1
|
Shi Y, Liu Q, Wu G, Zhao S, Li Y, You S, Huang G. Removal and reduction mechanism of Cr (VI) in Leersia hexandra Swartz constructed wetland-microbial fuel cell coupling system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116373. [PMID: 38653023 DOI: 10.1016/j.ecoenv.2024.116373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/29/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Cr (VI) is extremely harmful to both the environment and human health, and it can linger in the environment for a very long period. In this research, the Leersia hexandra Swartz constructed wetland-microbial fuel cell (CW-MFC) system was constructed to purify Cr (VI) wastewater. By comparing with the constructed wetland (CW) system, the system electricity generation, pollutants removal, Cr enrichment, and morphological transformation of the system were discussed. The results demonstrated that the L. hexandra CW-MFC system promoted removal of pollutants and production of electricity of the system. The maximum voltage of the system was 499 mV, the COD and Cr (VI) removal efficiency was 93.73% and 97.00%. At the same time, it enhanced the substrate and L. hexandra ability to absorb Cr and change it morphologically transformation. Additionally, the results of XPS and XANES showed that the majority of the Cr in the L. hexandra and substrate was present as Cr (III). In the L. hexandra CW-MFC system, Geobacter also functioned as the primary metal catabolic reducing and electrogenic bacteria. As a result, L. hexandra CW-MFC system possesses the added benefit of removing Cr (VI) while producing energy compared to the traditional CW system.
Collapse
Affiliation(s)
- Yucui Shi
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China; Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang 262700, China; Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse, Weifang 262700, China
| | - Qing Liu
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China; Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang 262700, China; Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse, Weifang 262700, China
| | - Guowei Wu
- Shouguang Hospital of Traditional Chinese Medicine, Weifang 262700, China
| | - Shasha Zhao
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China; Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang 262700, China; Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse, Weifang 262700, China
| | - Yongwei Li
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China; Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang 262700, China
| | - Shaohong You
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology of Guilin University of Technology, Guilin 541004, China.
| | - Guofu Huang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China; Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang 262700, China; Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse, Weifang 262700, China.
| |
Collapse
|
2
|
Li B, Jian S, Zhu J, Lv Y, Gao X, Huang J. Immobilization enhancement of heavy metals in lightweight aggregate by component regulation of multi-source solid waste. CHEMOSPHERE 2023; 344:140389. [PMID: 37832887 DOI: 10.1016/j.chemosphere.2023.140389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Integrated recycling of solid waste containing heavy metals is a critical environmental challenge. In this study, a green solution to reduce heavy metal leaching from solid waste is demonstrated by combining contaminated soil, industrial sludge and lithium slag in pairs to produce lightweight aggregates (LWAs). The physical properties and heavy metal leaching behavior of LWA samples were systematically investigated and characterized. The results showed that industrial sludge reduced the density and water absorption of LWA, while the high content of lithium slag was detrimental to the physical properties. LWA containing 80% contaminated soil and 20% lithium slag had the lowest particle density of 1.47 g/cm3 due to the hollow structure caused by the low viscosity and violent generation of SO2. LWAs with lithium slag leached excessive Cu and Cr relatively, while heavy metals were immobilized well in LWAs with contaminated soil and industrial sludge as the main components. Because the flux components of industrial sludge could enhance the encapsulation of heavy metals by glass phase. In addition, the co-immobilization of multiple heavy metals was observed in the spinel phase. This study provides an efficient and safe method for the synergistic recycling of solid waste.
Collapse
Affiliation(s)
- Baodong Li
- State Key Laboratory of Silicate Building Materials, Wuhan University of Technology, Wuhan, China
| | - Shouwei Jian
- State Key Laboratory of Silicate Building Materials, Wuhan University of Technology, Wuhan, China.
| | - Jiaoqun Zhu
- State Key Laboratory of Silicate Building Materials, Wuhan University of Technology, Wuhan, China
| | - Yang Lv
- State Key Laboratory of Silicate Building Materials, Wuhan University of Technology, Wuhan, China
| | - Xin Gao
- State Key Laboratory of Silicate Building Materials, Wuhan University of Technology, Wuhan, China
| | - Jianxiang Huang
- State Key Laboratory of Silicate Building Materials, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
3
|
Li B, Chen Y, Ren G, Zhao R, Wu Z, Zhu F, Ma X. Efficient low-concentration phosphate removal from sub-healthy surface water by adsorbent prepared based on functional complementary strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166476. [PMID: 37625711 DOI: 10.1016/j.scitotenv.2023.166476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
The remediation of low-concentration phosphorus polluted surface water (LP-SW) is one of most challenging environmental issues worldwide. Adsorption is more suitable for LP-SW remediation due to its low cost and operability. Based on the strategy of functional complementation among industrial solid wastes (ISWs), ISW-based phosphate absorbent material (PAM) was prepared from coal ash (CA, binder), rich‑calcium (Ca) carbide slag (CS, active component) and iron salt (functional reagent) by optimizing materials ratios and roasting conditions. PAM prepared under optimal conditions (Fe/CC-2opt) had good phosphate adsorption efficiency. Notably, Fe/CC-2opt not only ensured that the effluent met Environmental Quality Standards for Surface Water (pH = 6.0-9.0), but also facilitated the formation of brushite instead of hydroxyapatite due to FeSO4 addition. Compared with hydroxyapatite, brushite had greater potential application value as fertilizer due to its solubility and high P/Ca ratio. The possible mechanisms of phosphate adsorption by PAM included surface precipitation, surface complexation, electrostatic adsorption and release of Ca2+/OH-. Preparation cost of PAM was 80 US$/ton, and treatment cost was 0.07 US$/g P. Regeneration efficiency of PAM was still above 80 % after five cycles. The design idea and result of this study provide theoretical basis and technical support for the preparation of PAM with low cost, commercial production and great adsorption capacity.
