPCR verified the role of AhR in GLUT4 transcription. Flow cytometry was performed to determine glucose uptake. RESULTS A positive correlation was observed between BPA concentration and serum BPA levels in PCOS patients. BPA aggravated the changes in PCOS with abnormal glucose metabolism, impaired fertility, and increased body fat. Mechanistically, we showed that BPA activated AhR and led to decreased glucose transport via GLUT4 downregulation in ovarian granular cells. Therefore, the use of inhibitors or knockout of AhR could effectively rescue BPA-induced metabolic disorders in PCOS mice. CONCLUSIONS Our results revealed that BPA suppressed GLUT4 expression and induced abnormal glucose metabolism by activating AhR, causing insulin resistance, and is thus a potential contributor to the development of PCOS. Therefore, AhR could be a potential new therapeutic target for PCOS. Video Abstract.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Kai-Lun Hu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiao-Xue Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Yi-Meng Ge
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Xiao-Jun Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jie Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
10
|
Liu X, Yu Y, Xie T, Cao Z, Li Z, Li Y, Gu Y, Han C, Yang G, Qu L. Fabrication of multifunctional g-C 3N 4-modified Au/Ag NRs arrays for ultrasensitive and recyclable SERS detection of bisphenol A residues. Mikrochim Acta 2023; 191:51. [PMID: 38147085 DOI: 10.1007/s00604-023-06136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023]
Abstract
Monolayer g-C3N4-modified Au/Ag nanorods (g-C3N4/Au/Ag NRs) array is fabricated as a dual-function platform with high surface-enhanced Raman scattering (SERS) response and excellent photocatalytic degradation ability for bisphenol A (BPA) residues. FDTD simulation results of Au/Ag NRs proves that the electromagnetic field intensity is significantly enhanced at the gap of Ag NRs and Au NPs and the protrusion of Au NPs, which endows the arrays with excellent SERS activity. The arrays exhibit high sensitivity for rhodamine 6G (R6G) (LOD = 1.1 × 10-11 mol/L) and high SERS enhancement (EF = 9.2 × 107). In addition, the g-C3N4/Au/Ag NRs could degrade ˃90% of BPA adsorbed on the substrate surface within 140 min under visible light irradiation, and maintains its SERS activity after repeated use for 4 times. The dual-function platform with high SERS response and excellent recycling capability is proved to be reliable and is very promising for monitoring of BPA residues in food.
Collapse
Affiliation(s)
- Xinyu Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yang Yu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tianhua Xie
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zijin Cao
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Zhiyan Li
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yuejing Li
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yingqiu Gu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Caiqin Han
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China.
| | - Guohai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lulu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
11
|
Meng L, Gui S, Ouyang Z, Wu Y, Zhuang Y, Pang Q, Fan R. Low-dose bisphenols exposure sex-specifically induces neurodevelopmental toxicity in juvenile rats and the antagonism of EGCG. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132074. [PMID: 37473573 DOI: 10.1016/j.jhazmat.2023.132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Bisphenols (BPs) can negatively affect neurobehaviors in rats, whereas the mechanism remains unclear. Here, the mechanism of BPs-induced neurodevelopmental toxicity and its effective detoxification measures were investigated in vitro and in vivo. In in vitro experiments, primary hippocampal neurons from neonatal rats of different genders were treated with bisphenol A (BPA), bisphenol S (BPS) and bisphenol B (BPB) at 1 nM-100 μM, epigallocatechin gallate (EGCG) and G15, an antagonist of G protein-coupled estrogen receptor (GPER) for 7 d. Results indicated that BPs affected neuronal morphogenesis, impaired GABA synthesis and Glu/GABA homeostasis. Neuronal morphogenetic damage induced by low-doses BPA may be mediated by GPER. Neurotoxicity of BPS is weaker than BPA and BPB. In in vivo studies, exposure to BPA (0.5 μg/kg·bw/day) on PND 10-40 caused oxidative stress and inflammation in rat hippocampus, disrupted neuronal morphogenesis and neurotransmitter homeostasis, ultimately impaired spatial memory of rats. Males are more sensitive to BPA exposure than females. Both in vivo and in vitro studies indicated that EGCG, a phytoestrogen, can alleviate BPA-induced neurotoxicity. Taken together, low-doses BPA exposure sex-specifically disrupted neurodevelopment and further impaired learning and memory ability in rats, which may be mediated by GPER. Promisingly, EGCG effectively mitigated the BPA-induced neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shiheng Gui
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yajuan Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Youling Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
12
|
Lu L, Shen L, Cui S, Huang Y, Gao Y, Zhu X, Lu S, Zhang C, Zhuang S. Angiogenic Activity and Mechanism for Bisphenols on Endothelial Cell and Mouse: Evidence of a Structural-Selective Effect. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11803-11813. [PMID: 37505069 DOI: 10.1021/acs.est.3c03883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Increased epidemiological evidence indicates the association of bisphenol exposure with human vascular disorders, while the underlying mechanism has not been clarified. Here, we sought to unveil the potential angiogenic effect and the underlying mechanism of bisphenols with different structural features using endothelial cells treated with an environmentally relevant concentration of bisphenols (range: 1 nM to 10 μM) and a C57BL/6 mouse model fed with doses of 0.002, 0.02, 2, and 20 mg/kg BW/day for 5 weeks. Bisphenol A (BPA) and bisphenol S (BPS) at a 1 nM level significantly increased tube formation by 45.1 and 30.2% and induced the microvessel sprouting, while tube length and microvessel sprouting were significantly inhibited by 37.2 and 55.7% after exposure to tetrabromobisphenol S (TBBPS) at 1 μM, respectively. Mechanistically, TBBPA and TBBPS significantly inhibited the interaction between phosphatidylinositol 3-kinase (PI3K) and thyroid receptor (TR), while BPA and BPS favored the interaction between PI3K and estrogen receptor (ER), resulting in abnormal PI3K signaling with consequent distinct angiogenic activity. BPA- and BPS-induced pro-angiogenic effects and TBBPS showed anti-angiogenic effects due to their distinct disruption on the TR/ER-PI3K pathway. Our work provided new evidence and mechanistic insight on the angiogenic activity of bisphenols and expanded the scope of endocrine disruptors with interference in vascular homeostasis.
Collapse
Affiliation(s)
- Liping Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lilai Shen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shixuan Cui
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Yuchen Gao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoming Zhu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Shaoyong Lu
- Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, Texas 77058, United States
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| |
Collapse
|
13
|
Molina-López AM, Bujalance-Reyes F, Ayala-Soldado N, Mora-Medina R, Lora-Benítez A, Moyano-Salvago R. An Overview of the Health Effects of Bisphenol A from a One Health Perspective. Animals (Basel) 2023; 13:2439. [PMID: 37570248 PMCID: PMC10417040 DOI: 10.3390/ani13152439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Bisphenol A (BPA) is a chemical compound, considered as an "emerging pollutant", that appears ubiquitously, contaminating the environment and food. It is an endocrine disruptor, found in a multitude of consumer products, as it is a constituent of polycarbonate used in the manufacture of plastics and epoxy resins. Many studies have evaluated the effects of BPA, using a wide range of doses and animal models. In this work, we carried out a review of relevant research related to the effects of BPA on health, through studies performed at different doses, in different animal models, and in human monitoring studies. Numerous effects of BPA on health have been described; in different animal species, it has been reported that it interferes with fertility in both females and males and causes alterations in their offspring, as well as being associated with an increase in hormone-dependent pathologies. Similarly, exposure to BPA has been related to other diseases of great relevance in public health such as obesity, hypertension, diabetes, or neurodevelopmental disorders. Its ubiquity and nonmonotonic behavior, triggering effects at exposure levels considered "safe", make it especially relevant when both animal and human populations are constantly and inadvertently exposed to this compound. Its effects at low exposure levels make it essential to establish safe exposure levels, and research into the effects of BPA must continue and be focused from a "One Health" perspective to take into account all the factors that could intervene in the development of a disease in any exposed organism.
Collapse
Affiliation(s)
- Ana M. Molina-López
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain;
| | - Francisca Bujalance-Reyes
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain; (F.B.-R.); (R.M.-M.); (A.L.-B.)
| | - Nahúm Ayala-Soldado
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain; (F.B.-R.); (R.M.-M.); (A.L.-B.)
| | - Rafael Mora-Medina
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain; (F.B.-R.); (R.M.-M.); (A.L.-B.)
| | - Antonio Lora-Benítez
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain; (F.B.-R.); (R.M.-M.); (A.L.-B.)
| | - Rosario Moyano-Salvago
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain;
| |
Collapse
|
14
|
Yuan M, Chen S, Zeng C, Fan Y, Ge W, Chen W. Estrogenic and non-estrogenic effects of bisphenol A and its action mechanism in the zebrafish model: An overview of the past two decades of work. ENVIRONMENT INTERNATIONAL 2023; 176:107976. [PMID: 37236126 DOI: 10.1016/j.envint.2023.107976] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Bisphenol A (BPA) is the most simple and predominant component of the Bisphenol family. BPA is widely present in the environment and the human body as a result of its extensive usage in the plastic and epoxy resins of consumer goods like water bottles, food containers, and tableware. Since the 1930s, when BPA's estrogenic activity was first observed, and it was labeled as a "mimic hormone of E2", studies on the endocrine-disrupting effects of BPA then have been widely conducted. As a top vertebrate model for genetic and developmental studies, the zebrafish has caught tremendous attention in the past two decades. By using the zebrafish, the negative effects of BPA either through estrogenic signaling pathways or non-estrogenic signaling pathways were largely found. In this review, we tried to draw a full picture of the current state of knowledge on the estrogenic and non-estrogenic effects of BPA with their mechanisms of action through the zebrafish model of the past two decades, which may help to fully understand the endocrine-disrupting effects of BPA and its action mechanism, and give a direction for the future studies.
