1
|
Sigler K, Messer TL, Ford W, Sanderson W. Occurrence, transformation, and transport of PFAS entering, leaving, and flowing past wastewater treatment plants with diverse land uses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123129. [PMID: 39504663 DOI: 10.1016/j.jenvman.2024.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been detected ubiquitously throughout the environment. Wastewater treatment plants (WWTPs) have been identified as potential hotspots for the introduction of PFAS into the environment. Therefore, the occurrence, transformation, and transport of 18 PFAS in two WWTPs with varying treatment processes, prevailing land uses, and during two distinct time periods were investigated. Polar Organic Chemical Integrative Samplers (POCIS) were installed at two WWTPs in Central Kentucky during April and July of 2022. PFAS concentrations typically increased from influent to effluent at both WWTPs, regardless of wastewater treatment processes, but changes in surface water concentrations from upstream to downstream of the effluent mixing zones varied. Both WWTPs discharged the 18 PFAS at higher loads than received, indicating prevalent transformation of PFAS precursors and non-measured PFAS analytes into measurable PFAS. Nearly all measured PFAS persisted in aqueous (86-98%) compartments rather than sediment or biosolids (2-14%). All biosolids had low content of PFAS with the dominant compound being PFOS (1.59-2.60 ng/g). Based on recent US EPA proposed maximum contaminant levels, hazard indexes for drinking water were exceeded in effluent and downstream surface waters at both WWTPs. The WWTP located in a heavily developed area and downstream from a firefighting training facility, had significantly higher concentrations of most PFAS species at most monitoring sites and was less impacted by sampling period compared to the WWTP located in a moderately developed, pastured area. Findings support the importance of WWTPs and land use practices as contributing to PFAS impact to downstream ecosystems along with potentially increasing strains on downstream drinking water source waters in regions that are surface water dependent.
Collapse
Affiliation(s)
- Kyra Sigler
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, USA
| | - Tiffany L Messer
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, USA.
| | - William Ford
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, USA
| | - Wayne Sanderson
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Ohoro CR, Amaku JF, Conradie J, Olisah C, Akpomie KG, Malloum A, Akpotu SO, Adegoke KA, Okeke ES, Omotola EO. Effect of physicochemical parameters on the occurrence of per- and polyfluoroalkyl substances (PFAS) in aquatic environment. MARINE POLLUTION BULLETIN 2024; 208:117040. [PMID: 39366060 DOI: 10.1016/j.marpolbul.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Perfluoroalkyl substances (PFAS) and their distribution in aquatic environments have been studied extensively, but more information is needed to link these occurrences to their physicochemical characteristics. Understanding how these parameters influence PFAS can help predict their fate, mobility, and occurrences in water. This study reviewed the influence of physicochemical parameters on the occurrences of PFAS in aquatic environment using the relevant keywords to retrieve articles from databases spanning mostly between 2017 and 2024. The result suggests that high pH, turbidity, and dissolved oxygen, give high concentration of PFAS, while high electrical conductivity, temperature and salinity give low PFAS concentration in the water. Therefore, monitoring and safeguarding the aquatic bodies for human and environmental safety is imperative. Future studies should include the effects of the physicochemical properties on PFAS occurrences in the natural environment and focus on an organism's distinctive characteristics to comprehend the bioaccumulation and biomagnification of PFAS in them and environmental matrices.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa.
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria; Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, Gauteng, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Samson O Akpotu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Elizabeth O Omotola
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria
| |
Collapse
|
3
|
Saaristo M, Sharp S, McKenzie R, Hinwood A. Pharmaceuticals in biota: The impact of wastewater treatment plant effluents on fish in Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124695. [PMID: 39122170 DOI: 10.1016/j.envpol.2024.124695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Globally, pharmaceuticals and personal care products (PPCPs) are detected in surface waters receiving wastewater, yet their presence in biota, remain largely understudied. To address this, we conducted a study that measured 46 PPCPs in spot water samples and fish caught up- and downstream from wastewater treatment plants (WWTPs) in Victoria, Australia. We sampled 15 sites located along four waterways following a 3-site design: WWTP-discharge('hotspot'), 'upstream'(∼2 km) and 'downstream'(∼2 km). Spot water and fish were also sampled at reference sites >100 km from WWTP discharge (n = 3). Additionally, spot water samples were taken from WWTP effluent outflows (n = 3). From each locality, we analysed 3-12 fish (n = 131 total). In waterways, passive samplers (POCIS; ∼28d, n = 19 PPCPs) were also deployed. Individual fish (axial muscle) and water were analysed with LC-MS-MS. We found that PPCP concentrations in environmental surface water ranged from<0.02-0.97 μg/L. In WWTP effluent, the range was <0.02-1.4 μg/L. Of the 46 PPCPs analysed, 12 were detected in spot water samples and five in fish. In water, the highest concentration detected was for antidepressant venlafaxine (3 μg/L). The most frequently detected PPCPs: venlafaxine (54.9%), metoprolol (41.2%), propranolol (29.4%), carbamazepine (29.4%), caffeine (17.6%) and sulfamethoxazole (17.6%). Out of 131 fish analysed, 35 fish had detectable levels of PPCPs in the muscle tissue. The highest muscle concentrations were: venlafaxine (150 μg/kg, redfin perch), and sertraline (100 μg/kg, eel). Bioaccumulation factors ranged from 104 to 341L/kg for venlafaxine in redfins, 21-1,260L/kg for carbamazepine in redfins and eels, and 367-3,333L/kg for sertraline in eels. Based on our human health risk calculations for venlafaxine, carbamazepine, sertraline, triclosan, and caffeine, consumption of fish does not pose a significant risk to human health. Despite this, most of the detected PPCPs in surface waters exceeded 10 ng/L trigger value, which has led to further investigations by EPA. Our study highlights the need for using multiple lines of evidence for estimating risks of PPCPs.
