1
|
Radua J, De Prisco M, Oliva V, Fico G, Vieta E, Fusar-Poli P. Impact of air pollution and climate change on mental health outcomes: an umbrella review of global evidence. World Psychiatry 2024; 23:244-256. [PMID: 38727076 PMCID: PMC11083864 DOI: 10.1002/wps.21219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
The impact of air pollution and climate change on mental health has recently raised strong concerns. However, a comprehensive overview analyzing the existing evidence while addressing relevant biases is lacking. This umbrella review systematically searched the PubMed/Medline, Scopus and PsycINFO databases (up to June 26, 2023) for any systematic review with meta-analysis investigating the association of air pollution or climate change with mental health outcomes. We used the R metaumbrella package to calculate and stratify the credibility of the evidence according to criteria (i.e., convincing, highly suggestive, suggestive, or weak) that address several biases, complemented by sensitivity analyses. We included 32 systematic reviews with meta-analysis that examined 284 individual studies and 237 associations of exposures to air pollution or climate change hazards and mental health outcomes. Most associations (n=195, 82.3%) involved air pollution, while the rest (n=42, 17.7%) regarded climate change hazards (mostly focusing on temperature: n=35, 14.8%). Mental health outcomes in most associations (n=185, 78.1%) involved mental disorders, followed by suicidal behavior (n=29, 12.4%), access to mental health care services (n=9, 3.7%), mental disorders-related symptomatology (n=8, 3.3%), and multiple categories together (n=6, 2.5%). Twelve associations (5.0%) achieved convincing (class I) or highly suggestive (class II) evidence. Regarding exposures to air pollution, there was convincing (class I) evidence for the association between long-term exposure to solvents and a higher incidence of dementia or cognitive impairment (odds ratio, OR=1.139), and highly suggestive (class II) evidence for the association between long-term exposure to some pollutants and higher risk for cognitive disorders (higher incidence of dementia with high vs. low levels of carbon monoxide, CO: OR=1.587; higher incidence of vascular dementia per 1 μg/m3 increase of nitrogen oxides, NOx: hazard ratio, HR=1.004). There was also highly suggestive (class II) evidence for the association between exposure to airborne particulate matter with diameter ≤10 μm (PM10) during the second trimester of pregnancy and the incidence of post-partum depression (OR=1.023 per 1 μg/m3 increase); and for the association between short-term exposure to sulfur dioxide (SO2) and schizophrenia relapse (risk ratio, RR=1.005 and 1.004 per 1 μg/m3 increase, respectively 5 and 7 days after exposure). Regarding climate change hazards, there was highly suggestive (class II) evidence for the association between short-term exposure to increased temperature and suicide- or mental disorders-related mortality (RR=1.024), suicidal behavior (RR=1.012), and hospital access (i.e., hospitalization or emergency department visits) due to suicidal behavior or mental disorders (RR=1.011) or mental disorders only (RR=1.009) (RR values per 1°C increase). There was also highly suggestive (class II) evidence for the association between short-term exposure to increased apparent temperature (i.e., the temperature equivalent perceived by humans) and suicidal behavior (RR=1.01 per 1°C increase). Finally, there was highly suggestive (class II) evidence for the association between the temporal proximity of cyclone exposure and severity of symptoms of post-traumatic stress disorder (r=0.275). Although most of the above associations were small in magnitude, they extend to the entire world population, and are therefore likely to have a substantial impact. This umbrella review classifies and quantifies for the first time the global negative impacts that air pollution and climate change can exert on mental health, identifying evidence-based targets that can inform future research and population health actions.
Collapse
Affiliation(s)
- Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Michele De Prisco
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Vincenzo Oliva
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Giovanna Fico
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Outreach and Support in South-London (OASIS) service, South London and Maudlsey NHS Foundation Trust, London, UK
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| |
Collapse
|
2
|
Ding J, Sun B, Gao Y, Zheng J, Liu C, Huang J, Jia N, Pei X, Jiang X, Hu S, Xia B, Meng Y, Dai Z, Qi X, Wang J. Evidence for chromium crosses blood brain barrier from the hypothalamus in chromium mice model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116179. [PMID: 38460200 DOI: 10.1016/j.ecoenv.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
It has been shown that exposure to hexavalent Chromium, Cr (Ⅵ), via nasal cavity can have neurotoxicological effects and induces behavioral impairment due to the fact that blood brain barrier (BBB) does not cover olfactory bulb. But whether Cr (Ⅵ) can cross the BBB and have a toxicological effects in central nervous system (CNS) remains unclear. Therefore, we investigated the effects of Cr (Ⅵ) on mice treated with different concentrations and exposure time (14 days and 28 days) of Cr (Ⅵ) via intraperitoneal injection. Results revealed that Cr accumulated in hypothalamus (HY) in a timely dependent manner. Much more severer neuropathologies was observed in the group of mice exposed to Cr (Ⅵ) for 28 days than that for 14 days. Gliosis, neuronal morphological abnormalities, synaptic degeneration, BBB disruption and neuronal number loss were observed in HY. In terms of mechanism, the Nrf2 related antioxidant stress signaling dysfunction and activated NF-κB related inflammatory pathway were observed in HY of Cr (Ⅵ) intoxication mice. And these neuropathologies and signaling defects appeared in a timely dependent manner. Taking together, we proved that Cr (Ⅵ) can enter HY due to weaker BBB in HY and HY is the most vulnerable CNS region to Cr (Ⅵ) exposure. The concentration of Cr in HY increased along with time. The accumulated Cr in HY can cause BBB disruption, neuronal morphological abnormalities, synaptic degeneration and gliosis through Nrf2 and NF-κB signaling pathway. This finding improves our understanding of the neurological dysfunctions observed in individuals who have occupational exposure to Cr (Ⅵ), and provided potential therapeutic targets to treat neurotoxicological pathologies induced by Cr (Ⅵ).
Collapse
Affiliation(s)
- Jiuyang Ding
- Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China; School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Baofei Sun
- Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Yingdong Gao
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian 271000, China
| | - Juan Zheng
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian 271000, China
| | - Changyou Liu
- Department of Pediatrics, Taian Maternity and Child Health Hospital, Taian 271000, China
| | - Jian Huang
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Nannan Jia
- Neonatal Screening Center, Taian Maternity and Child Health Hospital, Taian, China
| | - Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Xueyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Bing Xia
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yunle Meng
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Zhuihui Dai
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China.
