1
|
Ge Y, Gu X, Zeng Q, Mao Z, Chen H, Yang H, Luo W. Functional diversity explores the maintenance mechanism and driving factors of the invasion equilibrium state of the icefish (Neosalanx taihuensis Chen) in Lake Fuxian, China. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39434443 DOI: 10.1111/jfb.15950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024]
Abstract
Biodiversity loss caused by biological invasions is an ecological problem on a global scale, and understanding the mechanism of biological invasion is the basis for managing non-native species. The biotic resistance hypothesis proposes that species-rich native communities are less susceptible to invasion because of the limited resources available to non-native species, therefore comparing the resource utilization patterns of different communities can reveal the invasion mechanisms of specific non-native species at the community level. We selected Lake Taihu, where icefish (Neosalanx taihuensis Chen) originated, and Lake Fuxian, where icefish invaded, as the research objects. We calculated the fish functional diversity indexes, including functional richness (FRic), functional evenness (FEve), and functional divergence (FDiv), to reflect differences in ecological niche and resource utilization based on four quarterly fish survey data from two lakes. The random forests model explored the relationship between functional diversity indexes and biotic and environmental variables. Our results showed that more diverse resource utilization (high FRic), more niche space (low FEve), and less competitive pressure (high FDiv) in Lake Fuxian were identified as the critical important factors for maintaining the current equilibrium state after successful invasion of icefish. The bottom-up effects mainly affected the functional diversity indexes in Lake Fuxian. They differed from those in Lake Taihu and were primarily influenced by top-down effects. Enhancing the top-down effects in Lake Fuxian and limiting the zooplankton available to icefish are critical to controlling the invasion of icefish. This study offers a new perspective for studying the non-native fish invasion mechanism, and provides scientific guidance for managing non-native fish in Lake Fuxian.
Collapse
Affiliation(s)
- You Ge
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenlei Luo
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Fuxianhu Station of Plateau Deep Lake Field Scientific Observation and Research, Yuxi, China
| |
Collapse
|
2
|
Toutain M, Belouard N, Renault D, Haubrock PJ, Kurtul I, Aksu S, Emiroğlu Ö, Kouba A, Tarkan AS, Balzani P. Assessing the role of non-native species and artificial water bodies on the trophic and functional niche of Mediterranean freshwater fish communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173520. [PMID: 38810734 DOI: 10.1016/j.scitotenv.2024.173520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Habitat alterations and the introduction of non-native species have many ecological impacts, including the loss of biodiversity and a deterioration of ecosystem functioning. The effects of these combined stressors on the community trophic web and functional niche are, however, not completely clear. Here, we investigated how artificial ecosystems (i.e. reservoirs) and non-native species may influence the trophic and functional niche space of freshwater fish communities. To do so, we used carbon and nitrogen stable isotope and abundance data to compute a set of isotopic, trait, and functional metrics for 13 fish communities sampled from 12 distinct ecosystems in Türkiye. We show that in reservoirs, fish were more similar in their trophic niche compared to lakes, where the trophic niche was more variable, due to higher habitat complexity. However, there were no differences in the trait and functional metrics between the two ecosystem types, suggesting a higher prey diversity than assumed in reservoirs. We also found that the number of non-native species did not affect the trophic niche space, nor the trait or functional space occupied by the fish community. This indicates that non-native species tended to overlap their trophic niche with native species, while occupying empty functional niches in the recipient community functional space. Similarly, the proportion of non-native species did not affect any trophic, trait, or functional metric, suggesting that changes in community composition were not reflected in changes in the community niche space. Moreover, we found that trait richness, but not functional richness, was positively related to the isotopic niche width and diversity, indicating that a wider occupied trait niche space corresponded with a wider occupied trophic niche and lesser interspecific similarity. Our findings underscore the complexity of ecological relationships within freshwater ecosystems and highlight the need for comprehensive management strategies to mitigate the impacts of human activities and biological invasions.