Collapse
Affiliation(s)
- Minna Saaristo
- Environment Protection Authority, EPA Science, Victoria, Australia.
| | - Simon Sharp
- Environment Protection Authority, EPA Science, Victoria, Australia
| | - Robert McKenzie
- Environment Protection Authority, EPA Science, Victoria, Australia
| | - Andrea Hinwood
- Environment Protection Authority, EPA Science, Victoria, Australia
| |
Collapse
|
4
|
Peña Caballero V, López-Pérez PA, Oatna Georgina GS, Morales-Vargas AT. Experimental validation off-line a nonlinear controller for removal of chromium using non-living cells of Yarrowia lipolytica. Prep Biochem Biotechnol 2024; 54:1147-1156. [PMID: 38533682 DOI: 10.1080/10826068.2024.2329277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The removal of hexavalent chromium [Cr (VI)] using non-living cells of Yarrowia lipolytica was investigated. Batch and continuous studies on removal of Cr (VI) achieved 97% and 99% removal from aqueous phase, respectively. The specific uptake values at pH of 2 in batch process were 40.73 ± 1.3 mg/g and 30.09 ± 0.23 mg/g on non-living cells, when 100 and 200 mg/L of metal Cr (VI) concentrations were used. In order to investigate the regulation of Cr (VI) under continuous operation based on reaction volume numerically a new class of feedback controller from structure polynomial was designed. The proposed methodology was used to an experimentally kinetic model for a removal Cr (VI) from Yarrowia lipolytica biomass was showed satisfactory closed-loop performance the proposed controller. Starting from an off-line optimization performed in simulation, we present the controller implementation, focussing on the methodology required to could be suitable for implementation in real time. In our experimental results, we highlight some discrepancies between simulation and reality despite these differences, the controller managed to perform convergence to removal Cr (VI). Finally, the results validated with off-line samples suggest that the proposed control could be suitable for in application in potential scenarios for wastewater treatment.
Collapse
Affiliation(s)
| | - Pablo A López-Pérez
- Escuela Superior de Apan, Autonomous University of the State of Hidalgo, Carretera Apan-Calpulalpan, Hidalgo, México
| | | | | |
Collapse
|
5
|
Soriano Y, Carmona E, Renovell J, Picó Y, Brack W, Krauss M, Backhaus T, Inostroza PA. Co-occurrence and spatial distribution of organic micropollutants in surface waters of the River Aconcagua and Maipo basins in Central Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176314. [PMID: 39306134 DOI: 10.1016/j.scitotenv.2024.176314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Organic Micropollutants (OMPs) might pose significant risks to aquatic life and have potential toxic effects on humans. These chemicals typically occur as complex mixtures rather than individually. Information on their co-occurrence and their association with land use is largely lacking, even in industrialized countries. Furthermore, data on the presence of OMPs in freshwater ecosystems in South America is insufficient. Consequently, we assessed the co-occurrence and distribution of OMPs, including pharmaceuticals, pesticides, personal care products, surfactants, and other industrial OMPs, in surface waters of two river basins in central Chile. We focused on identifying and ranking quantified chemicals, classifying their mode of actions, as well as correlating their occurrence with distinct land uses. We identified and quantified 311 compounds that occurred at least once in the River Aconcagua and River Maipo basins, encompassing compounds from urban, agricultural, industrial, and pharmaceutical sectors. Pharmaceuticals were the most frequently occurring chemicals, followed by pesticides, personal care and household products. OMPs with neuroactive properties dominated surface waters in Central Chile, along with OMPs known to alter the cardiovascular and endocrine systems of humans and aquatic animals. Finally, we observed positive correlations between agricultural and urban land uses and OMPs. Our findings represent a step forward in extending current knowledge on the co-occurrence patterns of OMPs in aquatic environments, particularly in developing countries of the southern hemisphere.
Collapse
Affiliation(s)
- Yolanda Soriano
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE) CSIC-GV-UV, Valencia, Spain
| | - Eric Carmona
- Department Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Javier Renovell
- Soil and water conservation system group, Desertification Research Centre-CIDE (CSIC, GV, UV), Valencia, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE) CSIC-GV-UV, Valencia, Spain
| | - Werner Brack
- Department Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| | - Martin Krauss
- Department Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Thomas Backhaus
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany; Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Pedro A Inostroza
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany; Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
6
|
Sinclair GM, Jones OAH, Singh N, Long SM. Exposure to PFAS contaminated urban wetland water causes similar metabolic alterations to laboratory-based exposures in the freshwater amphipod Austrochiltonia subtenuis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104494. [PMID: 38925282 DOI: 10.1016/j.etap.2024.104494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Assessing the harm caused by pollutants in urban ecosystems remains a significant challenge. Traditional ecotoxicological endpoints are often not sensitive enough to detect the effects of toxicants at environmentally relevant concentrations (≤ng/L). A potential solution is using molecular biology methods to look at small biochemical changes caused by exposure to ng/L concentrations of contaminants. This has been tested in the lab but not conclusively demonstrated in the field. We exposed the freshwater amphipod (Austrochiltonia subtenuis) to water from an urban wetland containing known concentrations of per-and polyfluoroalkyl substances (as well as very low concentrations of pesticides) for 14 days and analyzed their metabolite profiles. Mannose, Myo-inositol, and Isopropyl propionate were found to change in PFAS exposed amphipods, a similar response to that previously observed in laboratory exposures to the same PFAS, but not pesticides. The results give a better understanding of PFAS toxicity at environmentally relevant concentrations and conditions.
