1
|
Gai S, Liu B, Lan Y, Han L, Hu Y, Dongye G, Cheng K, Liu Z, Yang F. Artificial humic acid coated ferrihydrite strengthens the adsorption of phosphate and increases soil phosphate retention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169870. [PMID: 38218478 DOI: 10.1016/j.scitotenv.2024.169870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/01/2024] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
Phosphorus (P) leaching loss from farmland soils is one of the main causes of water eutrophication. Thus, effective methods must be developed to maintain sustainability in agricultural soils. Herein, we design artificial humic acid (A-HA) coated ferrihydrite (Fh) particles for fixing P in soil. The experiments in water and soil are successively conducted to explore the phosphate adsorption mechanism and soil P retention performance of A-HA coated ferrihydrite particles (A-Fh). Compared with unmodified ferrihydrite (Fh), the phosphate adsorption capacity of A-Fh is increased by 15 %, the phosphate adsorption speed and selectivity are also significantly improved. The ligand exchange, electrostatic attraction and hydrogen bonding are the dominant mechanisms of phosphate adsorption by A-Fh. In soil experiments, the addition of 2 % A-Fh increases the soil P retention performance from 0.15 to 0.7 mg/kg, and A-Fh are able to convert more phosphate adsorbed by itself into soil available P to improve soil fertility. Overall, this work highlights the importance of this a highly effective amendment for improving poor soils.
Collapse
Affiliation(s)
- Shuang Gai
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Bing Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Yibo Lan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Lin Han
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Yixiong Hu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Guanghao Dongye
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Zhuqing Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China.
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China.
| |
Collapse
|
2
|
Chahar D, Jha I, Arumugam J, Venkatesu P. Impact of Choline Hydroxide-Supported Magnetic Nanoparticles on Peroxidase Activity and Conformational Stability of Cytochrome c. ACS APPLIED BIO MATERIALS 2024; 7:1135-1145. [PMID: 38262058 DOI: 10.1021/acsabm.3c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Nanotechnology has advanced significantly; however, little is known about the potential implications on human health-related issues, particularly blood carrying enzymes. Ionic liquids are also well-recognized for maintaining the structure and activity of enzymes. In this regard, we delineate a facile synthetic approach of preparation of Fe3O4 nanoparticles (NPs) as well as choline hydroxide [CH][OH] ionic liquid (IL)-supported Fe3O4 NPs (Fe3O4-CHOH). This approach of combining magnetic nanoparticles (MNPs) with IL results in distinctive properties, which may offer enormous utility in the field of biomedical research due to the effortless separation of MNPs by an external magnetic field. Detailed characterization of MNPs including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) was carried out. The biomolecular interactions of Fe3O4 and Fe3O4-CHOH NPs with cytochrome c (Cyt c) were studied in detail using various spectroscopic and microscopic techniques. From spectroscopic studies, it can be concluded that the secondary structure of Cyt c is more stable in the presence of Fe3O4-CHOH NPs than Fe3O4 NPs. The binding constant of Cyt c in the presence of MNPs was also calculated using the Benesi-Hildebrand equation. Furthermore, dynamic light scattering (DLS), ζ-potential, and microscopic studies were performed to study the interaction of Cyt c with MNPs. These studies provided evidence favoring the formation of bionanoconjugates of Cyt c with MNPs. Moreover, the enzymatic activity of Cyt c increases in the presence of both MNPs. The peroxidase activity of Cyt c in MNPs explicitly elucidates that the enzyme is preserved for a long time in the presence of Fe3O4-CHOH NPs. Later on, TEM and field emission scanning electron microscopy (FESEM) were also performed to gather more information regarding the morphology of Cyt c in the presence of MNPs.