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
3
|
Liu J, Yang T, Li Y, Li S, Li Y, Xu S, Xia W. Associations of maternal exposure to 2,4-dichlorophenoxyacetic acid during early pregnancy with steroid hormones among one-month-old infants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169414. [PMID: 38114038 DOI: 10.1016/j.scitotenv.2023.169414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Exposure to 2,4-dichlorophenoxyacetic acid (2,4-D), a widely used hormonal herbicide, may disrupt steroid hormone homeostasis. However, evidence from population-based studies is limited, especially for one-month-old infants whose steroid hormones are in a state of adjustment to extrauterine life and can be important indicators of endocrine development. This study aimed to explore the associations between maternal 2,4-D exposure during early pregnancy and infant steroid hormone levels. METHODS The 885 mother-infant pairs were from a birth cohort in Wuhan, China. Maternal exposure to 2,4-D was determined in urine samples from early pregnancy, and nine steroid hormones were determined in infant urine. The associations of maternal 2,4-D exposure with infant steroid hormones and their product-to-precursor ratios were estimated based on generalized linear models, and bioinformatic analysis was conducted with public databases to explore the potential mechanisms involved. RESULTS The detection frequency of 2,4-D was 99.32 %, and the detection frequency of steroid hormones ranged from 98.42 % to 100.00 %. After adjusting for covariates, an interquartile range increase in 2,4-D concentrations was associated with a 7.84 % decrease in 11-deoxycortisol (95 % confidence interval, CI: -14.12 %, -1.10 %), an 8.09 % decrease in corticosterone (95 % CI: -14.56 %, -1.14 %), an 8.67 % decrease in cortisol (95 % CI: -14.43 %, -2.52 %), a 13.00 % decrease in cortisone (95 % CI: -20.64 %, -4.62 %), and an 11.17 % decrease in aldosterone (95 % CI: -19.62 %, -1.83 %). Maternal 2,4-D was also associated with lower infant cortisol/17α-OH-progesterone, cortisol/pregnenolone, and aldosterone/pregnenolone ratios. In bioinformatic analysis, pathways/biological processes related to steroid hormone synthesis and secretion were enriched from target genes of 2,4-D exposure. CONCLUSIONS Maternal urinary 2,4-D during early pregnancy was associated with lower infant urinary 11-deoxycortisol, corticosterone, cortisol, cortisone, and aldosterone, reflecting that 2,4-D exposure may interfere with infant steroid hormone homeostasis. Further efforts are still needed to study the relevant health effects of exposure to 2,4-D, particularly for vulnerable populations.
Collapse
Affiliation(s)
- Jiangtao Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, Guangdong Province, China
| | - Shulan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Saleem A, Awan T, Akhtar MF. A comprehensive review on endocrine toxicity of gaseous components and particulate matter in smog. Front Endocrinol (Lausanne) 2024; 15:1294205. [PMID: 38352708 PMCID: PMC10863453 DOI: 10.3389/fendo.2024.1294205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Smog is a form of extreme air pollution which comprises of gases such as ozone, sulfur dioxide, nitrogen and carbon oxides, and solid particles including particulate matter (PM2.5 and PM10). Different types of smog include acidic, photochemical, and Polish. Smog and its constituents are hazardaous to human, animals, and plants. Smog leads to plethora of morbidities such as cancer, endocrine disruption, and respiratory and cardiovascular disorders. Smog components alter the activity of various hormones including thyroid, pituitary, gonads and adrenal hormones by altering regulatory genes, oxidation status and the hypothalamus-pituitary axis. Furthermore, these toxicants are responsible for the development of metabolic disorders, teratogenicity, insulin resistance, infertility, and carcinogenicity of endocrine glands. Avoiding fossil fuel, using renewable sources of energy, and limiting gaseous discharge from industries can be helpful to avoid endocrine disruption and other toxicities of smog. This review focuses on the toxic implications of smog and its constituents on endocrine system, their toxicodynamics and preventive measures to avoid hazardous health effects.
Collapse
Affiliation(s)
- Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tanzeela Awan
- Department of Pharmacy, The Women University Multan, Multan, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| |
Collapse
|
5
|
Cowell W, Kloog I, Just AC, Coull BA, Carroll K, Wright RJ. Ambient PM 2.5 exposure and salivary cortisol output during pregnancy in a multi-ethnic urban sample. Inhal Toxicol 2023; 35:101-108. [PMID: 35312378 PMCID: PMC10264094 DOI: 10.1080/08958378.2022.2051647] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/05/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Evidence from murine research supports that fine particulate matter (PM2.5) may stimulate the hypothalamic-pituitary-adrenal axis, leading to elevated circulating glucocorticoid levels. Epidemiologic research examining parallel associations document similar associations. We examined these associations among a diverse sample of pregnant individuals exposed to lower levels of ambient PM2.5. MATERIALS AND METHODS Participants included pregnant individuals enrolled in the PRogramming of Intergenerational Stress Mechanisms (PRISM) pre-birth cohort. Daily residential PM2.5 exposure was estimated using a satellite-based spatial-temporal hybrid model. Maternal 3rd trimester salivary cortisol levels were used to calculate several features of the diurnal cortisol rhythm. We used multivariable linear regression to examine PM2.5 during the pre-conception period and during each trimester in relation to cortisol awakening rise (CAR), slope, and area under the curve relative to ground (AUCG). RESULTS AND DISCUSSION The average PM2.5 exposure level across pregnancy was 8.13 µg/m3. PM2.5 in each exposure period was positively associated with AUCG, a measure of total cortisol output across the day. We also observed an inverse association between PM2.5 in the 3rd trimester and diurnal slope, indicating a steeper decline in cortisol throughout the day with increasing exposure. We did not detect strong associations between PM2.5 and slope for the other exposure periods or between PM2.5 and CAR for any exposure period. CONCLUSIONS In this sample, PM2.5 exposure across the preconception and pregnancy periods was associated with increased cortisol output, even at levels below the U.S. National Ambient Air Quality Annual Standard for PM2.5 of 12.0 µg/m3.
Collapse
Affiliation(s)
- Whitney Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Allan C. Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Brent A. Coull
- Department of Biostatistics, Harvard TH Chan School of Public Health, Harvard University, Boston, MA
| | - Kecia Carroll
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
6
|
Chiarello DI, Ustáriz J, Marín R, Carrasco-Wong I, Farías M, Giordano A, Gallardo FS, Illanes SE, Gutiérrez J. Cellular mechanisms linking to outdoor and indoor air pollution damage during pregnancy. Front Endocrinol (Lausanne) 2023; 14:1084986. [PMID: 36875486 PMCID: PMC9974835 DOI: 10.3389/fendo.2023.1084986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Pregnancies are a critical window period for environmental influences over the mother and the offspring. There is a growing body of evidence associating indoor and outdoor air pollution exposure to adverse pregnancy outcomes such as preterm birth and hypertensive disorders of pregnancy. Particulate matter (PM) could trigger oxi-inflammation and could also reach the placenta leading to placental damage with fetal consequences. The combination of strategies such as risk assessment, advise about risks of environmental exposures to pregnant women, together with nutritional strategies and digital solutions to monitor air quality can be effective in mitigating the effects of air pollution during pregnancy.
