1
|
Guo S, Zeng H, Zhu X, Liu L, Chen B, Xiao X. Variations of silicon species, dissolution and crystallinity within sichars prepared under different heating rate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175640. [PMID: 39168322 DOI: 10.1016/j.scitotenv.2024.175640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/20/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Silicon within Si-rich biochars (sichar) plays a crucial role in immobilizing heavy metals and providing slow-releasing bioavailable silicon for silicophilic plants. However, the impact of heating rate on the silicon properties and carbon‑silicon interactions in sichars remains unclear. In this study, rice husk was used as a silicon-rich biomass to prepare sichars at different heating rates (10, 30 and 60 °C per minute, and ultra-fast-pyrolysis), then experiments such as silicon concentration measurement, Raman and XRD characterization were conducted. The results showed that a faster heating rate reduced the carbon content during pyrolysis while promoted the formation of amorphous silica, resulting in a threefold increase in dissolved silicon in sichars prepared at 400 °C. Additionally, we observed the formation of a meta-stable SiO2 polymorph (tridymite) in rice husk-derived biochars under fast heating, differing from the previously observed quartz generated at slow heating rates. Regarding the CSi relationship, a faster heating rate facilitated the removal of the surface carbon layer, exposing the underlying silicon layer. This led to more soluble silicon species and less encapsulated silicon, resulting in a continuous release and cumulative silicon dissolution amount 1.2 times and 1.6-1.9 times higher, respectively, than those in slow heating rate-derived sichars. Consequently, this enhanced silicon uptake in rice seedlings. Our findings indicate that beyond pyrolysis temperature, the heating rate significantly affects the silicon species, silicon dissolution behavior, and carbon‑silicon relationships of biochar, ultimately determines the properties and applications of sichars.
Collapse
Affiliation(s)
- Siwei Guo
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Huili Zeng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaomin Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Lin Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Xin Xiao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Sokołowski A, Dybowski MP, Oleszczuk P, Gao Y, Czech B. Biochar mitigates the postponed bioavailability and toxicity of phthalic acid esters in the soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173933. [PMID: 38880153 DOI: 10.1016/j.scitotenv.2024.173933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
Observed nowadays wide pollution of the environment with microplastic and phthalic acid esters (PAEs) (such as dimethyl phthalate, DMP; diethyl phthalate, DEP; dibutyl phthalate, DBP; benzyl butyl phthalate, BBP; di-(2-ethylhexyl) phthalate, DEHP and di-n-octyl phthalate, DNOP) is a result of their increased production and usage. Weak bonding with polymer matrix enables their easier mobilization in the environment and increased bioavailability. The aim of the presented studies was the estimation of the fate of six priority PAEs in the soil-vegetable system and the application of biochar to immobilize PAEs in the soil preventing their bioavailability to lettuce. Both the acute (one full lettuce development period) and prolongated effect (lettuce cultivated after 10 weeks from the first PAEs contamination) were estimated to examine the long-time exposure under crop rotation. The addition of 1 % of corn-derived biochar immobilized PAEs in the soil efficiently (up to 4 times increased concentration) with the following order: DBP < DEP < DMP < DEHP < DNOP < BBP. Bioavailable PAEs were determined in lettuce roots (DMP, BBP, DEHP), and lettuce leaves (DEP, DBP, DNOP) but the presence of biochar lowered their content. PAEs, although not available for lettuce, were available for other organisms, confirming that the bioavailability or lack of nutrients is of great importance in PAEs-polluted soil. In long-time experiments, without biochar amendment, all PAEs were 3-12 times more bioavailable and were mainly accumulated in lettuce roots. The biochar addition significantly reduces (1.5-11 times) PAEs bioavailability over time. However, the PAEs content in roots remained significantly higher in samples with crop rotation compared to samples where only lettuce was grown. The results confirmed that biochar addition to the soil reduces their bioavailability and mobility inside the plant, limiting their transport from roots to leaves and reducing the exposure risk but confirming that lettuce leaves may be a safe food when cultivated in PAEs-polluted soil.