Collapse
Affiliation(s)
- Deepak Chahar
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Indrani Jha
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Jayamani Arumugam
- Department of Chemistry, University of Delhi, Delhi 110 007, India
- Department of Sciences Program Chemistry, Manav Rachna University, Faridabad 121004, India
| | | |
Collapse
|
3
|
Suazo-Hernández J, Urdiales C, Poblete-Grant P, Pesenti H, Cáceres-Jensen L, Sarkar B, Bolan N, de la Luz Mora M. Effect of particle size of nanoscale zero-valent copper on inorganic phosphorus adsorption-desorption in a volcanic ash soil. CHEMOSPHERE 2023; 340:139836. [PMID: 37595691 DOI: 10.1016/j.chemosphere.2023.139836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Zero-valent copper engineered nanoparticles (Cu-ENPs) released through unintentional or intentional actions into the agricultural soils can alter the availability of inorganic phosphorus (IP) to plants. In this study, we used adsorption-desorption experiments to evaluate the effect of particle size of 1% Cu-ENPs (25 nm and 40-60 nm) on IP availability in Santa Barbara (SB) volcanic ash soil. X-Ray Diffraction results showed that Cu-ENPs were formed by a mixture of Cu metallic and Cu oxides (Cu2O or/and CuO) species, while specific surface area values showed that Cu-ENPs/25 nm could form larger aggregate particles compared to Cu-ENPs/40-60 nm. The kinetic IP adsorption of SB soil without and with 1% Cu-ENPs (25 nm and 40-60 nm) followed the mechanism described by the pseudo-second-order (k2 = 0.45-1.13 x 10-3 kg mmol-1 min-1; r2 ≥ 0.999, and RSS ≤ 0.091) and Elovich (α = 14621.10-3136.20 mmol kg-1 min-1; r2 ≥ 0.984, and RSS ≤ 69) models. Thus, the rate-limiting step for IP adsorption in the studied systems was chemisorption on a heterogeneous surface. Adsorption equilibrium isotherms without Cu-ENPs were fitted well to the Freundlich model, while with 1% Cu-ENPs (25 nm and 40-60 nm), isotherms were described best by the Freundlich and/or Langmuir model. The IP relative adsorption capacity (KF) was higher with 1% Cu-ENPs/40-60 nm (KF = 110.41) than for 1% Cu-ENPs/25 nm (KF = 74.40) and for SB soil (KF = 48.17). This study showed that plausible IP retention mechanisms in the presence of 1% Cu-ENPs in SB soil were: i) ligand exchange, ii) electrostatic attraction, and iii) co-precipitate formation. The desorption study demonstrated that 1% Cu-ENPs/40-60 nm increased the affinity of IP in SB soil with a greater effect than 1% Cu-ENPs/25 nm. Thus, both the studied size ranges of Cu-ENPs could favor an accumulation of IP in volcanic ash soils.
Collapse
Affiliation(s)
- Jonathan Suazo-Hernández
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile.
| | - Cristian Urdiales
- Universidad de Chile, Departamento de Ingeniería y Suelos, 8820808, Santiago, Chile; Sede Vallenar, Universidad de Atacama, Costanera #105, Vallenar, 1612178, Chile
| | - Patricia Poblete-Grant
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Hector Pesenti
- Núcleo de Investigación en Bioprocesos y Materiales Avanzados, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, 4780000, Chile; Afro-American University of Central Africa (AAUCA), Faculty of Engineering, Djibloho, Equatorial Guinea
| | - Lizethly Cáceres-Jensen
- Physical & Analytical Chemistry Laboratory (PachemLab), Nucleus of Computational Thinking and Education for Sustainable Development (NuCES), Center for Research in Education (CIE-UMCE), Department of Chemistry, Metropolitan University of Educational Sciences, Santiago, 776019, Chile
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|
4
|
Xia L, Vangansbeke A, Lauryssen F, Smolders E. Screening redox stability of iron rich by-products for effective phosphate immobilisation in freshwater sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117728. [PMID: 36940601 DOI: 10.1016/j.jenvman.2023.117728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Iron (Fe) rich by-products can be added to lake or river sediments to immobilise phosphate (PO4) and lower eutrophication risks. These Fe materials differ in mineralogy and specific surface area, hence differing in PO4 sorption capacity and stability under reducing conditions. This study was set up to identify key properties of these amendments in their capacity to immobilise PO4 in sediments. Eleven Fe rich by-products, collected from drinking water treatment plants and acid mine drainage, were characterised. The PO4 adsorption to these by-products was first determined under aerobic conditions and the solid-liquid distribution coefficient KD for PO4 correlated strongly to oxalate extractable Fe content. A static sediment-water incubation test was subsequently used to evaluate the redox stability of these by-products. The reductive processes gradually released Fe to solution and more Fe was release from the amended than from the control sediments. The total Fe release to solution was positively related to ascorbate reducible Fe fractions in the by-products, suggesting that such fractions indicate potential loss of P retention capacity on the long term. The final PO4 concentration in the overlying water was 5.6 mg P L-1 in the control and was successfully lowered by factor 30-420 depending on the by-product. The factor by which solution PO4 was reduced in Fe treatments increased with increasing KD determined under aerobic conditions. This study suggests that efficient by-products to trap P in sediments are characterised by a high oxalate Fe content and a low reducible Fe fraction.