Collapse
Affiliation(s)
- Mathieu Toutain
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25 Vodňany, Czech Republic; Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], 35000 Rennes, France.
| | - Nadège Belouard
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], 35000 Rennes, France
| | - David Renault
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], 35000 Rennes, France
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25 Vodňany, Czech Republic; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571 Gelnhausen, Germany; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| | - Irmak Kurtul
- Faculty of Fisheries, Ege University, Bornova 35100, İzmir, Türkiye; Department of Life and Environmental Sciences, Bournemouth University, Poole, Dorset, United Kingdom
| | - Sadi Aksu
- Vocational School of Health Services, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Özgür Emiroğlu
- Department of Biology, Faculty of Arts and Sciences Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25 Vodňany, Czech Republic
| | - Ali Serhan Tarkan
- Department of Life and Environmental Sciences, Bournemouth University, Poole, Dorset, United Kingdom; Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Paride Balzani
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25 Vodňany, Czech Republic.
| |
Collapse
|
3
|
Haubrock PJ, Soto I, Ahmed DA, Ansari AR, Tarkan AS, Kurtul I, Macêdo RL, Lázaro-Lobo A, Toutain M, Parker B, Błońska D, Guareschi S, Cano-Barbacil C, Dominguez Almela V, Andreou D, Moyano J, Akalın S, Kaya C, Bayçelebi E, Yoğurtçuoğlu B, Briski E, Aksu S, Emiroğlu Ö, Mammola S, De Santis V, Kourantidou M, Pincheira-Donoso D, Britton JR, Kouba A, Dolan EJ, Kirichenko NI, García-Berthou E, Renault D, Fernandez RD, Yapıcı S, Giannetto D, Nuñez MA, Hudgins EJ, Pergl J, Milardi M, Musolin DL, Cuthbert RN. Biological invasions are a population-level rather than a species-level phenomenon. GLOBAL CHANGE BIOLOGY 2024; 30:e17312. [PMID: 38736133 DOI: 10.1111/gcb.17312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 05/14/2024]
Abstract
Biological invasions pose a rapidly expanding threat to the persistence, functioning and service provisioning of ecosystems globally, and to socio-economic interests. The stages of successful invasions are driven by the same mechanism that underlies adaptive changes across species in general-via natural selection on intraspecific variation in traits that influence survival and reproductive performance (i.e., fitness). Surprisingly, however, the rapid progress in the field of invasion science has resulted in a predominance of species-level approaches (such as deny lists), often irrespective of natural selection theory, local adaptation and other population-level processes that govern successful invasions. To address these issues, we analyse non-native species dynamics at the population level by employing a database of European freshwater macroinvertebrate time series, to investigate spreading speed, abundance dynamics and impact assessments among populations. Our findings reveal substantial variability in spreading speed and abundance trends within and between macroinvertebrate species across biogeographic regions, indicating that levels of invasiveness and impact differ markedly. Discrepancies and inconsistencies among species-level risk screenings and real population-level data were also identified, highlighting the inherent challenges in accurately assessing population-level effects through species-level assessments. In recognition of the importance of population-level assessments, we urge a shift in invasive species management frameworks, which should account for the dynamics of different populations and their environmental context. Adopting an adaptive, region-specific and population-focused approach is imperative, considering the diverse ecological contexts and varying degrees of susceptibility. Such an approach could improve and refine risk assessments while promoting mechanistic understandings of risks and impacts, thereby enabling the development of more effective conservation and management strategies.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Danish A Ahmed
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Ali R Ansari
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Ali Serhan Tarkan
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Irmak Kurtul
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
- Faculty of Fisheries, Marine and Inland Waters Sciences and Technology Department, Ege University, İzmir, Turkey
| | - Rafael L Macêdo
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Graduate Program in Ecology and Natural Resources, Department of Ecology and Evolutionary Biology, Federal University of São Carlos, UFSCar, São Carlos, Brazil
| | - Adrián Lázaro-Lobo
- Biodiversity Research Institute IMIB (Univ. Oviedo-CSIC-Princ. Asturias), Mieres, Spain
| | - Mathieu Toutain
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 11 6553, Rennes, France
| | - Ben Parker
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Dagmara Błońska
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Simone Guareschi
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Carlos Cano-Barbacil
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | | | - Demetra Andreou
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Jaime Moyano
- Grupo de Ecología de Invasiones, INIBIOMA, CONICET, Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina
| | - Sencer Akalın
- Faculty of Fisheries, Marine and Inland Waters Sciences and Technology Department, Ege University, İzmir, Turkey
| | - Cüneyt Kaya
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Turkey
| | - Esra Bayçelebi
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Turkey
| | - Baran Yoğurtçuoğlu
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | | | - Sadi Aksu
- Vocational School of Health Services, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Özgür Emiroğlu
- Department of Biology, Faculty of Arts and Sciences, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Stefano Mammola
- Water Research Institute, National Research Council (CNR-IRSA), Verbania Pallanza, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Vanessa De Santis
