1
|
Xiong H, Hu N, Liang Y, Wang Q, Jiang C, Yang Z, Huang L. Greenhouse gas emissions from rotating biological contactors combined with hybrid constructed wetlands treating polluted river. BIORESOURCE TECHNOLOGY 2024; 414:131550. [PMID: 39362344 DOI: 10.1016/j.biortech.2024.131550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
The rotating biological contactors combined with hybrid constructed wetlands (R-HCWs) has promising treatment performance, however, concerns persisted regarding greenhouse gases (GHGs) emissions. In this study, GHGs in the R-HCWs was evaluated, and results revealed that R-HCWs facilitated nitrogen conversion and provided alternating oxygen environments, thereby promoting the reduction of N2O and CH4 emissions. Therefore, the comprehensive global warming potential (8.7±2.7 g CO2-eq·m-3·d-1) for handling unit volume of river water was low, thus, greater ecological benefits were achieved. The relative abundance of functional microorganisms such as Bacillus, Acinetobacter, Nitrospira and norank_f__norank_o__SBR1031, increased due to warm season, which promoted the nitrogen cycle and N2O emission reduction. Anammox and denitrifying bacteria showed significantly correlated with N2O and CH4 emissions (p < 0.01). This study provides valuable insights for the potential adoption of biological and ecological integrated treatment approach optimized for improving water and mitigating GHGs emissions.
Collapse
Affiliation(s)
- Haifeng Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Ning Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yinkun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Chunli Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Zhimin Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400716, PR China.
| |
Collapse
|
2
|
Jiao F, Zhang X, Zhang T, Hu Y, Lu R, Ma G, Chen T, Guo H, Li D, Pan Y, Li YY, Kong Z. Insights into carbon-neutral treatment of rural wastewater by constructed wetlands: A review of current development and future direction. ENVIRONMENTAL RESEARCH 2024; 262:119796. [PMID: 39147183 DOI: 10.1016/j.envres.2024.119796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
In recent years, with the global rise in awareness regarding carbon neutrality, the treatment of wastewater in rural areas is increasingly oriented towards energy conservation, emission reduction, low-carbon output, and resource utilization. This paper provides an analysis of the advantages and disadvantages of the current low-carbon treatment process of low-carbon treatment for rural wastewater. Constructed wetlands (CWs) are increasingly being considered as a viable option for treating wastewater in rural regions. In pursuit of carbon neutrality, advanced carbon-neutral bioprocesses are regarded as the prospective trajectory for achieving carbon-neutral treatment of rural wastewater. The incorporation of CWs with emerging biotechnologies such as sulfur-based autotrophic denitrification (SAD), pyrite-based autotrophic denitrification (PAD), and anaerobic ammonia oxidation (anammox) enables efficient removal of nitrogen and phosphorus from rural wastewater. The advancement of CWs towards improved removal of organic and inorganic pollutants, sustainability, minimal energy consumption, and low carbon emissions is widely recognized as a viable low-carbon approach for achieving carbon-neutral treatment of rural wastewater. This study offers novel perspectives on the sustainable development of wastewater treatment in rural areas within the framework of achieving carbon neutrality in the future.
Collapse
Affiliation(s)
- Feifei Jiao
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xinzheng Zhang
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tao Zhang
- College of Design and Innovation, Shanghai International College of Design & Innovation, Tongji University, Shanghai, 200092, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Rui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guangyi Ma
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tao Chen
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hongbo Guo
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dapeng Li
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Zhe Kong
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
3
|
Zhou X, Yang J, Sha A, Zhuang Z, Bai S, Sun H, Zhao X. Enhancing environmental and economic benefits of constructed wetlands through plant recovery: A life cycle perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175784. [PMID: 39187084 DOI: 10.1016/j.scitotenv.2024.175784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Plant recovery plays a vital role in reclaiming bioresources from constructed wetland wastewater treatment systems. A comprehensive understanding of the environmental impacts and economic benefits associated with various wetland plant resourcing methods is critical for advancing both plant resource recovery and the application of wetlands in wastewater treatment. In this study, life cycle assessment was employed to evaluate the environmental impacts and costs of seven wetland plant recovery methods. In addition, the potential benefits of extending plant resource recovery within system boundaries were explored to enhance the overall advantages of constructed wetlands for wastewater treatment. The use of wetland plants for biofertilizer production had the lowest environmental impact (-8.52E-03), whereas the use of wetland plants for biochar production was the most cost-effective approach (-0.80€/kg). The introduction of a plant resource recovery component could significantly reduce the environmental impacts of constructed wetland wastewater treatment systems. The environmental impacts and costs of constructed wetland wastewater treatment systems that incorporate plant resource recovery into the system boundary are better than activated sludge methods and highly efficient algal ponds, except for the global warming potential (GWP). The use of plants for biofertilizer production could cut the environmental impacts of constructed wetland wastewater treatment systems by up to 85 % and the costs by 65 %, making it the most suitable method of plant use. Additionally, prioritizing the reduction of greenhouse gas emissions from constructed wetlands should be a primary optimization goal. The findings of this study provide valuable support for the implementation of wetland plant resourcing in constructed wetland wastewater treatment systems.