Collapse
Affiliation(s)
- Lei Xia
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001, Leuven, Belgium.
| | - Arne Vangansbeke
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001, Leuven, Belgium
| | - Florian Lauryssen
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001, Leuven, Belgium
| | - Erik Smolders
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001, Leuven, Belgium
| |
Collapse
|
5
|
Barcala V, Zech A, Osté L, Behrends T. Transport-limited kinetics of phosphate retention on iron-coated sand and practical implications. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 255:104160. [PMID: 36822030 DOI: 10.1016/j.jconhyd.2023.104160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Iron-coated sand (ICS) is a by-product from drinking water treatment made of sand coated with ferric iron (hydr)oxides. It is considered a suitable material for large-scale measures for phosphate removal from natural and agricultural waters to prevent eutrophication. Previous studies demonstrated that the residence time of water must be very long to reach equilibrium partitioning between phosphate and ICS but specifics for application are missing. First, SEM-EDX images were used to support the conceptual assumption that P adsorption inside the coating is a transport-limited process. Second, a conceptual model of phosphate adsorption was proposed considering two types of sites: one type with fast adsorption kinetics and reaching equilibrium with the percolating solution, and another type for which adsorption is also reversible but described by pseudo-first-order kinetics. The latter is conceived to account for transport-limited adsorption in the interior of the coating while the former fraction of sites is assumed to be easily accessible and located close to the grain surface. Third, the kinetics of phosphate adsorption on ICS were quantitatively determined to describe and predict phosphate retention in filters under various flow conditions. The model was calibrated and validated with long-term column experiments, which lasted for 3500 h to approach equilibrium on the slowly reacting sites. The model reproduced the outflowing phosphate concentrations: the pronounced increase after a few pore volumes and the slow increase over the remaining part of the experiment. The parameterized model was also able to predict the time evolution of phosphate concentrations in the outflow of column experiments with different flow velocities, flow interruption, and in desorption experiments. The equilibrium partition coefficient for the experimental conditions was identified as 28.1 L/g-Fe at pH 6.8 and a phosphate concentration of 1.7 mg-P / L. The optimized first-order mass transfer coefficient for the slow adsorption process was 1.56 10-4 h-1, implying that the slow adsorption process has a time scale of several months. However, based on the parameterized model, the slow adsorption process accounted for 95.5% of the equilibrium adsorption capacity, emphasizing the potential relevance of this process for practical applications. The implications for the design, operation, and lifespan of ICS filters are exemplarily illustrated for different scenarios.
Collapse
Affiliation(s)
- Victoria Barcala
- Inland Water Systems, Deltares, 600 Daltonlaan, 3584 BK Utrecht, the Netherlands; Department of Earth Sciences, Faculty of Geosciences, Utrecht University, 8 Princetonlaan, 3584 CB Utrecht, the Netherlands.
| | - Alraune Zech
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, 8 Princetonlaan, 3584 CB Utrecht, the Netherlands
| | - Leonard Osté
- Inland Water Systems, Deltares, 600 Daltonlaan, 3584 BK Utrecht, the Netherlands
| | - Thilo Behrends
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, 8 Princetonlaan, 3584 CB Utrecht, the Netherlands
| |
Collapse
|
6
|
Xia L, van Dael T, Bergen B, Smolders E. Phosphorus immobilisation in sediment by using iron rich by-product as affected by water pH and sulphate concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160820. [PMID: 36526189 DOI: 10.1016/j.scitotenv.2022.160820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Iron (Fe) rich by-product from drinking water treatment plants can be added to rivers and lakes to immobilise phosphorus (P) in sediment and lower eutrophication risks. This study was set up to investigate the P immobilisation efficiency of an Fe rich by-product as affected by the pH and sulphate (SO4) concentration in the overlying water. Both factors are known to inhibit long-term P immobilisation under anoxic conditions. A static sediment-water incubation was conducted at varying buffered water pH values (6, 7 and 8) and different initial SO4 concentrations (0-170 mg SO4 L-1) with or without Fe rich by-product amendment to the sediment. In the unamended sediment, the P release to the overlying water was highest, and up to 6 mg P L-1, at lowest water pH due to higher reductive dissolution of Fe(III) oxyhydroxides. The Fe rich by-product amendment to the sediment largely reduced P release from sediment by factors 50-160 depending on pH, with slightly lowest immobilisation at highest pH 8, likely because of pH dependent P sorption. The total sulphur (S) concentrations in the overlying water reduced during incubation. The P release in unamended sediments increased from 2.7 mg L-1 to 4.2 mg L-1 with higher initial SO4 concentrations, suggesting sulphide formation during incubation and FeS precipitation that facilitates release of P. However, no such SO4 effects were found where Fe rich by-product was applied that lowered P release to <0.1 mg L-1 illustrating high stability of immobilised P in amended sediments. This study suggests that Fe rich by-product is efficient for P immobilisation but that loss of Fe in low pH water may lower its long-term effect.
