1
|
Chen N, Xu Q, Zhu J, Song H, He L, Liu S, Song X, Yuan Y, Chen Y, Cao X, Yu Z. Chromosome-scale genome assembly reveals insights into the evolution and ecology of the harmful algal bloom species Phaeocystis globosa Scherffel. iScience 2024; 27:110575. [PMID: 39193189 PMCID: PMC11347835 DOI: 10.1016/j.isci.2024.110575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/26/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
The phytoplankton Phaeocystis globosa plays an important role in sulfur cycling and climate control, and can develop harmful algal blooms (HABs). Here we report a chromosome-scale reference genome assembly of P. globosa, which enable in-depth analysis of molecular underpinnings of important ecological characteristics. Comparative genomic analyses detected two-rounds of genome duplications that may have fueled evolutionary innovations. The genome duplication may have resulted in the formation of dual HiDP and LoDP dimethylsulphoniopropionate (DMSP) biosynthesis pathways in P. globosa. Selective gene family expansions may have strengthened biological pathways critical for colonial formation that is often associated with the development of algal blooms. The copy numbers of rhodopsin genes are variable in different strains, suggesting that rhodopsin genes may play a role in strain-specific adaptation to ecological factors. The successful reconstruction of the P. globosa genome sets up an excellent platform that facilitates in-depth research on bloom development and DMSP metabolism.
Collapse
Affiliation(s)
- Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Qing Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing 10039, China
| | - Huiyin Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Liyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing 10039, China
| | - Yongquan Yuan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing 10039, China
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing 10039, China
| |
Collapse
|
2
|
Meng R, Smith WO, Cao R, Doan-Nhu H, Nguyen-Ngoc L, Wang J. Ecological investigations of giant Phaeocystis colonies in Viet Nam: I. Cell abundance and elemental composition. JOURNAL OF PHYCOLOGY 2024; 60:968-979. [PMID: 38980982 DOI: 10.1111/jpy.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024]
Abstract
Phaeocystis globosa is an important bloom-forming marine phytoplankton species that often accumulates to large levels in temperate and tropical waters and has significant impacts on food webs and biogeochemical cycles. It can form "giant" colonies that reach 3 cm in diameter. Microscopic observations, colony elemental composition, and pigment composition were analyzed to assess the characteristics of colonies as a function of colony size. Particulate organic carbon (POC) per unit surface area, colonial cell density, and chlorophyll a per unit surface area all increased with colony size, in contrast to results from temperate waters. Cellular chl a averaged 0.85 pg chl · cell-1. Colonies had both photosynthetic and protective pigments, with fucoxanthin being the dominant accessory pigment. Based on chl a and pigment levels, it appears colonies were acclimated to relatively low irradiances, likely due to their life cycle and the extremely turbulent environment in which they grew. Mucous carbon ranged from 16.2% to 79.2% of the total POC, and mucous carbon per unit surface area increased with colony size, suggesting that the mucous envelope did not thin as the colony grew. Based on elemental composition, nitrogen did not appear to limit growth, but phosphorus:carbon ratios were similar to those of P-limited cultures. Giant colonies represent an extreme response to the environment, but they do not appear to have greatly different characteristics than other tropical strains.
Collapse
Affiliation(s)
- Rui Meng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Walker O Smith
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Virginia Institute of Marine Science, William & Mary, Gloucester Pt., Virginia, USA
| | - Ruobing Cao
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Hai Doan-Nhu
- Institute of Oceanography, Viet Nam Academy of Science and Technology, Nha Trang, Viet Nam
| | - Lam Nguyen-Ngoc
- Institute of Oceanography, Viet Nam Academy of Science and Technology, Nha Trang, Viet Nam
| | - Jinxiu Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
3
|
Zhang S, Fu Z, Dong X, Zheng X, Gu H. Diversity and seasonal occurrence of haptophyta in northern South China Sea through size-fractionated metabarcoding. MARINE POLLUTION BULLETIN 2024; 205:116609. [PMID: 38905736 DOI: 10.1016/j.marpolbul.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
Haptophyta plays a key role in marine pico-nanoeukaryote communities but information on their diversity and ecology is extremely limited. A total of 103 water samples were collected in northern South China Sea to assess the diversity of haptophyta through metabarcoding targeting 18S V4 rDNA. Furthermore, we investigated the potential genetic differentiation among seasonal occurring Phaeocystis globosa using the high resolution molecular marker pgcp1. 18S V4 rDNA metabarcoding dataset revealed 41 species of haptophytes, with 16 of them as the first record in this region. Notably, six harmful species were detected, including Chrysochromulina leadbeateri, Phaeocystis globosa, and Prymnesium parvum. The pgcp1 marker revealed two clades of Phaeocystis globosa and both of them were present around the year. Clade I was found to predominate in warm season, while Clade III tended to bloom in cold waters. Our results highlight the risk potential of harmful haptophytes in the northern South China Sea.