Collapse
Affiliation(s)
- Delia I. Chiarello
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Javier Ustáriz
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Marín
- Center for Biophysics and Biochemistry (CBB), Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Ivo Carrasco-Wong
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Marcelo Farías
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ady Giordano
- Inorganic Chemistry Department, Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe S. Gallardo
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián E. Illanes
- Reproductive Biology Program, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Jaime Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
7
|
Gong Y, Sun P, Fu X, Jiang L, Yang M, Zhang J, Li Q, Chai J, He Y, Shi C, Wu J, Li Z, Yu F, Ba Y, Zhou G. The type of previous abortion modifies the association between air pollution and the risk of preterm birth. ENVIRONMENTAL RESEARCH 2022; 212:113166. [PMID: 35346659 DOI: 10.1016/j.envres.2022.113166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Air pollution and previous abortion have been reported to be related to preterm birth (PTB). But rare study examined the effect of air pollution on PTB risk among mothers with previous abortion. OBJECTIVE To estimate the effect of air pollution on PTB and the potential effect modification of previous abortion on such an association in rural part of Henan province (China). METHOD Based on National Free Preconception Health Examination Project (NFPHEP), information from the medical records of 57,337 mothers with previous abortion were obtained. An inverse distance-weighted model was used to estimate exposure levels of air pollutants. The effect of air pollution on the risk of PTB was estimated with a multiple logistic regression model. Stratified and interaction analyses were undertaken to explore the potential effect modification of previous abortion on this association. RESULTS The risk of PTB was positively associated with exposure to levels of nitrogen dioxide (NO2; OR: 1.03; 95%CI: 1.02-1.04)], and sulfur dioxide (SO2; 1.04; 1.02-1.07), and negatively associated with ozone (O3) exposure (0.97; 0.97-0.98) during the entire pregnancy. Besides, we observed a positive effect of carbon monoxide (CO) exposure during the third trimester of pregnancy on PTB (1.14; 1.01-1.29). The type of previous abortion could modify the effect of air pollution on the PTB risk (P-interaction < 0.05). Compared with mothers with previous induced abortion, mothers with previous spontaneous abortion carried a higher risk of PTB induced by NO2, CO, and O3. CONCLUSIONS The risk of PTB was positively associated with levels of NO2, SO2 and CO, and negatively associated with the O3 level. The types of previous abortion could modify the effect of air pollution on PTB. Mothers who had an abortion previously, especially spontaneous abortion, should avoid exposure to air pollution to improve their pregnancy outcome.
Collapse
Affiliation(s)
- Yongxiang Gong
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Panpan Sun
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Xiaoli Fu
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Lifang Jiang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Meng Yang
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Junxi Zhang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Qinyang Li
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jian Chai
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Yanan He
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Chaofan Shi
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jingjing Wu
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Zhiyuan Li
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Fangfang Yu
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yue Ba
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Guoyu Zhou
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
8
|
Wang J, Chen G, Hou J, Wei D, Liu P, Nie L, Fan K, Wang L, Xu Q, Song Y, Wang M, Huo W, Jing T, Li W, Guo Y, Wang C, Mao Z. Associations of residential greenness, ambient air pollution, biological sex, and glucocorticoids levels in rural China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113945. [PMID: 35999771 DOI: 10.1016/j.ecoenv.2022.113945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
AIMS To evaluate the associations between residential greenness and glucocorticoid levels and whether air pollutants and sex modify the relationship between greenness and glucocorticoid level in Chinese rural adults. METHODS We collected cross-sectional survey data from 6055 participants from the Henan Rural cohort. The three-year average residential greenness for participants was assessed using normalized difference vegetation index (NDVI) values from a satellite platform. Liquid chromatography-tandem mass spectrometry was employed to quantify the concentrations of glucocorticoids, which were measured by morning blood draw after at least 8 hr of fasting. A random forest model was employed to obtain the average concentrations of PM1, PM2.5, and PM10. A general linear regression model was performed to estimate the associations of NDVI500-m values with cortisol, 11-deoxycortisol, and cortisone. Furthermore, interaction plots were used to present the interaction effects of particulate matter, sex, and green space on glucocorticoid levels. RESULTS After adjusting for multiple variables, an elevated average NDVI500-m value in the total population was associated with a decrease in cortisol levels (β = -0.063, 95 % confidence interval (CI): - 0.118, - 0.008), and 11-deoxycortisol levels (β = -0.118, 95 % CI: -0.190, -0.047), as well as an increase in cortisone levels (β = 0.130, 95 % CI: 0.079, 0.181). By adding the interaction terms of air pollutants and residential greenness into the regression model, interaction effects between air pollutants and residential greenness were found (cortisol, PM2.5: P interaction=:0.018; PM10: P interaction=0.016; 11-deoxycortisol, all pollutants: P interaction< 0.001), suggesting that the protective effect of residential greenness on serum glucocorticoids disappeared accompanying with increased concentrations of particulate matter. Moreover, trends towards modification in the association between green space and glucocorticoid levels were also evident by sex, but these did not reach statistical significance (for all glucocorticoids: P interaction> 0.05). CONCLUSION Long-term exposure to green space was negatively correlated with cortisol and 11-deoxycortisol levels, and positively correlated with cortisone levels. There may be sex differences in these associations. Moreover, the protective effect of residential greenness on serum glucocorticoids was altered by high levels of particulate matter.
Collapse
Affiliation(s)
- Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Pengling Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Luting Nie
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Keliang Fan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lulu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qingqing Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu Song
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Mian Wang
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
9
|
Zhou Y, Zhu Q, Wang P, Li J, Luo R, Zhao W, Zhang L, Shi H, Zhang Y. Early pregnancy PM 2.5 exposure and its inorganic constituents affect fetal growth by interrupting maternal thyroid function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119481. [PMID: 35597481 DOI: 10.1016/j.envpol.2022.119481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Early pregnancy is crucial for fetal growth. Maternal thyroid hormone is critical for fetal growth and can be disturbed under exogenous exposure. However, it's uncertain whether exposure to PM2.5 and inorganic constituents during early pregnancy can affect TH and fetal growth. We focused on the associations of early-pregnancy PM2.5 and inorganic constituents with fetal growth and maternal THs. PM2.5 concentration was estimated using a satellite-based spatiotemporal model. Fetal biparietal diameter (BPD), head circumference (HC), femur length (FL), and humerus length (HL) were measured by ultrasonography at median 15.6, 22.2, and 33.1 gestational weeks. Levels of 28 PM2.5 constituents were measured in a sub-group of 329 pregnancies. Maternal serum free thyroxine (fT4), free triiodothyronine, and thyroid-stimulating hormone levels were measured at 14 weeks of gestation. Mixed-effect models and multiple linear regression were applied to evaluate the associations of PM2.5 and its constituents with fetal growth measures. Mediation analysis was used to examine the mediating role of the THs. Results showed that each 10 μg/m3 increase in PM2.5 was associated with 0.20 mm reductions in BPD (95%CI: 0.33, -0.01), 0.27 mm decreases in FL (95%CI: 0.40, -0.13), and 0.36 decreases in HL (95%CI: 0.49, -0.23). Per 10 μg/m3 increment in PM2.5 was correlated with 5.82% decreases in the fT4 level (95% CI: 8.61%, -2.96%). FT4 accounted for 14.3% of PM2.5 exposure-induced change in BPD at first follow-up. Al (β = -2.91, 95%CI: 5.17, -0.66), Si (β = -1.20, 95%CI: 2.22, -0.19), K (β = -3.09, 95%CI: 5.41, -0.77), Mn (β = -47.20, 95%CI: 83.68, -10.79) and Zn (β = -3.02, 95%CI: 5.55, -0.49) were associated with decreased fetal BPD, especially in first follow-up. Zn (β = -38.12%, 95% CI: 58.52%, -8.61%) was also associated with decreased fT4 levels. Overall, early pregnancy exposure to PM2.5 and its constituents was associated with fetal growth restriction and decreased maternal fT4 levels might mediate the effect of PM2.5.