Collapse
Affiliation(s)
- Xue Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China.
| | - Aiqi Sha
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhixuan Zhuang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shunwen Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China
| | - Huihang Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China
| | - Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Li X, Ren B, Kou X, Hou Y, Buque AL, Gao F. Recent advances and prospects of constructed wetlands in cold climates: a review from 2013 to 2023. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44691-44716. [PMID: 38965108 DOI: 10.1007/s11356-024-34065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Constructed wetland (CW), a promising, environmentally responsible, and effective green ecological treatment technology, is actively involved in the treatment of various forms of wastewater. Low temperatures will, however, lead to issues including plant dormancy, decreased microbial activity, and ice formation in CWs, which will influence how well CWs process wastewater. Applying CWs successfully and continuously in cold areas is extremely difficult. Therefore, it is crucial to find solutions for the pressing issue of increasing the CWs' ability to process wastewater at low temperatures. This review focuses on the effect of cold climate on CWs (plants, substrates, microorganisms, removal effect of pollutants). It meticulously outlines current strategies to enhance CWs' performance under low-temperature conditions, including modifications for the improvement and optimization of the internal components (i.e., plant and substrate selection, bio-augmentation) and enhancement of the external operation conditions of CWs (such as process combination, effluent recirculation, aeration, heat preservation, and operation parameter optimization). Finally, future perspectives on potential research directions and technological innovations that could strengthen CWs' performance in cold climates are prospected. This review aims to contribute valuable insights into the operation strategies, widespread implementation, and subsequent study of CWs in colder climate regions.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Baiming Ren
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China.
| | - Xiaomei Kou
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi'an, 710065, People's Republic of China
- Power China Northwest Engineering Corporation Limited, Xi'an, 710065, People's Republic of China
| | - Yunjie Hou
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Arsenia Luana Buque
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Fan Gao
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi'an, 710065, People's Republic of China
- Power China Northwest Engineering Corporation Limited, Xi'an, 710065, People's Republic of China
| |
Collapse
|
5
|
Wang Y, Chen Y, Lu S, Guo X. Development and trends of constructed wetland substrates over the past 30 years: a literature visualization analysis based on CiteSpace. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14537-14552. [PMID: 38308167 DOI: 10.1007/s11356-024-32139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Constructed wetland substrates (CWSs) have received considerable attention owing to their importance in adsorbing and degrading pollutants, providing growth attachment points for microorganisms, and supporting wetland plants. There are differences in the configurations and functions of constructed wetlands (CWs) for treating different water bodies and sewage, resulting in a wide variety of substrates. Research on the application and mechanism of CWSs is not sufficiently systematic. Therefore, the current research advancements and hotspots must be identified. Hence, we used CiteSpace to analyze 1955 English publications from the core collection database of the Web of Science to assess the current state of the CWS research field. Based on the cooperative network analysis, the roles of various countries, institutions, and authors in research on CWSs were reviewed. Keyword co-occurrence and cluster analyses were used to discuss the transformation of CWSs from removing traditional pollutants to emerging pollutants and the transition from incorporating natural substrates to artificial substrates. Finally, we underscored the need for more emphasis to be placed on the collocation and application of the CWSs at different latitudes. Furthermore, the substrate micro-interface process and its effects on the interaction patterns of pollutants and microorganisms should be thoroughly investigated to provide theoretical guidance for the development of wetland applications and mechanisms.