Collapse
Affiliation(s)
- Shiya Zhang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; Department of Marine Ecology Conservation, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhengxu Fu
- Department of Marine Ecology Conservation, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xu Dong
- Department of Marine Ecology Conservation, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xinqing Zheng
- Department of Marine Ecology Conservation, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Haifeng Gu
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; Department of Marine Ecology Conservation, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China.
| |
Collapse
|
4
|
Niu Z, Wang JX, Zhang QC, Liu C, Yuan YQ, Wang HQ, Kong FZ, Yu RC. Dynamics and scale variations of blooms of Phaeocystis globosa "giant colony" ecotype and key environmental factors in the Beibu Gulf, China. MARINE POLLUTION BULLETIN 2024; 205:116590. [PMID: 38878419 DOI: 10.1016/j.marpolbul.2024.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 07/24/2024]
Abstract
The Beibu Gulf has experienced blooms of Phaeocystis globosa "giant colony" ecotype (PGGCE), with noticeable variations in bloom scale across years. However, driving environmental factors and their roles remain poorly understood. In this study, we quantified dynamics of PGGCE cells in 2016-2017 and 2018-2019, and analyzed their correlations with environment factors. The results revealed that PGGCE blooms primarily occurred in Guangxi coast and western waters of Leizhou Peninsula during winter months, exhibiting distinct developmental processes. Bloom intensity, duration, and distribution differed significantly between two bloom events. In 2016-2017, peak PGGCE density exceeded 2.0 × 105 cells L-1 nearly double that of 2018-2019. Furthermore, bloom sustained five months during 2016-2017, compared to three months during 2018-2019. Prolonged period of low temperatures and elevated nitrate concentrations favored PGGCE growth and colony formation, resulting in a larger scale bloom during winter 2016 as opposed to winter 2018.
Collapse
Affiliation(s)
- Zhuang Niu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Marine Monitoring and Forecasting Center of Zhejiang Province, Hangzhou 310007, China
| | - Jin-Xiu Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center of Ocean Mega-Science, Qingdao 266071, China
| | - Qing-Chun Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China; Center of Ocean Mega-Science, Qingdao 266071, China.
| | - Chao Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center of Ocean Mega-Science, Qingdao 266071, China
| | - Yong-Quan Yuan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China; Center of Ocean Mega-Science, Qingdao 266071, China
| | - Hui-Qun Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Fan-Zhou Kong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China; Center of Ocean Mega-Science, Qingdao 266071, China
| | - Ren-Cheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center of Ocean Mega-Science, Qingdao 266071, China
| |
Collapse
|
5
|
Yu Z, Wang Z, Liu L. Electrophysiological techniques in marine microalgae study: A new perspective for harmful algal bloom (HAB) research. HARMFUL ALGAE 2024; 134:102629. [PMID: 38705615 DOI: 10.1016/j.hal.2024.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Electrophysiological techniques, by measuring bioelectrical signals and ion channel activities in tissues and cells, are now widely utilized to study ion channel-related physiological functions and their underlying mechanisms. Electrophysiological techniques have been extensively employed in the investigation of animals, plants, and microorganisms; however, their application in marine algae lags behind that in other organisms. In this paper, we present an overview of current electrophysiological techniques applicable to algae while reviewing the historical usage of such techniques in this field. Furthermore, we explore the potential specific applications of electrophysiological technology in harmful algal bloom (HAB) research. The application prospects in the studies of stress tolerance, competitive advantage, nutrient absorption, toxin synthesis and secretion by HAB microalgae are discussed and anticipated herein with the aim of providing novel perspectives on HAB investigations.
Collapse
Affiliation(s)
- Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Zhongshi Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lidong Liu
- The Djavad Mowafaghian Centre for Brian Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Smith WO, Trimborn S. Phaeocystis: A Global Enigma. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:417-441. [PMID: 37647611 DOI: 10.1146/annurev-marine-022223-025031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The genus Phaeocystis is globally distributed, with blooms commonly occurring on continental shelves. This unusual phytoplankter has two major morphologies: solitary cells and cells embedded in a gelatinous matrix. Only colonies form blooms. Their large size (commonly 2 mm but up to 3 cm) and mucilaginous envelope allow the colonies to escape predation, but data are inconsistent as to whether colonies are grazed. Cultured Phaeocystis can also inhibit the growth of co-occurring phytoplankton or the feeding of potential grazers. Colonies and solitary cells use nitrate as a nitrogen source, although solitary cells can also grow on ammonium. Phaeocystis colonies might be a major contributor to carbon flux to depth, but in most cases, colonies are rapidly remineralized in the upper 300 m. The occurrence of large Phaeocystis blooms is often associated with environments with low and highly variable light and high nitrate levels, with Phaeocystis antarctica blooms being linked additionally to high iron availability. Emerging results indicate that different clones of Phaeocystis have substantial genetic plasticity, which may explain its appearance in a variety of environments. Given the evidence of Phaeocystis appearing in new systems, this trend will likely continue in the near future.
