1
|
Elles-Pérez C, Guzman-Tordecilla M, Ramos Y, Castillo-Ramírez M, Moreno-Ríos A, Garzón-Rodríguez C, Rojas-Solano J. Assessment of water quality and emerging pollutants in two fish species from the mallorquin swamp in the Colombian Caribbean. Heliyon 2024; 10:e39005. [PMID: 39640628 PMCID: PMC11620069 DOI: 10.1016/j.heliyon.2024.e39005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 12/07/2024] Open
Abstract
The Mallorquín Swamp, an important ecosystem in Atlántico, Colombian Caribbean, underwent environmental monitoring at eight points during rainy, transition, and dry seasons. This was to assess water quality, seasonal variation, and the bioaccumulation of metals, emerging pollutants, and organic compounds in the fish Ariopsis canteri and Mugil incilis. Water parameters were analyzed using descriptive statistics and multifactorial ANOVA with the Tukey HSD test for seasonal differences. Normality and variance of the fish results were verified, and differences between groups were evaluated using ANOVA or Kruskal-Walli's method when data transformation failed. Spearman correlation was used to relate the results. Water sampling revealed variations in temperature, dissolved oxygen, salinity, and nutrient levels. Significant differences in alkalinity and hardness were observed across seasons and sample points. The most probable number (MPN) levels of Total coliform and E. coli peaked near areas with domestic wastewater inputs, reaching 5.4x106 and 4.0x106 MPN, respectively, indicating potential microbiological contamination of water. Fish samples revealed high concentrations of persistent substances such as methylmercury, polycyclic aromatic hydrocarbons (PAHs), and emerging pollutants. Heavy metal analysis showed elevated iron levels (5.28 ± 0.657 mg/L), while emerging pollutants, including ibuprofen (218 μg/L) and naproxen (343.89 μg/L), exhibited high concentrations near human settlements. Ariopsis canteri showed higher bioconcentration tendencies for methylmercury (238.5 ± 100 μg/kg), and acenaphthene (7782 ± 4123.8 μg/kg), possibly influenced by its feeding habits and habitat preferences. In contrast, Mugil incilis exhibited higher bioaccumulation trends of PAH (2376.23 ± 599.63 μg/kg acenaphthene) and emerging pollutants like galaxolide (139.49 ± 34.98 μg/kg), possibly due to its mobility and exposure to various contaminants in their environment. These findings emphasize the need to monitor and manage aquatic ecosystems' health to mitigate anthropogenic influences on water quality and biodiversity. This research serves as a reference for global conservation efforts, emphasizing the need for comprehensive monitoring and regulatory frameworks to protect aquatic environments and ensure their sustainability for future generations.
Collapse
Affiliation(s)
- Cindy Elles-Pérez
- Servicio Nacional de Aprendizaje, SENA, Regional Atlántico, Grupo: CNCA, Carrera 43 No. 42 - 40, 080003, Barranquilla, Atlántico, Colombia
| | - Maria Guzman-Tordecilla
- Servicio Nacional de Aprendizaje, SENA, Regional Atlántico, Grupo: CNCA, Carrera 43 No. 42 - 40, 080003, Barranquilla, Atlántico, Colombia
| | - Yuliceth Ramos
- Servicio Nacional de Aprendizaje, SENA, Regional Atlántico, Grupo: CNCA, Carrera 43 No. 42 - 40, 080003, Barranquilla, Atlántico, Colombia
| | - Margarita Castillo-Ramírez
- Servicio Nacional de Aprendizaje, SENA, Regional Atlántico, Grupo: CNCA, Carrera 43 No. 42 - 40, 080003, Barranquilla, Atlántico, Colombia
| | - Andrea Moreno-Ríos
- Servicio Nacional de Aprendizaje, SENA, Regional Atlántico, Grupo: CNCA, Carrera 43 No. 42 - 40, 080003, Barranquilla, Atlántico, Colombia
| | - Carolina Garzón-Rodríguez
- Servicio Nacional de Aprendizaje, SENA, Regional Atlántico, Grupo: CNCA, Carrera 43 No. 42 - 40, 080003, Barranquilla, Atlántico, Colombia
| | - Jacqueline Rojas-Solano
- Servicio Nacional de Aprendizaje, SENA, Regional Atlántico, Grupo: CNCA, Carrera 43 No. 42 - 40, 080003, Barranquilla, Atlántico, Colombia
- Universidad del Norte, km 5 antigua vía a Puerto Colombia, 081007, Barranquilla, Atlántico, Colombia
| |
Collapse
|
2
|
Mathivanan K, Alrefaei AF, Praburaman L, Ramasamy R, Nagarajan P, Rakesh E, Zhang R. Cohesive phycoremediation of pyrene by freshwater microalgae Selenastrum sp. and biodiesel production and its assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:225. [PMID: 38849628 DOI: 10.1007/s10653-024-02012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 06/09/2024]
Abstract
In this study, the freshwater microalgae Selenastrum sp. was assessed for the effective degradation of pyrene and simultaneous production of biodiesel from pyrene-tolerant biomass. The growth of algae was determined based on the cell dry weight, cell density, chlorophyll content, and biomass productivity under different pyrene concentrations. Further, lipids from pyrene tolerant culture were converted into biodiesel by acid-catalyzed transesterification, which was characterized for the total fatty acid profile by gas chromatography. Increased pyrene concentration revealed less biomass yield and productivity after 20 days of treatment, indicating potent pyrene biodegradation by Selenastrum sp. Biomass yield was unaffected till the 20 mg/L pyrene. A 95% of pyrene bioremediation was observed at 20 days of culturing. Lipid accumulation of 22.14%, as evident from the estimation of the total lipid content, indicated a marginal increase in corroborating pyrene stress in the culture. Fatty acid methyl esters yield of 63.06% (% per 100 g lipids) was noticed from the pyrene tolerant culture. Moreover, fatty acid profile analysis of biodiesel produced under 10 mg/L and 20 mg/L pyrene condition showed escalated levels of desirable fatty acids in Selenastrum sp., compared to the control. Further, Selenastrum sp. and other freshwater microalgae are catalogued for sustainable development goals attainment by 2030, as per the UNSDG (United Nations Sustainable Development Goals) agenda. Critical applications for the Selenastrum sp. in bioremediation of pyrene, along with biodiesel production, are enumerated for sustainable and renewable energy production and resource management.
Collapse
Affiliation(s)
- Krishnamurthy Mathivanan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.
| | | | - Loganathan Praburaman
- Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, 637501, India
| | - Rajesh Ramasamy
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Prithiva Nagarajan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Eerla Rakesh
- Department of Microbiology, Kakatiya University, Hanmankonda, Telangana, 506009, India
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
3
|
Machado CB, Marsh R, Hargreaves JK, Oxenford HA, Maddix GM, Webber DF, Webber M, Tonon T. Changes in holopelagic Sargassum spp. biomass composition across an unusual year. Proc Natl Acad Sci U S A 2024; 121:e2312173121. [PMID: 38805287 PMCID: PMC11161783 DOI: 10.1073/pnas.2312173121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/06/2024] [Indexed: 05/30/2024] Open
Abstract
The year 2021 marked a decade of holopelagic sargassum (morphotypes Sargassum natans I and VIII, and Sargassum fluitans III) stranding on the Caribbean and West African coasts. Beaching of millions of tons of sargassum negatively impacts coastal ecosystems, economies, and human health. Additionally, the La Soufrière volcano erupted in St. Vincent in April 2021, at the start of the sargassum season. We investigated potential monthly variations in morphotype abundance and biomass composition of sargassum harvested in Jamaica and assessed the influence of processing methods (shade-drying vs. frozen samples) and of volcanic ash exposure on biochemical and elemental components. S. fluitans III was the most abundant morphotype across the year. Limited monthly variations were observed for key brown algal components (phlorotannins, fucoxanthin, and alginate). Shade-drying did not significantly alter the contents of proteins but affected levels of phlorotannins, fucoxanthin, mannitol, and alginate. Simulation of sargassum and volcanic ash drift combined with age statistics suggested that sargassum potentially shared the surface layer with ash for ~50 d, approximately 100 d before stranding in Jamaica. Integrated elemental analysis of volcanic ash, ambient seawater, and sargassum biomass showed that algae harvested from August had accumulated P, Al, Fe, Mn, Zn, and Ni, probably from the ash, and contained less As. This ash fingerprint confirmed the geographical origin and drift timescale of sargassum. Since environmental conditions and processing methods influence biomass composition, efforts should continue to improve understanding, forecasting, monitoring, and valorizing sargassum, particularly as strandings of sargassum show no sign of abating.