Collapse
Affiliation(s)
- Georgia M Sinclair
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria 3083, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria 3083, Australia.
| | - Navneet Singh
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria 3083, Australia; ADE Consulting Group, Williamstown North, Victoria 3016, Australia
| | - Sara M Long
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria 3083, Australia
| |
Collapse
|
7
|
Akangbe OA, Chukwuka AV, Imiuwa ME, Adeogun AO. Gonad pathology, sex hormone modulation and vitellogenin expression in Chrysichthys nigrodigitatus from Lagos and Epe lagoons within the southern-lagoon system, Nigeria. FRONTIERS IN TOXICOLOGY 2024; 6:1336916. [PMID: 38380148 PMCID: PMC10878419 DOI: 10.3389/ftox.2024.1336916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction: Estrogenic chemicals in aquatic environments impact fish reproductive health, with vitellogenin protein levels serving as a crucial biomarker for xenoestrogen exposure. Limited knowledge exists on estrogenic effects in tropical environments, prompting an investigation into the influence of environmental estrogens on Chrysichthys nigrodigitatus in Lagos and Epe lagoons. Methods: A total of 195 fish samples underwent analysis for vitellogenin protein, sex hormones (testosterone and 17 β-estradiol), and gonad pathology in effluent-receiving areas of the specified lagoons. Results: Gonadal alterations were observed in male and female fish, including empty seminiferous tubules and distorted ovaries. Intersex occurred in 3.81% of Lagos and 3.33% of Epe. Testosterone levels were generally higher in females and males from both lagoons, while E2 levels were higher in females from both lagoons, with Lagos showing higher levels than Epe. Vtg levels were higher in males than females in Lagos samples but showed no significant difference in Epe samples. Discussion: Contaminant analysis revealed similar trends in metals (Hg, As, Cr) and phthalates (DEHP, DBP, DEP) in both sexes in the Epe population. Multivariate depictions from the PCA showed sex-specific patterns of metal uptake (Cd) in male fishes at the Lagos Lagoon. The positive association between higher pH loadings and metal and DBP levels in sediment at the Lagos lagoon suggests the influence of higher alkalinity in lower bioavailability of contaminants. Conclusion: Endocrine disrupting effects were observed in male and female Chrysichthys nigrodigitatus in Lagos and Epe lagoons populations, with notable differences in hormone and contaminant concentrations between the two lagoon systems. Identification of specific contaminants and their spatial and temporal trends can inform targeted management and remediation efforts to protect and restore these valuable aquatic ecosystems.
Collapse
Affiliation(s)
| | - Azubuike V. Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Wupa, Nigeria
| | - Maurice E. Imiuwa
- Department of Animal and Environmental Biology, University of Benin, Benin, Nigeria
| | - Aina O. Adeogun
- Department of Zoology, University of Ibadan, Ibadan, Oyo, Nigeria
| |
Collapse
|
8
|
Foord CS, Szabo D, Robb K, Clarke BO, Nugegoda D. Hepatic concentrations of per- and polyfluoroalkyl substances (PFAS) in dolphins from south-east Australia: Highest reported globally. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168438. [PMID: 37963535 DOI: 10.1016/j.scitotenv.2023.168438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) concentrations were investigated in hepatic tissue of four dolphin species stranded along the south-east coast of Australia between 2006 and 2021; Burrunan dolphin (Tursiops australis), common bottlenose dolphin (Tursiops truncatus), Indo-Pacific bottlenose dolphin (Tursiops aduncus), and short-beaked common dolphin (Delphinus delphis). Two Burrunan dolphin populations represented in the dataset have the highest reported global population concentrations of ∑25PFAS (Port Phillip Bay median 9750 ng/g ww, n = 3, and Gippsland Lakes median 3560 ng/g ww, n = 8), which were 50-100 times higher than the other species reported here; common bottlenose dolphin (50 ng/g ww, n = 9), Indo-Pacific bottlenose dolphin (80 ng/g ww, n = 1), and short-beaked common dolphin (61 ng/g ww, n = 12). Also included in the results is the highest reported individual ∑25PFAS (19,500 ng/g ww) and PFOS (18,700 ng/g ww) concentrations, at almost 30 % higher than any other Cetacea reported globally. Perfluorooctane sulfonate (PFOS) was above method reporting limits for all samples (range; 5.3-18,700 ng/g ww), and constituted the highest contribution to overall ∑PFAS burdens with between 47 % and 99 % of the profile across the dataset. The concentrations of PFOS exceed published tentative critical concentrations (677-775 ng/g) in 42 % of all dolphins and 90 % of the critically endangered Burrunan dolphin. This research reports for the first time novel and emerging PFASs such as 6:2 Cl-PFESA, PFMPA, PFEECH and FBSA in marine mammals of the southern hemisphere, with high detection rates across the dataset. It is the first study to show the occurrence of PFAS in the tissues of multiple species of Cetacea from the Australasian region, demonstrating high global concentrations for inshore dolphins. Finally, it provides key baseline knowledge to the potential exposure and bioaccumulation of PFAS compounds within the coastal environment of south-east Australia.
Collapse
Affiliation(s)
- Chantel S Foord
- Royal Melbourne Institute of Technology, Bundoora, Australia; Marine Mammal Foundation, Mentone, VIC.
| | - Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia; Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16C, SE-106 91 Stockholm, Sweden
| | - Kate Robb
- Marine Mammal Foundation, Mentone, VIC
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
9
|
Ruffle B, Archer C, Vosnakis K, Butler JD, Davis CW, Goldsworthy B, Parkman R, Key TA. US and international per- and polyfluoroalkyl substances surface water quality criteria: A review of the status, challenges, and implications for use in chemical management and risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:36-58. [PMID: 37069739 DOI: 10.1002/ieam.4776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Regulation of per- and polyfluorinated substances (PFAS) in surface water is a work-in-progress with relatively few criteria promulgated in the United States and internationally. Surface water quality criteria (SWQC) or screening values derived for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) by Australia, Canada, the European Union (EU), and four US states (Florida, Michigan, Minnesota, and Wisconsin), and the San Francisco Bay Regional Water Quality Control Board (SFB RWQCB; California) were compared. Across these eight jurisdictions, promulgated numeric criteria for the same compound and receptor span over five orders of magnitude as a result of different approaches and data interpretations. Human health criteria for PFOS range from 0.0047 to 600 ng/L depending on route of exposure (e.g., fish consumption or drinking water) and are lower than most ecological criteria for protection of aquatic and wildlife receptors. Data gaps and uncertainty in chronic toxicity and bioaccumulation of PFOS and PFOA, as well as the use of conservative assumptions regarding intake and exposure, have resulted in some criteria falling at or below ambient background concentrations and current analytical detection limits (around 1 ng/L for commercial laboratories). Some jurisdictions (e.g., Australia, Canada) have deemed uncertainty in quantifying water-fish bioaccumulation too great and set fish tissue action levels in lieu of water criteria. Current dynamics associated with the emerging and evolving science of PFAS toxicity, exposure, and environmental fate (i.e., data gaps and uncertainty), as well as the continuous release of scientific updates, pose a challenge to setting regulatory limits. Integr Environ Assess Manag 2024;20:36-58. © 2023 AECOM Technical Services, Inc and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | | | - Josh D Butler
- ExxonMobil Biomedical Sciences Inc., Annandale, New Jersey, USA
| | - Craig W Davis
- ExxonMobil Biomedical Sciences Inc., Annandale, New Jersey, USA
| | | | | | - Trent A Key
- ExxonMobil Environmental and Property Solutions Company, Spring, Texas, USA
| |
Collapse
|
10
|
Salami OS, Adeyemi JA, Olawuyi TS, Barbosa F, Adedire CO. Tissue Distributions and Toxic Effects of Hexavalent Chromium in Laboratory-Exposed Periwinkle ( Littorina littorea Linnaeus). Animals (Basel) 2023; 13:3412. [PMID: 37958167 PMCID: PMC10649957 DOI: 10.3390/ani13213412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The increased use of hexavalent chromium (Cr6+) in various industrial applications has contributed to its elevated levels in the environment, especially the aquatic environment. Thus, there is the potential for accumulation of Cr6+ in the tissues of aquatic organisms and consequent toxic effects. The toxic effects of Cr6+ in aquatic organisms have been widely reported; however, little is known about the patterns of tissue accumulation of Cr6+ and its toxicity in aquatic mollusks. Thus, the present study investigated the effects of Cr6+ exposure on the tissue distribution, proximate composition, and histopathology of an aquatic mollusk, periwinkle (Littorina littorea). The animals were exposed to sublethal concentrations of Cr6+ (0.42, 0.84, and 4.2 mg/L) for 30 days, after which the condition index, tissue accumulation, proximate composition, and histopathological effects were determined. The control animals were maintained in a medium that did not contain Cr6+ (0 mg/L). The condition index did not differ significantly among the groups. The levels of Cr6+ in the tissues differed significantly among the different tissue types while there was no significant effect of the exposure concentration, except in the foot tissue. The proximate parameters (protein, carbohydrates, lipid, crude fiber, and moisture contents) differed significantly among the groups. The protein contents of the exposed animals were significantly lower than those of the control animals and the histological architecture of the major organs was altered in the chromium-exposed animals. The findings from this study indicate a low potential of L. littorea to bioaccumulate Cr6+ in its tissues at the low exposure concentrations tested in this study; as such, its consumption may not pose any serious health risks to humans. However, changes in the proximate composition and histological architecture of the exposed L. littorea show that Cr6+ is potentially toxic to periwinkles.
Collapse
Affiliation(s)
- Olufemi S. Salami
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure P.O. Box 704, Nigeria; (O.S.S.); (C.O.A.)
| | - Joseph A. Adeyemi
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure P.O. Box 704, Nigeria; (O.S.S.); (C.O.A.)
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/no, Ribeirão Preto 14040-903, Brazil;
| | - Toluwase S. Olawuyi
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology, Akure P.O. Box 704, Nigeria;
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/no, Ribeirão Preto 14040-903, Brazil;
| | - Chris O. Adedire
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure P.O. Box 704, Nigeria; (O.S.S.); (C.O.A.)
| |
Collapse
|
11
|
Barbosa MO, Ratola N, Homem V, Pereira MFR, Silva AMT, Ribeiro ARL, Llorca M, Farré M. Per- and Poly-Fluoroalkyl Substances in Portuguese Rivers: Spatial-Temporal Monitoring. Molecules 2023; 28:1209. [PMID: 36770878 PMCID: PMC9921101 DOI: 10.3390/molecules28031209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Eighteen per-and polyfluoroalkyl substances (PFASs) were investigated in surface waters of four river basins in Portugal (Ave, Leça, Antuã, and Cértima) during the dry and wet seasons. All sampling sites showed contamination in at least one of the seasons. In the dry season, perfluorooctanoate acid (PFOA) and perfluoro-octane sulfonate (PFOS), were the most frequent PFASs, while during the wet season these were PFOA and perfluobutane-sulfonic acid (PFBS). Compounds detected at higher concentrations were PFOS (22.6 ng L-1) and perfluoro-butanoic acid (PFBA) (22.6 ng L-1) in the dry and wet seasons, respectively. Moreover, the prospective environmental risks of PFASs, detected at higher concentrations, were evaluated based on the Risk Quotient (RQ) classification, which comprises acute and chronic toxicity. The results show that the RQ values of eight out of the nine PFASs were below 0.01, indicating low risk to organisms at different trophic levels in the four rivers in both seasons, wet and dry. Nevertheless, in the specific case of perfluoro-tetradecanoic acid (PFTeA), the RQ values calculated exceeded 1 for fish (96 h) and daphnids (48 h), indicating a high risk for these organisms. Furthermore, the RQ values were higher than 0.1, indicating a medium risk for fish, daphnids and green algae (96 h).