- Water Research Institute, National Research Council (CNR-IRSA), Verbania Pallanza, Italy
| | | | | | - J Robert Britton
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Ellen J Dolan
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Natalia I Kirichenko
- Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Federal Research Center «Krasnoyarsk Science Center SB RAS», Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk, Russia
- All-Russian Plant Quarantine Center, Krasnoyarsk Branch, Krasnoyarsk, Russia
| | | | - David Renault
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 11 6553, Rennes, France
| | - Romina D Fernandez
- Instituto de Ecología Regional, Universidad Nacional de Tucumán-CONICET, Yerba Buena, Argentina
| | - Sercan Yapıcı
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Daniela Giannetto
- Department of Biology, Faculty of Sciences, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Martin A Nuñez
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Emma J Hudgins
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jan Pergl
- Institute of Botany; Department of Invasion Ecology, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| | - Marco Milardi
- Southern Indian Ocean Fisheries Agreement (SIOFA), Le Port, La Reunion, France
| | - Dmitrii L Musolin
- European and Mediterranean Plant Protection Organization (EPPO), Paris, France
| | - Ross N Cuthbert
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| |
Collapse
|
4
|
Amarillo-Suárez AR, Camacho-Erazo M, Herrera HW. Land use is a stronger determinant of ecological network complexity than the number of trophic levels. PLoS One 2024; 19:e0295377. [PMID: 38335167 PMCID: PMC10857743 DOI: 10.1371/journal.pone.0295377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/21/2023] [Indexed: 02/12/2024] Open
Abstract
Land modification causes biodiversity loss and ecosystem modification. Despite many studies on the impacts of this factor, there is little empirical evidence on how it affects the interaction networks of plants, herbivores and their natural enemies; likewise, there is little evidence on how those networks change due to differences in the complexity of the communities they comprise. We analyzed the effects of land use and number of trophic levels on the interaction networks of exotic legume species and their associated arthropods. We collected seedpods from five exotic legume species (one of them invasive) in four land use types (urbanization, roadside, L. leucocephala plantation, wooded pasture) on Santa Cruz Island in the Galapagos, and obtained all arthropods that emerged from the seeds. Then, we built and analyzed the interaction networks for each land use at two community scales, each with different numbers of trophic levels: (1) three levels: plant-seed beetle-parasitoid (PSP), and (2) more than three levels: plant-seed beetle-parasitoid-predator and other trophic guilds (PSPP). Land use was more relevant than number of trophic levels in the configuration of species interactions. The number of species and interactions was highest on roadsides at PSPP and lowest in plantations at PSP. We found a significant effect of land use on connectance and interaction evenness (IE), and no significant effect of number of trophic levels on connectance, diversity or IE. The simultaneous analysis of land use and number of trophic levels enabled the identification of more complex patterns of community structure. Comparison of the patterns we found among islands and between exotic and native legumes is recommended. Understanding the structure of the communities analyzed here, as well as the relative contribution of their determinants of change, would allow us to develop conservation plans according to the dynamics of these neo-ecosystems.
Collapse
Affiliation(s)
- Angela R. Amarillo-Suárez
- Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales, Pontificia Universidad Javeriana, Bogotá, Cundinamarca, Colombia
| | - Mariana Camacho-Erazo
- Escuela de Ingeniería en Recursos Renovables, Facultad de Recursos Naturales, Escuela Superior Politécnica del Chimborazo, Riobamba, Chimborazo, Ecuador
| | - Henri W. Herrera
- Escuela de Ingeniería en Recursos Renovables, Facultad de Recursos Naturales, Escuela Superior Politécnica del Chimborazo, Riobamba, Chimborazo, Ecuador
| |
Collapse
|
5
|
Oddi L, Volpe V, Carotenuto G, Politi M, Barni E, Crosino A, Siniscalco C, Genre A. Boosting species evenness, productivity and weed control in a mixed meadow by promoting arbuscular mycorrhizas. FRONTIERS IN PLANT SCIENCE 2024; 15:1303750. [PMID: 38390295 PMCID: PMC10883063 DOI: 10.3389/fpls.2024.1303750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024]
Abstract
Lowland meadows represent aboveground and belowground biodiversity reservoirs in intensive agricultural areas, improving water retention and filtration, ensuring forage production, contrasting erosion and contributing to soil fertility and carbon sequestration. Besides such major ecosystem services, the presence of functionally different plant species improves forage quality, nutritional value and productivity, also limiting the establishment of weeds and alien species. Here, we tested the effectiveness of a commercial seed mixture in restoring a lowland mixed meadow in the presence or absence of inoculation with arbuscular mycorrhizal (AM) fungi and biostimulation of symbiosis development with the addition of short chain chito-oligosaccharides (CO). Plant community composition, phenology and productivity were regularly monitored alongside AM colonization in control, inoculated and CO-treated inoculated plots. Our analyses revealed that the CO treatment accelerated symbiosis development significantly increasing root colonization by AM fungi. Moreover, the combination of AM fungal inoculation and CO treatment improved plant species evenness and productivity with more balanced composition in forage species. Altogether, our study presented a successful and scalable strategy for the reintroduction of mixed meadows as valuable sources of forage biomass; demonstrated the positive impact of CO treatment on AM development in an agronomic context, extending previous observations developed under controlled laboratory conditions and leading the way to the application in sustainable agricultural practices.