Collapse
Affiliation(s)
- Artur Sokołowski
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Michał P Dybowski
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
3
|
Prateep Na Talang R, Na Sorn W, Polruang S, Sirivithayapakorn S. Alternative crop residue management practices to mitigate the environmental and economic impacts of open burning of agricultural residues. Sci Rep 2024; 14:14372. [PMID: 38909099 PMCID: PMC11193774 DOI: 10.1038/s41598-024-65389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024] Open
Abstract
Deliberate open burning of crop residues emits greenhouse gases and toxic pollutants into the atmosphere. This study investigates the environmental impacts (global warming potential, GWP) and economic impacts (net cash flow) of nine agricultural residue management schemes, including open burning, fertilizer production, and biochar production for corn residue, rice straw, and sugarcane leaves. The environmental assessment shows that, except the open burning schemes, fossil fuel consumption is the main contributor of the GWP impact. The fertilizer and biochar schemes reduce the GWP impact including black carbon by 1.88-1.96 and 2.46-3.22 times compared to open burning. The biochar schemes have the lowest GWP (- 1833.19 to - 1473.21 kg CO2-eq/ton). The economic assessment outcomes reveal that the biochar schemes have the highest net cash flow (222.72-889.31 US$2022/ton or 1258.15-13409.16 US$2022/ha). The expenditures of open burning are practically zero, while the biochar schemes are the most costly to operate. The most preferable agricultural residue management type is the biochar production, given the lowest GWP impact and the highest net cash flow. To discourage open burning, the government should tailor the government assistance programs to the needs of the farmers and make the financial assistance more accessible.
Collapse
Affiliation(s)
- Rutjaya Prateep Na Talang
- Environmental Engineering Department, Faculty of Engineering, Environmental Modeling Consultant Center, Kasetsart University, Bangkok, 10900, Thailand
| | - Warangluck Na Sorn
- Environmental Engineering Department, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Sucheela Polruang
- Environmental Engineering Department, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Sanya Sirivithayapakorn
- Environmental Engineering Department, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
4
|
Liang L, He J, Zhou Q, He L, Tian K, Yang J, He J, Luo Q. Enhanced adsorption of phosphate by rice straw-based biochar prepared via metal impregnation and bio-template technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39177-39193. [PMID: 38814556 DOI: 10.1007/s11356-024-33795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Phosphate removal from water through green, highly efficient technologies has received much attention. Biochar is an effective adsorbent for phosphate removal. However, adsorption capacity of phosphate on pristine rice straw-based biochar was not optimistic due to low anion exchange capacity. In this study, Fe-modified, Mg-modified and MgFe-modified rice straw-based biochar (Fe-BC, Mg-BC and MgFe-BC) were prepared by combining metal impregnation and biological template methods to improve the adsorption capacity of phosphate. The surface characteristics of biochar and the adsorption behavior of phosphate on biochar were investigated. The modified biochar had the specific surface area of 17.910-39.336 m2/g, and their surfaces were rich in a large number of functional groups and metal oxides. Phosphate release was observed on pristine rice straw-based biochar without metal impregnation. The maximum adsorption capacities of phosphate on MgFe-BC, Mg-BC and Fe-BC at 298 K were 6.93, 5.75 and 0.23 mg/g, respectively. Adsorption was a spontaneous endothermic process, while chemical adsorption dominated and electrostatic attraction and pores filling existed simultaneously. Based on the site energy distribution theory study, the standard deviation of MgFe-BC decreased from 6.96 to 4.64 kJ/mol with temperature increasing, which proved that the higher the temperature would cause the lower heterogeneity. Moreover, the effects of pH, humic acid, co-existing ions and ionic strength on phosphate adsorption of MgFe-BC were also discussed. MgFe-BC with fine pores and efficient adsorption sites is an ideal adsorbent for phosphate removal from water.