Collapse
Affiliation(s)
- Lei Xia
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| | - Toon van Dael
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Benoit Bergen
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Erik Smolders
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| |
Collapse
|
7
|
Suazo-Hernández J, Arancibia-Miranda N, Mlih R, Cáceres-Jensen L, Bolan N, Mora MDLL. Impact on Some Soil Physical and Chemical Properties Caused by Metal and Metallic Oxide Engineered Nanoparticles: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:572. [PMID: 36770533 PMCID: PMC9919586 DOI: 10.3390/nano13030572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the release of metal and metallic oxide engineered nanoparticles (ENPs) into the environment has generated an increase in their accumulation in agricultural soils, which is a serious risk to the ecosystem and soil health. Here, we show the impact of ENPs on the physical and chemical properties of soils. A literature search was performed in the Scopus database using the keywords ENPs, plus soil physical properties or soil chemical properties, and elements availability. In general, we found that the presence of metal and metallic oxide ENPs in soils can increase hydraulic conductivity and soil porosity and reduce the distance between soil particles, as well as causing a variation in pH, cation exchange capacity (CEC), electrical conductivity (EC), redox potential (Eh), and soil organic matter (SOM) content. Furthermore, ENPs or the metal cations released from them in soils can interact with nutrients like phosphorus (P) forming complexes or precipitates, decreasing their bioavailability in the soil solution. The results depend on the soil properties and the doses, exposure duration, concentrations, and type of ENPs. Therefore, we suggest that particular attention should be paid to every kind of metal and metallic oxide ENPs deposited into the soil.
Collapse
Affiliation(s)
- Jonathan Suazo-Hernández
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4780000, Chile
- Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| | - Nicolás Arancibia-Miranda
- Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago 8320000, Chile
- Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170124, Chile
| | - Rawan Mlih
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Juelich (FZJ), 52425 Juelich, Germany
| | - Lizethly Cáceres-Jensen
- Physical & Analytical Chemistry Laboratory (PachemLab), Nucleus of Computational Thinking and Education for Sustainable Development (NuCES), Center for Research in Education (CIE-UMCE), Department of Chemistry, Metropolitan University of Educational Sciences, Santiago 776019, Chile
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4780000, Chile
- Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| |
Collapse
|
8
|
Barcala V, Jansen S, Gerritse J, Mangold S, Voegelin A, Behrends T. Phosphorus adsorption on iron-coated sand under reducing conditions. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:74-87. [PMID: 36368314 DOI: 10.1002/jeq2.20432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Mitigation measures are needed to prevent large loads of phosphate originating in agriculture from reaching surface waters. Iron-coated sand (ICS) is a residual product from drinking water production. It has a high phosphate adsorption capacity and can be placed around tile drains, taking no extra space, which increases the farmers' acceptance. The main concern regarding the use of ICS filters below groundwater level is that limited oxygen supply and high organic matter concentrations may lead to the reduction and dissolution of iron (hydr)oxides present and the release of previously adsorbed phosphate. This study aimed to investigate phosphate adsorption on ICS at the onset of iron reduction. First, we investigated whether simultaneous metal reduction and phosphate adsorption were relevant at two field sites in the Netherlands that use ICS filters around tile drains. Second, the onset of microbially mediated reduction of ICS in drainage water was mimicked in complementary laboratory microcosm experiments by varying the intensity of reduction through controlling the oxygen availability and the concentration of degradable organic matter. After 3 yr, ICS filters in the field removed phosphorus under low redox conditions. Over 45 d, the microbial reduction of manganese and iron oxides did not lead to phosphate release, confirming field observations. Electron microscopy and X-ray absorption spectroscopy did not evince systematic structural or compositional changes; only under strongly reducing conditions did iron sulfides form in small percentages in the outer layer of the iron coating. Our results suggest that detrimental effects only become relevant after long periods of operation.