Collapse
Affiliation(s)
- Ludovica Oddi
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Mara Politi
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Elena Barni
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Andrea Crosino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Consolata Siniscalco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Patonai K, Jordán F, Castaldelli G, Congiu L, Gavioli A. Spatial variability of the Po River food web and its comparison with the Danube River food web. PLoS One 2023; 18:e0288652. [PMID: 37450464 PMCID: PMC10348563 DOI: 10.1371/journal.pone.0288652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Freshwater ecosystems are experiencing unprecedented pressure globally. To address environmental challenges, systematic and comparative studies on ecosystems are needed, though mostly lacking, especially for rivers. Here, we describe the food web of the Po River (as integrated from the white literature and monitoring data), describe the three river sections using network analysis, and compare our results with the previously compiled Danube River food web. The Po River food web was taxonomically aggregated in five consecutive steps (T1-T5) and it was also analyzed using the regular equivalence (REGE) algorithm to identify structurally similar nodes in the most aggregated T5 model. In total, the two river food webs shared 30 nodes. Two network metrics (normalized degree centrality [nDC]) and normalized betweenness centrality [nBC]) were compared using Mann-Whitney tests in the two rivers. On average, the Po River nodes have larger nDC values than in the Danube, meaning that neighboring connections are better mapped. Regarding nBC, there were no significant differences between the two rivers. Finally, based on both centrality indices, Carassius auratus is the most important node in the Po River food web, whereas phytoplankton and detritus are most important in the Danube River. Using network analysis and comparative methods, it is possible to draw attention to important trophic groups and knowledge gaps, which can guide future research. These simple models for the Po River food web can pave the way for more advanced models, supporting quantitative and predictive-as well as more functional-descriptions of ecosystems.
Collapse
Affiliation(s)
- Katalin Patonai
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Jordán
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giuseppe Castaldelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | | | - Anna Gavioli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Gavioli A, Milardi M, Soininen J, Soana E, Lanzoni M, Castaldelli G. How does invasion degree shape alpha and beta diversity of freshwater fish at a regional scale? Ecol Evol 2022; 12:e9493. [PMID: 36381403 PMCID: PMC9643121 DOI: 10.1002/ece3.9493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Freshwater ecosystems appear more vulnerable to biodiversity loss due to several anthropogenic disturbances and freshwater fish are particularly vulnerable to these impacts. We aimed to (1) identify the contribution of land use, spatial variables, and invasion degree in determining freshwater fish alpha (i.e., species richness) and beta (i.e., local contributions to beta diversity, LCBD) diversity, evaluating also the relationship between invasion degree and nestedness (β nes) and turnover (β sim) components of beta diversity. (2) Investigate the relationship between alpha diversity and LCBD, under the hypothesis that alpha diversity and LCBD correlate negatively and (3) investigate the relationship between species contributions to beta diversity (SCBD) and species occurrence, hypothesizing that non-native species show a lower contribution to beta diversity. The linear mixed models and the partition of R 2 retained the invasion degree as the most important variables explaining alpha and beta diversity, having a positive relationship with both diversity components. Furthermore, land use related to human impacts had a positive influence on alpha diversity, whereas it showed a negative effect on LCBD. Regression model further showed that invasion degree related positively withβ sim, but negatively withβ nes, suggesting that non-native species were involved in the replacement of native species in the fish community. Alpha diversity and LCBD showed a weak positive correlation, meaning that sites with low species richness have higher LCBD. SCBD scaled positively with species occurrence highlighting that rarer species contribute less to SCBD. Finally, native and exotic species contributed similarly to beta diversity. These results suggest that invasion degree plays a central role in shaping alpha and beta diversity in stream fish, more than land use features reflecting habitat alteration or other geospatial variables. Furthermore, it is important to evaluate separately the native and the non-native components of biotic communities to identify linkages between invasion dynamics and biodiversity loss.