Collapse
Affiliation(s)
- Yongqiang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaochun Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
6
|
Fahim R, Cheng L, Mishra S. Structural and functional perspectives of carbon filter media in constructed wetlands for pollutants abatement from wastewater. CHEMOSPHERE 2023; 345:140514. [PMID: 37879377 DOI: 10.1016/j.chemosphere.2023.140514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Constructed wetlands (CWs) represent the most viable artificial wastewater treatment system that works on the principles of natural wetlands. Filter media are integrally linked to CWs and have substantial impacts on their performance for pollutant removal. Carbon-derived substrates have been in the spotlight for decades due to their abundance, sustainability, reusability, and potential to treat complex contaminants. However, the efficiency and feasibility of carbon substrates have not been fully explored, and there are only a few studies that have rigorously analyzed their performance for wastewater treatment. This critical synthesis of the literature review offers comprehensive insights into the utilization of carbon-derived substrates in the context of pollutant removal, intending to enhance the efficiency and sustainability of CWs. It also compares several carbon-based substrates with non-carbon substrates with respect to physiochemical properties, pollutant removal efficiency, and cost-benefit analysis. Furthermore, it addresses the concerns and possible remedies about carbon filtration materials such as configuration, clogging minimization, modification, and reusability to improve the efficacy of substrates and CWs. Recommendations made to address these challenges include pretreatment of wastewater, use of a substrate with smaller pore size, incorporation of multiple filter media, the introduction of earthworms, and cultivation of plants. A current scientific scenario has been presented for identifying the research gaps to investigate the functional mechanisms of modified carbon substrates and their interaction with other CW components.
Collapse
Affiliation(s)
- Raana Fahim
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Liu Cheng
- Key Laboratory of Integrated Regulation and Resource Development Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Saurabh Mishra
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
7
|
Salah M, Zheng Y, Wang Q, Li C, Li Y, Li F. Insight into pharmaceutical and personal care products removal using constructed wetlands: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163721. [PMID: 37116812 DOI: 10.1016/j.scitotenv.2023.163721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) were regarded as emerging environmental pollutants due to their ubiquitous appearance and high environmental risks. The wastewater treatment plants (WWTPs) became the hub of PPCPs receiving major sources of PPCPs used by humans. Increasing concern has been focused on promoting cost-effective ways to eliminate PPCPs within WWTPs for blocking their route into the environment through effluent discharging. Among all advanced technologies, constructed wetlands (CWs) with a combination of plants, substrates, and microbes attracted attention due to their cost-effectiveness and easier maintenance during long-term operation. This study offers baseline data for risk control and future treatment by discussing the extent and dispersion of PPCPs in surface waters over the past ten years and identifying the mechanisms of PPCPs removal in CWs based on the up-to-present research, with a special focus on the contribution of sediments, vegetation, and the interactions of microorganisms. The significant role of wetland plants in the removal of PPCPs was detailed discussed in identifying the contribution of direct uptake, adsorption, phytovolatilization, and biodegradation. Meanwhile, the correlation between the physical-chemical characteristics of PPCPs, the configuration operation of wetlands, as well as the environmental conditions with PPCP removal were also further estimated. Finally, the critical issues and knowledge gaps before the real application were addressed followed by promoted future works, which are expected to provide a comprehensive foundation for study on PPCPs elimination utilizing CWs and drive to achieve large-scale applications to treat PPCPs-contaminated surface waters.
Collapse
Affiliation(s)
- Mohomed Salah
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yu Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Qian Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Chenguang Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yuanyuan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Fengmin Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
8
|
Stentella R, Cislaghi A, Rossi LMW, Giupponi L, Bona E, Zambonardi A, Rizzo L, Esposto F, Bischetti GB. Ecological design of constructed wetlands in cold mountainous region: from literature to experience. LANDSCAPE AND ECOLOGICAL ENGINEERING 2023. [DOI: 10.1007/s11355-023-00548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
9
|
Enhanced leachate phytodetoxification test combined with plants and rhizobacteria bioaugmentation. Heliyon 2023; 9:e12921. [PMID: 36820189 PMCID: PMC9938419 DOI: 10.1016/j.heliyon.2023.e12921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Plant combination and rhizobacterial bioaugmentation are the modification of constructed wetlands (CWs) to promote the detoxification of leachate. In this study, characterization of leachate was carried out to ensure the maximum concentration of leachate that did not affect the plant's growth. Herein, the identification of leachate-resistant rhizobacteria is used to determine the type of bacteria that is resistant and has the potential for leachate processing in the next step. The phytodetoxification test is carried out by comparing the addition of rhizobacteria and without the addition of rhizobacteria to detox leachate parameter Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD), Total Suspended Solid (TSS), Total Nitrogen (TN), Cadmium (Cd), and Mercury (Hg). Results showed that used plants could still live in the largest leachate concentration of 100%. The rhizobacteria that were identified and bioaugmented in the reactor were Bacillus cereus, Nitrosomonas communis, and Pseudomonas aeruginosa. Phytodetoxification test by a single plant showed the efficiency ranged between 40% and 70%. The addition of rhizobacterial bioaugmentation and plant combination can improve the percentage of COD 80.47%, BOD 84.05%, TSS 80.05%, TN 75.58%, Cd 99.96%, and Hg 90%. These modifications are very influential for leachate detoxification through plant uptake and rhizodegradation processes.