Collapse
Affiliation(s)
- Li Liang
- Low-Cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Jing He
- Low-Cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China.
| | - Qiuhong Zhou
- Changjiang Engineering Group, Wuhan, 430010, People's Republic of China
| | - Liangyan He
- Low-Cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Kening Tian
- Low-Cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Jing Yang
- Low-Cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Junwei He
- Low-Cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Qiao Luo
- Bureau of Ecology and Environment of Zizhong, Neijiang, 641215, People's Republic of China
| |
Collapse
|
5
|
Li R, Zhang C, Hui J, Shen T, Zhang Y. The application of P-modified biochar in wastewater remediation: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170198. [PMID: 38278277 DOI: 10.1016/j.scitotenv.2024.170198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Phosphorus modified biochar (P-BC) is an effective adsorbent for wastewater remediation, which has attracted widespread attention due to its low cost, vast source, unique surface structure, and abundant functional groups. However, there is currently no comprehensive analysis and review of P-BC in wastewater remediation. In this study, a detailed introduction is given to the synthesis method of P-BC, as well as the effects of pyrolysis temperature and residence time on physical and chemical properties and adsorption performance of the material. Meanwhile, a comprehensive investigation and evaluation were conducted on the different biomass types and phosphorus sources used to synthesize P-BC. This article also systematically compared the adsorption efficiency differences between P-BC and raw biochar, and summarized the adsorption mechanism of P-BC in removing pollutants from wastewater. In addition, the effects of P-BC composite with other materials (element co-doping, polysaccharide stabilizers, microbial loading, etc.) on physical and chemical properties and pollutant adsorption capacity of the materials were investigated. Some emerging applications of P-BC were also introduced, including supercapacitors, CO2 adsorbents, carbon sequestration, soil heavy metal remediation, and soil fertility improvement. Finally, some valuable suggestions and prospects were proposed for the future research direction of P-BC to achieve the goal of multiple utilization.
Collapse
Affiliation(s)
- Ruizhen Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Congyu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jing Hui
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tieheng Shen
- Heilongjiang Agricultural Technology Promotion Station, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Gęca M, Wiśniewska M, Nowicki P. Preparation of biochars by conventional pyrolysis of herbal waste and their potential application for adsorption and energy purposes. Chemphyschem 2024; 25:e202300507. [PMID: 38200663 DOI: 10.1002/cphc.202300507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/30/2023] [Indexed: 01/12/2024]
Abstract
The nettle, sage, mint and lemon balm herbs were used for biochars preparation. The physicochemical parameters of obtained materials were related to the lignocellulose composition of the precursors. It has been proved that the content of mineral substance has a significant influence on development of surface area, whereas the amount of hemicellulose affects the content of surface functional groups. It has been also shown that the obtained biochars are characterized by great energy parameters. The higher heating values (HHV) of the carbonaceous materials are comparable to the typical energy sources. The greatest HHV value (20.36 MJ/kg) was characteristic for the biochar obtained by pyrolysis of the lemon balm. In addition, the biochars were used for ionic polymers adsorption from one- and two-components solutions. Despite the adsorbed amounts of macromolecules are not great is has been proved that polyethylenimine and polyacrylic acid have positive influence on their mutual adsorption.
Collapse
Affiliation(s)
- Marlena Gęca
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie- Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Małgorzata Wiśniewska
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie- Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Piotr Nowicki
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
7
|
Tan L, Nie Y, Chang H, Zhu L, Guo K, Ran X, Zhong N, Zhong D, Xu Y, Ho SH. Adsorption performance of Ni(II) by KOH-modified biochar derived from different microalgae species. BIORESOURCE TECHNOLOGY 2024; 394:130287. [PMID: 38181998 DOI: 10.1016/j.biortech.2023.130287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Microalgae biochar is potential adsorbents to remove heavy metals from wastewater due to abundant functional groups, high porosity and wide sources, but performance is not fully developed since it depends on microalgae species attributing to distinct morphology and biomass compositions. Here, two microalgae species Chlorella Pyrenoidosa and Scenedesmus Obliquus were used for biochar preparation via KOH-modification, biochar properties and their influences on Ni(II) adsorption were investigated. Ni(II) adsorption performances responding to biochar properties and operating conditions were upgraded via progressive optimization and response surface methodology. Together, adsorption isotherms and kinetics were analyzed to obtain significant factors for Ni(II) removal. As results, 100 % of Ni(II) removal was achieved under 100 mg/L initial Ni(II) concentration as pH was higher than the biochar zero-charge point of 6.87 with low biochar dosage (0.5 g/L), which provides an efficient approach for heavy metal removal from wastewater with microalgae biochar.