Collapse
Affiliation(s)
- Marta O. Barbosa
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Centre for Research and Intervention in Education (CIIE), Faculdade de Psicologia e de Ciências da Educação, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal
| | - Nuno Ratola
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Vera Homem
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - M. Fernando R. Pereira
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M. T. Silva
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana R. L. Ribeiro
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marta Llorca
- ON-HEALTH Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Marinella Farré
- ON-HEALTH Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
12
|
Li X, Fatowe M, Lemos L, Quinete N. Spatial distribution of per- and polyfluoroalkyl substances (PFAS) in waters from Central and South Florida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84383-84395. [PMID: 35780268 DOI: 10.1007/s11356-022-21589-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are notoriously persistent pollutants that are found ubiquitously present in aquatic environments. They pose a big threat to aquatic life and human health given the bioaccumulation feature and significant adverse health effects associated. In our previous study, PFAS were found in surface waters from Biscayne Bay and tap waters from the East coast of South Florida, at levels that arouse human health and ecological concerns. Considering that Florida supports millions population as well as treasured, sensitive coastal and wetland ecosystems, we have expanded the PFAS monitoring study on the occurrence, composition, spatial distribution, and potential sources encompassing tap waters from counties on the West coast of South Florida and Central Florida, and surface waters from Tampa Bay, Everglades National Park adjacent canals, Key West, including Biscayne Bay area. A total of 30 PFAS were analyzed based on solid-phase extraction (SPE) followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). PFAS were detected in all tap water (N = 10) and surface water samples (N = 38) with total concentrations up to 169 ng L-1. Higher PFAS concentrations (> 60 ng L-1) are mostly observed from polluted rivers or coastal estuaries in Biscayne Bay, and sites nearby potential points sources (military airbases, wastewater facilities, airports, etc.). Our findings on current PFAS contamination levels from diverse aquatic environments provide additional information for the development of more stringent screening levels that are protective of human health and the environmental resources of Florida, which is ultimately anticipated as scientific understanding of PFAS is rapidly growing.
Collapse
Affiliation(s)
- Xuerong Li
- Institute of Environment, Florida International University, Modesto A. Maidique Campus, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, Modesto A. Maidique Campus, 3000 NE 151st Street, North Miami, FL, 33181, USA
| | - Morgan Fatowe
- Department of Chemistry and Biochemistry, Florida International University, Modesto A. Maidique Campus, 3000 NE 151st Street, North Miami, FL, 33181, USA
| | - Leila Lemos
- Institute of Environment, Florida International University, Modesto A. Maidique Campus, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Natalia Quinete
- Institute of Environment, Florida International University, Modesto A. Maidique Campus, 11200 SW 8th Street, Miami, FL, 33199, USA.
- Department of Chemistry and Biochemistry, Florida International University, Modesto A. Maidique Campus, 3000 NE 151st Street, North Miami, FL, 33181, USA.
| |
Collapse
|
13
|
Myers JH, Rose G, Odell E, Zhang P, Bui A, Pettigrove V. Household herbicide use as a source of simazine contamination in urban surface waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118868. [PMID: 35063546 DOI: 10.1016/j.envpol.2022.118868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Contamination of urban surface waters by herbicides is an increasing concern; however, sources of contamination are poorly understood, hindering the development of mitigation and regulatory strategies. Impervious surfaces, such as concrete in driveways and paths are considered an important facilitator for herbicide runoff to urban surface waters following applications by residential homeowners. This study assessed the transferability of a herbicide from concrete pavers treated with an off-the-shelf product, containing simazine as the active herbicide, marketed for residential homeowner application to impervious surfaces. Commercially available pavers were treated according to label directions and the effects of exposure time prior to irrigation, repeated irrigations, and dry time between irrigations on transferability of simazine to runoff were assessed. Simazine transferability was greatest when receiving an initial irrigation 1 h after application, with concentrations in runoff reduced by half when exposure times prior to the first irrigation were >2 days. Concentrations remained stable for repeated irrigations up to 320 days and exposures to outdoor conditions of 180 days prior to a first irrigation. Dry time between irrigations significantly influenced simazine transfer to runoff. Dry periods of 140 days resulted in approximately a 4-times increase in simazine transferability to runoff. These results suggest that herbicides used by homeowners, or any other users, on impervious surfaces are available to contaminate runoff for prolonged time periods following application at concentrations that may pose risks to aquatic life and for reuse of harvested runoff on parks and gardens. Regulators should consider the potential of hard surfaces to act as reservoirs for herbicides when developing policies and labelling products.
Collapse
Affiliation(s)
- Jackie H Myers
- Aquatic Environmental Stress Research Group, RMIT University, PO Box 71, Bundoora, Victoria, 3083, Australia.
| | - Gavin Rose
- Aquatic Environmental Stress Research Group, RMIT University, PO Box 71, Bundoora, Victoria, 3083, Australia
| | - Erica Odell
- Aquatic Environmental Stress Research Group, RMIT University, PO Box 71, Bundoora, Victoria, 3083, Australia.
| | - Pei Zhang
- Department of Economic Development, Jobs, Transport and Resources, MacLeod, Victoria, 3085, Australia.
| | - AnhDuyen Bui
- Department of Economic Development, Jobs, Transport and Resources, MacLeod, Victoria, 3085, Australia.
| | - Vincent Pettigrove
- Aquatic Environmental Stress Research Group, RMIT University, PO Box 71, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
14
|
Wagner T, McLaughlin P, Smalling K, Breitmeyer S, Gordon S, Noe GB. The statistical power to detect regional temporal trends in riverine contaminants in the Chesapeake Bay Watershed, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152435. [PMID: 34942241 DOI: 10.1016/j.scitotenv.2021.152435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Chemical contamination of riverine ecosystems is largely a result of urbanization, industrialization, and agricultural activities occurring on adjacent terrestrial landscapes. Land management activities (e.g., Best Management Practices) are an important tool used to reduce point and non-point sources of pollution. However, the ability to confidently make inferences about the efficacy of land management activities on reducing in-stream chemical concentrations is poorly understood. We estimated regional temporal trends and components of variation for commonly used herbicides (atrazine and metolachlor), total estrogenicity, and riverine sediment concentrations of total PCBs for rivers in the Chesapeake Bay Watershed, USA. We then used the estimated variance components to perform a power analysis and evaluated the statistical power to detect regional temporal trends under different monitoring scenarios. Scenarios included varying the magnitude of the annual contaminant decline, the number of sites sampled each year, the number of years sampled, and sampling frequency. Monitoring for short time periods (e.g., 5 years) was inadequate for detecting regional temporal trends, regardless of the number of sites sampled or the magnitude of the annual declines. Even when monitoring over a 20-year period, sampling a relatively large number of sites each year was required (e.g., >50 sites) to achieve adequate statistical power for smaller trend magnitudes (declines of 5-7%/year). Annual sampling frequency had little impact on power for any monitoring scenario. All sampling scenarios were underpowered for sediment total PCBs. Power was greatest for total estrogenicity, suggesting that this aggregate measure of estrogenic activity may be a useful indicator. This study provides information that can be used to help (1) guide the development of monitoring programs aimed at detecting regional declines in riverine chemical contaminant concentrations in response to land management actions, and (2) set expectations for the ability to detect changes over time.