Collapse
Affiliation(s)
- Walker O Smith
- Department of Biological Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA;
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Scarlett Trimborn
- Division of Biosciences, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany;
| |
Collapse
|
7
|
Liang D, Wang X, Huo Y, Xiang H, Li S, Wang Y. Morphological, molecular, and life cycle characteristics of Phaeocystis globosa Scherffel (Prymnesiophyceae) in the Southeast China Sea. HARMFUL ALGAE 2023; 127:102477. [PMID: 37544677 DOI: 10.1016/j.hal.2023.102477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Phaeocystis globosa blooms frequently occur in the Southeast China Sea and cause significant negative impacts on coastal ecology and mariculture. The P. globosa blooms in southeastern China are very different compared to those of European strains, suggesting that differences may exist in their morphological, phylogenetic, and life history traits. In this study, seven strains of P. globosa isolated from Southeast China Sea that were typical strains of algal blooms in the region, in addition to one strain from the Gulf of Mexico (CCMP629), were comprehensively evaluated to better understand region-specific differences of the species. Significant differences were not observed in the internal cell structures and other characteristics compared to those of European strains, while differences in cell surface structures were apparent. For example, small and large flagellated Chinese P. globosa cells exhibited two flagella with slightly unequal lengths and a short haptonema, the surfaces of small flagellated cells were not covered by scales, and colony cell diameters were smaller. 18S rRNA sequence phylogenetic analysis also revealed that P. globosa comprised a species complex with two ecotypes (warm- and cold-water types), of which the strains from the southeastern coast of China and CCMP629 belonged to the warm-water type. In addition, the life cycles and variable modes of P. globosa colony formation were evaluated in detail. The algal bloom may be due to the rapid colonies formation by budding and colony fragments. These results provide new insights into the life cycle of P. globosa and highlight the differences in morphological and phylogenetic relationships between strains from the southeast coast of China and those from coastal European regions.
Collapse
Affiliation(s)
- Dayong Liang
- Research Center for Harmful Algae and Marine Biology, and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaodong Wang
- Research Center for Harmful Algae and Marine Biology, and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China
| | - Yiping Huo
- Research Center for Harmful Algae and Marine Biology, and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China
| | - Hua Xiang
- State key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yan Wang
- Research Center for Harmful Algae and Marine Biology, and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Yang X, Yan Z, Li X, Li Y, Li K. Chemical cues in the interaction of herbivory-prey induce consumer-specific morphological and chemical defenses in Phaeocystis globosa. HARMFUL ALGAE 2023; 126:102450. [PMID: 37290885 DOI: 10.1016/j.hal.2023.102450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023]
Abstract
Bloom-forming algae Phaeocystis globosa is one of the most successful blooming algae in the oceans due to its capacity to sense grazer-associated chemical cues and respond adaptively to these grazer-specific cues with opposing shifts in phenotype. P. globosa produces toxic and deterrent compounds as chemical defenses. However, the origin of the signals and underlying mechanisms that triggered the morphological and chemical defenses remain enigmatic. Rotifer was chosen to establish an herbivore-phytoplankton interaction with P. globosa. The influences of rotifer kairomone and conspecific-grazed cue on morphological and chemical defenses in P. globosa were investigated. As a result, rotifer kairomones elicited morphological defenses and broad-spectrum chemical defenses, whereas algae-grazed cues elicited morphological defenses and consumer-specific chemical defenses. According to multi-omics findings, the difference in hemolytic toxicity caused by different stimuli may be related to the upregulation of lipid metabolism pathways and increased lipid metabolite content, while the inhibition of colonial formation and development of P. globosa may be caused by the downscaled production and secretion of glycosaminoglycans. The study demonstrated that zooplankton consumption cues were recognized by intraspecific prey and elicited consumer-specific chemical defenses, highlighting the chemical ecology of herbivore-phytoplankton interactions in the marine ecosystem.
Collapse
Affiliation(s)
- Xiao Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Ocean, Yantai University, Yantai 266071, China
| | - Xiaodong Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yaxi Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
9
|
Cheng HM, Zhang SF, Ning XL, Peng JX, Li DX, Zhang H, Zhang K, Lin L, Liu SQ, Smith WO, Wang DZ. Elucidating colony bloom formation mechanism of a harmful alga Phaeocystis globosa (Prymnesiophyceae) using metaproteomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161846. [PMID: 36709898 DOI: 10.1016/j.scitotenv.2023.161846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Phaeocystis is a globally distributed Prymnesiophyte genus and usually forms massive harmful colony blooms, which impact marine ecosystem, mariculture, human health, and even threaten coastal nuclear power plant safety. However, the mechanisms behind the colony formation from the solitary cells remain poorly understood. Here, we investigated metabolic processes of both solitary and non-flagellated colonial cells of Phaeocystis globosa at different colony bloom stages in the subtropical Beibu Gulf using a metaproteomic approach. Temperature was significantly correlated with Phaeocystis colony bloom formation, and the flagellated motile solitary cells with abundant flagellum-associated proteins, such as tubulin and dynein, were the exclusive cellular morphotype at the solitary cell stage featured with temperatures ≥21 °C. When the temperature decreased to <21 °C, tiny colonies appeared and the flagellum-associated proteins were down-regulated in both solitary and non-flagellated colonial cells, while proteins involved in biosynthesis, chain polymerization and aggregation of glycosaminoglycan (GAG), a key constituent of gelatinous matrix, were up-regulated, indicating the central role of active GAG biosynthesis during the colony formation. Furthermore, light utilization, carbon fixation, nitrogen assimilation, and amino acid and protein synthesis were also enhanced to provide sufficient energy and substrates for GAG biosynthesis. This study highlighted that temperature induced re-allocation of energy and substances toward GAG biosynthesis is essential for colony bloom formation of P. globosa.