Collapse
Affiliation(s)
- Carla Botelho Machado
- Centre for Novel Agricultural Products, Department of Biology, University of York, YorkYO10 5DD, United Kingdom
| | - Robert Marsh
- School of Ocean and Earth Science, University of Southampton, SouthamptonSO14 3ZH, United Kingdom
| | | | - Hazel A. Oxenford
- Centre for Resource Management and Environmental Studies, University of the West Indies, Cave HillBB 11000, Barbados
| | - Gina-Marie Maddix
- Centre for Marine Sciences, Department of Life Sciences, University of the West Indies, MonaKingston 7, Jamaica
| | - Dale F. Webber
- Centre for Marine Sciences, Department of Life Sciences, University of the West Indies, MonaKingston 7, Jamaica
| | - Mona Webber
- Department of Life Sciences, University of the West Indies, MonaKingston 7, Jamaica
| | - Thierry Tonon
- Centre for Novel Agricultural Products, Department of Biology, University of York, YorkYO10 5DD, United Kingdom
| |
Collapse
|
4
|
Ribeiro EEV, Nobre IGM, Silva DRO, da Silva WMX, Sousa SKO, Holanda TBL, Lima CG, de Lima ACA, Araújo MLH, da Silva FLF, Matos WO. Profile of inorganic elements of seaweed from the Brazilian Northeast coast. MARINE POLLUTION BULLETIN 2024; 202:116413. [PMID: 38677104 DOI: 10.1016/j.marpolbul.2024.116413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
The contents of 24 elements were determined in seven species of macroalgae collected in Ceara-Brazil, in the rainy and dry seasons of 2022. The samples were digested, and the analytes were quantified by ICP-OES and Hg by direct analyzer. The CRM CD-200 was analyzed for accuracy and obtained recoveries were higher than 95 %. The seaweed species have different inorganic element profiles with predominant elements being: Ca, K, Na, Mg and P. The Sargassum vulgare species stood out for its Hg and As contents (1.479 ± 0.005 mg kg-1 and 172 ± 6 mg kg-1, both in the rainy seasons). Ulva lactuca attracted attention for its high concentration of V (46.4 ± 3.4 mg kg-1, rainy season). In general, the elemental content levels in the macroalgae samples were higher in the rainy season. Long-term studies to comprehend the effect of seasonality on the elemental composition of seaweed must be carried out.
Collapse
Affiliation(s)
- Emanuelle E V Ribeiro
- Laboratory for Applied Chemistry Studies (LEQA), Department of Analytical and Physical Chemistry, Science Center, Federal University of Ceara, Fortaleza, CE 60455-760, Brazil
| | - Iago G M Nobre
- Laboratory for Applied Chemistry Studies (LEQA), Department of Analytical and Physical Chemistry, Science Center, Federal University of Ceara, Fortaleza, CE 60455-760, Brazil
| | - Débora R O Silva
- Laboratory for Applied Chemistry Studies (LEQA), Department of Analytical and Physical Chemistry, Science Center, Federal University of Ceara, Fortaleza, CE 60455-760, Brazil
| | - William M X da Silva
- Laboratory for Applied Chemistry Studies (LEQA), Department of Analytical and Physical Chemistry, Science Center, Federal University of Ceara, Fortaleza, CE 60455-760, Brazil
| | - Samile K O Sousa
- Laboratory for Applied Chemistry Studies (LEQA), Department of Analytical and Physical Chemistry, Science Center, Federal University of Ceara, Fortaleza, CE 60455-760, Brazil
| | - Ticiana B L Holanda
- Laboratory of Algae Biotechnology and Bioprocesses (BioAP), Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceara, Fortaleza, CE 60455-760, Brazil
| | - Cleidiane G Lima
- Industrial Technology Center of Ceara Foundation (Núcleo de Tecnologia e Qualidade Industrial do Ceará - NUTEC), Fortaleza, CE 60440-552, Brazil
| | - Ari C A de Lima
- Industrial Technology Center of Ceara Foundation (Núcleo de Tecnologia e Qualidade Industrial do Ceará - NUTEC), Fortaleza, CE 60440-552, Brazil
| | - Marjory L H Araújo
- Laboratory of Algae Biotechnology and Bioprocesses (BioAP), Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceara, Fortaleza, CE 60455-760, Brazil
| | - Francisco L F da Silva
- Faculty of Integrated Sciences and Education of Crateus, State University of Ceara, Crateus, CE 63704-155, Brazil
| | - Wladiana O Matos
- Laboratory for Applied Chemistry Studies (LEQA), Department of Analytical and Physical Chemistry, Science Center, Federal University of Ceara, Fortaleza, CE 60455-760, Brazil.
| |
Collapse
|
5
|
González-Penagos CE, Zamora-Briseño JA, Améndola-Pimenta M, Cruz-Quintana Y, Santana-Piñeros AM, Torres-García JR, Cañizares-Martínez MA, Pérez-Vega JA, Peñuela-Mendoza AC, Rodríguez-Canul R. Sargassum spp. Ethanolic Extract Elicits Toxic Responses and Malformations in Zebrafish (Danio rerio) Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38477677 DOI: 10.1002/etc.5840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/14/2024]
Abstract
The amount of Sargassum spp. arriving in the Caribbean Sea has increased steadily in the last few years, producing a profound environmental impact on the ecological dynamics of the coasts of the Yucatan Peninsula. We characterized the toxicological effects of an ethanolic extract of Sargassum spp. on zebrafish (Danio rerio) embryos (ZFEs) in a 96-h static bioassay using T1 (0.01 mg/L), T2 (0.1 mg/L), T3 (1 mg/L), T4 (10 mg/L), T5 (25 mg/L), T6 (50 mg/L), T7 (75 mg/L), T8 (100 mg/L), T9 (200 mg/L), and T10 (400 mg/L). In this extract, we detected 74 compounds by gas chromatography-mass spectrometry (GC-MS), of which hexadecanoic acid methyl ester, and 2-pentanone 4-hydroxy-4-methyl, were the most abundant. In ZFEs, a median lethal concentration of 251 mg/L was estimated. Exposed embryos exhibited extensive morphological changes, including edema in the yolk sac, scoliosis, and loss of pigmentation, as well as malformations of the head, tail, and eyes. By integrating these abnormalities using the Integrated Biological Response (IBRv2) and General Morphological Score (GMS) indices, we were able to determine that ZFEs exposed to 200 mg/L (T9) exhibited the most pronounced biological response in comparison with the other groups. In the comparative transcriptomic analysis, 66 genes were upregulated, and 246 genes were downregulated in the group exposed to 200 mg/L compared with the control group. In the upregulated genes, we identified several gene ontology-enriched terms, such as response to xenobiotic stimuli, cellular response to chemical stimulus, transcriptional regulation, pigment metabolic process, erythrocyte differentiation and embryonic hemopoiesis, extracellular matrix organization, and chondrocyte differentiation involved in endochondral bone morphogenesis, among others. In the down-regulated genes, we found many genes associated with nervous system processes, sensory and visual perception, response to abiotic stimulus, and the nucleoside phosphate biosynthetic process. The probable connections among the morphological changes observed in the transcriptome are thoroughly discussed. Our findings suggest that Sargassum spp. exposure can induce a wide negative impact on zebrafish embryos. Environ Toxicol Chem 2024;00:1-15. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Carlos E González-Penagos
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | | | - Mónica Améndola-Pimenta
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Yanis Cruz-Quintana
- Grupo de Investigación en Sanidad Acuícola, Inocuidad y Salud Ambiental. Departamento de Acuicultura, Pesca y Recursos Naturales Renovables. Facultad de Acuicultura y Ciencias del Mar, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador
| | - Ana M Santana-Piñeros
- Grupo de Investigación en Sanidad Acuícola, Inocuidad y Salud Ambiental. Departamento de Acuicultura, Pesca y Recursos Naturales Renovables. Facultad de Acuicultura y Ciencias del Mar, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador
| | - Jesús R Torres-García
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, México
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México, México
| | - Mayra A Cañizares-Martínez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Juan A Pérez-Vega
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Ana C Peñuela-Mendoza
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| |
Collapse
|
6
|
Sundhar S, Shakila RJ, Shalini R, Aanand S, Jayakumar N, Arisekar U, Surya T. First report on the exposure and health risk assessment of organochlorine pesticide residues in Caulerpa racemosa, and their potential impact on household culinary processes. Food Res Int 2023; 174:113559. [PMID: 37986437 DOI: 10.1016/j.foodres.2023.113559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
Seaweeds are widely consumed as natural seafood in various Asian countries. Chemical contaminants, such as pesticide residues (PRs), can contaminate it due to its high bio-accumulation nature. Limited research exists on the presence of PRs in edible seaweeds, their decrease in levels during cooking processes, and the evaluation of hazard indices and associated health risks to humans. This study investigated the effects of different cooking methods on the levels of organochlorine pesticides in Caulerpa racemosa seaweed. It also assessed the potential health risks associated with consuming seaweed by estimating daily intake, hazard quotient, and hazard index. The PRs were reduced after different cooking methods. The impact of thermal cooking on PRs in C. racemosa was found to be notably beneficial. The PRs decreased following MWC, boiling, and steam cooking. Several PRs were analyzed, and endrin, DDT, endosulfan, and cypermethrin were found to be the most prevalent. The HQ and HI values for raw and cooked seaweeds were found to be below one, suggesting that the PRs in C. racemosa pose no risk to consumers of seaweed. In summary, thermal cooking proves to be an efficient method for minimizing PRs, while the cooking of seaweeds ensures a high level of safety during consumption.