Collapse
Affiliation(s)
- Benhang Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yanhao Chen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Gengbo Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ruining Zhao
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhineng Wu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fujie Zhu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
4
|
Wang G, Xiang J, Liang G, Wang J, Ma S, He C. Application of common industrial solid waste in water treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111766-111801. [PMID: 37843711 DOI: 10.1007/s11356-023-30142-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Industrial solid waste has a wide range of impacts, and it is directly or indirectly related to land, atmosphere, water, and other resources. Industrial solid waste has a large amount of production, complex and diverse components and contains a variety of harmful substances. However, as industrial by-products, it also has a lot of available value. Industrial solid waste has been continuously studied in water treatment due to its special composition and porous and loose structure. It is known that there are few reviews of various industrial solid wastes in the field of wastewater treatment, and most of them only discuss single industrial solid waste. This paper aims to sort out the different studies on various solid wastes such as fly ash, red mud, wastewater sludge, blast furnace slag and steel slag in dyeing, heavy metal, and phosphorus-containing wastewater. Based on the modification of industrial solid waste and the preparation of composite materials, adsorbents, coagulants, catalysts, filtration membranes, geological polymers, and other materials with high adsorption properties for pollutants in wastewater were formed; the prospect and development of these materials in the field of wastewater were discussed, which provides some ideas for the mutual balance of environment and society. Meanwhile, some limitations of solid waste applications for wastewater treatment have been put forward, such as a lack of further researches about environment-friendly modification methods, application costs, the heavy metal leaching, and toxicity assessment of industrial solid waste.
Collapse
Affiliation(s)
- Guifang Wang
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China.
| | - Jie Xiang
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Guangchuan Liang
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Jing Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shaojian Ma
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Chunlin He
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| |
Collapse
|
5
|
Zhang C, Wang G, Xu F, Wu Z, Shen C, Wu C, Zhong Z, Chen J. Ceramsite made from remediated soil: A risk assessment of its potential role serving as urban street cushion. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:15. [PMID: 37452857 DOI: 10.1007/s00128-023-03753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
To promote the reuse of remediated soil (RS) and facilitate the cleanup of rainwater in sponge city, we investigated the effects of ceramsite made from RS serving as urban street cushion. Ceramsite was prepared by RS or pollution-free soil (PS) and showed no difference in physical properties. Compared with gravel, ceramsite had purification effects on effluents, reducing the content of chemical oxygen demand, total nitrogen, and ammoniacal nitrogen. However, the content of total phosphorus and the concentration of Cr(VI) and arsenic slightly increased in ceramsite groups, inferring potential risk. Microbial community analysis proved that ceramsite promoted microbial growth and increased microbial diversity. A long-term risk assessment indicated that ceramsite was good at fixing heavy metals during leaching process. Taken together, ceramsite prepared from RS could serve as excellent urban street cushion with little potential risk to surroundings.
Collapse
Affiliation(s)
- Chi Zhang
- Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- Eco-Environmental Sciences Research & Design Institute of Zhejiang Province, Hangzhou, 310007, P. R. China
- Zhejiang Key Laboratory of Environmental Protect Technology, Hangzhou, 310007, P. R. China
| | - Genfu Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Fengjun Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Zhenghua Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Chao Wu
- Eco-Environmental Sciences Research & Design Institute of Zhejiang Province, Hangzhou, 310007, P. R. China
- Zhejiang Key Laboratory of Environmental Protect Technology, Hangzhou, 310007, P. R. China
| | - Zhong Zhong
- Eco-Environmental Sciences Research & Design Institute of Zhejiang Province, Hangzhou, 310007, P. R. China.
- Zhejiang Key Laboratory of Environmental Protect Technology, Hangzhou, 310007, P. R. China.
| | - Jianmeng Chen
- Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
6
|
Xiangguo L, Weizhen W, Shouwei J, Baodong L, Xin G, Jianxiang H, Yang L. Preparation of water storage ceramsite via dredged silt and biomass waste: Pore formation, water purification and application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160314. [PMID: 36414063 DOI: 10.1016/j.scitotenv.2022.160314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Natural water pollution and eutrophication are environmental problems that urgently need to be solved. Porous ceramsite could be applied for both water storage and water purification. This research used biomass and dredged silt to prepare water storage ceramsite (WSC), and investigated the adsorption and removal effects of WSC on phosphorus (P), nitrogen ((NH4+)N) and chemical oxygen demand (COD). The results showed that the biomass was mostly burned and partially carbonized during the high-temperature sintering process to form a rich pore structure inside the material. The rich pore structure effectively improved the water absorption to 105.58 %. The abundant specific surface area could provide many attachment sites, which is conducive to the adsorption of target ions by WSC. Further testing showed that WSC could adsorb ions with different charges in different pH solutions. Therefore, this study provides a sustainable solution for the co-utilization of biomass waste and dredged silt, and the application of WSC could reduce the damage caused by extreme rainfall and water pollution.
Collapse
Affiliation(s)
- Li Xiangguo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei Province, People's Republic of China
| | - Wang Weizhen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei Province, People's Republic of China
| | - Jian Shouwei
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei Province, People's Republic of China.