Collapse
Affiliation(s)
- Mingzhe Yuan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Shan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chu Zeng
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yuqin Fan
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Area, School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Weiting Chen
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Area, School of Life Sciences, Jiaying University, Meizhou 514015, China.
| |
Collapse
|
15
|
Senra MVX, Fonseca AL. Toxicological impacts and likely protein targets of bisphenol a in Paramecium caudatum. Eur J Protistol 2023; 88:125958. [PMID: 36857848 DOI: 10.1016/j.ejop.2023.125958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Bisphenol A (BPA) is a widely used plasticizer agent and a well-known ubiquitous endocrine disruptor, which is frequently associated with a series of reproductive, developmental, and transgenerational effects over wildlife, livestocks, and humans. Although extensive toxicological data is available for metazoans, the impact of BPA over unicellular eukaryotes, which represents a considerable proportion of eukaryotic diversity, remains largely overlooked. Here, we used acute end-point toxicological assay and an inverted virtual-screening (IVS) approach to evaluate cellular impairments infringed by BPA over the cosmopolitan ciliated protist, Paramecium caudatum. Our data indicate a clear time-dependent effect over P. caudatum survival, which seems to be a consequence of disruptions to multiple core cellular functions, such as DNA and cell replication, transcription, translation and signaling pathways. Finally, the use of this ciliate as a biosensor to monitor BPA within environments and the relevance of bioinformatic methods to leverage our current knowledge on the impacts of emerging contaminants to biological systems are discussed.
Collapse
Affiliation(s)
- Marcus V X Senra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580, Santo André, São Paulo, Brazil; Instituto de Recursos Naturais, Universidade Federal de Itajubá, 37500-903, Itajubá, Minas Gerais, Brazil.
| | - Ana Lúcia Fonseca
- Instituto de Recursos Naturais, Universidade Federal de Itajubá, 37500-903, Itajubá, Minas Gerais, Brazil
| |
Collapse
|
16
|
A photo-enzyme coupling catalysis system with high enzyme loading for the efficient degradation of BPA in water. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
17
|
Chakraborty S, Dissanayake M, Godwin J, Wang X, Bhandari RK. Ancestral BPA exposure caused defects in the liver of medaka for four generations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159067. [PMID: 36174697 PMCID: PMC10593180 DOI: 10.1016/j.scitotenv.2022.159067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/01/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Environmental chemicals can induce liver defects in experimental animals due to their direct and acute exposure. It is not clear whether environmental chemical exposures result in the transgenerational passage of liver defects in subsequent generations living in an uncontaminated environment. Bisphenol A (BPA), a plasticizer chemical, has been ubiquitous in the environment in the recent decade. Every organism is exposed to this chemical at some point during its lifetime. Literature suggests that direct BPA exposure can result in several metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). Despite the phasing out of BPA from several consumer goods, it is unclear whether ancestral BPA exposure causes liver health problems in the unexposed future generations. Here, we demonstrate an advanced stage of NAFLD in the grandchildren (F2 generation) of medaka fish (Oryzias latipes) due to embryonic BPA exposure in the grandparental generation (F0), which persists for five generations (F4) even in the absence of BPA. The severity of transgenerational NAFLD phenotype included steatosis together with perisinusoidal fibrosis and apoptosis of hepatocytes. Adult females developed more severe histopathological conditions in the liver than males. Genes encoding enzymes involved in lipolytic pathways were significantly decreased. The present results suggest that ancestral BPA exposure can result in transgenerational metabolic diseases that can persist for five generations and that the NAFLD trait is sexually dimorphic. Given that ancestral BPA exposure can lead to altered metabolic health outcomes in the subsequent unexposed generations, the development of the methods and strategies to mitigate the transgenerational onset of metabolic diseases seem imperative to protect future generations.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Manthi Dissanayake
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Julia Godwin
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA; Institute of Modern Aquaculture Science and Engineering, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ramji Kumar Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
18
|
Lu K, Liang XF, Liu T, Cai W, Zhuang W, Zhang Y, Bibi A. DNA methylation of pck1 might contribute to the programming effects of early high-carbohydrate diets feeding to the glucose metabolism across two generations in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1619-1633. [PMID: 36481836 DOI: 10.1007/s10695-022-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
The purpose of this study is to assess the effects of early high-carbohydrate stimulus on glucose metabolism in zebrafish (Danio rerio) over two generations and explore the mechanisms that explain those nutritional programming effects via epigenetic modifications. The larvae were delivered a high-carbohydrate diet (53.66%) that was used as an early nutritional stimulus from the first feeding to the end of the yolk sac (FF) and 5 days after yolk-sac exhaustion (YE). The larvae (F0) and their offspring (F1) were then both fed the control diet (22.69%) until adulthood (15 weeks), and they were challenged with a high-carbohydrate diet (35.36%) at the 16th week. The results indicated that early stimulus immediately raised the mRNA levels of genes involved in glycolysis and gluconeogenesis. At the end of F0 challenge, both treatment groups decreased the plasma glucose levels, increased the expression levels of glucokinase (gck), and inhibited the mRNA during gluconeogenesis. When challenged in F1, the glucose levels were lower in FF (F1), and the mRNA levels of phosphoenolpyruvate carboxykinase 1 (pck1) were decreased in FF (F1) and YE (F1). Besides, in both experimental groups (F0 and F1), the CpG island of pck1 maintained lower levels of hypermethylated expression from F0 adult, 24 h post-fertilization embryo, to F1 adult. In conclusion, these results indicated that an early high-carbohydrate stimulus could significantly reprogram glucose metabolism in adult zebrafish, that those modifications could be partially transmitted to the next generation, and that the DNA methylation of pck1 might work as a stable epigenetic marker to contribute to those processes.
Collapse
Affiliation(s)
- Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| | - Tong Liu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wenjing Cai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wuyuan Zhuang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Yanpeng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Asima Bibi
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| |
Collapse
|
19
|
Zhu Z, Wang J, Cao Q, Liu S, Wei W, Yang H, Zhang Y. Long-term BPA exposure leads to bone malformation and abnormal expression of MAPK/Wnt/FoxO signaling pathway genes in zebrafish offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114082. [PMID: 36126548 DOI: 10.1016/j.ecoenv.2022.114082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is one of the world's most widely used plasticizer, and its hazardous impacts have been well studied. However, few studies focused on the effects of parental long-term BPA exposure on the bone development of offspring. In the present study, the bone development of offspring was studied following long-term exposure of parental zebrafish to environmentally relevant 15 and 225 µg/L BPA. The results showed that BPA increased the mortality and deformity rate of offspring and caused craniofacial deformities characterized by changes in various cartilage angles and lengths. The alizarin red and calcein staining showed that BPA could delay bone mineralization and reduce bone mass accumulation. The results of acridine orange staining indicated that BPA induced apoptosis of the skull. The degree of harm of BPA presented a dose-dependent pattern. The results of the comparative transcriptome showed that there were 380 different expression genes (DEGs) in the 15 µg/L BPA group, and 645 DEGs in the 225 µg/L BPA group. MAPK/Wnt/FoxO signaling pathway-related genes were significantly down-regulated in the BPA-exposed groups. The present study demonstrates that long-term parental BPA exposure would severely affect cartilage development and bone mineralization of fish offspring, and MAPK/Wnt/FoxO signaling pathways may be involved in this process.
Collapse
Affiliation(s)
- Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jing Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qingsheng Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shaozhen Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
20
|
Hu Y, Ma X, Liu R, Mushtaq I, Qi Y, Yuan C, Huang D. 2,4-Dichlorophenol Increases Primordial Germ Cell Numbers via ESR2a-Dependent Pathway in Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13878-13887. [PMID: 36106461 DOI: 10.1021/acs.est.2c05212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Previous studies have reported the feminizing effects of 2,4-dichlorophenol (2,4-DCP) on zebrafish (Danio rerio). However, the effect of 2,4-DCP on the number of primordial germ cells (PGCs), an indicator for early sex differentiation, remains elusive. In the present study, Tg (piwil1:egfp-UTR nanos3) zebrafish (GFP-labeled PGCs) were treated with 2,4-DCP (10, 20, and 40 μg/L) from 5 to 15 days postfertilization to explore the effect on PGC numbers and to elucidate associated molecular mechanisms. The results showed that 2,4-DCP exposure increased PGC numbers, as evidenced by larger GFP fluorescent areas, upregulated expressions of PGC marker genes (vasa and dnd), and raised the female ratio. Notably, the mRNA level of estrogen receptor 2a (esr2a) was also increased subsequently. Moreover, docking studies revealed stable 2,4-DCP interactions with ESR2a, speculating a role of ESR2a signaling pathway in 2,4-DCP toxicity. Furthermore, in esr2a knockout (esr2a-/-) zebrafish, the effects of 2,4-DCP were considerably minimized, proving the involvement of the ESR2a signaling pathway in the 2,4-DCP-mediated increase in PGC numbers. Dual-luciferase reporter gene assay and point mutation studies demonstrated that 2,4-DCP-stimulated promoter activity was mediated by estrogen response element (ERE) located in -686/-674 of the vasa promoter and -731/-719 of the dnd promoter. Overall, 2,4-DCP can potentially enhance the expression of vasa and dnd by binding to zebrafish ESR2a, thus leading to increased PGC numbers and subsequent female-biased sex differentiation.