Collapse
Affiliation(s)
- Victoria Barcala
- Inland Water Systems, Deltares, Daltonlaan 600, Utrecht, The Netherlands
- Dep. of Earth Sciences, Faculty of Geosciences, Utrecht Univ., 8 Princetonlaan, Utrecht, The Netherlands
| | - Stefan Jansen
- Deltares, Unit Subsurface and Groundwater Systems, Daltonlaan 600, Utrecht, The Netherlands
| | - Jan Gerritse
- Deltares, Unit Subsurface and Groundwater Systems, Daltonlaan 600, Utrecht, The Netherlands
| | - Stefan Mangold
- Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, Eggenstein-Leopoldshafen, Germany
| | - Andreas Voegelin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, Duebendorf, Switzerland
| | - Thilo Behrends
- Dep. of Earth Sciences, Faculty of Geosciences, Utrecht Univ., 8 Princetonlaan, Utrecht, The Netherlands
| |
Collapse
|
9
|
Weihrauch C, Boie F, Neumann J, von Sperber C. Transferring network analysis to the study of potential biogeochemical interactions of phosphorus-relevant elements in floodplain subsoils - A new use case for the Soilscape Network Approach (SNAp). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158072. [PMID: 35985589 DOI: 10.1016/j.scitotenv.2022.158072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Subsurface phosphorus (P) loss from deep P stocks in floodplain subsoils can contribute to eutrophication of freshwaters. To date, knowledge on the complex biogeochemical interactions of P in floodplain subsoils is too scarce to enable targeted P management to mitigate subsurface P loss from deep P stocks. We propose using graph theory and the Soilscape Network Approach (SNAp) based on correlations between P-relevant elements to study these complex biogeochemical interactions in the soilscape. Complex interactions of several elements in soils are difficult to investigate from a holistic perspective with conventional data analysis. We translated soil element data from topsoils and subsoils of terrestrial sites, proximal and distal floodplain sites into relational data and analyzed network structure, centrality, and modularity. The results indicate that a higher frequency of groundwater level fluctuations in distal subsoils and proximal topsoils could result in 24-44 % less biogeochemical interaction compared to sites with stable conditions. Impeded microbial processes on the frequently disturbed sites may explain this finding. Our analyses suggest biogeochemical differences between floodplain topsoils and subsoils expressed in 24 % lower and 75 % higher network connectivity in distal and proximal subsoils (respectively). We also found 22 % lower network connectivity in distal than proximal floodplain subsoils, suggesting biogeochemical differences between both soil sections. These findings imply that floodplain P management should not take a whole-floodplain approach but a 3D-approach, which differentiates laterally between floodplain zones and vertically between soil sections. In addition, SNAp indicated that Fe(II) oxides are important in P biogeochemistry of floodplain subsoils but are not the key element. Instead, labile P forms are suggested to have different major associations in distal (Alox, Feox) versus proximal deep P stocks (Alox, Mn, Ca). Our study provides new insights into the biogeochemistry of deep P stocks in floodplain subsoils which require targeted validation by other methods.
Collapse
Affiliation(s)
- Christoph Weihrauch
- School of Architecture and Civil Engineering, Soil and Groundwater Management, University of Wuppertal, Pauluskirchstrasse 7, 42285 Wuppertal, Germany.