| | - Li Baodong
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei Province, People's Republic of China
| | - Gao Xin
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei Province, People's Republic of China
| | - Huang Jianxiang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei Province, People's Republic of China
| | - Lv Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei Province, People's Republic of China
| |
Collapse
|
7
|
Ma Y, Zhu J, Yu J, Fu Y, Gong C, Huang X. Adsorption Characteristics of Phosphate Based on Al-Doped Waste Ceramsite: Batch and Column Experiments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:671. [PMID: 36612990 PMCID: PMC9819071 DOI: 10.3390/ijerph20010671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Phosphorus widely existing in rainfall and wastewater impacts the water environment. In this study, sludge, cement block, and coal fly ash were employed as ceramsite material to synthesize Al-doped waste ceramsite (Al-ceramsite) for removing phosphate (PO43--P) from aqueous solutions. Batch static adsorption-desorption experiments were designed to investigate the effect of various parameters such as Al-ceramsite dosage, PO43--P concentration, temperature, initial pH, coexisting ions, and desorbents on the removal of PO43--P. Also, the fate of PO43--P removal efficiency in actual rainwater was studied through dynamic adsorption column experiments using Al-ceramsite. Results showed that Al-ceramsite could remove PO43--P efficiently under the optimum parameters as follows: Al-ceramsite dosage of 40 g/L, initial PO43--P concentration of 10 mg/L, temperature of 25 °C, and pH of 5. Besides that, the Al-ceramsite could completely remove PO43--P in actual rainwater, and the effluent PO43--P concentration was lower than the environmental quality standards for surface water Class Ⅰ (0.02 mg/L). The adsorption characteristics of Al-ceramsite on PO43--P by X-ray photoelectron spectroscopy (XPS) were further explained. As a result, ligand exchange and complexation were confirmed as the main PO43--P removal mechanism of Al-ceramsite. Thus, Al-ceramsite was prepared from industrial waste and has shown excellent potential for phosphorus removal in practical applications.
Collapse
Affiliation(s)
- Yameng Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jia Zhu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yicheng Fu
- State Key Laboratory of Simulation and Regulation of River Basin Water Cycle, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Chao Gong
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
8
|
Sun J, Zhou C, Shen H, Du J, Li Q, Wu W, Guo B, Liu G. Green synthesis of ceramsite from industrial wastes and its application in selective adsorption: Performance and mechanism. ENVIRONMENTAL RESEARCH 2022; 214:113786. [PMID: 35798269 DOI: 10.1016/j.envres.2022.113786] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The increasing requirement and consumption of coal has resulted in a large accumulation of coal gangue. The reuse and recycling of coal gangue have become a high priority for sustainable development. A sustainable and efficient ceramsite adsorbent was prepared for copper ions adsorption by using coal gangue, coal fly ash, and copper slag as the main materials. The appropriate performance of the ceramsite could be obtained at a mixture of coal gangue, coal fly ash, and copper slag at a weight ratio of 3:4:1. The optimal sintering temperature and time were 1050 °C and 20 min, respectively. The main crystalline phases of ceramsite were quartz, mullite, and anorthite. Many micropores are connecting the interior on the surface of ceramsite under scanning electron microscope. The maximum copper ions adsorption capacity reached up to 20.6 mg/g at 303 K when pH and time were 5 and 1440 min, respectively. The adsorption kinetics and isotherm could be described by the pseudo-second-order model and Freundlich model, respectively. The adsorption mechanisms of Cu2+ with ceramsite were attributed to Cu(OH)2 precipitation formed on the alkaline surface of ceramsite and complexation reactions occurred between the O-containing groups (including C-O, Fe-O, and Si-O) from ceramsite and Cu2+. The prepared ceramsite may be also applied to other heavy metal wastewater treatments.
Collapse
Affiliation(s)
- Jinke Sun
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei, 230009, China.
| | - Chuncai Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei, 230009, China.
| | - Hexin Shen
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei, 230009, China
| | - Jiao Du
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei, 230009, China
| | - Quanzhong Li
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei, 230009, China
| | - Wentao Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei, 230009, China
| | - Binglin Guo
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Guijian Liu
- School of Earth and Space Sciences, University of Science and Technology of China, No. 96, Road Jinzhai, Hefei, 230026, China
| |
Collapse
|
9
|
Hu S, Ren F, Jia J, Cui C, Guo C, Cui N, Ma L, Si H, Lu T, Liu G, Zhang B, Liu J. Exploring the environmental properties and resource utilization of construction waste in Beijing-Tianjin-Hebei region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022:10.1007/s11356-022-23327-8. [PMID: 36194321 DOI: 10.1007/s11356-022-23327-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Beijing-Tianjin-Hebei region is a capital economic circle for the future. Promoting the coordinated development of its population, economy, resources and environment is a major national strategy. And as towns and cities continue to expand, the volume of construction waste is gradually expanding, posing a major challenge to the sustainable development of the construction industry. In order to solve this problem, this paper used portable X-ray fluorescence spectrometry to realize the on-site rapid monitoring of heavy metals in construction waste, and the correlation analysis result was R2 = 0.9908. The visualization of enrichment factor evaluation results was realized through ArcGIS. The Beijing-Tianjin-Hebei region is mainly polluted by heavy metal elements Cr, Zn, Pb and Hg, showing regional pollution characteristics, and the results of mercury morphology analysis show that all are inorganic mercury pollution, and methylmercury is not detected, and the cause can be traced to heavy industrial production in Tangshan City, which is consistent with industrial ecology. The results of leaching toxicity and cation anion analysis showed that the construction waste in Beijing-Tianjin-Hebei region had environmental risks to the surrounding surface water and groundwater. The resource treatment and disposal path were determined by means of XRD, ternary phase diagram and oxide composition analysis to avoid secondary pollution. This study explores the environmental properties and resource utilization pathways of construction waste in the Beijing-Tianjin-Hebei region, laying the foundation for research work on construction waste in the development of national urban agglomerations, effectively solving regional environmental pollution problems and promoting the sustainable development of the construction industry.
Collapse
Affiliation(s)
- Shuxin Hu
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing JiaoTong University, Beijing, 100044, China
- School of Civil Engineering, Beijing JiaoTong University, Beijing, 100044, China
| | - Fumin Ren
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing JiaoTong University, Beijing, 100044, China.