Collapse
Affiliation(s)
- Hua-Min Cheng
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xiao-Lian Ning
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Jian-Xiang Peng
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Dong-Xu Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Kun Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Si-Qi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Walker O Smith
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200300, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
10
|
Wang J, Wang Y, Lai J, Li J, Yu K. Improvement and application of qPCR assay revealed new insight on early warning of Phaeocystis globosa bloom. WATER RESEARCH 2023; 229:119439. [PMID: 36473412 DOI: 10.1016/j.watres.2022.119439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Phaeocystis globosa bloom develops from its early solitary cells, providing clues for early warning of its bloom and timely responding to possible consequences. However, the early prediction requires quantification of the solitary cells for a thorough understanding of bloom formation. Therefore, we developed an accurate, sensitive, and specific qPCR assay for this need. Results show that the accuracy of qPCR was significantly enhanced by ameliorating DNA barcode design, improving genomic DNA extraction, and introducing a strategy of internal amplification control (IAC). This approach reached a quantification limit of 1 cell/reaction, making low-abundance cells (101-103 cells/L) detection possible, and we also observed a plunge in the abundance of the solitary cells before the bloom outbreak in two winters in 2019 and 2020 for the first time, which is quite unique from laboratory results showing an increase instead. The plunge in solitary-cell abundance might be associated with the attachment of solitary cells to solid matrices to form non-solitary attached aggregate, the precursor of colonies, which gains supports from other studies and needs more investigations in the future. Therefore, as the plunge in solitary-cell abundance is a sign of colony formation, it can be used as an early warning indicator to P. globosa bloom.
Collapse
Affiliation(s)
- Jiale Wang
- School of Marine Science, Guangxi Laboratory on the Study of Coral Reef in the South China Sea and Coral Reef Research Center of China, Guangxi University, Nanning 530004, China
| | - Yinghui Wang
- School of Marine Science, Guangxi Laboratory on the Study of Coral Reef in the South China Sea and Coral Reef Research Center of China, Guangxi University, Nanning 530004, China.
| | - Junxiang Lai
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Beibu Gulf Marine Research Center and Guangxi Academy of Sciences, Nanning 530007, China.
| | - Jie Li
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Beibu Gulf Marine Research Center and Guangxi Academy of Sciences, Nanning 530007, China
| | - Kefu Yu
- School of Marine Science, Guangxi Laboratory on the Study of Coral Reef in the South China Sea and Coral Reef Research Center of China, Guangxi University, Nanning 530004, China
| |
Collapse
|
11
|
Zhang SF, Han BB, Shi RJ, Wu FX, Rao YY, Dai M, Huang HH. Quantitative Proteomic Analysis Reveals the Key Molecular Events Driving Phaeocystis globosa Bloom and Dissipation. Int J Mol Sci 2022; 23:ijms232012668. [PMID: 36293526 PMCID: PMC9604223 DOI: 10.3390/ijms232012668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Phaeocystis globosa is a marine-bloom-forming haptophyte with a polymorphic life cycle alternating between free-living cells and a colonial morphotype, that produces high biomass and impacts ecological structure and function. The mechanisms of P. globosa bloom formation have been extensively studied, and various environmental factors are believed to trigger these events. However, little is known about the intrinsic biological processes that drive the bloom process, and the mechanisms underlying P. globosa bloom formation remain enigmatic. Here, we investigated a P. globosa bloom occurring along the Chinese coast and compared the proteomes of in situ P. globosa colonies from bloom and dissipation phases using a tandem mass tag (TMT)-based quantitative proteomic approach. Among the 5540 proteins identified, 191 and 109 proteins displayed higher abundances in the bloom and dissipation phases, respectively. The levels of proteins involved in photosynthesis, pigment metabolism, nitrogen metabolism, and matrix substrate biosynthesis were distinctly different between these two phases. Ambient nitrate is a key trigger of P. globosa bloom formation, while the enhanced light harvest and multiple inorganic carbon-concentrating mechanisms support the prosperousness of colonies in the bloom phase. Additionally, colonies in the bloom phase have greater carbon fixation potential, with more carbon and energy being fixed and flowing toward the colonial matrix biosynthesis. Our study revealed the key biological processes underlying P. globosa blooms and provides new insights into the mechanisms behind bloom formation.