Collapse
Affiliation(s)
- Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Qingqing Zhu
- The Maternal and Child Healthcare Hospital of Songjiang District, Shanghai, 201600, China
| | - Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Jialin Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ranran Luo
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Wenxuan Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Huijing Shi
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Dovlatabadi A, Estiri EH, Najafi ML, Ghorbani A, Rezaei H, Behmanesh M, Momeni E, Gholizadeh A, Cristaldi A, Mancini G, Alahabadi A, Miri M. Bioaccumulation and health risk assessment of exposure to potentially toxic elements by consuming agricultural products irrigated with wastewater effluents. ENVIRONMENTAL RESEARCH 2022; 205:112479. [PMID: 34861231 DOI: 10.1016/j.envres.2021.112479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Potentially toxic elements (PTEs) have many adverse health effects due to bioaccumulation capability and their long persistence in the environment. As a renewable water source, the effluents of municipal wastewater treatment systems have been used to irrigate agricultural products widely. However, the evidence on the bioaccumulation of PTEs in crops irrigated with these effluents is still scarce, with no available study in low and middle-income countries. Therefore, this study aimed to assess the PTEs concentration in the soil and crops irrigated with effluents of Sabzevar wastewater treatment plant and the related health risk by that. The clustered method was used to determine the soil and craps samples. Seventy cumulative samples were randomly prepared in summer and autumn 2016 and 2017 from crops, soil and effluent. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure PTEs. The health risk of exposure to PTEs was assessed using Monte Carlo simulation technique. Kruskal Wallis test and Posthoc Tukey HSD test were used to assess the mean difference of PTEs between soil, effluent and crops as well as between crops together. The bioaccumulation factor (BAF) magnitude order in different crop samples was Cd > Sr > Cu > Pb > Zn > Co > As > Cr > Ni, respectively. The Cd accumulation in Sugar beet plant was significantly higher than in other samples. The highest hazard quotient (HQ) based on single PTEs was observed for As (mineral) (mean: 5.62 × 10-1 and percentile 95th: 2.13) in Okra. Regarding total HQ (THQ), the highest and lowest mean (percentile 95th) values were 1.50 (3.22) and 2.40 × 10-1 (4.01 × 10-1) for Okra and Watermelon, respectively. The mean concentrations of Co, Cr, Ni and Zn were significantly higher in crops compared to soil and influent samples. Posthoc tests indicated that the concentration of PTEs between investigated crop samples were not statistically significant different (p > 0.05). Overall, our study suggested that irrigation with the effluent of stabilization pond wastewater treatment system exerts a potential health risk due to bioaccumulation of PTEs in crops.
Collapse
Affiliation(s)
- Afshin Dovlatabadi
- Student Research Committee, Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elahe Hasannejad Estiri
- Student Research Committee, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Ghorbani
- Department of Public Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hossein Rezaei
- Student Research Committee, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Maryam Behmanesh
- University of Applied Sciences and Technology, Tehran, Iran; Islamic Azad University of Pharmaceutical Sciences, Tehran, Iran
| | - Ensieh Momeni
- Student Research Committee, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abdolmajid Gholizadeh
- Department of Environmental Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Antonio Cristaldi
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Giuseppe Mancini
- Department of Civil Engineering and Architecture, University of Catania, Catania, Italy
| | - Ahmad Alahabadi
- Non-communicable Disease Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Mohammad Miri
- Non-communicable Disease Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
11
|
Capitanio JP, Del Rosso LA, Gee N, Lasley BL. Adverse biobehavioral effects in infants resulting from pregnant rhesus macaques' exposure to wildfire smoke. Nat Commun 2022; 13:1774. [PMID: 35365649 PMCID: PMC8975955 DOI: 10.1038/s41467-022-29436-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
As wildfires across the world increase in number, size, and intensity, exposure to wildfire smoke (WFS) is a growing health problem. To date, however, little is known for any species on what might be the behavioral or physiological consequences of prenatal exposure to WFS. Here we show that infant rhesus monkeys exposed to WFS in the first third of gestation (n = 52) from the Camp Fire (California, November, 2018) show greater inflammation, blunted cortisol, more passive behavior, and memory impairment compared to animals conceived after smoke had dissipated (n = 37). Parallel analyses, performed on a historical control cohort (n = 2490), did not support the alternative hypothesis that conception timing alone could explain the results. We conclude that WFS may have a teratogenic effect on the developing fetus and speculate on mechanisms by which WFS might affect neural development. Little is known about the consequences of prenatal exposure to wildfire smoke on biobehavioural outcomes. Here, the authors show that infant rhesus monkeys exposed early in gestation to wildfire smoke from the 2018 Camp Fire in California show more inflammation, blunted cortisol and altered behaviour outcomes compared to non-exposed animals.
Collapse
Affiliation(s)
- John P Capitanio
- California National Primate Research Center, University of California, Davis, CA, USA. .,Department of Psychology, University of California, Davis, CA, USA.
| | - Laura A Del Rosso
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Nancy Gee
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Bill L Lasley
- Center for Health and the Environment, University of California, Davis, CA, USA
| |
Collapse
|
12
|
Heydari H, Najafi ML, Akbari A, Rezaei H, Miri M. Prenatal exposure to traffic-related air pollution and glucose homeostasis: A cross-sectional study. ENVIRONMENTAL RESEARCH 2021; 201:111504. [PMID: 34144009 DOI: 10.1016/j.envres.2021.111504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Air pollution exposure has been linked with glucose dysregulation in pregnant women; however, evidence on these associations with fetal glucose homeostasis is unclear yet. We therefore aimed to evaluate the association of prenatal exposure to particulate matter (PM) and traffic indicators with fetal glucose homeostasis in cord blood samples. A total of 169 mother-infant pairs recruited from Mobini hospital of Sabzevar, Iran, were included in this cross-sectional study. Maternal exposure to PMs was estimated using land use regression models. Moreover, traffic indicators (i.e., total street length in 100, 300 and 500 m buffers and distance from residential home to the nearest major roads) were calculated based on the street map of Sabzevar. Cord blood glucose and insulin concentrations, HOMA-ꞵ, HOMA-S and HOMA-IR were used as glucose homeostasis markers. Higher maternal exposure to PM2.5 and PM10 were associated with higher cord blood glucose and insulin concentrations and HOMA-IR. Moreover, total streets length in 300 m buffer was positively associated with cord blood glucose and insulin concentrations and HOMA-IR. An increase in distance to major roads was associated with higher HOMA-ꞵ and HOMA-S and lower cord blood glucose and insulin concentrations as well as HOMA-IR. Overall, we found prenatal exposure to PMs and traffic indicators was associated with a higher risk of glucose homeostasis dysregulation in the fetus.