Collapse
Affiliation(s)
- Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, PA 16802, USA.
| | - Paul McLaughlin
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, PA 16802, USA
| | - Kelly Smalling
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ 08648, USA
| | - Sara Breitmeyer
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ 08648, USA
| | - Stephanie Gordon
- U.S. Geological Survey, Eastern Ecological Science Center, Kearneysville, WV 25430, USA
| | - Gregory B Noe
- U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA 20192, USA
| |
Collapse
|
15
|
McMahon PB, Tokranov AK, Bexfield LM, Lindsey BD, Johnson TD, Lombard MA, Watson E. Perfluoroalkyl and Polyfluoroalkyl Substances in Groundwater Used as a Source of Drinking Water in the Eastern United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2279-2288. [PMID: 35113548 PMCID: PMC8970425 DOI: 10.1021/acs.est.1c04795] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 05/06/2023]
Abstract
In 2019, 254 samples were collected from five aquifer systems to evaluate perfluoroalkyl and polyfluoroalkyl substance (PFAS) occurrence in groundwater used as a source of drinking water in the eastern United States. The samples were analyzed for 24 PFAS, major ions, nutrients, trace elements, dissolved organic carbon (DOC), volatile organic compounds (VOCs), pharmaceuticals, and tritium. Fourteen of the 24 PFAS were detected in groundwater, with 60 and 20% of public-supply and domestic wells, respectively, containing at least one PFAS detection. Concentrations of tritium, chloride, sulfate, DOC, and manganese + iron; percent urban land use within 500 m of the wells; and VOC and pharmaceutical detection frequencies were significantly higher in samples containing PFAS detections than in samples with no detections. Boosted regression tree models that consider 57 chemical and land-use variables show that tritium concentration, distance to the nearest fire-training area, percentage of urban land use, and DOC and VOC concentrations are the top five predictors of PFAS detections, consistent with the hydrologic position, geochemistry, and land use being important controls on PFAS occurrence in groundwater. Model results indicate that it may be possible to predict PFAS detections in groundwater using existing data sources.
Collapse
Affiliation(s)
- Peter B. McMahon
- U.S.
Geological Survey, Bldg. 53, MS 415, Lakewood, Colorado, 80225, United States
| | - Andrea K. Tokranov
- U.S.
Geological Survey, 10 Bearfoot Rd., Northborough, Massachusetts 01532, United States
| | - Laura M. Bexfield
- U.S.
Geological Survey, 6700 Edith Blvd NE, Albuquerque, New Mexico 87113, United States
| | - Bruce D. Lindsey
- U.S.
Geological Survey, 215 Limekiln Road, New Cumberland, Pennsylvania 17070, United States
| | - Tyler D. Johnson
- U.S.
Geological Survey, 4165 Spruance Road, San Diego, California 92101, United States
| | - Melissa A. Lombard
- U.S. Geological
Survey, 331 Commerce Way, Pembroke, New Hampshire 03275, United States
| | - Elise Watson
- U.S.
Geological Survey, 4165 Spruance Road, San Diego, California 92101, United States
| |
Collapse
|
16
|
Current advances in treatment technologies for removal of emerging contaminants from water – A critical review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213993] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Roostaei J, Colley S, Mulhern R, May AA, Gibson JM. Predicting the risk of GenX contamination in private well water using a machine-learned Bayesian network model. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125075. [PMID: 33858085 DOI: 10.1016/j.jhazmat.2021.125075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are emerging contaminants that pose significant challenges in mechanistic fate and transport modeling due to their diverse and complex chemical characteristics. Machine learning provides a novel approach for predicting the spatial distribution of PFAS in the environment. We used spatial location information to link PFAS measurements from 1207 private drinking water wells around a fluorochemical manufacturing facility to a mechanistic model of PFAS air deposition and to publicly available data on soil, land use, topography, weather, and proximity to multiple PFAS sources. We used the resulting linked data set to train a Bayesian network model to predict the risk that GenX, a member of the PFAS class, would exceed a state provisional health goal (140 ng/L) in private well water. The model had high accuracy (ROC curve index for five-fold cross-validation of 0.85, 90% CI 0.84-0.87). Among factors significantly associated with GenX risk in private wells, the most important was the historic rate of atmospheric deposition of GenX from the fluorochemical manufacturing facility. The model output was used to generate spatial risk predictions for the study area to aid in risk assessment, environmental investigations, and targeted public health interventions.
Collapse
Affiliation(s)
- Javad Roostaei
- Department of Environmental and Occupational Health, Indiana University, Bloomington, IN 47405, United States
| | - Sarah Colley
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill 27516, United States
| | - Riley Mulhern
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill 27516, United States
| | - Andrew A May
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH 43210, United States
| | - Jacqueline MacDonald Gibson
- Department of Environmental and Occupational Health, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
18
|
Lopes MC, Martins ALM, Simedo MBL, Filho MVM, Costa RCA, do Valle Júnior RF, Rojas NET, Sanches Fernandes LF, Pacheco FAL, Pissarra TCT. A case study of factors controlling water quality in two warm monomictic tropical reservoirs located in contrasting agricultural watersheds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144511. [PMID: 33360452 DOI: 10.1016/j.scitotenv.2020.144511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The integration of internal (e.g., stratification) and external (e.g., pollution) factors on a comprehensive assessment of reservoir water quality determines the success of ecosystem restoration initiatives and aids watershed management. However, integrated analyses are scarcer than studies addressing factors separately. Integration is likely more efficient in studies of small well-characterized (experimental) reservoir watersheds, because the isolation of factor contributions is presumably clearer. But those studies are uncommon. This work describes the water quality of two small 5.5 m-deep reservoirs (MD-Main and VD-Voçoroca dams) located in Pindorama Experimental Center, state of São Paulo, Brazil, considering the interplay between reservoir dimension, seasonal thermal stratification, chemical gradients, erosive rainfall events, presence of natural biofilters, and land uses and landscape patterns around the reservoirs and within the contributing watersheds. The monitoring of agricultural activities and water quality parameters occurred in October 2018-July 2019. A 4 °C thermal stratification occurred in October (difference between surface and bottom water temperature), which decreased until disappearance in January (VD) or April (MD). The longer stratification period of MD was justified by its larger area relative to VD (≈10×). Thermal stratification triggered hypoxia at the bottom of both reservoirs (DO ≈ 1 mg/L), more prolonged and severe in MD. Hypoxia activated Ec and TDS peaks in January likely explained by bottom-sediment nutrient releases, presumably phosphorus. The Ec peak reached 560 μS/cm in MD and 290 μS/cm in VD. The smaller VD peak was probably explained by the action of macrophytes. In March, a 240 NTU turbidity peak occurred in MD, caused by precedent erosive rainfall and the lack of vegetation protection alongside the south border. As expected, the study accomplished clear isolation of factor contributions, verified by Factor and Cluster analyses. Our results can subsidize studies on larger reservoir watersheds requiring restoration, where the isolation of factors is more challenging.