Collapse
Affiliation(s)
- Shanmugam Sundhar
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin 628 008, Tamil Nadu, India
| | - Samraj Aanand
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Erode Bhavanisagar Centre for Sustainable Aquaculture, Erode 638451, Tamil Nadu, India
| | - Natarajan Jayakumar
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fisheries Biology and Resource Management, Fisheries College and Research Institute, Tuticorin 628 008, Tamil Nadu, India
| | - Ulaganathan Arisekar
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin 628 008, Tamil Nadu, India
| | - Tamizselvan Surya
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin 628 008, Tamil Nadu, India
| |
Collapse
|
7
|
Contreras-Porcia L, Meynard A, Bulboa C, Vargas P, Rivas J, Latorre-Padilla N, Navarrete SA, Search FV, Oyarzo-Miranda C, Toro-Mellado F. Expansion of marine pollution along the coast: Negative effects on kelps and contamination transference to benthic herbivores? MARINE ENVIRONMENTAL RESEARCH 2023; 192:106229. [PMID: 37866196 DOI: 10.1016/j.marenvres.2023.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants that frequently co-occur in coastal environments. These contaminants can have negative impacts on the health and stability of marine and coastal ecosystems, affecting both the organisms themselves and the humans who consume them. A coastal industrial park in central Chile, housing a coal thermal power plant and other industrial activities, contributes to such pollution of coastal waters; however, neither the spatial alongshore distribution of heavy metals and PAHs, nor an assessment of their ecological effects on the biota have been systematically documented to date. In this paper, we present evidence regarding the direct negative effect of contamination by heavy metals and PAHs on the early life stages of kelps-being extremely harmful to their population persistence near highly polluted sites-as well as the indirect effects of their transference through the food web to higher trophic levels, leading to negative consequences for the feeding intake, growth, fertility, and larval development of marine herbivores that consume the contaminated seaweed. Likewise, the dispersion of contaminants by ocean currents can exacerbate the effects of pollution, having an adverse influence on marine ecosystem health even at sites far from the pollution source. Therefore, it is necessary to investigate the distribution patterns and extent of pollution along the coast to understand the impact of heavy metals and PAHs pollution on seaweed populations and the food web. It is considered critical for the development of effective environmental policies and regulations to protect these ecosystems and the people who depend on them.
Collapse
Affiliation(s)
- Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Valparaíso, 2531015, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile.
| | - Andrés Meynard
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Valparaíso, 2531015, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile
| | - Cristian Bulboa
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Valparaíso, 2531015, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile
| | - Paulina Vargas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Valparaíso, 2531015, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile
| | - Jorge Rivas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Valparaíso, 2531015, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile
| | - Nicolás Latorre-Padilla
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Valparaíso, 2531015, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile
| | - Sergio A Navarrete
- Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile; Estación Costera de Investigaciones Marinas, Facultad de Ciencias Biológicas, Millenium Nucleus for Ecology and Conservation of Temperate Mesophotic Reef Ecosystems (NUTME), Pontificia Universidad Católica de Chile & Center for Oceanographic Research COPAS-COASTAL, Universidad de Concepción, Las Cruces, Chile
| | - Francesca V Search
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile; Estación Costera de Investigaciones Marinas, Facultad de Ciencias Biológicas, Millenium Nucleus for Ecology and Conservation of Temperate Mesophotic Reef Ecosystems (NUTME), Pontificia Universidad Católica de Chile & Center for Oceanographic Research COPAS-COASTAL, Universidad de Concepción, Las Cruces, Chile
| | - Carolina Oyarzo-Miranda
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Valparaíso, 2531015, Chile
| | - Fernanda Toro-Mellado
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Valparaíso, 2531015, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile; Programa de Doctorado en Biotecnología, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
8
|
Melchor-Martínez EM, Reyes AG, Morreeuw ZP, Flores-Contreras EA, Araújo RG, Ramírez-Gamboa D, Sosa-Hernández JE, Iqbal HM, González-Meza GM, Bonaccorso AD, Peña-Rodríguez A, Parra-Saldívar R. Comparative study on the valorization of Sargassum from the Mexican Caribbean coast and Gulf of California as an ingredient on healthy diets for shrimp farming. AQUACULTURE REPORTS 2023; 32:101709. [DOI: 10.1016/j.aqrep.2023.101709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
9
|
Hernández-Navarro C, Pérez S, Flórez E, Acelas N, Muñoz-Saldaña J. Sargassum macroalgae from Quintana Roo as raw material for the preparation of high-performance phosphate adsorbent from aqueous solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118312. [PMID: 37270982 DOI: 10.1016/j.jenvman.2023.118312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Currently, the large volumes of Sargassum biomass (Sgs) arriving on Caribbean coasts are a problem that must be solved quickly. One alternative is to obtain value-added products from Sgs. In this work, Sgs is demonstrated to be a high-performance Ca - bioadsorbent for phosphate removal by a heat pretreatment at 800 °C that produces biochar. According to XRD analysis, calcined Sgs (CSgs) have a composition of 43.68%, 40.51%, and 8.69% of Ca(OH)2, CaCO3, and CaO, making CSgs a promising material for phosphate removal and recovery. Results demonstrated that CSgs have a high capacity to adsorb P over a wide range of concentrations (25-1000 mg P/L). After P removal, at low P concentration, the adsorbent material is rich in apatite (Ca5(PO4)3OH), and at high P concentration, brushite (CaHPO4•2H2O) was the main P compound. The CSg reached a Qmax of 224.58 mg P/g, which is higher than other high-performance adsorbents reported in the literature. The phosphate adsorption mechanism was dominated by chemisorption, followed by precipitation according to the pseudo-second-order kinetic model. The solubility of P (74.5 wt%) in formic acid solution and the water-soluble P (24.8 wt%) for CSgs after P adsorption indicated that the final product presents the potential to be used as fertilizer for acid soils. This biomass's processability and high phosphate adsorption performance for P removal make CSgs a potential material for wastewater treatment, and subsequent use of these residues as fertilizer offers a circular economy solution to this problem.
Collapse
Affiliation(s)
- Carolina Hernández-Navarro
- Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados Del IPN, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, 76230, Querétaro, Mexico; Tecnológico Nacional de México CRODE-Celaya, Centro de Vinculación para la Innovación y Desarrollo Empresarial (CEVIDE), Departamento de Diseño y Desarrollo de Equipo, Manuel Orozco I. Berra 92, Col. Residencial Tecnológico, 38010, Celaya, Guanajuato, Mexico
| | - Sebastián Pérez
- Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados Del IPN, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, 76230, Querétaro, Mexico
| | - Elizabeth Flórez
- Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
| | - Nancy Acelas
- Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia.
| | - Juan Muñoz-Saldaña
- Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados Del IPN, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, 76230, Querétaro, Mexico.
| |
Collapse
|
10
|
Alleyne KST, Neat F, Oxenford HA. An analysis of arsenic concentrations associated with sargassum influx events in Barbados. MARINE POLLUTION BULLETIN 2023; 192:115064. [PMID: 37207389 DOI: 10.1016/j.marpolbul.2023.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Tropical Atlantic blooms of pelagic Sargassum spp. present major socioeconomic and ecological challenges for Caribbean and West African nations. Valorisation of sargassum provides an opportunity to ameliorate some of the damage to national economies; however, the active uptake of arsenic by pelagic sargassum creates significant barriers to its use. When defining valorisation pathways, it is important to understand arsenic speciation in pelagic sargassum, given the different levels of toxicity associated with different arsenic species. In this study, we assess the temporal variability of total arsenic and inorganic arsenic in pelagic sargassum arriving in Barbados; and test whether arsenic concentrations are linked to oceanic sub-origins. Results indicate that inorganic arsenic, the most toxic form, represents a consistent and substantial percentage of the total arsenic present in pelagic sargassum, and that variability in arsenic concentration does not appear to be driven by sample months, years or oceanic sub-origins/transport pathways.