Collapse
Affiliation(s)
- Shu-Fei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Bei-Bei Han
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Rong-Jun Shi
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Feng-Xia Wu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yi-Yong Rao
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Ming Dai
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Hong-Hui Huang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511485, China
- Correspondence:
| |
Collapse
|
12
|
Ren X, Yu Z, Song X, Zhu J, Wang W, Cao X. Effects of modified clay on the formation of Phaeocystis globosa colony revealed by physiological and transcriptomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155985. [PMID: 35597349 DOI: 10.1016/j.scitotenv.2022.155985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The harmful algal bloom (HAB) species Phaeocystis globosa is commonly observed in global temperate and tropical oceans, and colonies of P. globosa exhibit a dominant morphotype during blooms. The use of polyaluminium chloride modified clay (PAC-MC) is an effective mitigation strategy for P. globosa blooms. Although previous studies have found that PAC-MC can stimulate P. globosa colony formation at low concentrations and inhibit it at higher concentrations, the underlying mechanisms of these effects are poorly understood. Here, we comprehensively compared the physiochemical indices and transcriptomic response of residual P. globosa cells after treatment with two concentrations of PAC-MC. The results showed that PAC-MC induced oxidative stress, photosynthetic inhibition, and DNA damage in residual cells. Moreover, it could activate antioxidant responses and enhance the repair of photosynthetic structure and DNA damage in cells. The biosynthesis of polysaccharides was enhanced and genes associated with cell motility were down-regulated after treatment with PAC-MC, resulting in the accumulation of colonial matrixes. After treatment with a low concentration of PAC-MC (0.1 g/L), the residual cells were slightly stressed, including physical damage, oxidative stress and other damage, and polysaccharide synthesis was enhanced to promote colony formation to alleviate environmental stress. Moreover, the damage to residual cells was slight; thus, normal cell function provided abundant energy and matter for colony formation. After treatment with a high concentration of PAC-MC (0.5 g/L), the residual cells suffered severe damage, which disrupted normal physiological processes and inhibited cell proliferation and colony formation. The present study elucidated the concentration-dependent mechanism of PAC-MC affecting the formation of P. globosa colonies and provided a reference for the application of PAC-MC to control P. globosa blooms.
Collapse
Affiliation(s)
- Xiangzheng Ren
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wentao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
13
|
Zhang QC, Liu C, Wang JX, Kong FZ, Niu Z, Xiang L, Yu RC. Intense blooms of Phaeocystis globosa in the South China Sea are caused by a unique "giant-colony" ecotype. HARMFUL ALGAE 2022; 114:102227. [PMID: 35550295 DOI: 10.1016/j.hal.2022.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The haptophyte Phaeocystis globosa, an important causative agent of harmful algal blooms globally, exhibits varying morphological and physiological features and high genetic diversity, yet the relationship among these has never been elucidated. In this study, colony sizes and pigment profiles of 19 P. globosa isolates from the Pacific and Atlantic Oceans were determined. Genetic divergence of these strains was analyzed using the chloroplast rbcS-rpl27 intergenic spacer, a novel high-resolution molecular marker. Strains could be divided into four genetic clades based on these sequences, or two groups based on colony size and the identity of diagnostic pigments (19'-hexanoyloxyfucoxanthin, hex-fuco, and 19'-butanoyloxyfucoxanthin, but-fuco). Three strains from the South China Sea (SCS), all belonging to the same genetic clade, have unique biological features in forming giant colonies and possessing but-fuco as their diagnostic pigment. Based on these findings, we propose that these SCS strains should be a unique "giant-colony" ecotype of P. globosa. During the period 2016-2021, more than 1000 rbcS-rpl27 sequences were obtained from 16 P. globosa colony samples and 18 phytoplankton samples containing solitary P. globosa cells in the SCS. Phylogenetic analysis indicated that >95% of the sequences from P. globosa colonies in the SCS were comprised of the "giant-colony" ecotype, whereas the genetic diversity of solitary cells was much higher. Results demonstrated that intense blooms of P. globosa featuring giant colonies in the SCS were mainly caused by this giant-colony P. globosa ecotype.