Collapse
|
10
|
Vaudry N, Sun Y, Afolabi OOD. Exploiting constructed wetlands for industrial effluent phytodesalination in Jing-Jin-Ji urban agglomeration, China. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:851-867. [PMID: 36028956 DOI: 10.1080/15226514.2022.2115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The unsustainable exploitation of water resources and growing salinization impacting China's Beijing-Tianjin-Hebei (Jing-Jin-Ji) agglomeration threatens the region's economic growth and drives the exploration of alternative resources. The region's industries face a financial burden due to increasing constraints on water exploitation and discharge regulations. These have resulted in increased industrial salt concentration rejections/discharges, meanwhile, constructed wetlands (CWs), deployed as a perfunctory receptacle for industrial effluents in the region, are underexploited for treating/removing salts. Also, halophytic plants local to the region have promising chloride uptake (60.6 g/kg and 256.0 g/kg of plant dry weight) and can reduce water conductivity by 40%. Exploitation of CWs, using local halophytes has not been explored for phytodesalination purposes in the region. Hence, this study analyses the water resource and salinization crisis in the agglomeration and further evaluates workable potential and critical technical considerations for using local halophytes in CWs to treat industrial salt-laden effluents. While acknowledging this intervention for removing industrial effluent salt may not meet compliance in the region, effluent post-phytodesalination presents opportunities for industries to meet regulatory stipulations on water reuse rates. Furthermore, such effluent may be used for irrigation and can ameliorate the salinization and groundwater exploitation crisis as a cleaner recharge source.
Collapse
Affiliation(s)
- Nolwenn Vaudry
- School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, UK
| | - Yi Sun
- U.F.R. de Langues Etrangères, Artois University, Arras Cedex, France
| | - Oluwasola O D Afolabi
- School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
11
|
Martel-Rodríguez GM, Millán-Gabet V, Mendieta-Pino CA, García-Romero E, Sánchez-Ramírez JR. Long-Term Performance of a Hybrid-Flow Constructed Wetlands System for Urban Wastewater Treatment in Caldera de Tirajana (Santa Lucía, Gran Canaria, Spain). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14871. [PMID: 36429595 PMCID: PMC9690933 DOI: 10.3390/ijerph192214871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
This paper describes the results that have been obtained in a real case study of a hybrid constructed wetlands system, which has been in continuous operation for over 11 years. The main aim of the study was to understand the long-term operation and efficiency of the system (which is situated in the municipality of Santa Lucía, Gran Canaria, Spain), which comprises two vertical-flow and one horizontal-flow constructed wetlands for the treatment of urban wastewater. The system, which was originally designed to treat a flow rate of 12.5 m3/day, with a load of 100 equivalent inhabitants, has been operating since its inauguration (July 2008), with a flow rate of almost 35 m3/day and a load of 400 equivalent inhabitants. Despite this, the mean total removal efficiencies during the study period (2014-2019) are optimal for a system of these characteristics, as follows: 92% for 5-day biochemical oxygen demand (BOD5), 89% for the chemical oxygen demand (COD), and 97% for the total suspended solids (TSS). The system efficiency, with respect to nutrient removal, was somewhat lower, resulting in 48% for total N and 35% for NH4. It has been confirmed with this study that this type of system is an appropriate, robust, resilient nature-based solution for the treatment of the wastewater that is generated in small communities, especially in zones with a warm climate, stable mean temperatures, and mild winters.