Collapse
Affiliation(s)
- Kristie S T Alleyne
- World Maritime University, Sasakawa Global Ocean Institute, P.O. Box 500, SE 201 24 Malmӧ, Sweden.
| | - Francis Neat
- World Maritime University, Sasakawa Global Ocean Institute, P.O. Box 500, SE 201 24 Malmӧ, Sweden
| | - Hazel A Oxenford
- Centre for Resource Management and Environmental Studies, Cave Hill Campus, University of the West Indies, Bridgetown BB11000, Barbados
| |
Collapse
|
11
|
Flores-Contreras EA, Araújo RG, Rodríguez-Aguayo AA, Guzmán-Román M, García-Venegas JC, Nájera-Martínez EF, Sosa-Hernández JE, Iqbal HMN, Melchor-Martínez EM, Parra-Saldivar R. Polysaccharides from the Sargassum and Brown Algae Genus: Extraction, Purification, and Their Potential Therapeutic Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:2445. [PMID: 37447006 DOI: 10.3390/plants12132445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Brown macroalgae represent one of the most proliferative groups of living organisms in aquatic environments. Due to their abundance, they often cause problems in aquatic and terrestrial ecosystems, resulting in health problems in humans and the death of various aquatic species. To resolve this, the application of Sargassum has been sought in different research areas, such as food, pharmaceuticals, and cosmetics, since Sargassum is an easy target for study and simple to obtain. In addition, its high content of biocompounds, such as polysaccharides, phenols, and amino acids, among others, has attracted attention. One of the valuable components of brown macroalgae is their polysaccharides, which present interesting bioactivities, such as antiviral, antimicrobial, and antitumoral, among others. There is a wide variety of methods of extraction currently used to obtain these polysaccharides, such as supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), subcritical water extraction (SCWE), ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), and microwave-assisted extraction (MAE). Therefore, this work covers the most current information on the methods of extraction, as well as the purification used to obtain a polysaccharide from Sargassum that is able to be utilized as alginates, fucoidans, and laminarins. In addition, a compilation of bioactivities involving brown algae polysaccharides in in vivo and in vitro studies is also presented, along with challenges in the research and marketing of Sargassum-based products that are commercially available.
Collapse
Affiliation(s)
- Elda A Flores-Contreras
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | - Muriel Guzmán-Román
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Erik Francisco Nájera-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
12
|
Dos Santos ÍGS, Lira AS, da Silva Montes C, Point D, Médieu A, do Nascimento CWA, Lucena-Frédou F, da Rocha RM. Revealing the environmental pollution of two estuaries through histopathological biomarkers in five fishes from different trophic guilds of northeastern Brazil. MARINE POLLUTION BULLETIN 2023; 192:115095. [PMID: 37295256 DOI: 10.1016/j.marpolbul.2023.115095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
Estuaries in Brazil are mostly anthropically affected due to the discharge of industrial and domestic effluents. In two of them, the Santa Cruz Channel Estuary (ITAP) and Sirinhaém River Estuary (SIR), historically affected by mercury pollution and sugarcane industry in Northeast Brazil, we assessed environmental pollution using liver and gill histopathological biomarkers in fish from different trophic levels. Liver samples exhibited serious damages such as hepatic steatosis, necrosis, and infiltration. The gills showed moderate to severe changes, such as lifting of epithelial cells, lamellar aneurysm, and rupture of lamellar epithelium. Most of the changes in the liver and gills were reported for species Centropomus undecimalis and the Gobionellus stomatus, which were considered as good sentinels of pollution. The combination of biomarker methodologies was efficient in diagnosing the serious damage to the species, reinforcing the need for monitoring the health of the ecosystems evaluated.
Collapse
Affiliation(s)
- Ítala Gabriela Sobral Dos Santos
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, CEP: 52171-900 Recife, Pernambuco, Brazil.
| | - Alex Souza Lira
- Universidade Federal de Sergipe (UFS), Cidade Univ. Prof. José Aloísio de Campos Av. Marechal Rondon, s/n, Jd. Rosa Elze São Cristóvão/SE, CEP 49100-000, Brazil.
| | | | - David Point
- Observatoire Midi-Pyrénées, Géosciences Environnement Toulouse, UMR CNRS 5563/IRD 234/Université Paul Sabatier Toulouse 3, 14 avenue Edouard Belin, 31400 Toulouse, France.
| | - Anaïs Médieu
- Universite de Bretagne Occidentale (UBO), Institut de Recherche pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Institut Français de Recherche pour l'Exploitation de la Mer (Ifremer), LEMAR, Plouzane F-29280, France.
| | | | - Flávia Lucena-Frédou
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, CEP: 52171-900 Recife, Pernambuco, Brazil
| | - Rossineide Martins da Rocha
- Laboratory of Cellular Ultrastructure and Immunohistochemistry, Institute of Biological Sciences, Federal University of Pará (UFPA), Rua Augusto Correa n° 01, Guamá, CEP 66075-110 Belém, Pará, Brazil
| |
Collapse
|
13
|
Ansari MA, Ravisankar N, Ansari MH, Babu S, Layek J, Panwar AS. Integrating conservation agriculture with intensive crop diversification in the maize-based organic system: Impact on sustaining food and nutritional security. Front Nutr 2023; 10:1137247. [PMID: 37020812 PMCID: PMC10069672 DOI: 10.3389/fnut.2023.1137247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/08/2023] [Indexed: 03/15/2023] Open
Abstract
IntroductionDeveloping an intensive sustainable model and feeding a rising population are worldwide challenges. The task is much more daunting in the North Eastern Himalayas, where, low productive maize (Zea mays)maize (Zea mays) fallow is the main production system in the upland. To increase farm productivity, nutritional security, and energy dietary returns while maintaining environmental sustainability and economic viability, short-duration crops must be included in the maize–fallow system.MethodsA field study was conducted in sandy clay loam soil with a randomized complete block design with three replications for three continuous years (2018–2021) under organic management with two crop management practices, viz., (i) conservation agriculture and (ii) conventional agriculture, and six crop diversification options, viz., (i) maize–sweet corn (Zea mays saccharata)–vegetable pea (Pisum sativa) (M-SC-VP), (ii) maize–sweet corn-mustard (Brassica juncea) (M-SC-M), (iii) maize–sweet corn–lentil (Lens culinaris) (M-SC-L), (iv) maize–sweet corn–vegetable broad bean (Vicia faba) (M-SC-VB), (v) maize (local)–vegetable pea (M-VP), and (vi) maize (local)–fallow (M-F).ResultsThe results showed that, the average system productivity was 5.3% lower for conventional agriculture than conservation agriculture. System carbohydrate, protein, fat, dietary fiber, and dietary energy were ~6.9, 6.8, 7.8, 6.7, and 7%, higher in conservation agriculture than in conventional agriculture, respectively. Similarly, system macronutrients (Ca, Mg, P, and K) and system micronutrients yield (Fe, Mn, Zn, and Cu) were, 5.2–8% and 6.9–7.4% higher in conservation agriculture than in conventional agriculture, respectively. On average, over the years, crop diversification with M-SC-VP/M-SC-VB intensive crop rotation had higher system productivity (158%), production efficiency (157%), net returns (benefit–cost ratio) (44%), and dietary net energy returns (16.6%) than the local maize–vegetable pea system. Similarly, the M-SC-VP/M-SC-VB system improved the nutritional security by improving Ca, Mg, P, K, Fe, Mn, Zn, and Cu yield by 35.5–135.7% than the local M-VP system.DiscussionConservation agriculture with M-SC-VP/M-SC-VB rotation showed significantly (p < 0.05) higher productivity, carbohydrate yield, protein yield, fat yield, and dietary fiber production. It is concluded that conservation agriculture improved soil health and performed better than conventional agriculture in maize-based intensive cropping systems. Overall results indicate that crop diversification with M-SC-VP/M-SC-VB can potentially increase calorie and protein consumption and farm profitability.