Collapse
Affiliation(s)
- Anna Gavioli
- Department of Environmental and Prevention SciencesUniversity of FerraraFerraraItaly
| | - Marco Milardi
- Fisheries New Zealand ‐ Tini a Tangaroa, Ministry for Primary Industries ‐ Manatū Ahu MatuaWellingtonNew Zealand
- Present address:
Southern Indian Ocean Fisheries Agreement (SIOFA)Saint‐Denis Cedex LaRéunion
| | - Janne Soininen
- Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
| | - Elisa Soana
- Department of Environmental and Prevention SciencesUniversity of FerraraFerraraItaly
| | - Mattia Lanzoni
- Department of Environmental and Prevention SciencesUniversity of FerraraFerraraItaly
| | - Giuseppe Castaldelli
- Department of Environmental and Prevention SciencesUniversity of FerraraFerraraItaly
| |
Collapse
|
8
|
Mor JR, Ciampittiello M, Brignone S, Jeppesen E, Volta P. Fish communities in Italian sub-alpine lakes: Non-native species and anthropogenic pressures increase community dissimilarities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154959. [PMID: 35390392 DOI: 10.1016/j.scitotenv.2022.154959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In European lakes, anthropogenic pressures have increased significantly since the 1950s, facilitating colonisation by non-native species and increasing the potential for further invasions. Here, we determined the effects of anthropogenic pressures (i.e., habitat alterations and introduction of non-native species) on the fish communities of Italian sub-alpine lakes. We hypothesised that established non-native species would have more competitive traits against anthropogenic stressors, such as habitat alteration, than native species. Thus, we expected that non-native species would dominate lake communities and reduce native species occurrence and abundance depending on the degree of anthropogenic alterations. Overall, we predicted that the increase in anthropogenic pressures after the 1950s had led to homogenisation of the fish communities of the lakes in the region. We tested these hypotheses using data on 15 sub-alpine lakes, covering a broad geographical and morphological gradient, and compared the 2007-2014 fish community composition (sampled according to the CEN protocol plus point-abundance electrofishing) with variables of lake habitat and anthropogenic pressures (based on the Lake Habitat Survey, a method to evaluate the hydromorphological conditions of lakes according to the European Water Framework Directive) and fish communities before 1950, the latter based on bibliographic information. Following our hypothesis, non-native species showed higher prevalence of traits that increase their competitiveness against anthropogenic alterations (e.g., tolerance to pollution). In addition to lake morphology, the community composition of non-native fish determined as abundance (NPUE) and biomass (BPUE) was positively related to anthropogenic pressures. Since the 1950s, 19 non-native species have colonised the Italian sub-alpine lakes, and the occurrence of native species has decreased by ~27%. However, contrary to our expectation, these changes have increased the β-diversity of the fish communities in the lakes.
Collapse
Affiliation(s)
- Jordi-René Mor
- Water Research Institute (IRSA), Consiglio Nazionale delle Ricerche (CNR), Pallanza, Italy.
| | - Marzia Ciampittiello
- Water Research Institute (IRSA), Consiglio Nazionale delle Ricerche (CNR), Pallanza, Italy
| | - Stefano Brignone
- Water Research Institute (IRSA), Consiglio Nazionale delle Ricerche (CNR), Pallanza, Italy
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Silkeborg 8600, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - Pietro Volta
- Water Research Institute (IRSA), Consiglio Nazionale delle Ricerche (CNR), Pallanza, Italy
| |
Collapse
|
9
|
Milardi M, Iemma A, Waite IR, Gavioli A, Soana E, Castaldelli G. Natural and anthropogenic factors drive large-scale freshwater fish invasions. Sci Rep 2022; 12:10465. [PMID: 35729231 PMCID: PMC9213492 DOI: 10.1038/s41598-022-14556-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
We analyzed the large-scale drivers of biological invasions using freshwater fish in a Mediterranean country as a test case, and considering the contribution of single species to the overall invasion pattern. Using Boosted Regression Tree (BRT) models, variation partitioning and Redundancy Analysis (RDA), we found that human factors (especially eutrophication) and climate (especially temperature) were significant drivers of overall invasion. Geography was also relevant in BRT and RDA analysis, both at the overall invasion and the single species level. Only variation partitioning suggested that land use was the second most significant driver group, with considerable overlap between different invasion drivers and only land use and human factors standing out for single effects. There was general accordance both between different analyses, and between invasion outcomes at the overall and the species level, as most invasive species share similar ecological traits and prefer lowland river stretches. Human-mediated eutrophication was the most relevant invasion driver, but the role of geography and climate was at least equally important in explaining freshwater fish invasions. Overall, human factors were less prominent than natural factors in driving the spread and prevalence of invasion, and the species spearheading it.