Collapse
Affiliation(s)
- Qing-Chun Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Xiu Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan-Zhou Kong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhuang Niu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Xiang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren-Cheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
14
|
Wang F, Deng H, Chen J, Wang Z, Yin R. LncRNA MIAT can regulate the proliferation, apoptosis, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells by targeting miR-150-5p. Bioengineered 2022; 13:6343-6352. [PMID: 35282774 PMCID: PMC9208443 DOI: 10.1080/21655979.2021.2011632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Osteoporosis (OP) is a systemic bone metabolic disease with complicated pathogenesis and is difficult to cure clinically. The regulatory mechanisms of OP are needed to be further investigated. In the present study, we focused on the role of myocardial infarction-associated transcript (MIAT) in OP development and examined the underlying mechanism. The serum expression levels of MIAT in samples from patients with OP and healthy controls were compared using quantitative reverse transcription-PCR (qRT-PCR). The dual-luciferase reporter assay was used to confirm the relationship between MIAT and its potential target microRNA, i.e., miR-150-5p. Moreover, bone marrow-derived mesenchymal stem cells (BMSCs) were cultured and transfected with MIAT shRNA, with or without miR-150-5p inhibitor. EdU staining and colony formation analysis were performed to determine the proliferation ability of these cells. Furthermore, the TUNEL assay and flow cytometry were used to assess BMSC apoptosis. Finally, RT-PCR and Western blot assays were employed to assess the expression of osteogenic differentiation biomarkers. Compared with controls, the expression of MIAT was significantly increased, whereas that of miR-150-5p was markedly decreased in patients with OP. MIAT and miR-150-5p expression levels exhibited a strong negative correlation. Furthermore, osteogenic differentiation indicators were suppressed in serum of OP patients. MIAT was downregulated, and miR-150-5p was upregulated in induced to osteogenic differentiation BMSCs. Furthermore, downregulation of MIAT dramatically promoted osteogenic differentiation, increased proliferation, and inhibited apoptosis in BMSCs; miR-150-5p inhibitor abrogated the effects of MIAT. In conclusion, lncRNA MIAT can regulate the proliferation, apoptosis, and osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Fei Wang
- Department of Orthopedics, China-Japan Union Hospital, Changchun, China
| | - Huimin Deng
- Jilin Medical Products Administration, Changchun, China
| | - Jimin Chen
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaobin Wang
- Department of Orthopedics, Liaohe Hospital, Liaoyuan, China
| | - Ruofeng Yin
- Department of Orthopedics, China-Japan Union Hospital, Changchun, China
| |
Collapse
|
15
|
Hong X, Mao L, Xu L, Hu Q, Jia R. Prostate-specific membrane antigen modulates the progression of prostate cancer by regulating the synthesis of arginine and proline and the expression of androgen receptors and Fos proto-oncogenes. Bioengineered 2022; 13:995-1012. [PMID: 34974814 PMCID: PMC8805960 DOI: 10.1080/21655979.2021.2016086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The expression of prostate-specific membrane antigen (PSMA) is strikingly upregulated during oncogenesis and prostate cancer (PCa) progression, but the functions of this antigen in PCa remain unclear. Here, we constructed PSMA-knockdown LNCaP and 22rv1 cell lines and performed metabonomic and transcriptomic analyses to determine the effects of PSMA on PCa metabolism and transcription. The metabolism of arginine and proline was detected using specific kits. The mRNA and protein expression levels of the identified differentially expressed genes were quantified by RT-qPCR and Western blotting. The proliferation of each cell line was evaluated through CCK-8, EdU and colony formation assays. The migration and invasion abilities of each cell line were detected using wound healing and transwell assays, respectively. PSMA knockdown led to metabolic disorder and abnormal transcription in PCa and resulted in inhibition of the proliferation and metastasis of PCa cells in vitro and in vivo. The depletion of PSMA also promoted the biosynthesis of arginine and proline, inhibited the expression of AR and PSA, and induced the expression of c-Fos and FosB. PSMA plays an important role in the metabolism, proliferation and metastasis of human PCa and may be a promising therapeutic target.
Collapse
Affiliation(s)
- Xi Hong
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Mao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Hu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Zhu Z, Meng R, Smith WO, Doan-Nhu H, Nguyen-Ngoc L, Jiang X. Bacterial Composition Associated With Giant Colonies of the Harmful Algal Species Phaeocystis globosa. Front Microbiol 2021; 12:737484. [PMID: 34721335 PMCID: PMC8555426 DOI: 10.3389/fmicb.2021.737484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/17/2021] [Indexed: 12/05/2022] Open
Abstract
The cosmopolitan algae Phaeocystis globosa forms harmful algal blooms frequently in a number of tropical and subtropical coastal regions in the past two decades. During the bloom, the giant colony, which is formed by P. globosa, is the dominant morphotype. However, the microenvironment and the microbial composition in the intracolonial fluid are poorly understood. Here, we used high-throughput 16S rRNA amplicon sequencing to examine the bacterial composition and predicted functions in intracolonial fluid. Compared with the bacterial consortia in ambient seawater, intracolonial fluids possessed the lower levels of microbial richness and diversity, implying selectivity of bacteria by the unique intracolonial microenvironment enclosed within the P. globosa polysaccharide envelope. The bacterial consortia in intracolonial fluid were dominated by Balneola (48.6% of total abundance) and Labrezia (28.5%). The bacteria and microbial function enriched in intracolonial fluid were involved in aromatic benzenoid compounds degradation, DMSP and DMS production and consumption, and antibacterial compounds synthesis. We suggest that the P. globosa colonial envelope allows for the formation of a specific microenvironment; thus, the unique microbial consortia inhabiting intracolonial fluid has close interaction with P. globosa cells, which may benefit colony development.