Collapse
Affiliation(s)
- Meraj Alam Ansari
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
- Coordination Unit, ICAR-Indian Institute of Farming System Research, Meerut, India
- *Correspondence: Meraj Alam Ansari,
| | - N. Ravisankar
- Coordination Unit, ICAR-Indian Institute of Farming System Research, Meerut, India
- N. Ravisankar,
| | | | - Subhash Babu
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jayanta Layek
- ICAR Research Complex for NEH Region, Meghalaya, India
| | - A. S. Panwar
- Coordination Unit, ICAR-Indian Institute of Farming System Research, Meerut, India
| |
Collapse
|
14
|
Kamal M, Abdel-Raouf N, Alwutayd K, AbdElgawad H, Abdelhameed MS, Hammouda O, Elsayed KNM. Seasonal Changes in the Biochemical Composition of Dominant Macroalgal Species along the Egyptian Red Sea Shore. BIOLOGY 2023; 12:biology12030411. [PMID: 36979103 PMCID: PMC10045638 DOI: 10.3390/biology12030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023]
Abstract
Macroalgae are significant biological resources in coastal marine ecosystems. Seasonality influences macroalgae biochemical characteristics, which consequentially affect their ecological and economic values. Here, macroalgae were surveyed from summer 2017 to spring 2018 at three sites at 7 km (south) from El Qusier, 52 km (north) from Marsa Alam and 70 km (south) from Safaga along the Red Sea coast, Egypt. Across all the macroalgae collected, Caulerpa prolifera (green macroalgae), Acanthophora spicifera (red macroalgae) and Cystoseira myrica, Cystoseira trinodis and Turbinaria ornata (brown macroalgae) were the most dominant macroalgal species. These macroalgae were identified at morphological and molecular (18s rRNA) levels. Then, the seasonal variations in macroalgal minerals and biochemical composition were quantified to determine the apt period for harvesting based on the nutritional requirements for commercial utilizations. The chemical composition of macroalgae proved the species and seasonal variation. For instance, minerals were more accumulated in macroalgae C. prolifera, A. spicifera and T. ornata in the winter season, but they were accumulated in both C. myrica and C. trinodis in the summer season. Total sugars, amino acids, fatty acids and phenolic contents were higher in the summer season. Accordingly, macroalgae collected during the summer can be used as food and animal feed. Overall, we suggest the harvesting of macroalgae for different nutrients and metabolites in the respective seasons.
Collapse
Affiliation(s)
- Marwa Kamal
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Neveen Abdel-Raouf
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Khairiah Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Mohamed Sayed Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Ola Hammouda
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
15
|
Characterization of Sargassum spp. from the Mexican Caribbean and Its Valorization through Fermentation Process. Processes (Basel) 2023. [DOI: 10.3390/pr11030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Sargassum is a brown macroalga that has become a general environmental problem in the Mexican Caribbean. Despite the negative effects on the beaches, the algae contain compounds of biotechnological and agronomic interest. The possibility of using sargassum as a substrate under liquid media fermentation (LMF) processes will allow the obtention of bioactive compounds. In this research, five species of Sargassum from the Puerto Morelos region were collected from the beach. The samples were divided into natural Sargassum and washed Sargassum, and the total phenolic compounds (TPC), flavonoids (F), and antioxidant capacity (AOxC) were determined. Once the material was characterized, it was fermented in the LMF process using the Aspergillus niger strain, where the obtained extracts were analyzed. Three holopelagic and one benthic species were identified. The proximal analysis of the seaweed in natural and washed conditions shows adequate carbon–nitrogen ratio values for use as a substrate for microbial degradation. Comparing the fermented extracts with fresh Sargassum, the analyses showed a TPC increase for washed Sargassum fermentation and a TPC decrease for natural Sargassum fermentation; the flavonoid content reached 8-fold higher in the washed Sargassum fermentation. An average AOxC of 57% was achieved during the washed Sargassum LMF process, with a maximum of 69% of ABTS inhibition. Considering these results, Sargassum can be used as a substrate in LMF processes to obtain bioactive compounds.
Collapse
|
16
|
Flores-Contreras EA, González-González RB, González-González E, Melchor-Martínez EM, Parra-Saldívar R, Iqbal HMN. Detection of Emerging Pollutants Using Aptamer-Based Biosensors: Recent Advances, Challenges, and Outlook. BIOSENSORS 2022; 12:1078. [PMID: 36551045 PMCID: PMC9775161 DOI: 10.3390/bios12121078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The synergistic potentialities of innovative materials that include aptamers have opened new paradigms in biosensing platforms for high-throughput monitoring systems. The available nucleobase functional moieties in aptamers offer exclusive features for bioanalytical sensing applications. In this context, compared to various in-practice biological recognition elements, the utilization of aptamers in detection platforms results in an extensive range of advantages in terms of design flexibility, stability, and sensitivity, among other attributes. Thus, the utilization of aptamers-based biosensing platforms is extensively anticipated to meet unaddressed challenges of various in-practice and standard analytical and sensing techniques. Furthermore, the superior characteristics of aptasensors have led to their applicability in the detection of harmful pollutants present in ever-increasing concentrations in different environmental matrices and water bodies, seeking to achieve simple and real-time monitoring. Considering the above-mentioned critiques and notable functional attributes of aptamers, herein, we reviewed aptamers as a fascinating interface to design, develop, and deploy a new generation of monitoring systems to aid modern bioanalytical sensing applications. Moreover, this review aims to summarize the most recent advances in the development and application of aptasensors for the detection of various emerging pollutants (EPs), e.g., pharmaceutical, and personal care products (PPCPs), endocrine-disrupting chemicals (EDCs), pesticides and other agricultural-related compounds, and toxic heavy elements. In addition, the limitations and current challenges are also reviewed, considering the technical constraints and complexity of the environmental samples.
Collapse
Affiliation(s)
- Elda A. Flores-Contreras
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo León, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo León, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Everardo González-González
- Laboratorio de Fisiología Molecular y Estructural, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo León, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo León, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo León, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| |
Collapse
|
17
|
Bam W, Swarzenski PW, Maiti K, Vassileva E, Orani AM, Blinova O, McGinnity P, Adhikari PL, Haughton M, Webber M. Scavenging of select radionuclides and trace elements by pelagic Sargassum in the Caribbean Sea. MARINE POLLUTION BULLETIN 2022; 179:113658. [PMID: 35453061 DOI: 10.1016/j.marpolbul.2022.113658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
In recent years, the North Atlantic and the Caribbean Sea have experienced unusual and unprecedented pelagic Sargassum blooms, which may adversely affect coastal ecosystems and productive ocean. Sargassum has the potential to scavenge trace elements and radionuclides from seawater, and when bioaccumulated and thus concentrated, can pose a potential threat to higher trophic organisms, including humans that consume impacted seafood. In this study, trace elements and naturally-occurring U/Th-series radionuclides were measured in Sargassum that were collected in the coastal waters of the Caribbean Sea (Antigua/Barbuda, Belize, and Barbados) to better define baseline concentrations and activities, and to assess the scavenging potential for these trace elements and radionuclides. The mean concentration of trace elements observed in Sargassum collected across these three Caribbean Sea are ranked accordingly to the following descending order: Sr > As>Fe > Mn > Zn > Ni > V > C > Cd > Se > Co > Cr > Pb > Ag > Hg. 210-Po and 210Pb activities in Sargassum were observed to be more elevated than previously reported values.
Collapse
Affiliation(s)
- Wokil Bam
- International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco; Department Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Peter W Swarzenski
- International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco.
| | - Kanchan Maiti
- Department Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Emiliya Vassileva
- International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco
| | - Anna Maria Orani
- International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco
| | - Oxana Blinova
- International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco
| | - Paul McGinnity
- International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco
| | - Puspa L Adhikari
- Department of Marine and Earth Sciences, The Water School, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | | | - Mona Webber
- Center for Marine Sciences, The University of the West Indies, Mona, Jamaica
| |
Collapse
|
18
|
Sabreena, Hassan S, Bhat SA, Kumar V, Ganai BA, Ameen F. Phytoremediation of Heavy Metals: An Indispensable Contrivance in Green Remediation Technology. PLANTS (BASEL, SWITZERLAND) 2022; 11:1255. [PMID: 35567256 PMCID: PMC9104525 DOI: 10.3390/plants11091255] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 08/01/2023]
Abstract
Environmental contamination is triggered by various anthropogenic activities, such as using pesticides, toxic chemicals, industrial effluents, and metals. Pollution not only affects both lotic and lentic environments but also terrestrial habitats, substantially endangering plants, animals, and human wellbeing. The traditional techniques used to eradicate the pollutants from soil and water are considered expensive, environmentally harmful and, typically, inefficacious. Thus, to abate the detrimental consequences of heavy metals, phytoremediation is one of the sustainable options for pollution remediation. The process involved is simple, effective, and economically efficient with large-scale extensive applicability. This green technology and its byproducts have several other essential utilities. Phytoremediation, in principle, utilizes solar energy and has an extraordinary perspective for abating and assembling heavy metals. The technique of phytoremediation has developed in contemporary times as an efficient method and its success depends on plant species selection. Here in this synthesis, we are presenting a scoping review of phytoremediation, its basic principles, techniques, and potential anticipated prospects. Furthermore, a detailed overview pertaining to biochemical aspects, progression of genetic engineering, and the exertion of macrophytes in phytoremediation has been provided. Such a promising technique is economically effective as well as eco-friendly, decontaminating and remediating the pollutants from the biosphere.