Collapse
Affiliation(s)
- Yan Hu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xuan Ma
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Rongjian Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Iqra Mushtaq
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
21
|
He H, Li X, Shen J, Bai S, Li C, Shi H. Bisphenol A exposure causes testicular toxicity by targeting DPY30-mediated post-translational modification of PI3K/AKT signaling in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113996. [PMID: 36030680 DOI: 10.1016/j.ecoenv.2022.113996] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA), one of the chemicals with the highest volume of production worldwide, has been demonstrated to cause testicular toxicity via different pathways. However, there is little evidence concerning the mechanism of BPA exposure induced histone modification alterations, especially regarding the effect on the histone H3 lysine 4 (H3K4) epigenetic modification. Our results demonstrated a new epigenetic regulation of BPA exposure on testicular damage using both cell culture and mouse models. With BPA treatment, disordered and shrunken seminiferous tubules and poor sperm quality were observed in vivo, and mouse spermatogonial germ cell proliferation was inhibited in vitro. BPA attenuated PI3K expression inducing phospho-AKT inhibition in vivo and in vitro. DPY30 was the only downregulated subunit in BPA and MEK2206 (AKT inhibitor) treated cells, which contributed to reducing H3K4me3 recruitment at the PIK3CA transcriptional start site (TSS) in BPA treated cells. The toxicity caused by BPA exposure was relieved after the transduction of adenoviruses expressing DPY30 transgenes, which resulted in the stimulation of PI3K/AKT with H3K4me3 enriched at the PI3KCA TSS. DPY30 promoted cell glycolysis via AMPK and proliferation through AKT/P21. DPY30 was mainly located in the round and elongated spermatids for energy accumulation in mature sperm in AD-DPY30-treated mice which showed higher sperm quality. Overall, our results indicated that BPA exposure causes testicular toxicity through a DPY30-mediated H3K4me3 epigenetic modification, which serves to regulate the PI3K/AKT/P21 pathway.
Collapse
Affiliation(s)
- Huanshan He
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianing Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuying Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Lu Z, Zhang P, Hu C, Li F. Insights into singlet oxygen generation and electron-transfer process induced by a single-atom Cu catalyst with saturated Cu-N4 sites. iScience 2022; 25:104930. [PMID: 36060069 PMCID: PMC9428809 DOI: 10.1016/j.isci.2022.104930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/02/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023] Open
Abstract
Persulfate-based nonradical oxidation processes are appealing in water treatment for the efficient and selective degradation of trace contaminants in complex water matrices. However, there is still lacking of systematic understanding of the relationship between multiple nonradical pathways and the active sites of catalyst. Herein, a single-atom Cu catalyst with saturated Cu-N4 sites on a carbon substrate (SA-Cu-NC) was constructed to activate peroxymonosulfate (PMS), which exhibited high catalytic performance and selectivity for pollutant degradation in different water conditions. Combined with the results of density functional theory (DFT) calculations, the electron-rich area around Cu site and the electron-poor area around C site in the saturated Cu-N4 configuration could efficiently adsorb and activate PMS, which promoted pollutant degradation through the oxidation of singlet oxygen (1O2) and electron transfer process, respectively. This study advances the understanding of the saturated coordination structure of metals and the superiority of multiple nonradical pathways in wastewater treatment. Single-atom Cu catalyst with Cu-N4 sites (SA-Cu-NC) was constructed The saturated Cu-N4 configuration provides two PMS activation sites 1O2 and electron transfer process were the dominant PMS activation pathways Dual nonradical pathways exhibited superiority for pollutant degradation
Collapse
|
23
|
Benjamin K, Marquez CM, Morta M, Reyes EM, Aragones L, Velarde M. Bisphenol S Increases Cell Number and Stimulates Migration of Endometrial Epithelial Cells. J ASEAN Fed Endocr Soc 2022; 38:13-22. [PMID: 37234927 PMCID: PMC10207871 DOI: 10.15605/jafes.037.s7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 09/08/2023] Open
Abstract
OBJECTIVE To determine whether bisphenol S (BPS), a common substitute for bisphenol A (BPA), induces cell proliferation and migration in human endometrial epithelial cells (Ishikawa) and adult mouse uterine tissues. METHODOLOGY Human endometrial Ishikawa cells were exposed to low doses of BPS (1 nM and 100 nM) for 72 hours. Cell proliferation was assessed through the viability assays MTT and CellTiter-Glo®. Wound healing assays were also used to evaluate the migration potential of the cell line. The expression of genes related to proliferation and migration was also determined. Similarly, adult mice were exposed to BPS at a dose of 30 mg/kg body weight/day for 21 days, after which, the uterus was sent for histopathologic assessment. RESULTS BPS increased cell number and stimulated migration in Ishikawa cells, in association with the upregulation of estrogen receptor beta (ESR2) and vimentin (VIM). In addition, mice exposed to BPS showed a significantly higher mean number of endometrial glands within the endometrium. CONCLUSION Overall, in vitro and in vivo results obtained in this study showed that BPS could significantly promote endometrial epithelial cell proliferation and migration, a phenotype also observed with BPA exposure. Hence, the use of BPS in BPA-free products must be reassessed, as it may pose adverse reproductive health effects to humans.
Collapse
Affiliation(s)
- Kimberly Benjamin
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila
- Institute of Environmental Science and Meteorology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Cielo Mae Marquez
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Madeleine Morta
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Emmanuel Marc Reyes
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Lemnuel Aragones
- Institute of Environmental Science and Meteorology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Michael Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
24
|
Moraes ACND, Fallah HP, de Magalhães VF, Habibi HR. Cylindrospermopsin induces oocyte maturation and disrupts gene expression in zebrafish ovarian follicles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103915. [PMID: 35750255 DOI: 10.1016/j.etap.2022.103915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
There is evidence that cylindrospermopsin (CYN) exerts reproductive toxicity in mice. However, little information is available concerning the toxicity of CYN in nonmammalian vertebrates. Here, we investigated the direct action of CYN on female reproduction by studying germinal vesicle breakdown, transcript abundance, caspase-3 activity, and testosterone production using cultured follicle-enclosed zebrafish oocytes as a model system. Treatment of follicles with 1,000 μg/L CYN significantly increased GVBD, Caspase-3 activity, and hCG-induced testosterone secretion. Exposure to CYN also reduced the abundance of 3βhsd as well as hCG-induced fshr and era transcripts and increased cyp19a1 mRNA levels. In summary, this study provides a framework for a better understanding of the adverse action of CYN on female reproduction in zebrafish and other vertebrate species. The findings are also relevant to developing valid biomarkers for CYN by measuring zebrafish oocyte maturation and gene expression.
Collapse
Affiliation(s)
- Adriana Carvalho Natal de Moraes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21.941-902, Brazil; Department of Biological Science, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | | | - Valéria Freitas de Magalhães
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21.941-902, Brazil
| | - Hamid R Habibi
- Department of Biological Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
25
|
Yao J, Wang F, Zhang Y, Zhang Z, Bi J, He J, Li P, Han X, Wei Y, Zhang X, Guo H, He M. Association of serum BPA levels with changes in lipid levels and dyslipidemia risk in middle-aged and elderly Chinese. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113819. [PMID: 36068747 DOI: 10.1016/j.ecoenv.2022.113819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Previous evidences exploring the associations of BPA with lipid changes and dyslipidemia did not obtain consistent results. To evaluate whether serum BPA concentration was associated with changes in blood lipid levels and incident dyslipidemia risk in middle-elderly Chinese adults, we conducted a prospective study with 1093 participants (average 62.65 years old) derived from the Dongfeng-Tongji cohort which was founded in 2008 and followed up each 5 years. Serum BPA levels were measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS). Changes in lipid levels were named as Δ lipids which equal to Lipid2013 - Lipid2008. The diagnosis of dyslipidemia was according to Chinese Guidelines on Prevention and Treatment of Dyslipidemia in 2016. We used multivariable linear regression and Logistic regression to explore the relations between serum BPA levels and changes in lipid levels and incident dyslipidemia risk, respectively. Besides, restricted cubic splines were used to explore the dose-response relations. After 5 years' follow-up, 51 individuals developed with hypercholesterolemia, 87 with hypertriglyceridemia, 34 with high-LDL-cholesterolemia, 74 with low-HDL-cholesterolemia, and 199 with dyslipidemia. At baseline serum BPA levels were positively related to TC, LDL-c, and Non-HDL-c levels. In the prospective study, each Ln-BPA increase was associated with 0.05 (95% CI: 0.02, 0.09) mmol/L increase in Δ TC, 0.07 (95% CI:0.03, 0.11) mmol/L increase in Δ Non-HDL-c, 0.05 (95% CI: 0.01, 0.08) increase in Δ TC/HDL-c, and 0.05 (95% CI: 0.01, 0.08) increase in Δ Non-HDL-c/HDL-c. We only observed significant associations in females but not in males. Besides, serum BPA levels were positively associated with hypercholesterolemia (OR=1.12, 95% CI: 1.01, 1.25). The restricted cubic splines obtained similar results. In conclusion, serum BPA was associated TC and Non-HDL-c changes, and BPA was also associated with increased risk of hypertriglyceridemia. Further prospective studies with large sample size are warranted to validate our findings.