| | - Felizitas Boie
- School of Architecture and Civil Engineering, Soil and Groundwater Management, University of Wuppertal, Pauluskirchstrasse 7, 42285 Wuppertal, Germany
| | - Janice Neumann
- Department of Geography, McGill University, 805 Sherbrooke Street West, Montréal, Québec, Canada
| | - Christian von Sperber
- Department of Geography, McGill University, 805 Sherbrooke Street West, Montréal, Québec, Canada
| |
Collapse
|
10
|
Yang W, Xiang W, Bao Z, Huang C, Ma M, Lu X, Yao L, Wang Y. Phosphorus sorption capacity of various iron-organic matter associations in peat soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77580-77592. [PMID: 35678968 DOI: 10.1007/s11356-022-21303-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
This study was carried out to evaluate the contribution of different types of iron-organic matter associations (Fe-OM) to the phosphorus sorption capacity of peatland. Humic substance (HS) and particulate organic matter (POM) were isolated from peat soils, and different types of iron-organic matter associations (Fe-HS and Fe-POM) were prepared. Then, isothermal adsorption experiments were carried out on the synthesized Fe-OM and iron-contained peat soils. The morphology structure of Fe-HS associations is amorphous like that of ferrihydrite. The theoretical maximum adsorption capacity (Qmax) of Fe-HS associations can reach 36.90 mg/g, which is approximately two times higher than that of ferrihydrite (19.23 mg/g) and ten times higher than that of hematite (3.26 mg/g) and goethite (2.08 mg/g). Both peat soils and POM can strongly complex ferric ions, resulting in improved phosphorus sorption capacity. The Qmax of original peat soil and POM is 2.83 mg/g and 4.31 mg/g, which increased to 7.36 mg/g and 5.89 mg/g, respectively, after complexing ferric ions. Compared to inorganic Fe minerals, the associations of iron and organic matter (HS and POM) contribute more to the phosphorus retention ability of peat soils. However, the formation of Fe-OM associations could not fully explain why the addition of iron increases the phosphorus sorption capacity of peat soil by so much. Iron should also participate in other phosphorus retention processes, which need further exploration and research.
Collapse
Affiliation(s)
- Weilin Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Wu Xiang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China.
| | - Zhengyu Bao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Chunlei Huang
- Zhejiang Institute of Geological Survey, Hangzhou, 312000, China
| | - Ming Ma
- Zhejiang Institute, China University of Geosciences, Hangzhou, 312000, China
| | - Xinzhe Lu
- Zhejiang Institute of Geological Survey, Hangzhou, 312000, China
| | - Lingyang Yao
- Zhejiang Institute, China University of Geosciences, Hangzhou, 312000, China
| | - Yong Wang
- Zhejiang Institute of Geological Survey, Hangzhou, 312000, China
| |
Collapse
|
11
|
Yuan ZF, Pu TY, Jin CY, Feng WJ, Wang JY, Gustave W, Bridge J, Cheng YL, Tang XJ, Zhu YG, Chen Z. Sustainable removal of soil arsenic by naturally-formed iron oxides on plastic tubes. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129626. [PMID: 36104896 DOI: 10.1016/j.jhazmat.2022.129626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/03/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) pollution in paddy fields is a major threat to rice safety. Existing As remediation techniques are costly, require external chemical addition and degrade soil properties. Here, we report the use of plastic tubes as a recyclable tool to precisely extract As from contaminated soils. Following insertion into flooded paddy soils, polyethylene tube walls were covered by thin but massive Fe coatings of 76.9-367 mg Fe m-2 in 2 weeks, which adsorbed significant amounts of As. The formation of tube-wall Fe oxides was driven by local Fe-oxidizing bacteria with oxygen produced by oxygenic phototrophs (e.g., Cyanobacteria) or diffused from air through the tube wall. The tubes with As-bound Fe oxides can be easily separated from soil and then washed and reused. We tested the As removal efficiency in a pot experiment to remove As from ~ 20 cm depth/40 kg soils in a 2-year experiment and achieved an overall removal efficiency of 152 mg As m-2 soil year-1, comparable to phytoremediation with the As hyperaccumulator Pteris vittata. The cost of Fe hooks was estimated at 8325 RMB ha-1 year-1, and the profit of growing rice (around 16080 RMB ha-1 year-1 can be still maintained. The As accumulated in rice tissues was markedly decreased in the treatment (>11.1 %). This work provides a low-cost and sustainable soil remediation method for the targeted removal of As from soils and a useful tool for the study and management of the biogeochemical Fe cycle in paddy soils.