Collapse
Affiliation(s)
- Zhu Zhu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Meng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Walker O Smith
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Hai Doan-Nhu
- Vietnam Academy of Science and Technology, Institute of Oceanography, Nha Trang, Vietnam
| | - Lam Nguyen-Ngoc
- Vietnam Academy of Science and Technology, Institute of Oceanography, Nha Trang, Vietnam
| | - Xinjun Jiang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Fu D, Zang L, Li Z, Fan C, Jiang H, Men T. Long non-coding RNA CRNDE regulates the growth and migration of prostate cancer cells by targeting microRNA-146a-5p. Bioengineered 2021; 12:2469-2479. [PMID: 34232111 PMCID: PMC8806644 DOI: 10.1080/21655979.2021.1935402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The function of lncRNA CRNDE and its role in prostate cancer (PC) remains unclear. The aim of this study was to determine the expression level of lncRNA CRNDE in PC tissues and to elucidate its role in PC. The expression levels of lncRNA CRNDE were measured by quantitative reverse transcription polymerase chain reaction. The role of lncRNA CRNDE in PC cells was studied using loss-of-function assays in vitro. Cell proliferation, migration, invasion, and apoptosis were assessed via Cell Counting Kit-8, colony formation, flow cytometry, wound healing, and transwell chamber assays. A luciferase reporter assay was used to characterize the interaction between lncRNA CRNDE and miR-146a-5p. In PC tissues, the expression level of lncRNA CRNDE was upregulated. Moreover, knockdown of lncRNA CRNDE suppressed PC cell proliferation and migration and induced apoptosis in vitro. miR-146a-5p was verified as a direct target of lncRNA CRNDE. Moreover, the inhibition of miR-146a-5p partially counteracted the effects of lncRNA CRNDE on PC cell proliferation, migration, and invasion. In conclusion, lncRNA CRNDE may serve as a cancer promoter in PC by targeting miR-146a-5p. Therefore, lncRNA CRNDE could be a promising target for the clinical treatment of PC.
Collapse
Affiliation(s)
- Dewang Fu
- Department of Urology Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li'e Zang
- Department of Urology Surgery, The First Affiliate Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhaowei Li
- Department of Urology Surgery, The First Affiliate Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chenghui Fan
- Department of Urology Surgery, The First Affiliate Hospital of Jinzhou Medical University, Jinzhou, China
| | - Huamao Jiang
- Department of Urology Surgery, The First Affiliate Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tongyi Men
- Department of Urology Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
18
|
Cytoklepty in the plankton: A host strategy to optimize the bioenergetic machinery of endosymbiotic algae. Proc Natl Acad Sci U S A 2021; 118:2025252118. [PMID: 34215695 DOI: 10.1073/pnas.2025252118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Endosymbioses have shaped the evolutionary trajectory of life and remain ecologically important. Investigating oceanic photosymbioses can illuminate how algal endosymbionts are energetically exploited by their heterotrophic hosts and inform on putative initial steps of plastid acquisition in eukaryotes. By combining three-dimensional subcellular imaging with photophysiology, carbon flux imaging, and transcriptomics, we show that cell division of endosymbionts (Phaeocystis) is blocked within hosts (Acantharia) and that their cellular architecture and bioenergetic machinery are radically altered. Transcriptional evidence indicates that a nutrient-independent mechanism prevents symbiont cell division and decouples nuclear and plastid division. As endosymbiont plastids proliferate, the volume of the photosynthetic machinery volume increases 100-fold in correlation with the expansion of a reticular mitochondrial network in close proximity to plastids. Photosynthetic efficiency tends to increase with cell size, and photon propagation modeling indicates that the networked mitochondrial architecture enhances light capture. This is accompanied by 150-fold higher carbon uptake and up-regulation of genes involved in photosynthesis and carbon fixation, which, in conjunction with a ca.15-fold size increase of pyrenoids demonstrates enhanced primary production in symbiosis. Mass spectrometry imaging revealed major carbon allocation to plastids and transfer to the host cell. As in most photosymbioses, microalgae are contained within a host phagosome (symbiosome), but here, the phagosome invaginates into enlarged microalgal cells, perhaps to optimize metabolic exchange. This observation adds evidence that the algal metamorphosis is irreversible. Hosts, therefore, trigger and benefit from major bioenergetic remodeling of symbiotic microalgae with potential consequences for the oceanic carbon cycle. Unlike other photosymbioses, this interaction represents a so-called cytoklepty, which is a putative initial step toward plastid acquisition.