Collapse
Affiliation(s)
- Jinqiu Yao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ying Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zefang Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiao Bi
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia He
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China
| | - Peiwen Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xu Han
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Wei
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Gu J, Li L, Yin X, Liang M, Zhu Y, Guo M, Zhou L, Fan D, Shi L, Ji G. Long-term exposure of zebrafish to bisphenol F: Adverse effects on parental reproduction and offspring neurodevelopment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106190. [PMID: 35561629 DOI: 10.1016/j.aquatox.2022.106190] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol F (BPF), an alternative to bisphenol A (BPA) has potential endocrine and reproductive toxicity; however, the effects of environmental concentrations of BPF on the reproductive and developmental toxicity of offspring following parental exposure to BPF remain unclear. In the present study, the effects of life-cycle BPF exposure at environmental concentrations on zebrafish reproduction, offspring growth, and development were investigated. The results showed that the life-cycle of BPF exposure significantly elevated oxidative stress levels, increased gonadal apoptosis, and reduced zebrafish (F0) spawning. Notably, through maternal transfer, BPF exposure significantly affected offspring development. Developmental parameters such as hatching rate, spontaneous movements, heart rate, body length, and locomotor behavior decreased in zebrafish larvae (F1). In addition, the expression levels of genes related to oxidative stress, apoptosis, and neurodevelopment were altered in F1 larvae. Therefore, the present study provides evidence that BPF, even at environmental concentrations, can be potentially adverse in terms of reproductive defects and offspring neurodevelopmental disorders. Therefore, BPF, as a substitute for BPA, is worthy of in-depth evaluation.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xiaogang Yin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Mengyuan Liang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuanhui Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Min Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Linjun Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Deling Fan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
27
|
Sun Z, Zhu Y, Deng Y, Liu F, Ruan W, Xie L, Beadham I. Nature of surface active centers in activation of peroxydisulfate by CuO for degradation of BPA with non-radical pathway. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Hao L, Ru S, Qin J, Wang W, Zhang J, Wei S, Wang J, Zhang X. Transgenerational effects of parental bisphenol S exposure on zebrafish (Danio rerio) reproduction. Food Chem Toxicol 2022; 165:113142. [PMID: 35595038 DOI: 10.1016/j.fct.2022.113142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
Bisphenol S (BPS) is extensively used for production of polycarbonates and other commodities, and is often detected in environment and biota. Parental BPS exposure has been reported to interfere with reproductive development of offspring, but limited information is available on its multigenerational reproductive toxicity. In our present study, zebrafish (Danio rerio) were exposed to BPS (1 and 100 μg/L) from 3 hpf to 120 dpf, and the effects on reproduction, sex steroid hormones, DNA methylation levels and gene transcription involved in steroidogenesis and DNA methylation were investigated in unexposed F1-2 offspring. The results showed that 100 μg/L BPS exposure increased DNA methylation in F1 testes, and 1 μg/L BPS led to DNA methylation in F2 ovaries. The increased DNA methylation levels led to decreased expression of steroidogenic enzymes, including cyp11a, cyp17 and 3βhsd, which might be a main reason for the elevated plasma 17β-estradiol and decreased testosterone levels. In addition, sex ratio indicated a female dominance trend, and reproductive capacity of male fish was severely impaired. Overall, these findings suggest that parental BPS exposure impairs reproductive development of unexposed offspring via DNA methylation and BPS-induced epigenetic modification inheritance has a long-term effect on the fitness and sustainability of fish populations.
Collapse
Affiliation(s)
- Liping Hao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
29
|
Mohsen R, El-Zohairy E, Hassan MM, Fathy M, Magdy M, Atef S, Issak M, Taha SHN. The Possible Association between Phthalates and Bisphenol A Exposure and Idiopathic Precocious Puberty in Egyptian Girls. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Bisphenol A (BPA) and phthalates are utilized in large spectrum of plastics, as polyvinyl chloride as well as personal products, medical equipment, and epoxy resins. Phthalate and bisphenol A are the most common endocrine disrupting chemicals that interrupt the endocrine system and cause developmental, reproductive, neurological, and immune disturbances in humans. However, the relation between phthalates and bisphenol A and precocious puberty (PP) in human is still controversial.
AIM: Consequently, the present study aimed to detect and investigate the association between exposure to bisphenol A and monobutyl phthalate (MBP) and precocious puberty in Egyptian girls.
METHODS: Urine samples were collected from 100 young females. The subjects were divided into two major groups, precocious puberty group consisted of 60 young females diagnosed by an endocrine pediatric specialist and controls consisted of 40 normal young females matched in age and demographic characters. In urine, MBP and bisphenol A (BPA) were measured with high-performance liquid chromatography.
RESULTS: The mean concentration of MBP level was 22.758 ± 6.216 for the PP group and 15.283 ± 6.262 for controls with statistical difference between the studied groups (p < 0.001). Furthermore, the mean concentration of BPA was 405.02 ± 223.54 for the PP group and 97.95 ± 55 for controls with significant difference between groups (p < 0.001).
CONCLUSION: The present study found that idiopathic precocious puberty in young females was associated with high phthalate metabolites and bisphenol A levels in urine.
Collapse
|
30
|
Scaramella C, Alzagatiti JB, Creighton C, Mankatala S, Licea F, Winter GM, Emtage J, Wisnieski JR, Salazar L, Hussain A, Lee FM, Mammootty A, Mammootty N, Aldujaili A, Runnberg KA, Hernandez D, Zimmerman-Thompson T, Makwana R, Rouvere J, Tahmasebi Z, Zavradyan G, Campbell CS, Komaranchath M, Carmona J, Trevitt J, Glanzman D, Roberts AC. Bisphenol A Exposure Induces Sensory Processing Deficits in Larval Zebrafish during Neurodevelopment. eNeuro 2022; 9:ENEURO.0020-22.2022. [PMID: 35508370 PMCID: PMC9116930 DOI: 10.1523/eneuro.0020-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
Because of their ex utero development, relatively simple nervous system, translucency, and availability of tools to investigate neural function, larval zebrafish are an exceptional model for understanding neurodevelopmental disorders and the consequences of environmental toxins. Furthermore, early in development, zebrafish larvae easily absorb chemicals from water, a significant advantage over methods required to expose developing organisms to chemical agents in utero Bisphenol A (BPA) and BPA analogs are ubiquitous environmental toxins with known molecular consequences. All humans have measurable quantities of BPA in their bodies. Most concerning, the level of BPA exposure is correlated with neurodevelopmental difficulties in people. Given the importance of understanding the health-related effects of this common toxin, we have exploited the experimental advantages of the larval zebrafish model system to investigate the behavioral and anatomic effects of BPA exposure. We discovered that BPA exposure early in development leads to deficits in the processing of sensory information, as indicated by BPA's effects on prepulse inhibition (PPI) and short-term habituation (STH) of the C-start reflex. We observed no changes in locomotion, thigmotaxis, and repetitive behaviors (circling). Despite changes in sensory processing, we detected no regional or whole-brain volume changes. Our results show that early BPA exposure can induce sensory processing deficits, as revealed by alterations in simple behaviors that are mediated by a well-defined neural circuit.