- School of Civil Engineering, Beijing JiaoTong University, Beijing, 100044, China.
| | - Jinming Jia
- School of Civil Engineering, Beijing JiaoTong University, Beijing, 100044, China
| | - Can Cui
- School of Civil Engineering, Beijing JiaoTong University, Beijing, 100044, China
| | - Changhong Guo
- Xuchang Ecology and Environmental Monitoring Center of Henan, Xuchang, 461000, Henan Province, China
| | - Nana Cui
- School of Civil Engineering, Beijing JiaoTong University, Beijing, 100044, China
| | - Li Ma
- Xuchang Ecology and Environmental Monitoring Center of Henan, Xuchang, 461000, Henan Province, China
| | - Han Si
- Xuchang Ecology and Environmental Monitoring Center of Henan, Xuchang, 461000, Henan Province, China
| | - Tong Lu
- School of Civil Engineering, Beijing JiaoTong University, Beijing, 100044, China
| | - Guotao Liu
- School of Civil Engineering, Beijing JiaoTong University, Beijing, 100044, China
| | - Boyu Zhang
- School of Civil Engineering, Beijing JiaoTong University, Beijing, 100044, China
| | - Junshi Liu
- School of Civil Engineering, Beijing JiaoTong University, Beijing, 100044, China
| |
Collapse
|
10
|
Li Y, Xu M, Li Q, Gai A, Yang T, Li R. Study on the Properties and Heavy Metal Solidification Characteristics of Sintered Ceramsites Composed of Magnesite Tailings, Sewage Sludge, and Coal Gangue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11128. [PMID: 36078840 PMCID: PMC9518390 DOI: 10.3390/ijerph191711128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of industry, the disposal of industrial solid waste needs to be solved urgently in China. Thus, an effective disposal method should be proposed to recycle these solid wastes in an environmentally friendly and sustainable manner. In this paper, ceramsite was prepared from sewage sludge (SS), magnesite tailings (MTs), and coal gangue (CG). The influence of the material ratio and sintering temperature on the properties of the ceramsite was investigated. The results show that the ceramsite had better properties when the following parameters were used: a ratio of SS: CG: MT of 4.5:4:1.5; a sintering temperature of 1250 °C; a compressive strength of 11.2 MPa (or it can be rounded to 11; our major remark relates to significant figures, and they should be up to 2-3 figures, according to measurement errors); a water absorption of 3.54%; and apparent and bulk densities of 1.19 and 0.81 g/cm3, respectively. The strength was superior to more than twice the 900-density grade prescribed by the Chinese national standard. After sintering, most of the heavy metals in the ceramsite mainly existed in the form of residue state (FD), meaning that they were highly stable. The leaching concentrations of Zn and Ni from the ceramsite were 0.72 and 0.25 mg/L lower than the prescribed regulatory limits (2.0 and 0.1 mg/L). The overall pollution toxicity index (OPTI) was only 240, less than that of raw pellets, indicating that the environmental risk is low. Not only did the ceramsite, prepared from SS, CG, and MT, exhibit excellent chemical properties, but it also proved to be an environmentally safe material. Therefore, it is an effective approach to realize the collaborative treatment of SS, CG, and MT by preparing ceramsite.
Collapse
Affiliation(s)
- Yanlong Li
- The Key Laboratory of Clean Energy in Liaoning Province, College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| | | | | | | | | | - Rundong Li
- The Key Laboratory of Clean Energy in Liaoning Province, College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| |
Collapse
|
11
|
Effect of Sewage Sludge Addition on Microstructure and Mechanical Properties of Kaolin-Sewage Sludge Ceramic Bricks. COATINGS 2022. [DOI: 10.3390/coatings12070944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The dramatic increase in sewage sludge production requires researchers to develop and explore more commercially viable ways for alleviating current environmental and socioeconomic challenges connected with its routine management. It has been established that sewage sludge can be processed to fabricate various valuable products or as fuels for electricity generation. In this research, kaolin (calcined from coal gangue) and sewage sludge were successfully used to prepare porous ceramic bricks without any additives. The effect of sewage sludge on the microstructure, phase composition, and mechanical properties of kaolin-sewage sludge ceramic bricks was investigated. The results show that the kaolin-sewage sludge ceramic bricks are mainly composed of mullite (3Al2O3·2SiO2), sillimanite (Al2SiO5), aluminum phosphate (AlPO4), hematite (Fe2O3) as well as a small amount of quartz (SiO2). The ceramic bricks present a typical porous structure, and the number and size of micropores increases noticeably with the increase of sewage sludge content. The sintering shrinkage rate and porosity of ceramic bricks increased significantly with the increase of sewage sludge content, which is mainly attributed to the increase of liquid phase proportion and high temperature volatilization. Sewage sludge can significantly improve the mechanical properties of kaolin-sewage sludge ceramic bricks. When the sewage sludge content is 30 wt.%, the ceramic bricks present the maximum compressive strength and flexural strength and high porosity (32.74%). The maximum sintering shrinkage rate and porosity are 12.17% and 40.51%, respectively.