Collapse
Affiliation(s)
- Marco Milardi
- Fisheries New Zealand - Tini a Tangaroa, Ministry for Primary Industries - Manatū Ahu Matua, 34-38 Bowen Street, Wellington, 6011, New Zealand. .,Southern Indian Ocean Fisheries Agreement (SIOFA) c/o DAAF Bâtiment B Parc de la Providence, 97489, Saint-Denis Cedex, Réunion.
| | - Aaron Iemma
- WWF Trentino, Via Fratelli Bronzetti 29, 38122, Trento, Italy
| | - Ian R Waite
- U.S. Geological Survey, Oregon Water Science Center, 2130 S.W. Fifth Avenue, Portland, OR, 97201, USA
| | - Anna Gavioli
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Elisa Soana
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Giuseppe Castaldelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
10
|
Vanessa DS, Davide C, Ilaria B, Chiara B, Stefano B, Mattia I, Silvia Z, Pietro V. Non-native fish assemblages display potential competitive advantages in two protected small and shallow lakes of northern Italy. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
11
|
Milardi M, Green AJ, Mancini M, Trotti P, Kiljunen M, Torniainen J, Castaldelli G. Invasive catfish in northern Italy and their impacts on waterbirds. NEOBIOTA 2022. [DOI: 10.3897/neobiota.72.80500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Predatory fish have occasionally been observed preying on birds, sometimes repeatedly, but few studies were able to unravel the overall significance of avian prey in fish diet and the predation impacts on bird populations. We used a control/impact study setup, using a Nature Reserve in northern Italy and a nearby control area, to determine: 1) the contribution of waterbirds to wels catfish diet in the Reserve, 2) the population density of wels catfish in the Reserve and control area and 3) the potential impacts of waterbird depredation by wels catfish on waterbird population trends. Our stable isotope Bayesian mixing model indicated that birds contributed 12.2% (5–27.9%, 50% confidence interval) of the diet of large wels catfish (> 98 cm in total length). Large individuals constituted the majority of the population in the shoreline areas of the reserve in 2013–2019, where the population was stable despite control efforts. Numbers were below detectable levels in the control area. Large wels catfish consumed an average of 224, 148 and 187 kg of birds during the 2019 chick growing period, as estimated through three different bioenergetic models. Compared to the control area, mallard reproductive success was diminished in the Reserve, likely due to higher rates of fish predation, although effects were variable in different years. Overall, our data suggest that high densities of invasive wels catfish might impact waterbird reproductive success through predation on bird chicks, but further studies would be needed to reduce uncertainties related to the intrinsic variability of field ecology data. Our study constitutes a preliminary attempt to assess the potential of introduced wels catfish to affect the conservation value of waterbird protection areas, and should be repeated at broader spatial and temporal scales.
Collapse
|
12
|
Feeding habits of Ictalurus punctatus in the downstream section of Nunome Dam reservoir in Japan. LANDSCAPE AND ECOLOGICAL ENGINEERING 2021. [DOI: 10.1007/s11355-021-00463-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Zhao Q, Zhang Y, Guo F, Leigh C, Jia X. Increasing anthropogenic salinisation leads to declines in community diversity, functional diversity and trophic links in mountain streams. CHEMOSPHERE 2021; 263:127994. [PMID: 32828062 DOI: 10.1016/j.chemosphere.2020.127994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic salinisation is becoming an increasing global issue for freshwater ecosystems, leading to serious biodiversity loss and ecosystem degradation. While the effect of anthropogenic salinisation on freshwater ecosystems has been intensively studied in recent years, most studies focus on salinisation effects on the individual or single groups of organisms without considering the effect on the ecosystem levels, such as diversity and trophic links. Therefore, we conducted a long-term field survey from May 2009 to August 2016 at 405 sites in northeast China to investigate the effect of a gradient of salinisation on community diversity, functional diversity and trophic links in mountain streams. Samples of water chemistry, periphyton, macroinvertebrates and fish were collected. Our results showed that as anthropogenic salinisation increased, Ca2+, Mg2+, HCO3- and SO42- exhibited significant increases (p < 0.05). These increased ions caused decreases in taxonomic evenness and biotic integrity, but an increase in the beta diversity for periphyton and macroinvertebrates, and a slight increase in the evenness of fish. The increased salinisation resulted in the extirpation of salt-sensitive taxa and declines in macroinvertebrate functional richness and functional redundancy, which consequently led to simplified trophic links. Our results implied that if salt-tolerant taxa in high salinisation sites were not functionally redundant with less tolerant taxa, alterations of their functional composition probably decrease the stability of ecosystem functions. Overall, our study suggests that the ongoing anthropogenic salinisation is posing serious threats to biodiversity and trophic links in river ecosystems, and should be considered in future river restoration and biodiversity conservation.