Collapse
Affiliation(s)
- Ling Tan
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; School of Resources & Environmental Science, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Yudong Nie
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Haixing Chang
- School of Resources & Environmental Science, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, China.
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Kehong Guo
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiongwei Ran
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Nianbing Zhong
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Dengjie Zhong
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yunlan Xu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| |
Collapse
|
8
|
Silva ÁMD, Cupertino GFM, Cezario LFC, Araujo CPD, Simões IM, Alexandre RS, Silva CBD, Passos RR, Brito JO, Dias Júnior AF. Densified biochar capsules as an alternative to conventional seedings. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119305. [PMID: 37866189 DOI: 10.1016/j.jenvman.2023.119305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
The application of biochar in soil provides various benefits that can vary in intensity as the pyrolysis temperature increases. However, its low density makes this material easily transportable and prone to being removed from the system. The objective of this study was to investigate the pyrolysis temperatures and compression pressure of densified biochar carrier capsules on the physiological quality of Schizolobium parahyba var. amazonicum seeds. Produced at three final pyrolysis temperatures (300, 600, and 900 °C), the biochar was characterized through bulk and true density analyses, immediate composition, pH, electrical conductivity, cation exchange capacity, water-soluble carbon, characterization of organic structures by FTIR, and PAH analysis. Subsequently, the biochar was compacted by briquetting at two compression pressures (50 and 200 psi) with one seed per capsule, and germination, emergence, and quality of generated seedlings were evaluated. After verifying residue normality and variance homogeneity, analysis of variance was conducted following a completely randomized design in a 3 × 2 factorial arrangement, with four replications per treatment and two additional control treatments. Upon identifying significant differences, regression model adjustments were performed. Cluster-based multivariate analysis was used to identify similarities among the studied treatments, both for capsules and controls. Pyrolysis temperature and compression pressure influenced seed germination, emergence, and initial seedling growth. Lower pressure favored shoot development, while higher pressure favored root development and generated seedlings of higher quality. The benefits of biochar to soil, combined with the implementation of seeds, make the production of densified biochar capsules an alternative to conventional seedings, potentially reducing high energy and financial costs and enabling the recovery of degraded areas, even in difficult-to-access regions.
Collapse
Affiliation(s)
- Álison Moreira da Silva
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES). Av. Governador Lindemberg, 316, 29550-000, Jerônimo Monteiro, Espírito Santo, Brazil; Department of Forests Sciences, University of São Paulo, "Luiz de Queiroz" College of Agriculture (USP/ESALQ), Av. Pádua Dias, 11, 13418-900, Piracicaba, São Paulo, Brazil.
| | - Gabriela Fontes Mayrinck Cupertino
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES). Av. Governador Lindemberg, 316, 29550-000, Jerônimo Monteiro, Espírito Santo, Brazil.
| | - Luis Filipe Cabral Cezario
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES). Av. Governador Lindemberg, 316, 29550-000, Jerônimo Monteiro, Espírito Santo, Brazil.
| | - Caroline Palacio de Araujo
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES). Av. Governador Lindemberg, 316, 29550-000, Jerônimo Monteiro, Espírito Santo, Brazil.
| | - Ingridh Medeiros Simões
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES). Av. Governador Lindemberg, 316, 29550-000, Jerônimo Monteiro, Espírito Santo, Brazil.
| | - Rodrigo Sobreira Alexandre
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES). Av. Governador Lindemberg, 316, 29550-000, Jerônimo Monteiro, Espírito Santo, Brazil.
| | - Clíssia Barboza da Silva
- Laboratory of Radiobiology and Environment, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil.