Collapse
|
12
|
Adsorption characteristics of assembled and unassembled Ni/Cr layered double hydroxides towards methyl orange. J Colloid Interface Sci 2022; 617:363-371. [DOI: 10.1016/j.jcis.2022.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/24/2022]
|
13
|
Wang R, Lu M, Wang J. Co-Utilization of Sewage Sludge and Rice Husk in Ceramsite Preparation with Selective Adsorption Capacity to Pb. MATERIALS 2022; 15:ma15124310. [PMID: 35744368 PMCID: PMC9230551 DOI: 10.3390/ma15124310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023]
Abstract
Realizing the green recycling of sludge is an important link to effectively solve the problem of sludge disposal. In this paper, sewage sludge (SS) and rice husk (RH) were utilized as raw materials in preparing novel ceramsite (SRC) for the treatment of lead-containing wastewater, and its adsorption mechanism was explored. The results showed that the optimal preparation conditions were 40% RH + 60% SS mixture, a sintering temperature of 1190 °C, and a sintering time of 20 min. The basic properties of SRC met Chinese artificial ceramsite filter material standards for water treatment (CJ/T 299-2008). Under optimum adsorption conditions (pH = 6, 1 g/L SRC dosage, 20 mg/L Pb(NO)3 concentration, 18 h), the removal rate of Pb2+ reached 94.7%, and the equilibrium adsorption capacity was 18.94 mg/g. The adsorption process was more consistent with the pseudo-second-order kinetic model and the Langmuir isotherm model, indicating that the adsorption process was dominated by chemisorption. Thermodynamic parameters (ΔH0 > 0, ΔG0 < 0, ΔS0 > 0) indicated that the adsorption reaction was spontaneous and endothermic. The possible adsorption mechanisms are as follows: (1) SRC is rich in layered mesoporous structure, which provides sufficient reaction sites for Pb adsorption; (2) the sintered lawsonite and muscovite can strongly attract Pb and then form a new phase (Pb10[Si2O7]3(OH)2); (3) Pb2+ can bond with the Si−O- bond in aluminosilicates, and the introduction of Pb elevates the degree of polymerization of aluminosilicates in turn, indicating that the adsorption process is stable.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China;
| | - Meng Lu
- Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China;
| | - Junxing Wang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China;
- Correspondence: ; Tel.: +86-137-0718-2138
| |
Collapse
|
14
|
Synthesis of novel hierarchical porous zeolitization ceramsite from industrial waste as efficient adsorbent for separation of ammonia nitrogen. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Mahyoob W, Alakayleh Z, Abu Hajar HA, Al-Mawla L, Altwaiq AM, Al-Remawi M, Al-Akayleh F. A novel co-processed olive tree leaves biomass for lead adsorption from contaminated water. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104025. [PMID: 35594801 DOI: 10.1016/j.jconhyd.2022.104025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 04/22/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Olive farming is one of the key agricultural activities in Jordan, where nearly 70% of the cultivated land in Jordan is covered with olive trees. Olive harvesting generates massive quantities of agricultural waste which will be an environmental burden if not managed properly. The present study introduces the use of novel co-processed biomass extracted from the olive tree leaves for the adsorption of lead from contaminated water. Several biomass co-processing techniques using different concentrations of sodium hydroxide, phosphoric acid, and the Dead Sea water were investigated and their effect on the removal efficiency was demonstrated. Moreover, the effect of several parameters on the adsorption efficiency including biomass particle size, solution pH, contact time, adsorbent amount, and lead ion concentration was explored. It was inferred that biomass co-processing enhanced the adsorption capacity of lead. It was also found that the adsorption efficiency increased with decreasing biomass particle size due to the increase in surface area. The highest lead removal was attained at an efficiency value of 70% for the 0.1 mm particle size and at a maximum adsorption capacity recorded at pH 5. The foregoing had a negatively charged biomass surface which, as such, favored the cationic adsorption (pHPZC values around 2.8-4.5). For lead biosorption, the process was a rapid process whereby most adsorption was observed within the first 20 min. Concurrently, there were no considerable changes in lead removal thereafter. Theoretically, this was attributed to the decrease in the available adsorption sites on the biomass surface. On the other hand, a continuous increase in the removal efficiency was recorded upon increasing the adsorbent amount. However, there was a continuous decline in the removal efficiency upon an increase in the initial lead concentration. The experimental data were fitted well with Langmuir isotherm (indicating a monolayer adsorption isotherm), while kinetic data showed the best fit with a pseudo-second-order kinetic model.
Collapse
Affiliation(s)
- Waseem Mahyoob
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Zuhier Alakayleh
- Civil and Environmental Engineering Department, College of Engineering, Mutah University, Mutah, Karak 61710, Jordan.
| | - Husam A Abu Hajar
- Department of Civil Engineering, School of Engineering, University of Jordan, Amman 11942, Jordan.
| | - Layaly Al-Mawla
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Abdelmnim M Altwaiq
- Department of Chemistry, College of Arts and Sciences, University of Petra, Amman, Jordan.
| | - Mayyas Al-Remawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
| | - Faisal Al-Akayleh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
| |
Collapse
|
16
|
Influence of Ceramsite with Assembly Unit of Sludge and Excavated Soil on the Properties of Cement Concrete. MATERIALS 2022; 15:ma15093164. [PMID: 35591496 PMCID: PMC9101640 DOI: 10.3390/ma15093164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022]
Abstract
The application of sludge in the manufacture of ceramic material provides an outlet for waste disposal. In this study, we aimed to produce a new lightweight aggregate applications in concrete. The influence of burning temperature on the ignition loss rate, cylinder compressive strength, and the water absorption rate of ceramsite mixed with sludge and excavated soil was investigated. The slump flow, apparent density, and mechanical strength (flexural and compressive strengths) of cement concrete with ceramsite were determined. Moreover, the chloride ion permeability coefficient and the thermal conductivity were tested. Finally, scanning electron microscopy, X-ray diffraction, and thermal analysis were applied to analyze the mechanisms of the properties of ceramsite. Results show that the ignition loss rate and the burning temperature are in a quadratic relationship. The cylinder compressive strength shows a positive quadratic relationship with the burning temperature. However, the water absorption rate negatively correlates with the burning temperature. The addition of sludge can increase the ignition loss rate and cylinder compressive strength of ceramsite. Meanwhile, the effect of sludge on the water absorption rate is the opposite. Ceramsite decreases the slump flow and the apparent density of cement concrete. Cement concrete with 10% ceramsite shows the highest mechanical strength and the lowest chloride ion migration coefficient. Correction of the chloride ion migration coefficient and the content of ceramsite was performed as an exponential equation. Ceramsite exerts a negative effect on the thermal conductivity of cement concrete. Concrete with sludge ceramsite shows higher slump flow, apparent density, mechanical strength, and resistance to chloride ion penetration and thermal conductivity than concrete sludge with clay ceramsite. The mullite content of sludge ceramsite is higher than that of clay ceramsite. Additionally, sludge ceramsite exhibits a denser structure than that of clay ceramsite.