Collapse
Affiliation(s)
- Maria Conceição Lopes
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Programa de Pós-Graduação em Agronomia, Ciência do Solo, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil; Polo Regional Centro Norte, Departamento de Descentralização do Desenvolvimento - APTA, Secretaria de Agricultura e Abastecimento - SAA, Rodovia Washington Luis, Km 371, s/n, Pindorama, SP 15830-000, Brazil; POLUS-Grupo de Política de Uso do Solo, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil
| | - Antonio Lucio Mello Martins
- Polo Regional Centro Norte, Departamento de Descentralização do Desenvolvimento - APTA, Secretaria de Agricultura e Abastecimento - SAA, Rodovia Washington Luis, Km 371, s/n, Pindorama, SP 15830-000, Brazil
| | - Mariana Bárbara Lopes Simedo
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Programa de Pós-Graduação em Agronomia, Ciência do Solo, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil; POLUS-Grupo de Política de Uso do Solo, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil
| | - Marcílio Vieira Martins Filho
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Programa de Pós-Graduação em Agronomia, Ciência do Solo, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil; POLUS-Grupo de Política de Uso do Solo, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil
| | - Renata Cristina Araújo Costa
- Universidade Guarulhos (UNG). Programa de Mestrado em Análise Geoambiental (MAG). Praça Tereza Cristina, 239, 07023-070, Guarulhos, SP, Brazil; POLUS-Grupo de Política de Uso do Solo, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil
| | - Renato Farias do Valle Júnior
- Instituto Federal do Triângulo Mineiro, Campus de Uberaba, Laboratório de Geoprocessamento, Uberaba, MG 38064-790, Brazil; POLUS-Grupo de Política de Uso do Solo, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil
| | - Nilton Eduardo Torres Rojas
- Centro Avançado de Pesquisa do Pescado Continental - APTA, Av. Abelardo Menezes, s/n Zona Rural, São José do Rio Preto, SP 15025-620, Brazil
| | - Luís Filipe Sanches Fernandes
- CITAB - Centro de Investigação e Tecnologias Agroambientais e Biológicas, Universidade de Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal; POLUS-Grupo de Política de Uso do Solo, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil
| | - Fernando António Leal Pacheco
- CQVR - Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal; POLUS-Grupo de Política de Uso do Solo, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil.
| | - Teresa Cristina Tarlé Pissarra
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Programa de Pós-Graduação em Agronomia, Ciência do Solo, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil; POLUS-Grupo de Política de Uso do Solo, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil
| |
Collapse
|
19
|
Sharp S, Sardiña P, Metzeling L, McKenzie R, Leahy P, Menkhorst P, Hinwood A. Per- and Polyfluoroalkyl Substances in Ducks and the Relationship with Concentrations in Water, Sediment, and Soil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:846-858. [PMID: 32672850 DOI: 10.1002/etc.4818] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/05/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The present study examined the occurrence and concentration of per- and polyfluoroalkyl substances (PFAS) measured in game ducks (13 compounds), water, sediment, and soils (33 compounds) in waterways in Victoria, Australia. The study aimed to identify potential ecological and human health risks from measured PFAS concentrations. Four species of duck and samples of water, sediment, and soil were collected from 19 wetlands, which were chosen based on their popularity as hunting locations. The risks posed by 3 PFAS (perfluorooctanoic acid, perfluorohexane sulfonic acid [PFHxS], and perfluorooctane sulfonic acid [PFOS]) to the environment and human health were assessed using available national ecological and human health guidelines. A diverse range of short- and long-chain carboxylic and sulfonic acids were found in the environment and in ducks. Concentrations were generally low and varied between wetlands, duck species, tissue analyzed (breast or liver), and environmental compartment (water, sediment, soil). Higher PFOS concentrations in water and sediments were observed at wetlands near sources of contamination (i.e., a defense base or urban environment). Elevated PFOS and PFOS + PFHxS concentrations in ducks were observed near local point sources but also at wetlands with no known point sources of contamination. There were clear differences in PFAS concentrations detected in duck tissues versus the environment, highlighting complexities of bioaccumulation, movement of animals, and spatiotemporal variation and raising questions about the relevance of using abiotic criteria to assess risk to biota. Human health risk assessment showed that only ducks inhabiting wetlands near local sources of PFAS were likely to pose a risk to consumers. Further studies are required to improve our knowledge of PFAS toxicokinetics and chronic impacts in biota to guide management decisions. Environ Toxicol Chem 2021;40:846-858. © 2020 SETAC.