Collapse
Affiliation(s)
- Hafez Heydari
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Rezaei
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Miri
- Non-communicable Diseases Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
13
|
Johnson NM, Hoffmann AR, Behlen JC, Lau C, Pendleton D, Harvey N, Shore R, Li Y, Chen J, Tian Y, Zhang R. Air pollution and children's health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ Health Prev Med 2021; 26:72. [PMID: 34253165 PMCID: PMC8274666 DOI: 10.1186/s12199-021-00995-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Particulate matter (PM), a major component of ambient air pollution, accounts for a substantial burden of diseases and fatality worldwide. Maternal exposure to PM during pregnancy is particularly harmful to children's health since this is a phase of rapid human growth and development. METHOD In this review, we synthesize the scientific evidence on adverse health outcomes in children following prenatal exposure to the smallest toxic components, fine (PM2.5) and ultrafine (PM0.1) PM. We highlight the established and emerging findings from epidemiologic studies and experimental models. RESULTS Maternal exposure to fine and ultrafine PM directly and indirectly yields numerous adverse birth outcomes and impacts on children's respiratory systems, immune status, brain development, and cardiometabolic health. The biological mechanisms underlying adverse effects include direct placental translocation of ultrafine particles, placental and systemic maternal oxidative stress and inflammation elicited by both fine and ultrafine PM, epigenetic changes, and potential endocrine effects that influence long-term health. CONCLUSION Policies to reduce maternal exposure and health consequences in children should be a high priority. PM2.5 levels are regulated, yet it is recognized that minority and low socioeconomic status groups experience disproportionate exposures. Moreover, PM0.1 levels are not routinely measured or currently regulated. Consequently, preventive strategies that inform neighborhood/regional planning and clinical/nutritional recommendations are needed to mitigate maternal exposure and ultimately protect children's health.
Collapse
Affiliation(s)
- Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA.
| | | | - Jonathan C Behlen
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Carmen Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Drew Pendleton
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Navada Harvey
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Ross Shore
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jingshu Chen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
14
|
Wei D, Li S, Zhang L, Liu P, Fan K, Nie L, Wang L, Liu X, Hou J, Yu S, Li L, Jing T, Li X, Li W, Guo Y, Wang C, Huo W, Mao Z. Long-term exposure to PM 1 and PM 2.5 is associated with serum cortisone level and meat intake plays a moderation role. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112133. [PMID: 33740488 DOI: 10.1016/j.ecoenv.2021.112133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Although short-term exposure to particulate matter (PM) was associated with increased glucocorticoids (GCs) levels, available evidence on associations of long-term exposure to PM and GCs levels is still scant. Previous studies has showed that meat intake is associated with sex hormones levels, but it is unknown whether meat intake is associated with GCs levels. Furthermore, the role of meat intake in the associations between PM and GCs levels remains unclear. AIMS The aims of this study were to explore the associations of long-term exposure to PM and GCs levels among Chinese rural adults, and the role of meat intake in these associations. MATERIALS AND METHODS A total of 6223 subjects were recruited from the Henan Rural Cohort Study. Serum GCs levels were measured with liquid chromatography-tandem mass spectrometry. The concentrations of PM (PM1 and PM2.5) for each subject were assessed with machine learning algorithms. The food frequency questionnaire (FFQ) was used to obtain each participant' information on meat intake. The effects of PM and meat intake on GCs levels were assessed using generalized linear models. In addition, modification analyses were performed to identify the role of meat intake played in the associations of PM with serum GCs levels. RESULTS Per 1 μg/m3 increment in PM1 or PM2.5 concentration was associated with a 0.364 ng/ml (95% confidence interval (CI): 0.234, 0.494) or 0.227 ng/ml (95%CI: 0.110, 0.343) increase in serum cortisone, respectively. In addition, the moderation effects of total meat intake and red meat intake on the associations of long-term exposure to PM1 or PM2.5 with serum cortisone were observed (P < 0.05), indicating that individuals who had high levels of PM1 or PM2.5 and meat intake were more susceptible to have a higher state of serum cortisone. CONCLUSIONS Our findings suggested that long-term exposure to PM1 or PM2.5 was associated with serum cortisone. Moreover, meat intake was found to be a significant moderator in the association of PM1 or PM2.5 with serum cortisone levels.
Collapse
Affiliation(s)
- Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Li Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Pengling Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Keliang Fan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Luting Nie
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lulu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Songcheng Yu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
15
|
Ahlers NE, Weiss SJ. Exposure to particulate matter, prenatal depressive symptoms and HPA axis dysregulation. Heliyon 2021; 7:e07166. [PMID: 34141927 PMCID: PMC8187961 DOI: 10.1016/j.heliyon.2021.e07166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/07/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The prevalence of depression during pregnancy is on the rise, affecting women's well-being and their children's health outcomes. Preliminary studies suggest that exposure to air pollution during pregnancy may play a role in development of depressive symptoms. In addition, pollution has been linked to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, our brain's primary stress response system. The purpose of this study was to examine the association of air pollution exposure during pregnancy to prenatal depressive symptoms. We also evaluated whether cortisol, the hormonal endpoint of HPA activation, mediated the relationship between exposure to pollution and prenatal depression. METHODS Women were recruited in obstetric clinics during their third trimester of pregnancy. They completed the Patient Health Questionnaire-9 to assess depression and provided salivary samples at 4 times during the day for 2 days. Four measures of cortisol were calculated from salivary assays: average cortisol level, cortisol awakening response (CAR), diurnal cortisol slope (DCS), and area under the curve (AUCG). We acquired data on particulate matter with a diameter of 2.5 μm (PM2.5) or less within each woman's residential area from public records of the air quality control district. Structural equation modeling was used to analyze the aims. RESULTS Increased prenatal exposure to PM2.5 across pregnancy was associated with more severe depressive symptoms during the 3rd trimester (β = 0.14, p = 0.02). Greater PM2.5 exposure also had significant relationships with both higher cortisol AUCG (β = 15.933, p = 0.005) and average cortisol levels (β = 0.018, p = 0.023) among women. However, no cortisol parameter appeared to mediate the relationship between PM2.5 exposure and depressive symptoms. CONCLUSIONS Findings suggest pregnancy may be a critical window of sensitivity to PM2.5 exposure that escalates depression risk and induces activation of the HPA axis, evidenced in greater overall cortisol concentration. Further research is needed to identify mechanisms underlying the effects of particulate matter, especially potential methylation of glucocorticoid or serotonin transporter genes that may elicit changes in both depression and the stress response system. In addition, assessment of depression appears warranted for pregnant women in regions known for high pollution.