Collapse
|
17
|
Wang C, Huang C, Xu H, Yuan N, Liu X, Bai L, He X, Liu R. Ceramsite production using water treatment residue as main ingredient: The key affecting factors identification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114611. [PMID: 35114517 DOI: 10.1016/j.jenvman.2022.114611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
As an inevitable by-product of potable water production, drinking water treatment residue (DWTR) recycling to make ceramsite can provide both environmental and economic benefits in constructing filtration treatment system for water environment remediation. Given the varied properties of DWTR from different waterworks, this study aims to identify the key factors affecting ceramsite production from DWTR as main ingredient based on five different DWTR with using clay as the auxiliary material. The results showed that of sintering temperature (500-1000 °C), DWTR:clay ratio (5:5 to 9:1), sintering time (5-60 min), and granule diameter (5-15 mm), the sintering temperature was the key parameter. Increasing temperatures from 500 to 1000 °C gradually promoted DWTR sintering by enhancing Si and Al crystallization, which typically increased the formation of SiO2 and CaAl2Si2O8 crystals in ceramsite. Ceramsites made from different DWTR tended to have different properties, mainly resulting from varied contents of Si (20.2%-48.6%), K (0.0894%-2.39%), Fe (4.56%-14.3%), and loss on ignition (11.7%-39.5%). During ingredients preparation to produce up-to-standard ceramsite, supplying additional Si and diluting loss on ignition were necessary for all DWTR, while supplying K and diluting Fe may be required for specific DWTR, due to the potential varied DWTR compositions caused by different water production processes applied (e.g., type of flocculants). Further toxicity characteristic leaching procedure analysis indicated the increased leaching of Cu. However, DWTR based ceramsite was identified as non-hazardous material; even, sintering treatment reduced the leachability of Ba, Be, Cd, and Cr. DWTR based ceramsite also had relatively high specific surface area (22.1-50.5 m2/g) and could adsorb Cd, Cu, and Pb from solution. Overall, based on appropriate management, DWTR can be recycled as the main ingredient in the production of ceramsite for water environment remediation.
Collapse
Affiliation(s)
- Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Chenghao Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Nannan Yuan
- School of Electronic Information, Nanjing Vocational College of Information Technology, Nanjing, China
| | - Xin Liu
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaosong He
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Rui Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China; Xuzhou Xinsheng Luyuan Cyclic Economy Industrial Investment & Development Co. Ltd., Xuzhou, 221003, China
| |
Collapse
|
18
|
Sheth Y, Dharaskar S, Chaudhary V, Khalid M, Walvekar R. Prospects of titanium carbide-based MXene in heavy metal ion and radionuclide adsorption for wastewater remediation: A review. CHEMOSPHERE 2022; 293:133563. [PMID: 35007610 DOI: 10.1016/j.chemosphere.2022.133563] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 05/09/2023]
Abstract
Contamination of water sources with various organic and inorganic non-biodegradable pollutants is becoming a growing concern due to industrialization, urbanization, and the inefficiency of traditional wastewater treatment processes. Transition Metal Carbides/Nitrides (MXenes) are emerging as advanced nanomaterials of choice for treating contaminated water owing to their excellent conductivity, mechanical flexibility, high specific surface area, scalable production, rich surface functionalities, and layered morphology. MXenes have demonstrated enhanced ability to adsorb various organic and inorganic contaminants depending upon their surface terminal groups (-OH, -F, and -O) and interlayer spacing. Titanium carbide (Ti3C2Tx) is most researched to date due to its ease of processing and stability. Ti3C2Tx has shown excellent performance in absorbing heavy metal ions and radioactive heavy metals. This review summarizes state-of-the-art Ti3C2Tx synthesis, including selective etching techniques, optimization of the desired adsorption features (controlling surface functional groups, intercalation, sonication, and functionalization), and regeneration and adsorption mechanism to remove contaminants. Furthermore, the review also compares the adsorption performance of Ti3C2Tx with other commercial adsorbents (including chitosan, cellulose, biomass, and zeolites). Ti3C2Tx has been found to have an adsorption efficiency of more than 90% in most studies due to its layered structure, which makes the functional groups easily accessible, unique and novel compared to other conventional nanomaterials and adsorbents. The challenges, potential solutions, and prospects associated with the commercial development of Ti3C2Tx as adsorbents are also discussed. The review establishes a framework for future wastewater treatment research using MXenes to address the global problem of water scarcity.
Collapse
Affiliation(s)
- Yashvi Sheth
- Nano-Research Group, Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar Gujarat, India, 382426
| | - Swapnil Dharaskar
- Nano-Research Group, Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar Gujarat, India, 382426.
| | - Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi, India
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of New Energy and Chemical Engineering Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, 43900, Selangor, Malaysia
| |
Collapse
|
19
|
Zhao X, Zhao X, Chen C, Zhang H, Wang L. Ecological floating bed for decontamination of eutrophic water bodies: Using alum sludge ceramsite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114845. [PMID: 35272160 DOI: 10.1016/j.jenvman.2022.114845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In this study, a combined ecological floating bed (C-EFB) with alum sludge ceramsite (ASC) was designed to improve the water purification effect of traditional ecological floating beds (T-EFBs). During the ASC preparation stage, alum sludge was shaped into a ball, air-dried, and fired under 600 °C. The physical and chemical properties of the ASC meet the requirements of Artificial Ceramsite Filter Materials for Water Treatment (CJ/T229-2008). This study investigated the increased capability of this new-type artificial substrate (ASC) on the removal of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total phosphorus (TP), and total nitrogen (TN) from eutrophic landscape water. Compared with the T-EFB, the C-EFB owns a higher purification efficiency. The highest average efficiency of COD, NH4+-N, TN and TP removals during the four operating stages was 78.2%, 58.1%, 46.7% and 53.2%, respectively, in the C-EFB, which were all higher than those of 53.5%, 32.4%, 27.2% and 25.8%, respectively, for the T-EFB. Among them, the C-EFB showed a higher advantage in the removal of TP. The results showed that the potential benefits of utilizing ASC in seriously eutrophic bodies of water.