Collapse
Affiliation(s)
- Simon Sharp
- Environment Protection Authority Victoria, Applied Sciences Division, Macleod, Victoria, Australia
| | - Paula Sardiña
- Environment Protection Authority Victoria, Applied Sciences Division, Macleod, Victoria, Australia
| | - Leon Metzeling
- Environment Protection Authority Victoria, Applied Sciences Division, Macleod, Victoria, Australia
| | - Rob McKenzie
- Environment Protection Authority Victoria, Applied Sciences Division, Macleod, Victoria, Australia
| | - Paul Leahy
- Environment Protection Authority Victoria, Applied Sciences Division, Macleod, Victoria, Australia
| | - Peter Menkhorst
- Department of Environment Land Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
| | - Andrea Hinwood
- Environment Protection Authority Victoria, Applied Sciences Division, Macleod, Victoria, Australia
| |
Collapse
|
20
|
Seibert D, Zorzo CF, Borba FH, de Souza RM, Quesada HB, Bergamasco R, Baptista AT, Inticher JJ. Occurrence, statutory guideline values and removal of contaminants of emerging concern by Electrochemical Advanced Oxidation Processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141527. [PMID: 33113672 DOI: 10.1016/j.scitotenv.2020.141527] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
A wide variety of chemical compounds are used in human activities; however, part of these compounds reach surface water, groundwater and even water considered for potable uses. Due to the limited efficiency of water treatment by the Water and Wastewater Treatment Plants, the presence of these compounds in natural and human consumption waters can be very harmful due to their high persistence and adverse effects; these characteristics define the contaminants of emerging concern (CECs). Water treatment by Electrochemical Advanced Oxidation Processes (EAOPs) has been evaluated as a promising process for the removal of persistent and recalcitrant organic contaminants. With this background, the present review aims to gather studies and information published between 2015 and 2020 regarding the occurrence of CECs in surface, potable and groundwater, its treatment by EAOPs, the main operating conditions and by-product generation of EAOPs, contaminant toxicity assessments and international statutory guideline values concerning CEC standards and allowable concentrations in the environment and treated drinking water. Therefore, in this review it was found that the compounds bisphenol A (BPA), diethyltoluamide (DEET), 17α-ethinyl estradiol (EE2), perfluorobutanoic acid (PFBA), carbamazepine, caffeine and atrazine were the most frequently detected in water sources, with concentrations ranging from 35.54-4800, 1.21-98, 0.005-38.5, 5-742.904, 0.0071-586, 0.89-1040, and 100-323 (ng L-1), respectively. Among the operational conditions of EAOPs, current density, pH and oxidant concentration are the main operational parameters that have an influence on these treatment technologies, besides the by-products generated, which might be removed by the integration of EAOPs with biological digestion treatments. Regarding the values of water quality standards, many CECs do not have established standard allowable concentration values, which represents a concern toward the possible toxic effects of these compounds on non-target organisms.
Collapse
Affiliation(s)
- Daiana Seibert
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil.
| | - Camila F Zorzo
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| | - Fernando H Borba
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| | - Renata M de Souza
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil
| | - Heloise B Quesada
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil
| | - Rosângela Bergamasco
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil
| | - Aline T Baptista
- Academic Department of Food and Chemical Engineering, Federal Technology University of Parana - UTFPR, Via Rosalina Maria dos Santos, 1233.CEP 87301-899 - Caixa Postal: 271, Campo Mourão, PR, Brazil
| | - Jonas J Inticher
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| |
Collapse
|
21
|
Sinclair GM, Long SM, Jones OAH. What are the effects of PFAS exposure at environmentally relevant concentrations? CHEMOSPHERE 2020; 258:127340. [PMID: 32563917 DOI: 10.1016/j.chemosphere.2020.127340] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/13/2020] [Accepted: 06/05/2020] [Indexed: 05/05/2023]
Abstract
The group of synthetic chemicals known as poly and per-fluoroalkyl substances (PFAS) are currently of high concern to environmental regulators and the public due to their widespread occurrence, resistance to degradation and reported toxicity. However, little data exists on the effects of exposure to PFAS at environmentally relevant concentrations and this hampers the effective management of these compounds. This paper reviews current research on the occurrence and ecotoxicology of PFAS at environmentally relevant doses to assess their potential biological impacts. Hazard Quotient (HQ) analysis was undertaken as part of this assessment. Most PFAS detected in the environment were found to have a HQ risk value of <1 meaning their reported concentrations are below their predicted no effect concentration. This indicates many reported toxic effects of PFAS are, theoretically, unlikely to occur outside the laboratory. However, lack of information on new PFAS as well as their precursors and degradation products, coupled with lack of knowledge of their mixture toxicity means our understanding of the risks of PFAS is incomplete, especially in regard to sub-lethal and/or chronic effects. It is proposed that the development of molecular markers for PFAS exposure are needed to aid in the development of environmental PFAS regulations that are effective in fully protecting the environment.
Collapse
Affiliation(s)
- Georgia M Sinclair
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria, 3083, Australia; Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria, 3083, Australia
| | - Sara M Long
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria, 3083, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
22
|
Tang Y, Zhong Y, Li H, Huang Y, Guo X, Yang F, Wu Y. Contaminants of emerging concern in aquatic environment: Occurrence, monitoring, fate, and risk assessment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1811-1817. [PMID: 33463864 DOI: 10.1002/wer.1438] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 06/12/2023]
Abstract
The present work provides a review focusing on contaminants of emerging concern (CECs) in aquatic environment, with an emphasis on their occurrence, monitoring, fate, and risk assessment in the research published in the scientific literature in 2019. Several studies revealed that these organic contaminants were detected in many water bodies and suspect, nontarget, and target screening provided an efficient detection for the co-existing organic substances with complex components. Wastewater resource recovery facilities were concurrently considered as a central source, and several specific chemicals have been found to be used as chemical markers to track the source of CECs in some urban watersheds. Reliable monitoring, reliable fate/toxicity assessment, and effective removal that consider CECs as a heterogeneous group rather than single substances will be the challenges for the research community in the future.
Collapse
Affiliation(s)
- Yankui Tang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yaxuan Zhong
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Huilan Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yiting Huang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- College of Civil Engineering and Architecture, Guangxi University, Nanning, China
| | - Xinye Guo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Fan Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yu Wu
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| |
Collapse
|