Collapse
Affiliation(s)
- Qian Zhao
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Yuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Fen Guo
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China.
| | - Catherine Leigh
- Biosciences and Food Technology Discipline, RMIT University, Melbourne, Victoria, Australia
| | - Xiaobo Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
14
|
Stefani F, Schiavon A, Tirozzi P, Gomarasca S, Marziali L. Functional response of fish communities in a multistressed freshwater world. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139902. [PMID: 32927533 DOI: 10.1016/j.scitotenv.2020.139902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/27/2020] [Accepted: 05/31/2020] [Indexed: 05/22/2023]
Abstract
Freshwater fish communities are impacted by multiple pressures, determining loss of functional diversity and redundancy. Our aim was to disentangle the roles and relevancies of different pressures in shaping fish communities in small streams of the Po plain (North Italy). Long term trend (1998-2018) of functional diversity of 31 fish communities was assessed and modeled in respect to three potential pressures: temperature increase, intensity of exotic fish invasion, and habitat quality degradation. Ecological traits mostly influenced by the pressures were also identified. Reduction of functional richness mostly due to local extinction or contraction of cold adapted predators, such as salmonids, was linked to increasing temperatures. Warming probably also led to a shift of generalist and dominant species, which became more abundant in streams hosting mixed communities of salmonids and cyprinids, and determined the increase of functional dispersion and uniqueness. Reduction of functional redundancy and increasing functional dispersion were both also related to the introduction of new ecological traits brought by expanding exotic species. Low functional overlap was found among native and exotic species, indicating that the invasion process was mainly controlled by competitive interactions and/or resource opportunism. Functional response to habitat quality was not clearly evident. In conclusion, the impact of temperature increase and exotic species on fish functional diversity was effective, idiosyncratic and mediated by the scale of analysis and by the intensity of pressures.
Collapse
Affiliation(s)
- Fabrizio Stefani
- Water Research Institute-National Research Council (IRSA-CNR), Via del Mulino 19, 20861 Brugherio, MB, Italy.
| | - Alfredo Schiavon
- Water Research Institute-National Research Council (IRSA-CNR), Via del Mulino 19, 20861 Brugherio, MB, Italy
| | - Pietro Tirozzi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Stefano Gomarasca
- Dip. of Environmental Science and Policy (ESP), University of Milan, via Celoria 2, 20133 Milano, Italy
| | - Laura Marziali
- Water Research Institute-National Research Council (IRSA-CNR), Via del Mulino 19, 20861 Brugherio, MB, Italy
| |
Collapse
|
15
|
Sánchez-Pérez A, Oliva-Paterna FJ, Colin N, Torralva M, Górski K. Functional response of fish assemblage to multiple stressors in a highly regulated Mediterranean river system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138989. [PMID: 32388375 DOI: 10.1016/j.scitotenv.2020.138989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Mediterranean rivers are characterised by strong environmental constrains and species-poor, highly endemic fish fauna. In Europe, these systems are exposed to multiple stressors due to extensive human activities. Studies on the effects of some stressors on riverine fish are available but complex responses of fish assemblages to interplay of flow alteration with physical habitat changes and invasive species have not been evaluated up to date. This study analysed the response of functional diversity of fish assemblages to multiple stressors in the Segura River system in the southern Spain. Fish assemblages were sampled in 16 sites in two consecutive periods (2009-2010 and 2013-2015). Subsequently, we assessed the responses of functional specialisation, originality and entropy (based on nine functional traits and abundances) as well as species richness and abundance to interplay of flow regime alteration and ecological status, fragmentation as well as non-native species abundance across spatial and temporal scales. The governing role of flow regime in structuring fish assemblage was superimposed on physical habitat changes, water quality deterioration and fragmentation as well as the presence of non-native fish species. We found an increase of species richness and abundance but decrease of functional specialisation and originality in river reaches with high level of base flow and more stable hydrological conditions. Opposite pattern was observed in reaches with severe reduction of base flow and marked inversion in the seasonal pattern of high and low flows. We postulate that the use of tools that consider the functional identity of the species as method to assess the effects of environmental alterations on fish biodiversity could improve conservation measures for Mediterranean fish fauna. Furthermore, design flows that mimic natural flow regime patterns characteristic for Mediterranean rivers are a promising tool to provide environmental conditions that would favour native fish within the assemblage and benefit their conservation.