Collapse
Affiliation(s)
- Nina E. Ahlers
- Department of Community Health Systems, University of California, San Francisco, CA, USA
| | - Sandra J. Weiss
- Department of Community Health Systems, University of California, San Francisco, CA, USA
| |
Collapse
|
16
|
Toledo-Corral CM, Alderete TL, Herting MM, Habre R, Peterson AK, Lurmann F, Goran MI, Weigensberg MJ, Gilliland FD. Ambient air pollutants are associated with morning serum cortisol in overweight and obese Latino youth in Los Angeles. Environ Health 2021; 20:39. [PMID: 33832509 PMCID: PMC8034084 DOI: 10.1186/s12940-021-00713-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/05/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Hypothalamic-pituitary-adrenal (HPA)-axis dysfunction has been associated with a variety of mental health and cardio-metabolic disorders. While causal models of HPA-axis dysregulation have been largely focused on either pre-existing health conditions or psychosocial stress factors, recent evidence suggests a possible role for central nervous system activation via air pollutants, such as nitrogen dioxide (NO2), ozone (O3) and particulate matter (PM). Therefore, in an observational study of Latino youth, we investigated if monthly ambient NO2, O3, and PM with aerodynamic diameter ≤ 2.5 (PM2.5) exposure were associated with morning serum cortisol levels. METHODS In this cross-sectional study, morning serum cortisol level was assessed after a supervised overnight fast in 203 overweight and obese Latino children and adolescents (female/male: 88/115; mean age: 11.1 ± 1.7 years; pre-pubertal/pubertal/post-pubertal: 85/101/17; BMI z-score: 2.1 ± 0.4). Cumulative concentrations of NO2, O3 and PM2.5 were spatially interpolated at the residential addresses based on measurements from community monitors up to 12 months prior to testing. Single and multi-pollutant linear effects models were used to test the cumulative monthly lag effects of NO2, O3, and PM2.5 on morning serum cortisol levels after adjusting for age, sex, seasonality, social position, pubertal status, and body fat percent by DEXA. RESULTS Single and multi-pollutant models showed that higher O3 exposure (derived from maximum 8-h exposure windows) in the prior 1-7 months was associated with higher serum morning cortisol (p < 0.05) and longer term PM2.5 exposure (4-10 months) was associated with lower serum morning cortisol levels (p < 0.05). Stratification by pubertal status showed associations in pre-pubertal children compared to pubertal and post-pubertal children. Single, but not multi-pollutant, models showed that higher NO2 over the 4-10 month exposure period associated with lower morning serum cortisol (p < 0.05). CONCLUSIONS Chronic ambient NO2, O3 and PM2.5 differentially associate with HPA-axis dysfunction, a mechanism that may serve as an explanatory pathway in the relationship between ambient air pollution and metabolic health of youth living in polluted urban environments. Further research that uncovers how ambient air pollutants may differentially contribute to HPA-axis dysfunction are warranted.
Collapse
Affiliation(s)
- C M Toledo-Corral
- Department of Health Sciences, California State University Northridge, 18111 Nordhoff Street, Northridge, 91330, USA.
- Department of Preventive Medicine, Environmental Health Division, University of Southern California, Keck School of Medicine, Los Angeles, USA.
| | - T L Alderete
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, USA
| | - M M Herting
- Department of Preventive Medicine, Environmental Health Division, University of Southern California, Keck School of Medicine, Los Angeles, USA
| | - R Habre
- Department of Preventive Medicine, Environmental Health Division, University of Southern California, Keck School of Medicine, Los Angeles, USA
| | - A K Peterson
- Department of Preventive Medicine, Environmental Health Division, University of Southern California, Keck School of Medicine, Los Angeles, USA
| | - F Lurmann
- Sonoma Technology, Inc., Petaluma, USA
| | - M I Goran
- Childrens Hospital Los Angeles, Los Angeles, USA
- Department of Pediatrics, University of Southern California, Keck School of Medicine, Los Angeles, USA
| | - M J Weigensberg
- Department of Pediatrics, University of Southern California, Keck School of Medicine, Los Angeles, USA
| | - F D Gilliland
- Department of Preventive Medicine, Environmental Health Division, University of Southern California, Keck School of Medicine, Los Angeles, USA
| |
Collapse
|
17
|
Hosseini ZS, Heydari-Zarnagh H, Lari Najafi M, Behmanesh M, Miri M. Maternal exposure to air pollution and umbilical asprosin concentration, a novel insulin-resistant marker. CHEMOSPHERE 2021; 268:129228. [PMID: 33352518 DOI: 10.1016/j.chemosphere.2020.129228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Air pollution exposure during pregnancy has been associated with abnormal glucose hemostasis in the fetus, which may result in the programming of type 2 diabetes mellitus (T2DM) development in future life. Therefore, we investigated the association of maternal exposure to particulate matters (PMs) and traffic indicators with umbilical asprosin concentration, a novel insulin-resistant inducing adipokine, in newborns. Accordingly, 759 mother-newborn pairs from Sabzevar, Iran (2018-2019) participated in our study. Maternal exposure to PM1, PM2.5 and PM10 concentrations was estimated using spatial-temporal models developed for the study area. The associations of exposure to traffic indicators (total street length in 100, 300 and 500 m buffers around home and proximity of mothers to nearest major roads) and air pollution with umbilical asprosin concentration were estimated using linear regression models, adjusted for potential confounders. The median (interquartile range (IQR)) of umbilical asprosin concentration was 30.4 (19.1) ng/mL. In fully adjusted models, each one IQR increase in PM10 and PM2.5 were associated with 26.43 ng/mL (95% CI: 10.97, 41.88) and 31.76 ng/mL (95% CI: 15.66, 47.86) increase in umbilical asprosin concentration, respectively. A similarity result was observed for total street length in 100 m buffer. An increase in proximity to major roads was associated with a decrease of -21.48 ng/mL (95% CI: 33.29, -9.67) in umbilical asprosin concentration. Our results suggested that maternal exposure to air pollution during pregnancy could increase the umbilical asprosin concentration. These novel findings may improve our understanding of the mechanisms whereby air pollutants impaired glucose hemostasis during the fetal period.