Collapse
Affiliation(s)
- Courtney Scaramella
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Joseph B Alzagatiti
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Christopher Creighton
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Samandeep Mankatala
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Fernando Licea
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Gabriel M Winter
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Jasmine Emtage
- Department of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Joseph R Wisnieski
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Luis Salazar
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Anjum Hussain
- Department of Neuroscience, University of California, Riverside, Riverside, CA 92521
| | - Faith M Lee
- Department of Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Asma Mammootty
- Saint Louis University School of Medicine, St. Louis, MO 63104
| | | | - Andrew Aldujaili
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kristine A Runnberg
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Daniela Hernandez
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | | | - Rikhil Makwana
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Julien Rouvere
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Zahra Tahmasebi
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Gohar Zavradyan
- Department of Neuroscience, University of California, Riverside, Riverside, CA 92521
| | | | - Meghna Komaranchath
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Javier Carmona
- Department of Physics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jennifer Trevitt
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - David Glanzman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
- Integrative Center for Learning and Memory, Brain Research Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Adam C Roberts
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| |
Collapse
|
31
|
Yuan WB, Chen HQ, Li JZ, Zhou SM, Zeng Y, Fan J, Zhang Z, Liu JY, Cao J, Liu WB. TET1 mediated male reproductive toxicity induced by Bisphenol A through Catsper-Ca 2+ signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118739. [PMID: 34953956 DOI: 10.1016/j.envpol.2021.118739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) exposure has many adverse effects on the reproductive system in animals and humans. Ten-eleven translocation 1 (TET1) is closely related to a variety of biological processes through regulating the dynamic balance of DNA demethylation and methylation. However, the role and mechanism of TET1 during BPA induced reproductive toxicity are largely unknown. In this study, mouse spermatogonia cell line GC-2 was treated with BPA in the final concentration of 0, 20, 40 and 80 μM for 72 h. The cell model of differential TET1 gene expression was established to explore the role and mechanism. We found that the growth rate of GC-2 cells, and the intracellular calcium level decreased significantly with the increase of BPA dose, while TET1 and Catsper1-4 expression level decrease with a dose-dependent relationship. Furthermore, TET1 overexpression promoted the proliferation of GC-2 cell, the increase of calcium ion concentration, and the expression level of Catsper1-4, while knockdown of TET1 leads to the opposite results. Mechanistically, TET1 expression promoted the hydroxymethylation of Catsper1-4 and reduced their methylation level. In addition, the expression level of Catsper1-4 was positively correlated with TET1 gene expression level in semen samples of the population. Our study revealed for the first time that TET1 gene regulates the expression of related molecules in the Catsper calcium signal pathway through its hydroxymethylation modification to affect the calcium level, thereby participating in the process of BPA induced damage. These results indicated that TET1 gene may be a potential biomarker of BPA induced male reproductive toxicity.
Collapse
Affiliation(s)
- Wen-Bo Yuan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jing-Zhi Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Shi-Meng Zhou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Yong Zeng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jun Fan
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, PR China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, PR China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| |
Collapse
|
32
|
Neuparth T, Alves N, Machado AM, Pinheiro M, Montes R, Rodil R, Barros S, Ruivo R, Castro LFC, Quintana JB, Santos MM. Neuroendocrine pathways at risk? Simvastatin induces inter and transgenerational disruption in the keystone amphipod Gammarus locusta. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106095. [PMID: 35121565 DOI: 10.1016/j.aquatox.2022.106095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The primary focus of environmental toxicological studies is to address the direct effects of chemicals on exposed organisms (parental generation - F0), mostly overlooking effects on subsequent non-exposed generations (F1 and F2 - intergenerational and F3 transgenerational, respectively). Here, we addressed the effects of simvastatin (SIM), one of the most widely prescribed human pharmaceuticals for the primary treatment of hypercholesterolemia, using the keystone crustacean Gammarus locusta. We demonstrate that SIM, at environmentally relevant concentrations, has significant inter and transgenerational (F1 and F3) effects in key signaling pathways involved in crustaceans' neuroendocrine regulation (Ecdysteroids, Catecholamines, NO/cGMP/PKG, GABAergic and Cholinergic signaling pathways), concomitantly with changes in apical endpoints, such as depressed reproduction and growth. These findings are an essential step to improve hazard and risk assessment of biological active compounds, such as SIM, and highlight the importance of studying the transgenerational effects of environmental chemicals in animals' neuroendocrine regulation.
Collapse
Affiliation(s)
- T Neuparth
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - N Alves
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - A M Machado
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - M Pinheiro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - R Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - R Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - S Barros
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Quinta de Prados - Ed. Blocos Laboratoriais C1.10, 5000-801, Vila Real, Portugal
| | - R Ruivo
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - L Filipe C Castro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - J B Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - M M Santos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
33
|
Robaire B, Delbes G, Head JA, Marlatt VL, Martyniuk CJ, Reynaud S, Trudeau VL, Mennigen JA. A cross-species comparative approach to assessing multi- and transgenerational effects of endocrine disrupting chemicals. ENVIRONMENTAL RESEARCH 2022; 204:112063. [PMID: 34562476 DOI: 10.1016/j.envres.2021.112063] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
A wide range of chemicals have been identified as endocrine disrupting chemicals (EDCs) in vertebrate species. Most studies of EDCs have focused on exposure of both male and female adults to these chemicals; however, there is clear evidence that EDCs have dramatic effects when mature or developing gametes are exposed, and consequently are associated with in multigenerational and transgenerational effects. Several publications have reviewed such actions of EDCs in subgroups of species, e.g., fish or rodents. In this review, we take a holistic approach synthesizing knowledge of the effects of EDCs across vertebrate species, including fish, anurans, birds, and mammals, and discuss the potential mechanism(s) mediating such multi- and transgenerational effects. We also propose a series of recommendations aimed at moving the field forward in a structured and coherent manner.
Collapse
Affiliation(s)
- Bernard Robaire
- Department of Pharmacology and Therapeutics and of Obstetrics and Gynecology, McGill University, Montreal, Canada.
| | - Geraldine Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique (INRS), Laval, QC, Canada
| | - Jessica A Head
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Vicki L Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Université. Savoie Mont Blanc, CNRS, LECA, Grenoble, 38000, France
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
34
|
Terrazas-Salgado L, García-Gasca A, Betancourt-Lozano M, Llera-Herrera R, Alvarado-Cruz I, Yáñez-Rivera B. Epigenetic Transgenerational Modifications Induced by Xenobiotic Exposure in Zebrafish. Front Cell Dev Biol 2022; 10:832982. [PMID: 35281093 PMCID: PMC8914061 DOI: 10.3389/fcell.2022.832982] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Zebrafish (Danio rerio) is a well-established vertebrate model in ecotoxicology research that responds to a wide range of xenobiotics such as pesticides, drugs, and endocrine-disrupting compounds. The epigenome can interact with the environment and transform internal and/or external signals into phenotypic responses through changes in gene transcription. Environmental exposures can also generate epigenetic variations in offspring even by indirect exposure. In this review, we address the advantages of using zebrafish as an experimental animal model to study transgenerational epigenetic processes upon exposure to xenobiotics. We focused mostly on DNA methylation, although studies on post-translational modifications of histones, and non-coding RNAs related to xenobiotic exposure in zebrafish are also discussed. A revision of the methods used to study epigenetic changes in zebrafish revealed the relevance and reproducibility for epigenetics-related research. PubMed and Google Scholar databases were consulted for original research articles published from 2013 to date, by using six keywords: zebrafish, epigenetics, exposure, parental, transgenerational, and F2. From 499 articles identified, 92 were considered, of which 14 were selected as included F2 and epigenetic mechanisms. Current knowledge regarding the effect of xenobiotics on DNA methylation, histone modifications, and changes in non-coding RNAs expressed in F2 is summarized, along with key experimental design considerations to characterize transgenerational effects.
Collapse
Affiliation(s)
| | | | | | - Raúl Llera-Herrera
- Instituto de Ciencias del Mar y Limnología—Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, Mazatlán, Mexico
| | - Isabel Alvarado-Cruz
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ, United States
| | - Beatriz Yáñez-Rivera
- Centro de Investigación en Alimentación y Desarrollo, A. C., Mazatlán, Mexico
- Consejo Nacional de Ciencia y Tecnología, México, Mexico
- *Correspondence: Beatriz Yáñez-Rivera,
| |
Collapse
|
35
|
Evaluation of the Toxicity of Bisphenol A in Reproduction and Its Effect on Fertility and Embryonic Development in the Zebrafish ( Danio rerio). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020962. [PMID: 35055782 PMCID: PMC8775542 DOI: 10.3390/ijerph19020962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023]
Abstract
Bisphenol A (BPA) is a chemical substance commonly used in the manufacture of plastic products. Its inhalation or ingestion from particles in suspension, water, and/or polluted foods can trigger toxic effects related to endocrine disruption, resulting in hormonal, reproduction, and immunological alterations in humans and animals. The zebrafish (Danio rerio) is an ideal experimental model frequently used in toxicity studies. In order to assess the toxic effects of BPA on reproduction and embryonic development in one generation after parental exposure to it, a total of 80 zebrafish, males and females, divided into four groups in duplicate (n = 20) were exposed to BPA concentrations of 500, 50, and 5 µg L-1, along with a control group. The fish were kept in reproduction aquariums for 21 days. The embryos obtained in the crosses were incubated in a BPA-free medium and observed for signs of embryotoxicity. A histopathological study (under optical and electron microscopes) was performed of adult fish gonads. The embryos of reproducers exposed to BPA were those most frequently presenting signs of embryotoxicity, such as mortality and cardiac and musculoskeletal malformations. In the histopathological studies of adult individuals, alterations were found in ovocyte maturation and in spermatazoid formation in the groups exposed to the chemical. Those alterations were directly related to BPA action, affecting fertility in both sexes, as well as the viability of their offspring, proportionally to the BPA levels to which they were exposed, so that our results provide more information by associating toxic effects on the offspring and on the next generation.