Collapse
Affiliation(s)
- Sabreena
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India; (S.); (S.H.)
| | - Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India; (S.); (S.H.)
| | - Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Vineet Kumar
- Department of Botany, Guru Ghasidas Vishwavidyalaya (A Central University), Chhattisgarh, Bilaspur 495009, India;
| | - Bashir Ahmad Ganai
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India; (S.); (S.H.)
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
19
|
Pai S, Hebbar A, Selvaraj S. A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35518-35541. [PMID: 35233673 PMCID: PMC9079019 DOI: 10.1007/s11356-022-19423-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/21/2022] [Indexed: 05/27/2023]
Abstract
Bioactive compounds refer to secondary metabolites extracted from plants, fungi, microbes, or animals. Besides having pharmacological or toxicological effects on organisms leading to utilization in food and pharmaceutical industries, the discovery of novel properties of such compounds has led to the diversification of their applications, ranging from cosmetics and functionalized biomaterials to bioremediation and alternate fuels. Conventional time-consuming and solvent-intensive methods of extraction are increasingly being replaced by green solvents such as ionic liquids, supercritical fluids, and deep eutectic solvents, as well as non-conventional methods of extraction assisted by microwaves, pulse electric fields, enzymes, ultrasound, or pressure. These methods, along with advances in characterization and optimization strategies, have boosted the commercial viability of extraction especially from agrowastes and organic residues, promoting a sustainable circular economy. Further development of microfluidics, optimization models, nanoencapsulation, and metabolic engineering are expected to overcome certain limitations that restrict the growth of this field, in the context of improving screening, extraction, and economy of processes, as well as retaining biodiversity and enhancing the stability and functionality of such compounds. This review is a compilation of the various extraction and characterization methods employed for bioactive compounds and covers major applications in food, pharmacy, chemicals, energy, and bioremediation. Major limitations and scope of improvement are also discussed.
Collapse
Affiliation(s)
- Sanidhya Pai
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Akshatha Hebbar
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Subbalaxmi Selvaraj
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.
| |
Collapse
|
20
|
Zokm GME, Ismail MM, Okbah MAE. Seaweed as bioindicators of organic micropollutants polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34738-34748. [PMID: 35041174 PMCID: PMC9076741 DOI: 10.1007/s11356-022-18634-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
This study highlights the role of seaweed as important indicators of pollutants as they respond immediately to change in water chemistry and have high survival capabilities. Concentration and risk assessment of 13 polycyclic aromatic hydrocarbons (PAHs), as well as 20 organochlorine pesticides (OCPs), were examined in the seaweed from El-Mex Bay, Mediterranean Sea during spring and autumn seasons. The green alga Ulva compressa had a maximum ability to accumulate both PAHs and OCPs. In general, the content of the tested micropollutants in the collected seaweed is correlated to their species, morphology, concentration, and nature of pollutant. Naphthalene (NAP) and benzo a pyrene were the predominant polycyclic aromatic hydrocarbons in all species with mean concentrations of 68.57 and 56.14 ng g-1, respectively. The results of the current study showed that the contribution of the different fractions of PAHs from the total concentration was as follows: fossil-fuel derived polycyclic aromatic hydrocarbons (∑PAHF; 49.32%) > combustion-derived polycyclic aromatic hydrocarbons (PAHCOMB; 30.83%) > carcinogenic fractions (PAHCARC; 19.86%). A maximum PAHCARC (30.38%) was recorded in Ulva fasciata. For OCPs, the presence of 1,1-dichloro-2, 2-bis (4-chlorophenyl) ethane (DDD) (ND-27.8 ng g-1) rather than DDT; 1,1,1-trichloro-2, 2-bis (4-chlorophenyl) ethane was an indication for biotransformation involving the reductive dichlorination of DDT to more recalcitrant and toxic DDD. Endrin ketone has the highest mean hazard quotient (0.376). The cancer risk values of most PAHs and OCPs were in the range from 10-4 to 10-3 recommending precautionary measures. The results explained that the present algal species play a vital role in the uptake of organic pollutants and act as biomarkers for micropollutants in the ecosystem.
Collapse
|
21
|
Machado CB, Maddix GM, Francis P, Thomas SL, Burton JA, Langer S, Larson TR, Marsh R, Webber M, Tonon T. Pelagic Sargassum events in Jamaica: Provenance, morphotype abundance, and influence of sample processing on biochemical composition of the biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152761. [PMID: 35007571 DOI: 10.1016/j.scitotenv.2021.152761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/09/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Pelagic Sargassum species have been known for centuries in the Sargasso Sea of the North Atlantic Ocean. In 2011, a new area concentrating high biomass of these brown algae started developing in the Tropical Atlantic Ocean. Since then, massive and recurrent Sargassum influxes have been reported in the Caribbean and off the coast of Western Africa. These Sargassum events have a major negative impact on coastal ecosystems and nearshore marine life, and affect socio-economic sectors, including public health, coastal living, tourism, fisheries, and maritime transport. Despite recent advances in the forecasting of Sargassum events, and elucidation of the seaweed composition, many knowledge gaps remain, including morphotype abundance during Sargassum events, drift of the seaweeds in the months prior to stranding, and influence of sample processing methods on biomass biochemical composition. Using seaweeds harvested on the coasts of Jamaica in summer of 2020, we observed that S. fluitans III was the most abundant morphotype at different times and sampling locations. No clear difference in the geographical origin, or provenance, of the Sargassum mats was observed. The majority of Sargassum backtracked from both north and south of Jamaica experienced ambient temperatures of around 27 °C and salinity in the range of 34-36 psu before stranding. We also showed that cheap (sun) compared to expensive (freeze) drying techniques influence the biochemical composition of biomass. Sun-drying increased the proportion of phenolic compounds, but had a deleterious impact on fucoxanthin content and on the quantities of monosaccharides, except for mannitol. Effects on the content of fucose containing sulfated polysaccharides depended on the method used for their extraction, and limited variation was observed in ash, protein, and fatty acid content within most of the sample locations investigated. These observations are important for the storage and transport of the biomass in the context of its valorisation.
Collapse
Affiliation(s)
- Carla Botelho Machado
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Gina-Marie Maddix
- Centre for Marine Sciences, 1 Anguilla Close, University of the West Indies, Mona, Kingston 7, Jamaica
| | - Patrice Francis
- Centre for Marine Sciences, 1 Anguilla Close, University of the West Indies, Mona, Kingston 7, Jamaica
| | - Shanna-Lee Thomas
- Discovery Bay Marine Laboratory, Queen's Highway, Discovery Bay, Jamaica
| | - Jodi-Ann Burton
- Port Royal Marine Laboratory, Port Royal, Kingston 1, Jamaica
| | - Swen Langer
- Metabolomics and Proteomics Lab, Bioscience Technology Facility, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Tony R Larson
- Metabolomics and Proteomics Lab, Bioscience Technology Facility, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Robert Marsh
- School of Ocean and Earth Science, University of Southampton Waterfront Campus, National Oceanography Centre, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Mona Webber
- Centre for Marine Sciences, 1 Anguilla Close, University of the West Indies, Mona, Kingston 7, Jamaica
| | - Thierry Tonon
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom.
| |
Collapse
|
22
|
Pinteus S, Susano P, Alves C, Silva J, Martins A, Pedrosa R. Seaweed’s Role in Energetic Transition—From Environmental Pollution Challenges to Enhanced Electrochemical Devices. BIOLOGY 2022; 11:biology11030458. [PMID: 35336831 PMCID: PMC8945715 DOI: 10.3390/biology11030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Earth is currently facing the effects of climate change in all environmental ecosystems; this, together with pollution, is the cause of species extinction and biodiversity loss. Thus, it is vital to take actions to mitigate and decrease the release of greenhouse gases to the atmosphere. The emergence of energetic transition from fossil fuels to greener energies is clearly defined in the United Nations 2030 agenda. Although this transition endorses the ambitious goal to supply greener energy for all developed societies, the increased demand for the minerals essential to develop cleaner energetic technologies has highlighted several economic and environmental issues. Currently, these minerals are mainly obtained by mining activities that generate high levels of soil and water pollution, coupled with the intensive use of water and hazardous gas release. On the other hand, the exponential increase of electronic waste derived from end-of-life electronic equipment is already raising environmental concerns due to heavy metal contamination as a result of their disposal. Thus, it is vital to develop sustainable and efficient strategies to mitigate energetic transition environmental footprints. This review highlights the use of seaweed biomass for toxic mineral bioremediation, recycling, and as an alternative material for greener energy-storage device development. Abstract Resulting from the growing human population and the long dependency on fossil-based energies, the planet is facing a critical rise in global temperature, which is affecting all ecosystem networks. With a growing consciousness this issue, the EU has defined several strategies towards environment sustainability, where biodiversity restoration and preservation, pollution reduction, circular economy, and energetic transition are paramount issues. To achieve the ambitious goal of becoming climate-neutral by 2050, it is vital to mitigate the environmental footprint of the energetic transition, namely heavy metal pollution resulting from mining and processing of raw materials and from electronic waste disposal. Additionally, it is vital to find alternative materials to enhance the efficiency of energy storage devices. This review addresses the environmental challenges associated with energetic transition, with particular emphasis on the emergence of new alternative materials for the development of cleaner energy technologies and on the environmental impacts of mitigation strategies. We compile the most recent advances on natural sources, particularly seaweed, with regard to their use in metal recycling, bioremediation, and as valuable biomass to produce biochar for electrochemical applications.