Collapse
|
19
|
Wang D, Zhang S, Zhang H, Lin S. Omics study of harmful algal blooms in China: Current status, challenges, and future perspectives. HARMFUL ALGAE 2021; 107:102079. [PMID: 34456014 DOI: 10.1016/j.hal.2021.102079] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In the past two decades, the frequency, scale, and scope of harmful algal blooms (HABs) have increased significantly in the coastal waters of China. HABs have become a major ecological and environmental problem in China that seriously threatens the structure and function of marine ecosystems, the sustainable development of mariculture, and the health of human beings. Much effort has been devoted to studying HABs in China, and great achievements have been made in understanding the oceanographic and ecological mechanisms of HABs as well as the biology and physiological ecology of HAB-causing species. Furthermore, state-of-the-art omics technologies, such as transcriptomics and proteomics, have been used to elucidate the physiological responses of HAB-causing species to environmental changes, the biosynthesis of paralytic shellfish toxin, and the mechanisms underlying the formation of HABs. This review summarizes omics studies of HABs in China over the past few years and discusses challenges and future perspectives of HAB research.
Collapse
Affiliation(s)
- Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Shufeng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Hao Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science/College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
20
|
Liu Q, Zhang RJ, Huang L, Zhang JW, Zhuo SQ, Wang Z, Yang YF, Abate R, Chen CP, Gao YH, Liang JR. The effect of Ditylum brightwellii (Bacillariophyceae) on colony development of bloom forming species Phaeocystis globosa (Prymnesiophyceae) under nutrient-replete condition. MARINE POLLUTION BULLETIN 2021; 167:112336. [PMID: 33865038 DOI: 10.1016/j.marpolbul.2021.112336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
To improve our knowledge of the factors regulating Phaeocystis globosa colony formation, the effects of the diatom Ditylum brightwellii on P. globosa colony development were investigated using co-culture and cell-free filtrate approaches. The co-culture experiments showed the moderate abundance of D. brightwellii significantly increased the number and size of colonies, whereas a dramatically decreased effect from high abundance of D. brightwellii. The low abundance of D. brightwellii promoted early formation of P. globosa colony. The cell-free filtrate experiments indicated that culture-filtrates from the exponential phase of D. brightwellii were stimulatory for P. globosa colony formation with more and bigger colonies formed, whereas an inhibitory effect from its senescence phase filtrates. D. brightwellii may influence P. globosa colony formation by regulating the growth of P. globosa solitary cells. Our results suggest that D. brightwellii influences P. globosa colony development, but its effects vary according to its concentrations and growth phases.
Collapse
Affiliation(s)
- Qi Liu
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Rui-Juan Zhang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Lu Huang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jia-Wei Zhang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Su-Qin Zhuo
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Zhen Wang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Yi-Fan Yang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Rediat Abate
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Chang-Ping Chen
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Ya-Hui Gao
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen 361102, Fujian, China.
| | - Jun-Rong Liang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
21
|
Xiong T, Zhang S, Kang Z, Zhang T, Li S. Dose-Dependent Physiological and Transcriptomic Responses of Lettuce ( Lactuca sativa L.) to Copper Oxide Nanoparticles-Insights into the Phytotoxicity Mechanisms. Int J Mol Sci 2021; 22:3688. [PMID: 33916236 PMCID: PMC8036535 DOI: 10.3390/ijms22073688] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 01/05/2023] Open
Abstract
Understanding the complex mechanisms involved in plant response to nanoparticles (NPs) is indispensable in assessing the environmental impact of nano-pollutants. Plant leaves can directly intercept or absorb NPs deposited on their surface; however, the toxicity mechanisms of NPs to plant leaves are unclear. In this study, lettuce leaves were exposed to copper oxide nanoparticles (CuO-NPs, 0, 100, and 1000 mg/L) for 15 days, then physiological tests and transcriptomic analyses were conducted to evaluate the negative impacts of CuO-NPs. Both physiological and transcriptomic results demonstrated that CuO-NPs adversely affected plant growth, photosynthesis, and enhanced reactive oxygen species (ROS) accumulation and antioxidant system activity. The comparative transcriptome analysis showed that 2270 and 4264 genes were differentially expressed upon exposure to 100 and 1000 mg/L CuO-NPs. Gene expression analysis suggested the ATP-binding cassette (ABC) transporter family, heavy metal-associated isoprenylated plant proteins (HIPPs), endocytosis, and other metal ion binding proteins or channels play significant roles in CuO-NP accumulation by plant leaves. Furthermore, the variation in antioxidant enzyme transcript levels (POD1, MDAR4, APX2, FSDs), flavonoid content, cell wall structure and components, and hormone (auxin) could be essential in regulating CuO-NPs-induced stress. These findings could help understand the toxicity mechanisms of metal NPs on crops, especially NPs resulting from foliar exposure.
Collapse
Affiliation(s)
| | | | | | | | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China; (T.X.); (S.Z.); (Z.K.); (T.Z.)
| |
Collapse
|