Collapse
|
36
|
Moraes ACN, Fallah HP, Magalhães VF, Habibi HR. Cylindrospermopsin directly disrupts spermatogenesis in isolated male zebrafish testis. Gen Comp Endocrinol 2021; 313:113891. [PMID: 34428427 DOI: 10.1016/j.ygcen.2021.113891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Cylindrospermopsin (CYN) is a cytotoxin, and its documented effects in mammals include damage to several organs. CYN also has hormone-disrupting properties, including estrogenic activity, progesterone production inhibition, and apoptosis induction. While CYN has been reported to exert reproductive toxicity in mice, little is known about its effect on fish reproductive function. Using ex vivo organ culture, we investigated the direct action of CYN on the male reproductive system. Isolated zebrafish testis was exposed to 250, 500, and 1000 µg/L CYN for 24 h and 7 d, followed by histo-morphological analysis. The results demonstrate that exposure to CYN led to a decrease in cell types from all three phases of spermatogenesis in zebrafish testis. There were also significant changes in fshr, lhr, and igf3 transcript levels, as well as testosterone secretion following exposure to CYN. In summary, this study provides novel information on the adverse effects of CYN on testicular spermatogenesis and male reproduction in zebrafish. These results provide a framework for a better understanding of CYN toxicity and the mechanism underlying the adverse action of CYN on male reproduction in fish.
Collapse
Affiliation(s)
- A C N Moraes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Biological Science, University of Calgary, Calgary, Alberta, Canada
| | - H P Fallah
- Department of Biological Science, University of Calgary, Calgary, Alberta, Canada
| | - V F Magalhães
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - H R Habibi
- Department of Biological Science, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
37
|
Wenshen Shengjing Decoction Improves Early Embryo Development by Maintaining Low H3K27me3 Levels in Sperm and Pronuclear Embryos of Spermatogenesis Impaired Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8035997. [PMID: 34616480 PMCID: PMC8490026 DOI: 10.1155/2021/8035997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022]
Abstract
Many ingredients in Wenshen Shengjing Decoction (WSSJD) can cause epigenetic changes in the development of different types of cells. It is not yet known whether they can cause epigenetic changes in sperms or early embryos. Here, we investigated the role of WSSJD in epigenetic modifications of sperms or early embryos and early embryo development. A mouse model with spermatogenesis disorders was established with cyclophosphamide (CPA). WSSJD was administrated for 30 days. The male model mice after the treatment were mated with the female mice treated with superovulation. The embryo development rate of each stage was calculated. Immunofluorescence staining was used to detect the expression of H3K27me3 in sperm, pronuclear embryos, and 2-cell embryos. Western blotting was used to detect the expression of histone demethylase KDM6A and methyltransferase EZH2 in 2-cell embryos with developmental arrest. The expressions of zygotic genome activation genes (ZSCAN4, E1F1AX, HSPA1A, ERV4-2, and MYC) in 2-cell embryos with developmental arrest were analyzed with qRT-PCR. Comparing with the control group, CPA destroyed the development of seminiferous epithelium, significantly increased the expression level of H3K27me3 in sperm, reduced the expression ratio of H3K27me3 in female and male pronuclei, delayed the development of 2-cell embryos, and increased the developmental arrest rate and degeneration rate of 2-cell embryos. Moreover, the expressions of EZH2 and H3K27me3 were significantly increased in the 2-cell embryos with developmental arrest, and the expression of zygotic genome activation genes (ZSCAN4, E1F1AX, HSPA1A, ERV4-2, and MYC) was significantly decreased. Compared with the CPA group, WSSJD promoted the development of seminiferous epithelium, maintained a low level of H3K27me3 modification in sperm and male pronucleus, significantly increased the development rate of 2-cell embryos and 3-4 cell embryos, and reduced the developmental arrest rate and degeneration rate of 2-cell embryos. WSSJD may promote early embryonic development by maintaining a low level of H3K27me3 modification in sperm and male pronucleus and regulating the zygotic genome activation in mice with spermatogenesis disorders induced by CPA.
Collapse
|
38
|
Escarda-Castro E, Herráez MP, Lombó M. Effects of bisphenol A exposure during cardiac cell differentiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117567. [PMID: 34126515 DOI: 10.1016/j.envpol.2021.117567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Heart development requires a precise temporal regulation of gene expression in cardiomyoblasts. Therefore, the transcriptional changes in differentiating cells can lead to congenital heart diseases. Although the genetic mutations underlie most of these alterations, exposure to environmental contaminants, such as bisphenol A (BPA), has been recently considered as a risk factor as well. In this study we investigated the genotoxic and epigenotoxic effects of BPA throughout cardiomyocyte differentiation. H9c2 cells (rat myoblasts) were exposed to 10 and 30 μM BPA before and during the last two days of cardiac-driven differentiation. Then, we have analysed the phenotypic and molecular modifications (at transcriptional, genetic and epigenetic level). The results showed that treated myoblasts developed a skeletal muscle cell-like phenotype. The transcriptional changes induced by BPA in genes codifying proteins involved in heart differentiation and function depend on the window of exposure to BPA. The exposure before differentiation repressed the expression of heart transcription factors (Hand2 and Gata4), whereas exposure during differentiation reduced the expression of cardiac-specific genes (Tnnt2, Myom2, Sln, and Atp2a1). Additionally, significant effects were observed regarding DNA damage and histone acetylation levels after the two periods of BPA exposure: in cells exposed to the toxicant the percentage of DNA repair foci (formed by the co-localization of γH2AX and 53BP1) increased in a dose-dependent manner, whereas the treatment with the toxicant triggered a decrease in the epigenetic marks H3K9ac and H3K27ac. Our in vitro results reveal that BPA seriously interferes with the process of cardiomyocyte differentiation, which could be related to the reported in vivo effects of this toxicant on cardiogenesis.
Collapse
Affiliation(s)
- Enrique Escarda-Castro
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - María Paz Herráez
- Department of Molecular Biology, Faculty of Biology, University of León, Campus Vegazana s/n, León, 24071, Spain
| | - Marta Lombó
- Department of Animal Reproduction, INIA, Av. Puerta de Hierro, 18, Madrid, Spain.
| |
Collapse
|
39
|
Rogers LD. What Does CLARITY-BPA Mean for Canadians? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137001. [PMID: 34208913 PMCID: PMC8297219 DOI: 10.3390/ijerph18137001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Bisphenol A is an extremely high-volume chemical widely used in polycarbonate plastics, the linings of food and beverage tins, and shopping receipts. Canadians are ubiquitously exposed to bisphenol A and research shows that exposure at environmentally relevant doses causes endocrine disruption. Recent risk assessments and exposure estimates by the European Food Safety Authority have guided increased restrictions around the use of bisphenol A and established a lower tolerable daily intake, while the CLARITY-BPA program in the United States identified several adverse effects below this exposure level. Within the context of bisphenol toxicity and international regulation, this paper describes the need for revised bisphenol A risk assessments in Canada. Completed in 2008, the most recent bisphenol A risk assessment conducted by Health Canada does not include risks from alternative bisphenols or non-dietary exposure. It also does not account for the additive effects caused by simultaneous exposure to multiple endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Lindsay D Rogers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
40
|
Venney CJ, Sutherland BJG, Beacham TD, Heath DD. Population differences in Chinook salmon ( Oncorhynchus tshawytscha) DNA methylation: Genetic drift and environmental factors. Ecol Evol 2021; 11:6846-6861. [PMID: 34141260 PMCID: PMC8207424 DOI: 10.1002/ece3.7531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Local adaptation and phenotypic differences among populations have been reported in many species, though most studies focus on either neutral or adaptive genetic differentiation. With the discovery of DNA methylation, questions have arisen about its contribution to individual variation in and among natural populations. Previous studies have identified differences in methylation among populations of organisms, although most to date have been in plants and model animal species. Here we obtained eyed eggs from eight populations of Chinook salmon (Oncorhynchus tshawytscha) and assayed DNA methylation at 23 genes involved in development, immune function, stress response, and metabolism using a gene-targeted PCR-based assay for next-generation sequencing. Evidence for population differences in methylation was found at eight out of 23 gene loci after controlling for developmental timing in each individual. However, we found no correlation between freshwater environmental parameters and methylation variation among populations at those eight genes. A weak correlation was identified between pairwise DNA methylation dissimilarity among populations and pairwise F ST based on 15 microsatellite loci, indicating weak effects of genetic drift or geographic distance on methylation. The weak correlation was primarily driven by two genes, GTIIBS and Nkef. However, single-gene Mantel tests comparing methylation and pairwise F ST were not significant after Bonferroni correction. Thus, population differences in DNA methylation are more likely related to unmeasured oceanic environmental conditions, local adaptation, and/or genetic drift. DNA methylation is an additional mechanism that contributes to among population variation, with potential influences on organism phenotype, adaptive potential, and population resilience.