Collapse
Affiliation(s)
- Zeynab Sadat Hosseini
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hafez Heydari-Zarnagh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Behmanesh
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; University of Applied Sciences & Technology (UAST), Tehran, Iran
| | - Mohammad Miri
- Non-communicable Diseases Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
18
|
Kim H, Kim WH, Kim YY, Park HY. Air Pollution and Central Nervous System Disease: A Review of the Impact of Fine Particulate Matter on Neurological Disorders. Front Public Health 2020; 8:575330. [PMID: 33392129 PMCID: PMC7772244 DOI: 10.3389/fpubh.2020.575330] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
Background: It is widely known that the harmful effects of fine dust can cause various diseases. Research on the correlation between fine dust and health has been mainly focused on lung and cardiovascular diseases. By contrast, the effects of air pollution on the central nervous system (CNS) are not broadly recognized. Findings: Air pollution can cause diverse neurological disorders as the result of inflammation of the nervous system, oxidative stress, activation of microglial cells, protein condensation, and cerebral vascular-barrier disorders, but uncertainty remains concerning the biological mechanisms by which air pollution produces neurological disease. Neuronal cell damage caused by fine dust, especially in fetuses and infants, can cause permanent brain damage or lead to neurological disease in adulthood. Conclusion: It is necessary to study the air pollution–CNS disease connection with particular care and commitment. Moreover, the epidemiological and experimental study of the association between exposure to air pollution and CNS damage is critical to public health and quality of life. Here, we summarize the correlations between fine dust exposure and neurological disorders reported so far and make suggestions on the direction future research should take.
Collapse
Affiliation(s)
- Hyunyoung Kim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, South Korea
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, South Korea
| | - Young-Youl Kim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, South Korea
| | - Hyun-Young Park
- Department of Precision Medicine, Korea National Institute of Health, Cheongju-si, South Korea
| |
Collapse
|
19
|
Najafi ML, Zarei M, Gohari A, Haghighi L, Heydari H, Miri M. Preconception air pollution exposure and glucose tolerance in healthy pregnant women in a middle-income country. Environ Health 2020; 19:131. [PMID: 33298083 PMCID: PMC7727159 DOI: 10.1186/s12940-020-00682-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/01/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Preconception exposure to air pollution has been associated with glucose tolerance during pregnancy. However, the evidence in low and middle-income countries (LMICs) is under debate yet. Therefore, this study aimed to assess the relationship between exposure to ambient particulate matter (PM) and traffic indicators with glucose tolerance in healthy pregnant women in Sabzevar, Iran (2019). METHODS Two-hundred and fifty healthy pregnant women with singleton pregnancies and 24-26 weeks of gestations participated in our study. Land use regression (LUR) models were applied to estimate the annual mean of PM1, PM2.5 and PM10 at the residential address. Traffic indicators, including proximity of women to major roads as well as total streets length in 100, 300 and 500 m buffers around the home were calculated using the street map of Sabzevar. The oral glucose tolerance test (OGTT) was used to assess glucose tolerance during pregnancy. Multiple linear regression adjusted for relevant covariates was used to estimate the association of fasting blood glucose (FBG), 1-h and 2-h post-load glucose with PMs and traffic indicators. RESULTS Exposure to PM1, PM2.5 and PM10 was significantly associated with higher FBG concentration. Higher total streets length in a 100 m buffer was associated with higher FBG and 1-h glucose concentrations. An interquartile range (IQR) increase in proximity to major roads was associated with a decrease of - 3.29 mg/dL (95% confidence interval (CI): - 4.35, - 2.23, P-value < 0.01) in FBG level and - 3.65 mg/dL (95% CI, - 7.01, - 0.28, P-value = 0.03) decrease in 1-h post-load glucose. CONCLUSION We found that higher preconception exposure to air pollution was associated with higher FBG and 1-h glucose concentrations during pregnancy.
Collapse
Affiliation(s)
- Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Zarei
- Department of Physical Education and Sport Science, Faculty of Human Science, University of Neyshabur, Neyshabur, Iran
| | - Ali Gohari
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Leyla Haghighi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hafez Heydari
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Mohammad Miri
- Non-Communicable Diseases Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, PO Box 319, Sabzevar, Iran.
| |
Collapse
|
20
|
Miller JG, Gillette JS, Kircanski K, LeMoult J, Gotlib IH. Air pollution is associated with elevated HPA-Axis response to stress in anxious adolescent girls. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2020; 4:100015. [PMID: 35755623 PMCID: PMC9216601 DOI: 10.1016/j.cpnec.2020.100015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/02/2022] Open
Abstract
Research suggests that exposure to fine particulate air pollution (PM2.5) increases hypothalamic-pituitary-adrenal (HPA) axis activation in adults; it is unclear, however, whether PM2.5 is associated with HPA-axis functioning in psychosocial contexts, such as during the experience of social stress. One recent study of adolescents found that PM2.5 was associated with heightened autonomic reactivity to a social stress task, and that this association was strongest for adolescents with more severe internalizing symptoms. Here, we sought to replicate and extend these findings to HPA-axis stress responsivity in an independent sample of adolescent girls (N = 130). We estimated PM2.5 concentrations at each participant’s address using data from nearby air quality monitoring stations, and assessed participants’ anxiety symptoms. We measured salivary cortisol in response to a social stress task and characterized HPA-axis functioning by computing area under the curve with respect to ground (AUCg) and with respect to increase (AUCi). Controlling for demographic factors, we found that PM2.5 was associated with heightened HPA-axis stress responsivity (both AUCg and AUCi) for girls who reported more severe levels of anxiety. We did not find a main effect of PM2.5 on HPA-axis functioning. These findings suggest that anxious adolescents are particularly vulnerable to the adverse effects of PM2.5 exposure on biological sensitivity to social stress. Fine particulate air pollution (PM2.5) may affect HPA-axis responsivity to acute stress. We estimated PM2.5 concentrations and measured anxiety and cortisol in adolescent girls. For anxious girls, higher PM2.5 predicted greater HPA-axis responsivity to stress. Anxious adolescents are sensitive to the effects of PM2.5 on stress biology.