Collapse
Affiliation(s)
- Zhao-Feng Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Tong-Yao Pu
- Large Lake Observatory, University of Minnesota Duluth, Duluth MN 55812, USA
| | - Chen-Yu Jin
- Institute of Population Genetics, The University of Veterinary Medicine, Vienna 1220, Austria
| | - Wei-Jia Feng
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Jia-Yue Wang
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Williamson Gustave
- Chemistry, Environmental & Life Sciences, University of The Bahamas, New Providence, Nassau, The Bahamas
| | - Jonathan Bridge
- Department of Natural and Built Environment, Sheffield Hallam University, Howard St, Sheffield S1 1WB, UK
| | - Yi-Li Cheng
- XJTLU Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Xian-Jin Tang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yong-Guan Zhu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
12
|
Di Iorio E, Circelli L, Angelico R, Torrent J, Tan W, Colombo C. Environmental implications of interaction between humic substances and iron oxide nanoparticles: A review. CHEMOSPHERE 2022; 303:135172. [PMID: 35649442 DOI: 10.1016/j.chemosphere.2022.135172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Goethite, hematite, ferrihydrite, and other iron oxides bind through various sorption reactions with humic substances (HS) in soils creating nano-, micro-, and macro-aggregates with a specific nature and stability. Long residence times of soil organic matter (SOM) have been attributed to iron-humic substance (Fe-HS) complexes due to physical protection and chemical stabilization at the organic-mineral interface. Humic acids (HA) and fulvic acids (FA) contain many acidic functional groups that interact with Fe oxides through different mechanisms. Due to the numerous interactions between mineral Fe and natural SOM, much research has led into a better identification and definition of HS. In this review, we first focus on the surface colloidal properties of Fe oxides and their reactivity toward HS. These minerals can be efficiently identified by usual techniques, such as XRD, FTIR spectroscopy, XAS, Mössbauer, diffuse reflectance spectroscopies (DRS), HRTEM, ATM, NanoSIMS. Second, we present the recent state of art regarding the adsorption/precipitation of HS onto iron mineral surfaces and their effects on binding metalloid and trace elements. Finally, we consider future research directions based on recent scientific literature, with particular focus on the ability of Fe nano-particles to increase Fe bioavailability, improve carbon sequestration, reduce greenhouse gas emissions, and decrease the impact of persistent organic and inorganic pollutants. The methodology in this field has rapidly developed over the last decade. However, new procedures to estimate the nature of Fe-HA bonds will be important contributions in clarifying the role of natural iron oxides in soil for carbon stabilization.
Collapse
Affiliation(s)
- Erika Di Iorio
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, V. De Sanctis, I-86100, Campobasso (CB), Italy.
| | - Luana Circelli
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, V. De Sanctis, I-86100, Campobasso (CB), Italy
| | - Ruggero Angelico
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, V. De Sanctis, I-86100, Campobasso (CB), Italy
| | - José Torrent
- Departamento de Agronomía, Universidad de Córdoba. Edificio C4, Campus de Rabanales, 14071, Córdoba, Spain
| | - Wenfeng Tan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Claudio Colombo
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, V. De Sanctis, I-86100, Campobasso (CB), Italy
| |
Collapse
|
13
|
Chardon WJ, Groenenberg JE, Vink JPM, Voegelin A, Koopmans GF. Use of iron-coated sand for removing soluble phosphorus from drainage water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152738. [PMID: 34974002 DOI: 10.1016/j.scitotenv.2021.152738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Mitigation measures are needed for reducing chronic dissolved phosphorus (P) losses from agricultural soils with a legacy of excessive P inputs to surface waters. Since pipe drains are an important pathway for P transport from agricultural soils to surface waters in flat areas, removing P from drainage water can be an effective measure. During a 4.5 year-field experiment, we tested the performance of a pipe drain enveloped with Fe-coated sand for removing soluble P from drainage water. Iron-coated sand is a by-product of the drinking water industry and has a high ability to bind P. The P concentration in the effluent from the enveloped pipe drain remained at a very low level over the entire monitoring period, with a removal percentage amounting to 93% for total P. During the field experiment, the enveloped pipe drain was below the groundwater level for a prolonged time. Nevertheless, no reduction of Fe(III) in the Fe-coated sand occurred during the first two years, most likely due to preferential reduction of Mn oxides present in the coatings of the sand particles, as reflected in elevated effluent Mn concentrations. Thereafter, reductive dissolution of Fe oxides in the coatings caused a gradual increase in the Fe concentration in the enveloped pipe drain effluent over time. Concomitantly, the dissolved Mn concentration decreased, most probably due to the depletion in easily accessible Mn oxides in the Fe-coated sand. The Fe in the Fe-coated sand was identified as silicate-containing ferrihydrite (Fh). The submerged conditions of the enveloped pipe drain neither affected the stability of Fh in the Fe-coated sand nor the ability of this measure to capture P from drainage water. Enveloping pipe drains with Fe-coated sand is an effective method for reducing dissolved P inputs from agricultural soils to surface waters and holds great promise for implementation in practice.