Collapse
Affiliation(s)
- Ana Sánchez-Pérez
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| | - Francisco José Oliva-Paterna
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Nicole Colin
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Departamento de Ecología, Facultad de Ciencias y Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Mar Torralva
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Konrad Górski
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Departamento de Ecología, Facultad de Ciencias y Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
16
|
Tagliaferro M, Kelly SP, Pascual M. First study of food webs in a large glacial river: the trophic role of invasive trout. NEOTROPICAL ICHTHYOLOGY 2020. [DOI: 10.1590/1982-0224-2020-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract The aim of this study was to determine the food webs structure of a large Patagonian river in two river sections (Upstream and Midstream) and to evaluate isotopic overlap between native and introduced species. We used stable isotope analyses of δ15N and δ13C and stomach content. The Upstream section had a more complex food webs structure with a greater richness of macroinvertebrates and fish species than Midstream. Upstream basal resources were dominated by filamentous algae. Lake Trout were found to have a higher trophic position than all other fish species in that area although, the most abundant fish species, were Rainbow Trout. Depending on the life stage, Rainbow Trout shifted from prey to competitor/predator. In the Midstream section, the base of the food webs was dominated by coarse particulate organic matter, and adult Rainbow Trout had the highest trophic level. Isotopic values changed among macroinvertebrates and fish for both areas. The two most abundant native and invasive species — Puyen and Rainbow Trout — showed an isotopic separation in Midstream but did not in Upstream areas. The presence of invasive fish that occupy top trophic levels can have a significant impact on native fish populations that have great ecological importance in the region.
Collapse
Affiliation(s)
| | - Sean P. Kelly
- Universidad de Puerto Rico-Río Piedras, United States
| | | |
Collapse
|
17
|
Milardi M, Gavioli A, Soininen J, Castaldelli G. Exotic species invasions undermine regional functional diversity of freshwater fish. Sci Rep 2019; 9:17921. [PMID: 31784553 PMCID: PMC6884620 DOI: 10.1038/s41598-019-54210-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/09/2019] [Indexed: 11/08/2022] Open
Abstract
Exotic species invasions often result in native biodiversity loss, i.e. a lower taxonomic diversity, but current knowledge on invasions effects underlined a potential increase of functional diversity. We thus explored the connections between functional diversity and exotic species invasions, while accounting for their environmental drivers, using a fine-resolution large dataset of Mediterranean stream fish communities. While functional diversity of native and exotic species responded similarly to most environmental constraints, we found significant differences in the effects of altitude and in the different ranking of constraints. These differences suggest that invasion dynamics could play a role in overriding some major environmental drivers. Our results also showed that a lower diversity of ecological traits in communities (about half of less disturbed communities) corresponded to a high invasion degree, and that the exotic component of communities had typically less diverse ecological traits than the native one, even when accounting for stream order and species richness. Overall, our results suggest that possible outcomes of severe exotic species invasions could include a reduced functional diversity of invaded communities, but analyzing data with finer ecological, temporal and spatial resolutions would be needed to pinpoint the causal relationship between invasions and functional diversity.
Collapse
Affiliation(s)
- Marco Milardi
- University of Ferrara, Department of Life Sciences and Biotechnology, via Luigi Borsari 46, 44121, Ferrara, Italy
- Fisheries New Zealand - Tini a Tangaroa, Ministry for Primary Industries - Manatū Ahu Matua, 34 - 38 Bowen Street, Wellington, New Zealand
| | - Anna Gavioli
- University of Ferrara, Department of Life Sciences and Biotechnology, via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Janne Soininen
- University of Helsinki, Department of Geosciences and Geography, PO Box 64, 34 - 38 Bowen Street, FI-00014, Helsinki, Finland
| | - Giuseppe Castaldelli
- University of Ferrara, Department of Life Sciences and Biotechnology, via Luigi Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|