Collapse
Affiliation(s)
- Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (C.A.); (J.S.); (A.M.)
- Correspondence: (S.P.); (R.P.); Tel.: +351-262-783-607 (S.P.)
| | - Patrícia Susano
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (C.A.); (J.S.); (A.M.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (C.A.); (J.S.); (A.M.)
| | - Joana Silva
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (C.A.); (J.S.); (A.M.)
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (C.A.); (J.S.); (A.M.)
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal
- Correspondence: (S.P.); (R.P.); Tel.: +351-262-783-607 (S.P.)
| |
Collapse
|
23
|
Saldarriaga-Hernandez S, Melchor-Martínez EM, Carrillo-Nieves D, Parra-Saldívar R, Iqbal HMN. Seasonal characterization and quantification of biomolecules from sargassum collected from Mexican Caribbean coast - A preliminary study as a step forward to blue economy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113507. [PMID: 34388546 DOI: 10.1016/j.jenvman.2021.113507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023]
Abstract
Since 2014, Mexican Caribbean coasts have experienced an atypical massive arrival of pelagic Sargassum accumulated on the shores triggers economic losses, public health problems, and ecosystem damaging near the coastline. Mechanical harvesting has been implemented ending in landfills. Since Sargassum algae represent abundant biomass in tropical regions of the world, it has shown potential as a feedstock to supply bioprocesses focused on obtaining high-value compounds and bioproducts. Nevertheless, there is a lack of data on the biochemical composition of Sargassum biomass from Mexican Caribbean coasts to propose valorization pathways. This study conducted a biochemical and elemental characterization of Sargassum biomass and compared, through statistical analysis, the effect of the season (dry and wet), place of collection (from the beach and shallow water), and method of extraction (Microwave-Assisted Extraction and Enzyme Assisted Extraction) on biomass composition. The biomass composition, expressed in dry weight basis, revealed 5-7% moisture content, 24-31 % ash, 2.6-3.8 % lipids, 1.8-7.0 %, total carbohydrates, 3-11 % total proteins, 1.5-2.31 mgGAg-1 total phenolic compounds (TPC), 2.7-2.9 kcal g-1 calorific power, and metals such as As (30-146.3 ppm), Fe (16.5-45 ppm), P (197-472 ppm). The most influential factor on the compositional content of Sargassum biomass was the season of the year, followed by the extraction method and the place of collection of Sargassum. These results will elucidate information on the biotechnological potential of Sargassum biomass from the Mexican Caribbean, contributing to sustainability challenges of the region, minimizing waste, and making the most of resources.
Collapse
Affiliation(s)
| | | | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan C.P., 45138, Jalisco, Mexico
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
24
|
Bhatt P, Gangola S, Bhandari G, Zhang W, Maithani D, Mishra S, Chen S. New insights into the degradation of synthetic pollutants in contaminated environments. CHEMOSPHERE 2021; 268:128827. [PMID: 33162154 DOI: 10.1016/j.chemosphere.2020.128827] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 05/11/2023]
Abstract
The environment is contaminated by synthetic contaminants owing to their extensive applications globally. Hence, the removal of synthetic pollutants (SPs) from the environment has received widespread attention. Different remediation technologies have been investigated for their abilities to eliminate SPs from the ecosystem; these include photocatalysis, sonochemical techniques, nanoremediation, and bioremediation. SPs, which can be organic or inorganic, can be degraded by microbial metabolism at contaminated sites. Owing to their diverse metabolisms, microbes can adapt to a wide variety of environments. Several microbial strains have been reported for their bioremediation potential concerning synthetic chemical compounds. The selection of potential strains for large-scale removal of organic pollutants is an important research priority. Additionally, novel microbial consortia have been found to be capable of efficient degradation owing to their combined and co-metabolic activities. Microbial engineering is one of the most prominent and promising techniques for providing new opportunities to develop proficient microorganisms for various biological processes; here, we have targeted the SP-degrading mechanisms of microorganisms. This review provides an in-depth discussion of microbial engineering techniques that are used to enhance the removal of both organic and inorganic pollutants from different contaminated environments and under different conditions. The degradation of these pollutants is investigated using abiotic and biotic approaches; interestingly, biotic approaches based on microbial methods are preferable owing to their high potential for pollutant removal and cost-effectiveness.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, 263136, Uttarakhand, India
| | - Geeta Bhandari
- Department of Biotechnology, Sardar Bhagwan Singh University, Dehradun, 248161, Uttarakhand, India
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Damini Maithani
- Department of Microbiology, G.B Pant University of Agriculture and Technology, Pantnagar, U.S Nagar, Uttarakhand, India
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
25
|
|
26
|
Davis D, Simister R, Campbell S, Marston M, Bose S, McQueen-Mason SJ, Gomez LD, Gallimore WA, Tonon T. Biomass composition of the golden tide pelagic seaweeds Sargassum fluitans and S. natans (morphotypes I and VIII) to inform valorisation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143134. [PMID: 33148447 DOI: 10.1016/j.scitotenv.2020.143134] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Massive strandings of the pelagic brown algae Sargassum have occurred in the Caribbean, and to a lesser extent, in western Africa, almost every year since 2011. These events have major environmental, health, and economic impacts in the affected countries. Once on the shore, Sargassum is mechanically harvested and disposed of in landfills. Existing commercial applications of other brown algae indicate that the pelagic Sargassum could constitute a valuable feedstock for potential valorisation. However, limited data on the composition of this Sargassum biomass was available to inform on possible application through pyrolysis or enzymatic fractionation of this feedstock. To fill this gap, we conducted a detailed comparative biochemical and elemental analysis of three pelagic Sargassum morphotypes identified so far as forming Atlantic blooms: Sargassum natans I (SnI), S. fluitans III (Sf), and S. natans VIII (SnVIII). Our results showed that SnVIII accumulated a lower quantity of metals and metalloids compared to SnI and Sf, but it contained higher amounts of phenolics and non-cellulosic polysaccharides. SnVIII also had more of the carbon storage compound mannitol. No differences in the content and composition of the cell wall polysaccharide alginate were identified among the three morphotypes. In addition, enzymatic saccharification of SnI produced more sugars compared to SnVIII and Sf. Due to high content of arsenic, the use of pelagic Sargassum is not recommended for nutritional purposes. In addition, low yields of alginate extracted from this biomass, compared with brown algae used for industrial production, limit its use as viable source of commercial alginates. Further work is needed to establish routes for future valorisation of pelagic Sargassum biomass.
Collapse
Affiliation(s)
- Doleasha Davis
- Department of Chemistry, University of the West Indies, Mona Campus, Mona, Kingston 7, Jamaica; Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Rachael Simister
- Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Sanjay Campbell
- Department of Chemistry, University of the West Indies, Mona Campus, Mona, Kingston 7, Jamaica; Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Melissa Marston
- Department of Chemistry, University of the West Indies, Mona Campus, Mona, Kingston 7, Jamaica
| | - Suranjana Bose
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Simon J McQueen-Mason
- Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Leonardo D Gomez
- Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Winklet A Gallimore
- Department of Chemistry, University of the West Indies, Mona Campus, Mona, Kingston 7, Jamaica
| | - Thierry Tonon
- Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York YO10 5DD, United Kingdom.
| |
Collapse
|
27
|
Oyewusi HA, Wahab RA, Huyop F. Whole genome strategies and bioremediation insight into dehalogenase-producing bacteria. Mol Biol Rep 2021; 48:2687-2701. [PMID: 33650078 DOI: 10.1007/s11033-021-06239-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
An integral approach to decoding both culturable and uncultured microorganisms' metabolic activity involves the whole genome sequencing (WGS) of individual/complex microbial communities. WGS of culturable microbes, amplicon sequencing, metagenomics, and single-cell genome analysis are selective techniques integrating genetic information and biochemical mechanisms. These approaches transform microbial biotechnology into a quick and high-throughput culture-independent evaluation and exploit pollutant-degrading microbes. They are windows into enzyme regulatory bioremediation pathways (i.e., dehalogenase) and the complete bioremediation process of organohalide pollutants. While the genome sequencing technique is gaining the scientific community's interest, it is still in its infancy in the field of pollutant bioremediation. The techniques are becoming increasingly helpful in unraveling and predicting the enzyme structure and explore metabolic and biodegradation capabilities.