Collapse
Affiliation(s)
- Clare J. Venney
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorONCanada
| | | | - Terry D. Beacham
- Fisheries and Oceans CanadaPacific Biological StationNanaimoBCCanada
| | - Daniel D. Heath
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorONCanada
- Department of Integrative BiologyUniversity of WindsorWindsorONCanada
| |
Collapse
|
41
|
You HH, Song G. Review of endocrine disruptors on male and female reproductive systems. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109002. [PMID: 33610819 DOI: 10.1016/j.cbpc.2021.109002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022]
Abstract
Endocrine disruptors (EDs) interfere with different hormonal and metabolic processes and disrupt the development of organs and tissues, as well as the reproductive system. In toxicology research, various animal models have been utilized to compare and characterize the effects of EDs. We reviewed studies assessing the effect of ED exposure in humans, zebrafish, and mouse models and the adverse effects of EDs on male and female reproductive systems. This review outlines the distinctive morphological characteristics, as well as gene expression, factors, and mechanisms that are known to occur in response to EDs. In each animal model, disturbances in the reproductive system were associated with certain factors of apoptosis, the hypothalamic-pituitary-gonadal axis, estrogen receptor pathway-induced meiotic disruption, and steroidogenesis. The effects of bisphenol A, phthalate, and 17α-ethinylestradiol have been investigated in animal models, each providing supporting outcomes and elaborating the key regulators of male and female reproductive systems.
Collapse
Affiliation(s)
- Hyekyoung Hannah You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
42
|
Xavier Senra MV, Fonseca AL. New tyrosinases with putative action against contaminants of emerging concern. Proteins 2021; 89:1180-1192. [PMID: 33969540 DOI: 10.1002/prot.26139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/16/2021] [Accepted: 04/30/2021] [Indexed: 11/07/2022]
Abstract
Tyrosinases (EC 1.14.18.1) are type-3 copper metalloenzymes with strong oxidative capacities and low allosteric selectivity to phenolic and non-phenolic aromatic compounds, which have been used as biosensors and biocatalysts to mitigate the impacts of environmental contaminants over aquatic ecosystems. However, the widespread use of these polyphenol oxidases is limited by elevated production costs and restricted knowledge on their spectrum of action. Here, six tyrosinase homologs were identified and characterized from the genomes of four widespread freshwater ciliates using bioinformatics. Next, we performed a virtual screening to calculate binding energies between 3D models of these homologs and ~ 1000 contaminants of emerging concern (CECs), as an indirect approach to identify likely and unlikely targets for tyrosinases. Many fine chemicals, pharmaceuticals, personal care products, illicit drugs, natural toxins, and pesticides exhibited strong binding energies to these new tyrosinases, suggesting the spectrum of targets of these enzymes might be considerably broader than previously thought. Many ciliates, including those carrying tyrosinase genes, are fast-growing unicellular microeukaryotes that can be efficiently cultured, at large scales, under in vitro conditions, suggesting these organisms should be regarded as potential low-cost sources of new environmental biotechnological molecules.
Collapse
Affiliation(s)
| | - Ana Lúcia Fonseca
- Instituto de Recursos Naturais, Universidade Federal de Itajubá, Itajubá, Minas Gerais, Brazil
| |
Collapse
|
43
|
Lai KP, Gong Z, Tse WKF. Zebrafish as the toxicant screening model: Transgenic and omics approaches. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105813. [PMID: 33812311 DOI: 10.1016/j.aquatox.2021.105813] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The production of large amounts of synthetic industrial and biomedical compounds, together with environmental pollutants, poses a risk to our ecosystem and induces negative effects on the health of wildlife and human beings. With the emergence of the global problem of chemical contamination, the adverse biological effects of these chemicals are gaining attention among the scientific communities, industry, governments, and the public. Among these chemicals, endocrine disrupting chemicals (EDCs) are regarded as one of the major global issues that potentially affecting our health. There is an urgent need of understanding the potential hazards of such chemicals. Zebrafish have been widely used in the aquatic toxicology. In this review, we first discuss the strategy of transgenic lines that used in the toxicological studies, followed by summarizing the current omics approaches (transcriptomics, proteomics, metabolomics, and epigenomics) on toxicities of EDCs in this model. We will also discuss the possible transgenerational effects in zebrafish and future prospective of the integrated omics approaches with customized transgenic organism. To conclude, we summarize the current findings in the field, and provide our opinions on future environmental toxicity research in the zebrafish model.
Collapse
Affiliation(s)
- Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin 541004, PR China; Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, PR China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, PR China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China.
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
44
|
Rahman MS, Pang WK, Ryu DY, Park YJ, Pang MG. Multigenerational and transgenerational impact of paternal bisphenol A exposure on male fertility in a mouse model. Hum Reprod 2021; 35:1740-1752. [PMID: 32644108 DOI: 10.1093/humrep/deaa139] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/27/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION How does paternal exposure to bisphenol A (BPA) affect the fertility of male offspring in mice in future generations? SUMMARY ANSWER Paternal exposure to BPA adversely affects spermatogenesis, several important sperm functions and DNA methylation patterns in spermatozoa, which have both multigenerational (in F0 and F1) and partial transgenerational (mainly noticed in F2, but F3) impacts on the fertility of the offspring. WHAT IS KNOWN ALREADY BPA, a synthetic endocrine disruptor, is used extensively to manufacture polycarbonate plastics and epoxy resins. Growing evidence suggests that exposure to BPA during the developmental stages results in atypical reproductive phenotypes that could persist for generations to come. STUDY DESIGN, SIZE, DURATION CD-1 male mice (F0) were treated with BPA (5 or 50 mg/kg body weight per day (bw/day)) or ethinylestradiol (EE) (0.4 μg/kg bw/day) for 6 weeks. Control mice were treated with vehicle (corn oil) only. The treated male mice were bred with untreated female mice to produce first filial generation (F1 offspring). The F2 and F3 offspring were produced similarly, without further exposure to BPA. PARTICIPANTS/MATERIALS, SETTING, METHODS Histological changes in the testis along with functional, biochemical and epigenetic (DNA methylation) properties of spermatozoa were investigated. Subsequently, each parameter of the F0-F3 generations was compared between BPA-treated mice and control mice. MAIN RESULTS AND THE ROLE OF CHANCE Paternal BPA exposure disrupted spermatogenesis by decreasing the size and number of testicular seminiferous epithelial cells, which eventually led to a decline in the total sperm count of F0-F2 offspring (P < 0.05). We further showed that a high BPA dose decreased sperm motility in F0-F2 males by mediating the overproduction of reactive oxygen species (F0-F1) and decreasing intracellular ATP (F0-F2) in spermatozoa (P < 0.05). These changes in spermatozoa were associated with altered global DNA methylation patterns in the spermatozoa of F0-F3 males (P < 0.05). Furthermore, we noticed that BPA compromised sperm fertility in mice from the F0-F2 (in the both dose groups) and F3 generations (in the high-dose group only). The overall reproductive toxicity of BPA was equivalent to or higher (high dose) than that of the tested dose of EE. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Further research is required to determine the variables (e.g. lowest BPA dose) that are capable of producing changes in sperm function and fertility in future generations. WIDER IMPLICATIONS OF THE FINDINGS These results may shed light on how occupational exposure to BPA can affect offspring fertility in humans. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2018R1A6A1A03025159). M.S.R. was supported by Korea Research Fellowship Program through the NRF funded by the Ministry of Science and ICT (Grant No. 2017H1D3A1A02013844). There are no competing interests.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
45
|
Zhu L, Liu Y, Xue X, Yuan C, Wang Z. BPA's transgenerational disturbance to transcription of ovarian steroidogenic genes in rare minnow Gobiocypris rarus via DNA and histone methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143055. [PMID: 33127149 DOI: 10.1016/j.scitotenv.2020.143055] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
As a well-known estrogenic endocrine disruptor, bisphenol A (BPA) is of utmost concern since it is reported with harmful effects on animal reproduction. However, the adverse effects on progeny after parental BPA exposure are largely unknown in fishes. To investigate the epigenetic effects of BPA on progeny gonadal development, parental rare minnow (Gobiocypris rarus) were exposed to BPA (15 μg L-1) for two months, then were purged in clean water for one, two or three months, respectively. From the second month, parents were mated once a month and the offspring were reared to 5 months old. Results showed that parental BPA exposure inhibited the ovary development of the offspring by reducing the number of mature oocytes while the transcripts of steroidogenic genes (cyp11a1, cyp17a1, cyp19a1a and star) were significantly affected. And the negative effects of parental BPA exposure on the offspring were reversible. The DNA methylation and histone trimethylation levels (H3K9me3 and H3K27me3) together with the expression of dnmts (dnmt1, dnmt5 and dnmt7) and histone methyltransferase genes (setdb1, setdb2 and ezh2) were significantly altered in the ovaries of the 5-month old offsprings. BPA interfered the expression of steroidogenic genes by altering histone recruitment in star (H3K4me3 and H3K9me3), in cyp11a1 and cyp17a1 (H3K9me3 and H3K27me3), as well as in cyp19a1a (H3K4me3, H3K9me3 and H3K27me3). In addition, altering of DNA methylation at CpG site caused by BPA exposure involved in the regulation of star, cyp17a1 and cyp19a1a expression. These results suggest that BPA transgenerationally imposes detriment to reproduction and the epigenetic changes in DNA methylation and histone trimethylation might account for steroidogenic genes expression.