Collapse
Affiliation(s)
| | - Vanessa Millán-Gabet
- Water Department, Instituto Tecnológico de Canarias (ITC), 35119 Santa Lucía, Spain
| | - Carlos A. Mendieta-Pino
- Department of Process Engineering, University of Las Palmas de Gran Canaria (ULPGC), 35214 Las Palmas de Gran Canaria, Spain
| | - Eva García-Romero
- Mancomunidad Intermunicipal del Sureste de Gran Canaria, 35118 Agüimes, Spain
| | | |
Collapse
|
12
|
Ji Z, Tang W, Pei Y. Constructed wetland substrates: A review on development, function mechanisms, and application in contaminants removal. CHEMOSPHERE 2022; 286:131564. [PMID: 34298298 DOI: 10.1016/j.chemosphere.2021.131564] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Constructed wetlands (CWs) are economical, efficient, and sustainable wastewater treatment method. Substrates in CWs inextricably link with the other key components and significantly influence the performance and sustainability of CWs. Gradually, CWs have been applied to treat more complex contaminants from different fields, thus has brought forward new demand on substrates for enhancing the performance and sustainability of CWs. Various materials have been used as substrates in CWs, and their individual characteristics and application advantages have been extensively studied in recent years. Therefore, this review summarizes the development, function mechanisms (e.g., filtration, adsorption, electron supply, supporting plant growth and microbial reproduction), categories, and applications of substrates in CWs. The interaction mechanisms of substrates with contaminants/plants/microorganisms are comprehensively described, and the characteristics and advantages of different substrate categories (e.g., Natural mineral materials, chemical products, biomass materials, industrial and municipal by-products, modified functional materials, and novel materials) are critically evaluated. Meanwhile, the influences of substrate layer arrangement and synergism on contaminants removal are firstly systematically reviewed. Furthermore, further research about substrates (e.g., clogging, life cycle assessment/management, internal relationship between components) should be systematically carried out for improving efficiency and sustainability of CWs.
Collapse
Affiliation(s)
- Zehua Ji
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansheng Pei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| |
Collapse
|
13
|
Potential Use of Constructed Wetland Systems for Rural Sanitation and Wastewater Reuse in Agriculture in the Moroccan Context. ENERGIES 2021. [DOI: 10.3390/en15010156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Located in a semi-arid to arid region, Morocco is confronting increasing water scarcity challenges. In the circular economy paradigm, the reuse of treated wastewater in agriculture is currently considered a possible solution to mitigate water shortage and pollution problems. In recent years, Morocco has made significative progress in urban wastewater treatment under the National Wastewater Program (PNA). However, rural sanitation has undergone significant delays. Therefore, an alternative technology for wastewater treatment and reuse in rural areas is investigated in this review, considering the region’s economic, social, and regulatory characteristics. Constructed wetlands (CWs) are a simple, sustainable, and cost-effective technology that has yet to be fully explored in Morocco. CWs, indeed, appear to be suitable for the treatment and reuse of wastewater in remote rural areas if they can produce effluent that meets the standards of agricultural irrigation. In this review, 29 studies covering 16 countries and different types of wastewater were collected and studied to assess the treatment efficiency of different types of CWs under different design and operational parameters, as well as their potential application in agricultural reuse. The results demonstrated that the removal efficiency of conventional contamination such as organic matter and suspended solids is generally high. CWs also demonstrated a remarkable capacity to remove heavy metals and emerging contaminants such as pharmaceuticals, care products, etc. The removal of microbial contamination, on the other hand, is challenging, and does not satisfy the standards all the time. However, it can be improved using hybrid constructed wetlands or by adding polishing treatment. In addition, several studies reported that CWs managed to produce effluent that met the requirements of wastewater reuse in agriculture of different countries or organisations including Morocco.
Collapse
|
14
|
Lu H, Xiao L, Wang T, Lu S, Wang H, Guo X, Li J. The application of steel slag in a multistage pond constructed wetland to purify low-phosphorus polluted river water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112578. [PMID: 33965685 DOI: 10.1016/j.jenvman.2021.112578] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/21/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
To investigate the effect of a constructed wetland (CW) with steel slag as the filler on water contaminated by low phosphorus levels, a multistage pond CW system was designed in this study. Low-phosphorus polluted river water was used as the research object. This study explored the effects of using steel slag as a CW filler on phosphorus removal and the total phosphorus (TP) purification effect of the wetland system. The results showed that the TP removal rates in the ecological pond, oxidation pond, surface flow wetlands and submerged plant pond were 5.17%, 8.02%, 21.56%, and 16.31%, respectively. Intermittent increases in phosphorus concentration were observed in the reactors and were caused by the decay of plant tissues, which released pollutants. Because steel slag was added to the filler, the TP concentrations in the effluent of the first- and second-level horizontal subsurface CWs increased by 151.13% and 16.29%, respectively, compared to the influent concentration. The 20th to 40th days of the test run was a period of rapid phosphorus release of the system. The use of steel slag has a potential risk of phosphorus release when applied in CWs used to purify low-phosphorus contaminated water bodies.