Collapse
Affiliation(s)
- Habeebat Adekilekun Oyewusi
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
- Department of Biochemistry, School of Science and Computer Studies, Federal Polytechnic Ado Ekiti, PMB 5351, Ado Ekiti, Ekiti State, Nigeria.
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
28
|
Jin Q, Chen Z, Chen Q, Yan P, Zhao S, Shen J, Li L, Guo F, Kang J. Structure activity relationship study of N-doped ligand modified Fe(III)/H 2O 2 for degrading organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124142. [PMID: 33059248 DOI: 10.1016/j.jhazmat.2020.124142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
The performance of Fe(III)/H2O2 was extremely enhanced by a novel N-doped ligand dipicolinamide (Dpa) for removing various organic pollutants. This dramatic enhancement of contaminants degradation in Fe(III)-Dpa/H2O2 system under pH≥ 7 was ascribed to the coordinating capacity of Dpa to form the dissolved Fe(III)-Dpa/Fe(II)-Dpa, and the reductive capacity of Dpa to maintain the concentration of Fe(II), which made Dpa improve the catalytic performance of Fe(III) nearly twice as much as Fe(II). Dpa has a strong complexing ability than Cit, NTA, and EDTA to maintain the catalytic activity of Fe(III) without light. The single crystal of Fe-Dpa was obtained to reveal its structure activity relationship. Fe-Dpa was composed of four bonds of Fe-N and two bonds of Fe-Cl. The Fe-Cl bonds were labile sites, which was easily experienced ligand exchange with H2O2, resulting Fe-H2O2 bonds to initiate degradation reaction. The remaining Fe-N bonds were effectively planar, which had a large delocalized π electrons flow domain, enhancing the production of multiple reactive species, including iron(IV/V)-oxo species, HO· and O2-·. An empirical kinetic model of Fe(III)-Dpa/H2O2 system was established. In addition, the evaluation results of the toxicity of Fe-Dpa to larval zebrafish and chinese cabbage displayed that Fe-Dpa possesses low toxicity.
Collapse
Affiliation(s)
- Qianqian Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qian Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, China.
| | - Pengwei Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Fang Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
29
|
Evaluation of a Dynamic Bioremediation System for the Removal of Metal Ions and Toxic Dyes Using Sargassum Spp. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8110899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This work presents the results obtained in the design and manufacture of a simple, economic and ecological filter based on Sargassum spp. (Sspp), consisting of the species S. natans and S. fluitans, for the elimination of organic and inorganic toxic substances. The main objective is to make use of Sspp, as the massive amounts of this alga arriving at the Mexican Caribbean coast have caused serious problems over recent years. The toxic substances treated were organic dyes (methyl blue, methyl orange and methyl red) and the metal ion, lead (II). To obtain optimal removal conditions, grinding of the Sspp used, its mass and humidity were evaluated. In the design of the filter the area, flow rate and the number of layers were evaluated. Removal rates of almost 100%, 65% and 25% were obtained for methylene blue, methyl red and methyl orange respectively, and in the case of lead (II), values up to 95% were obtained. After the tests, the Sspp was characterized, using Fourier Transform Infrared (FTIR) spectroscopy and scanning electron microscopy, showing the presence of the dyes and the ionic species. These results demonstrate the efficiency of the dynamic Sspp-based filtration system proposed, which can be industrially scaled for the treatment of water contaminated with these kinds of substances.
Collapse
|
30
|
Babu S, Mohapatra KP, Das A, Yadav GS, Tahasildar M, Singh R, Panwar AS, Yadav V, Chandra P. Designing energy-efficient, economically sustainable and environmentally safe cropping system for the rainfed maize-fallow land of the Eastern Himalayas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137874. [PMID: 32199380 DOI: 10.1016/j.scitotenv.2020.137874] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Achieving a circular economic model in agriculture and meeting the food requirement of the growing population is a global challenge. The task is much more daunting in the Eastern Himalaya where low productive maize-fallow is a predominant production system. To enhance system productivity and energy use efficiency while maintaining environmental sustainability and economic profitability, therefore, energy-efficient, low carbon footprint (CF; CO2-e) and profitable short duration crops must be made an integral part of the maize fallow system. Thus, six cropping systems viz., maize-fallow, maize-French bean, maize-soybean, maize-black gram, maize-green gram, and maize-toria were evaluated for seven consecutive years (2011-2018) to assess their energy requirement and efficiency, carbon footprint (CF; CO2-e), economic returns and eco-efficiency. The results revealed that the maize-French bean system had the highest system productivity (11.4 Mg ha-1), energy productivity (17.9), energy profitability (15.9) and non-renewable energy use efficiency (9.97). The maize-French bean system had also the highest net profit (US$ 3764.5 ha-1) and benefit to cost ratio (2.54). The energy consumed under different inputs/activities across the cropping systems for chemical fertilizers, diesel and machinery ranged from 50.0-62.7%, 17.3-20.8% and 4.6-15.4%, respectively. The maize-fallow system had the highest CF (0.34 kg CO2 e per kg grain) while, the maize-French bean system had the lowest CF (0.19 kg CO2 e per kg grain). The maize-French bean system had also considerably increased eco-efficiency both in terms of energy use (US$ 0.23 MJ-1) and (US$ 1.78 per kg CO2 e) over maize-fallow system. Thus, the study has suggested that maize-French bean system is energy-efficient, economically viable and environmentally safer systems to utilize maize fallow and improve food security, may help in achieving green/circular economy.
Collapse
Affiliation(s)
- Subhash Babu
- ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya 793 103, India.
| | - K P Mohapatra
- World Agroforestry Centre (ICRAF), United Nations Avenue, 30677 Nairobi, Kenya
| | - Anup Das
- ICAR-Research Complex for North Eastern Hill Region, Tripura Centre, Tripura 799 210, India
| | - Gulab Singh Yadav
- ICAR-Research Complex for North Eastern Hill Region, Tripura Centre, Tripura 799 210, India
| | - Moutusi Tahasildar
- ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya 793 103, India
| | - Raghavendra Singh
- ICAR-Research Complex for North Eastern Hill Region, Sikkim Centre, Gangtok 737102, India
| | - A S Panwar
- ICAR-Indian Institute of Farming Systems Research, Modipuram 250 110, India
| | - Vivek Yadav
- College of Horticulture, North West A&F University, Yangling, Shaanxi 71200, PR China
| | - Puran Chandra
- ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya 793 103, India
| |
Collapse
|
31
|
Largo DB, Rance GMS, Diola AG, Aaron-Amper J. Method for the mass production of seedlings of the tropical brown seaweed Sargassum (Phaeophyceae, Ochrophyta). MethodsX 2020; 7:100854. [PMID: 32292712 PMCID: PMC7150505 DOI: 10.1016/j.mex.2020.100854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/03/2020] [Indexed: 11/29/2022] Open
Abstract
Farming of Sargassum to produce harvestable crop can be a challenging task to seaweed farmers.Sexually-produced Sargassum seedlings can be propagated in a hatchery using 140-liter plastic tanks connected with PVC pipes and seawater supply directly pumped from the sea, passing through a filter system. First step of this method is to collect large amount of fertilized eggs from special branches called receptacles, found at the ends of lateral branches of Sargassum, excised from fertile thalli during its spawning season and collecting their eggs for recruitment into artificial substrate tanks. Egg collection involves force-releasing the fertilized eggs by vigorous shaking of a small vessel where 100-200 egg-bearing receptacles excised from fertile plants are contained. Each tank can produce up to 2000–3000 seedlings that can supply at least a hectare of farm. Scaling up the production to several hectares of farm is done by simply increasing the number of recruitment tanks and the number of recruitment panels in the hatchery system.
Collapse
Affiliation(s)
- Danilo B Largo
- Department of Biology, University of San Carlos, Talamban Campus, Talamban, Cebu 6000, Philippines.,Research, Development, Extension and Publications Office, University of San Carlos, Talamban Campus, Talamban, Cebu City, Philippines
| | - Gemlyn Mar S Rance
- Department of Biology, University of San Carlos, Talamban Campus, Talamban, Cebu 6000, Philippines
| | - Annie G Diola
- Department of Biology, University of San Carlos, Talamban Campus, Talamban, Cebu 6000, Philippines
| | - Jesrelljane Aaron-Amper
- Department of Biology, University of San Carlos, Talamban Campus, Talamban, Cebu 6000, Philippines.,College of Fisheries and Marine Sciences, Bohol Island State University, Cogtong, Candijay, Bohol 6312, Philippines
| |
Collapse
|