Collapse
Affiliation(s)
- Long Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xue Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
46
|
Lombó M, Herráez P. The effects of endocrine disruptors on the male germline: an intergenerational health risk. Biol Rev Camb Philos Soc 2021; 96:1243-1262. [PMID: 33660399 DOI: 10.1111/brv.12701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Environmental pollution is becoming one of the major concerns of society. Among the emerging contaminants, endocrine-disrupting chemicals (EDCs), a large group of toxicants, have been the subject of many scientific studies. Besides the capacity of these compounds to interfere with the endocrine system, they have also been reported to exert both genotoxic and epigenotoxic effects. Given that spermatogenesis is a coordinated process that requires the involvement of several steroid hormones and that entails deep changes in the chromatin, such as DNA compaction and epigenetic remodelling, it could be affected by male exposure to EDCs. A great deal of evidence highlights that these compounds have detrimental effects on male reproductive health, including alterations to sperm motility, sexual function, and gonad development. This review focuses on the consequences of paternal exposure to such chemicals for future generations, which still remain poorly known. Historically, spermatozoa have long been considered as mere vectors delivering the paternal haploid genome to the oocyte. Only recently have they been understood to harbour genetic and epigenetic information that plays a remarkable role during offspring early development and long-term health. This review examines the different modes of action by which the spermatozoa represent a key target for EDCs, and analyses the consequences of environmentally induced changes in sperm genetic and epigenetic information for subsequent generations.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Animal Reproduction, INIA, Puerta de Hierro 18, Madrid, 28040, Spain
| | - Paz Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| |
Collapse
|
47
|
Liu H, Tian Z, Guo Y, Liu X, Ma Y, Du X, Wang R, Zhang S, Shi L, Guo H, Zhang H. Microcystin-leucine arginine exposure contributes to apoptosis and follicular atresia in mice ovaries by endoplasmic reticulum stress-upregulated Ddit3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144070. [PMID: 33288253 DOI: 10.1016/j.scitotenv.2020.144070] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Microcystin-leucine arginine (MC-LR), an intracellular toxin to cause reproduction toxicity, is produced by blooming cyanobacteria and widely distributed in eutrophic waters. It is revealed that MC-LR-induced female reproductive toxicity is more severe than male reproductive toxicity. Previous studies mainly focused on male reproductive toxicity, and the molecular mechanisms of MC-LR-induced apoptosis, follicular atresia and infertility in female remain largely unclear. Here, it was found that MC-LR treatment could induce apoptosis, inflammation, follicular atresia, and decrease of gonadal index in mice ovaries. RNA-Seq data showed that the up-regulation of DNA-damage inducible transcript 3 (Ddit3) under endoplasmic reticulum (ER) stress had predominantly regulatory role in MC-LR-induced apoptotic pathway. Furthermore, MC-LR exposure promoted cleavage of activating transcription factor 6 (ATF6, 50kd), inositol-requiring enzyme 1 (Ire1) expression, phosphorylation of IRE1, mitogen-activated protein kinase 5 (Map3k5) and Ddit3 expression, which was accompanied by the upregulation of death receptor 5 (Dr5) and active-caspase-3, and a decrease in Bcl-2 expression. ER stress inhibitor 4-Phenyl butyric acid (4-PBA) ameliorated these MC-LR-induced changes in protein or mRNA level. More importantly, knockdown of Ddit3 suppressed MC-LR-induced cell apoptosis and follicular atresia by directly regulating Dr5 and Bcl-2. Additionally, it was also found that MC-LR increased Map3k5 phosphorylation by inhibiting protein phosphatase 2A (PP2A) activity, and then promoted Ddit3 expression. In short, our data suggests that Ddit3 promotes MC-LR-induced mice ovarian cells apoptosis and follicular atresia via ER stress activation, which provides a new insight into the relation between infertility in females and the emerging water pollutant MC-LR.
Collapse
Affiliation(s)
- Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yaxin Guo
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
48
|
Alves N, Neuparth T, Barros S, Santos MM. The anti-lipidemic drug simvastatin modifies epigenetic biomarkers in the amphipod Gammarus locusta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111849. [PMID: 33387775 DOI: 10.1016/j.ecoenv.2020.111849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The adverse effects of certain environmental chemicals have been recently associated with the modulation of the epigenome. Although changes in the epigenetic signature have yet to be integrated into hazard and risk assessment, they are interesting candidates to link environmental exposures and altered phenotypes, since these changes may be passed across multiple non-exposed generations. Here, we addressed the effects of simvastatin (SIM), one of the most prescribed pharmaceuticals in the world, on epigenetic regulation using the amphipod Gammarus locusta as a proxy, to support its integration into hazard and environmental risk assessment. SIM is a known modulator of the epigenome in mammalian cell lines and has been reported to impact G. locusta ecological endpoints at environmentally relevant levels. G. locusta juveniles were exposed to three SIM environmentally relevant concentrations (0.32, 1.6 and 8 µg L-1) for 15 days. Gene transcription levels of selected epigenetic regulators, i.e., dnmt1, dmap1, usp7, kat5 and uhrf1 were assessed, along with the quantification of DNA methylation levels and evaluation of key ecological endpoints: survival and growth. Exposure to 0.32 and 8 µg L-1 SIM induced significant downregulation of DNA methyltransferase 1 (dnmt1), concomitant with global DNA hypomethylation and growth impacts. Overall, this work is the first to validate the basal expression of key epigenetic regulators in a keystone marine crustacean, supporting the integration of epigenetic biomarkers into hazard assessment frameworks.
Collapse
Affiliation(s)
- Nélson Alves
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre nº 1021/1055, 4169-007 Porto, Portugal
| | - Teresa Neuparth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Susana Barros
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre nº 1021/1055, 4169-007 Porto, Portugal.
| |
Collapse
|
49
|
Abdel-Wahab A, Hassanin KMA, Ibrahim SS, El-Kossi DMMH, Abdel-Razik ARH. Developmental Programming: Physiological Impacts of Prenatal Melatonin Administration on Reproductive Capacity and Serum Triiodothyronine of Adult Female Offspring Rat Born to Moms Exposed to Bisphenol A During Pregnancy. Reprod Sci 2021; 28:1956-1966. [PMID: 33469879 DOI: 10.1007/s43032-020-00452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/29/2020] [Indexed: 11/30/2022]
Abstract
Gestational bisphenol A (BPA) exposure induced multiple programmed diseases in the adult offsprings. Thus, this study targeted exploring the physiological impacts of melatonin (MEL) as a reprogramming strategy against in utero BPA exposure on reproductive capacity of adult F1 female rat offspring. Forty adult pregnant albino female rats were divided equally into 5 groups (n = 8): group I (control), group II (low-dose BPA; 25 μg BPA/kg B.w.t.), group III (low-dose BPA + 10 mg MEL/kg B.w.t.), group IV (high-dose BPA; 250 μg/kg B.w.t.), and group V (high-dose BPA + MEL). Treatments were given daily by subcutaneous (s/c) injection from the fourth day of pregnancy until full term. After delivery, female offspring were selected, and on postnatal day 60, adult offspring were examined for estrus regularity and then were sacrificed at estrus to collect blood and tissue samples. Findings clarified that in utero BPA exposure (both doses) increased significantly (P < 0.05) the ovarian weights and the serum levels of estrogen but decreased that of triiodothyronine (T3) compared to control groups. Significant increasing of serum malondialdehyde (MDA) and decreasing of total antioxidant capacity (TAC) were also detected. Both doses of BPA disturbed remarkably the estrus cycles and caused marked aberrations in ovarian and uterine tissues. Interestingly, prenatal MEL co-treatment with BPA mitigated significantly all of these degenerative changes. Thus, this study first demonstrated that prenatal MEL therapy could be used as a potent reprogramming intervention against BPA-induced reproductive disorders in the adult F1 female rat offspring.
Collapse
Affiliation(s)
- Ahmed Abdel-Wahab
- Physiology Department, Faculty of Veterinary Medicine, Minia University, Minia, 61519, Egypt.
| | - Kamel M A Hassanin
- Biochemistry Department, Faculty of Veterinary Medicine, Minia University, Minia, 61519, Egypt
| | - Shawky S Ibrahim
- Physiology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Dina M M H El-Kossi
- Physiology Department, Faculty of Veterinary Medicine, Minia University, Minia, 61519, Egypt
| | | |
Collapse
|
50
|
Shi Y, Qi W, Xu Q, Wang Z, Cao X, Zhou L, Ye L. The role of epigenetics in the reproductive toxicity of environmental endocrine disruptors. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:78-88. [PMID: 33217042 DOI: 10.1002/em.22414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Environmental endocrine disruptors (EEDs) seriously endanger human health by interfering with the normal function of reproductive systems. In males, EEDs can affect sperm formation and semen quality as well spermatogenesis, ultimately reducing fertility. In females, EEDs can affect uterine development and the expression levels of reproduction-related genes, ultimately reducing female fertility and the normal development of the fetus. There are a large number of putative mechanisms by which EEDs can induce reproductive toxicity, and many studies have shown the involvement of epigenetics. In this review, we summarize the role of DNA methylation, noncoding RNAs, genomic imprinting, chromatin remodeling and histone modification in the reproductive toxicity of EEDs.
Collapse
Affiliation(s)
- Yanbin Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zheng Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xiaolian Cao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|