Collapse
Affiliation(s)
- Xiaohong Zhao
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Xiaoyuan Zhao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chen Chen
- School of Optical Information and Energy Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Haidong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Agricultural Experimental Station for Soil Quality, Xiangcheng, Institute of Agricultural Sciences in Taihu Lake District, Suzhou, 215105, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
20
|
Li P, Luo SH, Zhang L, Wang Q, Huang X, Zhang Y, Liu X, Liang J, Duan X. Study on preparation and performance of iron tailings-based porous ceramsite filter materials for water treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Separation of wolframite ore by froth flotation using a novel “crab” structure sebacoyl hydroxamic acid collector without Pb(NO3)2 activation. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.05.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Dhote L, Pandey RA, Middey A, Mandal N, Kumar S. Co-combustion of distillery sludge and coal for application in boiler and subsequent utilization of the generated bottom ash. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36742-36752. [PMID: 33710486 DOI: 10.1007/s11356-021-13277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Combustion stands as one of the essential methods in resource recovery for disposal of distillery sludge. In this study, sludge along with coal has been considered an option for co-combustion in the grate furnace aiming for further application as a boiler fuel. Detailed analysis was carried out to verify the feasibility of co-combustion of sludge with coal. Distillery sludge was blended with coal as a mixed fuel at co-combustion ratios of 20%, 30%, and 40% in grate furnace. The results of the analysis indicated that the combustion with 40% sludge mixed coal is suitable for application as a fuel in boiler. According to the chemical composition of bottom ash, weight loss from 460 to 800°C indicated the presence of C-C and C-H. Also, EDX and XRD analyses of mixed fuel was carried out to determine the mineralogical composition. The presence of quartz (SiO2), mullite (3Al2O32SiO2), and hematite (Fe2O3) present in the ash can be used as mineral additives in cement industries. The study also provided a promising approach towards diverting combustion bottom ash from landfills for its utilization in various industries which can be a possible cost-effective solution.
Collapse
Affiliation(s)
- Lekha Dhote
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Ram Avatar Pandey
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Anirban Middey
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Neelkamal Mandal
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| |
Collapse
|
23
|
Nie J, Wang Q, Gao S, Poon CS, Zhou Y, Li JS. Novel recycling of incinerated sewage sludge ash (ISSA) and waste bentonite as ceramsite for Pb-containing wastewater treatment: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112382. [PMID: 33756386 DOI: 10.1016/j.jenvman.2021.112382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
With rapid economic growth and urbanisation, the reuse and recycling of solid wastes has become a high priority for the sustainable development of modern cities. In this study, two typical solid wastes, incinerated sewage sludge ash (ISSA) and waste bentonite, were co-valorised to produce granular adsorbents through a simple and energy-saving pelletisation/sintering process. A mixture of ISSA and bentonite at a weight ratio of 3:1 was pelletised and sintered at 700 °C. The resultant ceramsite, with good mechanical strength, could effectively remove Pb(Ⅱ) from aqueous solutions. The adsorption kinetics can be described by the pseudo-first-order (PFO) model. The results indicated that the Pb(Ⅱ) adsorption process was dominated by electrostatic attraction, precipitation, and complexation. The isothermal data exhibited a good correlation with the Freundlich model, indicating that the adsorption process was non-ideal and spontaneous. The maximum adsorption capacity was approximately 21.6 ± 0.35 mg/g at 318 K. After 5 cycles of regeneration, the adsorbent maintained good adsorption performance. Moreover, the removal rate was not greatly affected by ionic strength. These findings demonstrate that the granular adsorbent prepared with ISSA and waste bentonite can be recognised as a promising adsorbent for Pb-containing wastewater treatment.
Collapse
Affiliation(s)
- Jing Nie
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Qiming Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong, China
| | - Shengya Gao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong, China.
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Jiang-Shan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
24
|
Wang H, Xu J, Liu Y, Sheng L. Preparation of ceramsite from municipal sludge and its application in water treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112374. [PMID: 33765522 DOI: 10.1016/j.jenvman.2021.112374] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Municipal sludge is a solid waste material, and resource utilization is the optimal way to dispose of this material. The amount of municipal sludge produced in China is large, and it can be used in the preparation of ceramsite. The content of Al2O3 in drinking water treatment sludge is significantly higher than that in wastewater treatment sludge, while the content of K2O, Na2O and MgO in the two kinds of sludge is similar. When sludge is used to prepare ceramsite, the amount of sludge in most raw materials for ceramsite is less than 50%. The bulk density of the prepared sludge ceramsite is less than 1000 kg m-3, and the highest water absorption rate is close to 40%. The leaching content of heavy metals in municipal sludge-based ceramsite is within the standard health safety limit, and heavy metals are better stabilized. The fitting effect of the pseudo-second-order kinetic equation of the dynamic adsorption of sludge ceramsite is obviously better than that of the pseudo-first-order kinetic equation. Sludge ceramsite used in bio-filter media and constructed wetland (CW) substrates is good able to purify wastewater. In the future, the preparation method of municipal sludge ceramsite and purification research of CW substrates based on sludge ceramsite need to be further improved.
Collapse
Affiliation(s)
- Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130117, Jilin, China.