Collapse
|
21
|
Erlandsson L, Lindgren R, Nääv Å, Krais AM, Strandberg B, Lundh T, Boman C, Isaxon C, Hansson SR, Malmqvist E. Exposure to wood smoke particles leads to inflammation, disrupted proliferation and damage to cellular structures in a human first trimester trophoblast cell line. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114790. [PMID: 32417587 DOI: 10.1016/j.envpol.2020.114790] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
The ongoing transition to renewable fuel sources has led to increased use of wood and other biomass fuels. The physiochemical characteristics of biomass combustion derived aerosols depends on appliances, fuel and operation procedures, and particles generated during incomplete combustion are linked to toxicity. Frequent indoor wood burning is related to severe health problems such as negative effects on airways and inflammation, as well as chronic hypoxia and pathological changes in placentas, adverse pregnancy outcome, preterm delivery and increased risk of preeclampsia. The presence of combustion-derived black carbon particles at both the maternal and fetal side of placentas suggests that particles can reach the fetus. Air pollution particles have also been shown to inhibit trophoblast migration and invasion, which are vital functions for the development of the placenta during the first trimester. In this study we exposed a placental first trimester trophoblast cell line to wood smoke particles emitted under Nominal Burn rate (NB) or High Burn rate (HB). The particles were visible inside exposed cells and localized to the mitochondria, causing ultrastructural changes in mitochondria and endoplasmic reticulum. Exposed cells showed decreased secretion of the pregnancy marker human chorionic gonadotropin, increased secretion of IL-6, disrupted membrane integrity, disrupted proliferation and contained specific polycyclic aromatic hydrocarbons (PAHs) from the particles. Taken together, these results suggest that wood smoke particles can enter trophoblasts and have detrimental effects early in pregnancy by disrupting critical trophoblast functions needed for normal placenta development and function. This could contribute to the underlying mechanisms leading to pregnancy complications such as miscarriage, premature birth, preeclampsia and/or fetal growth restriction. This study support the general recommendation that more efficient combustion technologies and burning practices should be adopted to reduce some of the toxicity generated during wood burning.
Collapse
Affiliation(s)
- Lena Erlandsson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| | - Robert Lindgren
- Thermochemical Energy Conversion Laboratory, Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden.
| | - Åsa Nääv
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Bo Strandberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Christoffer Boman
- Thermochemical Energy Conversion Laboratory, Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden.
| | - Christina Isaxon
- Department of Ergonomics and Aerosol Technology, Lund University, Lund, Sweden.
| | - Stefan R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| | - Ebba Malmqvist
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
22
|
Moslem A, Rad A, de Prado Bert P, Alahabadi A, Ebrahimi Aval H, Miri M, Gholizadeh A, Ehrampoush MH, Sunyer J, Nawrot TS, Miri M, Dadvand P. Association of exposure to air pollution and telomere length in preschool children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137933. [PMID: 32213432 DOI: 10.1016/j.scitotenv.2020.137933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/28/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Exposure to air pollution is associated with adverse health effects; however, the available evidence of its association with telomere length (TL), an early marker of ageing, in children is still scarce with no study available for preschool children. This study aimed to investigate the association of exposure to air pollution and traffic indicators at home and kindergarten with relative leukocyte TL (LTL) in preschool children. This cross-sectional study included 200 preschool children (5-7 years old) recruited from 27 kindergartens in Sabzevar, Iran (2017). Outdoor annual average levels PM1, PM2.5, and PM10 at residential address and kindergartens were estimated applying land use regression (LUR) models. Moreover, indoor levels of PMs at kindergartens were measured for four days in each season resulting in a total of 16 days of measurements for each kindergarten. Total streets length in different buffers and distance to major road were calculated as traffic indicators at residential address and kindergartens. We applied quantitative real-time polymerase chain reaction (qRT-PCR) to measure relative LTL in blood samples obtained from children. Mixed linear regression models were developed with qPCR plate and kindergarten as random effects, to estimate association of each pollutant and traffic indicator with LTL, controlled for relevant covariates. Higher concentrations of outdoor PM1, PM2.5, and PM10, at home and kindergartens were associated with shorter relative LTL. Similarly, increase in indoor PM2.5 concentrations at kindergartens was associated with shorter relative LTL (β = -0.18, 95% CI: -0.36, -0.01, P-value < 0.01). Moreover, higher total street length in 100 m buffer around residence and lower residential distance to major roads were associated with shorter relative LTL (β = -0.25, 95% CI: -0.37, -0.13, P-value < 0.01, and 0.32, 95% CI: 0.20, 0.44, P-value < 0.01, respectively). Overall, our study suggested that higher exposure to air pollution and traffic at kindergarten and residential home were associated with shorter relative LTL in preschool children.
Collapse
Affiliation(s)
- Alireza Moslem
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Paula de Prado Bert
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Ciber on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ahmad Alahabadi
- Non-communicable diseases Research Center, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hamideh Ebrahimi Aval
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Masoumeh Miri
- Student Research Committee, Department of Biostatistics, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abdolmajid Gholizadeh
- Department of Environmental Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Hassan Ehrampoush
- Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jordi Sunyer
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran; Pompeu Fabra University, Barcelona, Catalonia, Spain; Ciber on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| | - Mohammad Miri
- Non-communicable diseases Research Center, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Payam Dadvand
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran; Pompeu Fabra University, Barcelona, Catalonia, Spain; Ciber on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
23
|
Rahmani Sani A, Abroudi M, Heydari H, Adli A, Miri M, Mehrabadi S, Pajohanfar NS, Raoufinia R, Bazghandi MS, Ghalenovi M, Rad A, Miri M, Dadvand P. Maternal exposure to ambient particulate matter and green spaces and fetal renal function. ENVIRONMENTAL RESEARCH 2020; 184:109285. [PMID: 32114156 DOI: 10.1016/j.envres.2020.109285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 05/25/2023]
Abstract
Exposure to air pollution has been associated with different harmful effects and exposure to greenspace has been related to improved human health. However, the available evidence on the impact of these exposures on renal function is still scarce. The aim of this study was to determine the relationship between exposure to ambient levels of PM1, PM2.5, PM10 and indicators of exposure to traffic as well as greenspace during pregnancy and fetal renal function based on the umbilical cord blood. This study was based on 150 pregnant women residing in Sabzevar, Iran (2018). Multiple linear regression models were developed to estimate the association of glomerular filtration rate (GFR), creatinine (Cr) and blood urea nitrogen (BUN) with exposure to air pollution, traffic, and greenspace (one at a time) controlled for relevant covariates. There was an inverse significant association between exposure to PM1, PM2.5, PM10 and total street length in a 100 m buffer around the home and eGFR. Increase in distance to major road and residential surrounding greenness (100 m buffer) was associated with increase in eGFR. We observed a significant direct association between exposure to PMs as well as street length in 100 m buffer and serum level of Cr. There was also an inverse association between distance to major road and NDVI in 100 m buffer and Cr. The associations for blood urea nitrogen (BUN) were not statistically significant. Our results suggest that exposure to air pollution during pregnancy could have negative impact and exposure to greenspace could have positive impact on renal function of fetal.
Collapse
Affiliation(s)
- Abolfazl Rahmani Sani
- Non-Communicable Diseases Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mina Abroudi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hafez Heydari
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Adli
- Department of Genetic, Sabzevar Branch, Izlami Azad University, Sabzevar, Iran
| | - Masoumeh Miri
- Student Research Committee, Department of Biostatistics, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saide Mehrabadi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nasim Sadat Pajohanfar
- Department of Midwifery, School of Nursing, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ramin Raoufinia
- Non-Communicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | | - Mina Ghalenovi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Miri
- Non-Communicable Diseases Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|