Collapse
Affiliation(s)
- Wim J Chardon
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Jan E Groenenberg
- Chair Group Soil Chemistry and Chemical Soil Quality, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Jos P M Vink
- Deltares, Unit Subsurface & Groundwater Systems, P.O. Box 85467, 3508 AL Utrecht, the Netherlands
| | - Andreas Voegelin
- Eawag, Swiss Federal Institute of Aquatic Science & Technology, CH-8600 Duebendorf, Switzerland
| | - Gerwin F Koopmans
- Chair Group Soil Chemistry and Chemical Soil Quality, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
14
|
Lei J, Lin J, Zhan Y, Zhang Z, Ma J. Effectiveness and mechanism of aluminum/iron co-modified calcite capping and amendment for controlling phosphorus release from sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113471. [PMID: 34358942 DOI: 10.1016/j.jenvman.2021.113471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
The effectiveness and mechanism of aluminum/iron co-modified calcite (Al/Fe-CA) for the control of phosphorus (P) liberation from sediments was investigated. The results showed that Al/Fe-CA possessed good sorption performance for phosphate, and the maximum phosphate sorption capacity for Al/Fe-CA could reach 27.0 mg/g. The major mechanisms involved the surface adsorption of phosphate on calcite, the precipitation between phosphate and Ca2+ leached from calcite, and the ligand exchange between Al/Fe-bound hydroxyl groups and phosphate to form the Al-O-P and Fe-O-P inner-sphere complexes. The re-releasing risk of Al/Fe-CA-bound P under the circumstances of normal pH (5-9) and reducing environment was very low. Al/Fe-CA addition could significantly reduce the risk of P releasing from sediment to overlying water (OL-water), and the inactivation of mobile P, reactive soluble P (SRP) and diffusive gradient in thin-films (DGT)-labile P in sediment by Al/Fe-CA had a great part in the suppression of sediment-P liberation to OL-water by the Al/Fe-CA amendment. Al/Fe-CA capping and fabric-wrapped Al/Fe-CA capping both could greatly reduce the risk of P releasing from sediment into OL-water, and the formation of a static layer with low concentrations of SRP and DGT-labile P in the upper sediment was the key to sustaining a high P controlling efficiency. When the applied mode of Al/Fe-CA varied from capping to amendment, although the inactivation efficiency of DGT-labile P in the overlying water and upper sediment by Al/Fe-CA would decrease to a certain degree, the inactivation efficiency of DGT-labile P in the lower sediment by Al/Fe-CA would increase. Results of this study suggest that Al/Fe-CA has the high potential to be used as an active capping or amendment material for the management of internal P loading in surface water bodies.
Collapse
Affiliation(s)
- Jiajia Lei
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China.
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Jiawen Ma
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| |
Collapse
|
15
|
Mendez JC, Hiemstra T, Koopmans GF. Assessing the Reactive Surface Area of Soils and the Association of Soil Organic Carbon with Natural Oxide Nanoparticles Using Ferrihydrite as Proxy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11990-12000. [PMID: 32902278 PMCID: PMC7547874 DOI: 10.1021/acs.est.0c02163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Assessment of the surface reactivity of natural metal-(hydr)oxide nanoparticles is necessary for predicting ion adsorption phenomena in soils using surface complexation modeling. Here, we describe how the equilibrium concentrations of PO4, obtained with 0.5 M NaHCO3 extractions at different solution-to-soil ratios, can be interpreted with a state-of-the-art ion adsorption model for ferrihydrite to assess the reactive surface area (RSA) of agricultural top soils. Simultaneously, the method reveals the fraction of reversibly adsorbed soil PO4 (R-PO4). The applied ion-probing methodology shows that ferrihydrite is a better proxy than goethite for consistently assessing RSA and R-PO4. The R-PO4 pool agrees well with ammonium oxalate (AO)-extractable phosphorus, but only if measured as orthophosphate. The RSA varied between ∼2 and 20 m2/g soil. The corresponding specific surface area (SSA) of the natural metal-(hydr)oxide fraction is ∼350-1400 m2/g, illustrating that this property is highly variable and cannot be represented by a single value based on the AO-extractable oxide content. The soil organic carbon (SOC) content of our top soils increases linearly not only with the increase in RSA but remarkably also with the increase in mean particle size (1.5-5 nm). To explain these observations, we present a structural model for organo-mineral associations based on the coordination of SOC particles to metal-(hydr)oxide cores.
Collapse
|