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130117, Jilin, China.
| | - Yunqing Liu
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Chemistry &; Environmental Sciences, Yili Normal University, Jiefang West Road 448, Yining, 835000, Xinjiang, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130117, Jilin, China.
| |
Collapse
|
25
|
Sun T, Xu Y, Sun Y, Wang L, Liang X, Jia H. Crayfish shell biochar for the mitigation of Pb contaminated water and soil: Characteristics, mechanisms, and applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116308. [PMID: 33360664 DOI: 10.1016/j.envpol.2020.116308] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/19/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Biochar has been widely used in the mitigation of soil potentially toxic metals due to its high efficiency and low cost. Crayfish shell biochar (CSBC) was prepared at 300, 500, and 700 °C (referred to as CS300, CS500, and CS700, respectively) and the performance and mechanism of CSBC for mitigating Pb polluted water and soil was investigated. The results indicated that CSBC prepared at higher temperatures possessed higher pH value and ash content, more abundant pore structure, and higher stability. Pb2+ adsorption onto CSBC fitted well with the pseudo second order and intraparticle diffusion models. The maximum adsorption capacity of Pb2+ increased with the pyrolysis temperature, being 599.70, 1114.53, and 1166.44 mg·g-1 for CS300, CS500 and CS700, respectively. Compared with the control soil samples, the content of available Pb after applying 0.05%-5% CSBC was reduced by 1.87%-16.48% in acidic soils and 1.00%-11.09% in alkaline soils. Moreover, the fractionation of exchangeable Pb was converted to stable organic matter bound, Fe-Mn oxide bound, and residue fractions. XRD, SEM-EDS, and FTIR analysis showed that ion exchange, complexation, precipitation, and C-π interaction are the dominant interaction mechanisms. Therefore, CSBC can employ as an effective immobilizing agent for the mitigation of Pb contaminated water and soil.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Original Agro -Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro -Environmental Protection Institute, MARA, Tianjin 300191, China; Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yingming Xu
- Key Laboratory of Original Agro -Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro -Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro -Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro -Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| | - Lin Wang
- Key Laboratory of Original Agro -Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro -Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Xuefeng Liang
- Key Laboratory of Original Agro -Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro -Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Hongtao Jia
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|
26
|
Qu J, Meng Q, Lin X, Han W, Jiang Q, Wang L, Hu Q, Zhang L, Zhang Y. Microwave-assisted synthesis of β-cyclodextrin functionalized celluloses for enhanced removal of Pb(II) from water: Adsorptive performance and mechanism exploration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141854. [PMID: 32889279 DOI: 10.1016/j.scitotenv.2020.141854] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Herein, β-cyclodextrin (β-CD) was efficiently grafted onto rice husk-based celluloses using different cross-linking agents of epichlorohydrin (EPI) and glutaraldehyde (GA). By feat of microwave irradiation, the functionalization procedure was completed in 17 min, and the synthesized RHEPIMWβ-CD and RHGAMWβ-CD exhibited fast adsorption equilibrium for Pb(II) within 20 min, excellent monolayer adsorption capacities of 216.06 and 279.08 mg g-1 across an extensive pH scope of 3.0-6.0, unaffected affinity to Pb(II) during the existence of co-existing ions, superior reusability with over 81% and 87% of Pb(II) uptake sustained for four adsorption-desorption cycles. Thermodynamic parameters implied that the uptake process of Pb(II) occurred spontaneously (-ΔG0) with an endothermic characteristic (+ΔH0). Furthermore, electrostatic attraction and complexation were demonstrated to enhance the Pb(II) uptake onto the RHEPIMWβ-CD and RHGAMWβ-CD. In fix-bed columns, these two adsorbents also efficiently eliminated Pb(II) under various flow rates with experimental breakthrough curves well simulated by Thomas and Yoon-Nelson models. Significantly, the RHEPIMWβ-CD and RHGAMWβ-CD could effectively purify acid battery effluent containing Pb(II) for meeting regulatory requirement. Overall, the fast fabrication, excellent adsorption and recycling performance facilitate the development of tailored adsorbents for Pb(II) elimination in wastewater.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingjuan Meng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiufeng Lin
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei Han
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qun Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lin Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
27
|
Zhao C, Shang D, Zou Y, Du Y, Wang Q, Xu F, Ren L, Kong Q. Changes in electricity production and microbial community evolution in constructed wetland-microbial fuel cell exposed to wastewater containing Pb(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139127. [PMID: 32438162 DOI: 10.1016/j.scitotenv.2020.139127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Two constructed wetland microbial fuel cell (CW-MFC) devices, experimental group (EG, with 5 mg/L Pb(II) addition) and control group (CG) were built to explore the changes in power generation, wastewater purification and microbial community structure under Pb(II) stress. The voltage of EG (343.16 ± 12.14 mV) was significantly higher (p < 0.01) than that of CG (295.49 ± 13.91 mV), and the highest power density of the EG and CG were 7.432 mW·m-2 and 3.873 mW·m-2, respectively. There was no significant difference in the removal of common pollutants between these groups except for the NH4+-N removal efficiency, which was probably caused by the inhibition of the bioactivity of Comamonas (AOB) in the anode of the experimental group by Pb(II). Pb(II) was effectively removed by CW-MFC (84.86 ± 3%), and the abundant amount of fulvic acid-like matter in the extracellular polymeric substance (EPS) of the EG contributed to its removal. The presence of Pb(II) had a negative effect on both microbial community diversity and species richness. The abundance of a lead resistance gene, pbrT, decreased with long-term Pb(II) pressure. This is evidence of microbial adaptation to Pb(II).
Collapse
Affiliation(s)
- CongCong Zhao
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - DaWei Shang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Institute of Environment and Ecology, Shandong Normal University, Jinan 255014, PR China
| | - YanLing Zou
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Institute of Environment and Ecology, Shandong Normal University, Jinan 255014, PR China
| | - YuanDa Du
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Qian Wang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Fei Xu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Liang Ren
- Jiangsu CRRC Environment CO. LTD, Jiangsu Province 215557, China
| | - Qiang Kong
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|