Collapse
Affiliation(s)
- Hongbin Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing, 100875, PR, China
| | - Liping Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Tao Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Shaoyong Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Huanhua Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Xiaochun Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Jiaxin Li
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; School of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| |
Collapse
|
15
|
Varma M, Gupta AK, Ghosal PS, Majumder A. A review on performance of constructed wetlands in tropical and cold climate: Insights of mechanism, role of influencing factors, and system modification in low temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142540. [PMID: 33038812 DOI: 10.1016/j.scitotenv.2020.142540] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 05/12/2023]
Abstract
Constructed wetlands (CWs) are one of the most promising and sustainable alternatives for wastewater treatment that are being successfully implemented in several countries, especially in tropical and sub-tropical regions. The predominant mechanisms of removal of contaminants in CWs are microbial degradation, phytodegradation, phytoextraction, filtration, sedimentation, and adsorption, etc. Vertical flow subsurface CWs and hybrid CWs demonstrated promising results in terms of TN, BOD, and COD removal, while horizontal flow subsurface CWs were proficient in removal of TP. The performance of the CWs depends upon a various factors, such as hydraulic loading rate, pH, dissolved oxygen, temperature, etc. Among these, low temperature had the most antagonistic effect on the performance of the CWs because freezing ambient temperature lead to ice formation, hydraulic imperfections, malfunctioning of biotic and abiotic components, etc. Over the past three decades, thousands of studies have been conducted involving treatment of wastewater using CWs, among which only few have addressed the issues and concerns of cold climate representing a significant research gap in this field. Furthermore, the performance of CWs in terms of TN, TP, and COD removal was significantly lower in cold climates than that in tropical and sub-tropical climates. In order to find suitable remedies to overcome the challenges faced in cold climate various modifications, such as incorporating greenhouse structure, providing insulating materials, bio-augmentation, identification of suitable macrophytes, etc., in around 20 different scenarios have been studied. Greenhouse construction led to 20% increase in removal of TN and COD, while plant collocation accounted for up to 18% increase in the removal of COD. Artificial aeration, insulation and bio-augmentation also enhanced the performance of the CWs in low temperatures.
Collapse
Affiliation(s)
- Mahesh Varma
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
16
|
Koottatep T, Pussayanavin T, Khamyai S, Polprasert C. Performance of novel constructed wetlands for treating solar septic tank effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142447. [PMID: 33254912 PMCID: PMC7705213 DOI: 10.1016/j.scitotenv.2020.142447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/04/2020] [Accepted: 09/12/2020] [Indexed: 06/12/2023]
Abstract
To improve treatment performance of the solar septic tank technology, novel constructed wetland systems have been proposed as an effective post-treatment system. This study aimed to investigate the treatment performance of the multi-soil layer based constructed wetland (MSL-CW) and comparing with the modified constructed wetland (mCW) for treating solar septic tank effluent in long-term operation. Pilot-scale MSL-CW and mCW units were operated in parallel under the same conditions during the period of 2016-2019. Removal efficiencies of TCOD, SCOD and TBOD in the MSL-CW were not significantly different (p < 0.05) from those of the mCW unit, which were 70-72%, 63-68% and 78-82%, respectively. The removal efficiencies of TSS, TKN, NH4-N and TP were found in the same magnitude in both units. The total coliform and E.coli counts in the effluent of MSL-CW and mCW units were reduced from 105 MPN/100 mL to be lower than 103 MPN/100 mL. These long-term operational results demonstrated that the effluent from the MSL-CW and mCW units could meet the global standards of non-sewered sanitation systems and the WHO guidelines. The effects of seasonal variations and plant harvesting on the monthly treatment performance are discussed in this study.
Collapse
Affiliation(s)
- Thammarat Koottatep
- School of Environment, Resources and Development, Asian Institute of Technology, Thailand
| | - Tatchai Pussayanavin
- School of Environment, Resources and Development, Asian Institute of Technology, Thailand; Faculty of Science, Ramkhamhaeng University, Thailand.
| | - Sopida Khamyai
- School of Environment, Resources and Development, Asian Institute of Technology, Thailand
| | | |
Collapse
|