| | - Renato Ribeiro Passos
- Department of Agronomy, Federal University of Espírito Santo (UFES). Alto Universitário, 29500-000, Alegre, Espírito Santo, Brazil.
| | - José Otávio Brito
- Department of Forests Sciences, University of São Paulo, "Luiz de Queiroz" College of Agriculture (USP/ESALQ), Av. Pádua Dias, 11, 13418-900, Piracicaba, São Paulo, Brazil.
| | - Ananias Francisco Dias Júnior
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES). Av. Governador Lindemberg, 316, 29550-000, Jerônimo Monteiro, Espírito Santo, Brazil.
| |
Collapse
|
9
|
Xiu L, Gu W, Sun Y, Wu D, Wang Y, Zhang H, Zhang W, Chen W. The fate and supply capacity of potassium in biochar used in agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165969. [PMID: 37541494 DOI: 10.1016/j.scitotenv.2023.165969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/07/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
We used chemical extraction, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) to study the potassium (K) in biochar prepared from corn straw at different temperatures (300 °C, 500 °C, 700 °C and 900 °C). The characteristics of biochar were analyzed through Fourier transform infrared spectroscopy (FTIR) and specific surface area analysis. We found that the potassium in biochar can be divided into water soluble potassium, exchangeable potassium, non-exchangeable potassium, and insoluble potassium according to the availability of agricultural potassium. The fate of potassium in straw changed as follows: with increasing pyrolysis temperature, the proportion of the sum of exchangeable and non-exchangeable potassium decreased, and the proportions of insoluble and lost potassium increased. The total, water soluble and exchangeable potassium contents in biochar were highest at 700 °C. The non-exchangeable and insoluble potassium contents were highest at 300 °C and 900 °C, respectively. Kinetics experiments were conducted to determine the different fates of potassium released from biochar at different temperatures; pot experiments were also undertaken. The release of different forms of potassium in biochar at different temperatures is mainly dominated by heterogeneous diffusion. Biochar increased not only the content of different forms of potassium in soil but also the potassium content of soybean stems and leaves. We calculated the potassium supply capacity of biochar by two strategies, measurements of the potassium content in biochar and the conversion rate of potassium in straw during pyrolysis. The most active and efficient potassium supply capacities were 33.60 g·kg-1 and 9.53 g·kg-1 at 700 °C and 300 °C, respectively. Biochar provides readily available (water soluble and exchangeable) potassium and a long-term (non-exchangeable) potassium supply to soil.
Collapse
Affiliation(s)
- Liqun Xiu
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenqi Gu
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanyuan Sun
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Di Wu
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuning Wang
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Honggui Zhang
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Weiming Zhang
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China.
| | - Wenfu Chen
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
10
|
Jayakumar M, Hamda AS, Abo LD, Daba BJ, Venkatesa Prabhu S, Rangaraju M, Jabesa A, Periyasamy S, Suresh S, Baskar G. Comprehensive review on lignocellulosic biomass derived biochar production, characterization, utilization and applications. CHEMOSPHERE 2023; 345:140515. [PMID: 37871877 DOI: 10.1016/j.chemosphere.2023.140515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Biochar is an ample source of organic carbon prepared by the thermal breakdown of biomass. Lignocellulosic biomass is a promising precursor for biochar production, and has several applications in various industries. In addition, biochar can be applied for environmental revitalization by reducing the negative impacts through intrinsic mechanisms. In addition to its environmentally friendly nature, biochar has several recyclable and inexpensive benefits. Nourishing and detoxification of the environment can be undertaken using biochar by different investigators on account of its excellent contaminant removal capacity. Studies have shown that biochar can be improved by activation to remove toxic pollutants. In general, biochar is produced by closed-loop systems; however, decentralized methods have been proven to be more efficient for increasing resource efficiency in view of circular bio-economy and lignocellulosic waste management. In the last decade, several studies have been conducted to reveal the unexplored potential and to understand the knowledge gaps in different biochar-based applications. However, there is still a crucial need for research to acquire sufficient data regarding biochar modification and management, the utilization of lignocellulosic biomass, and achieving a sustainable paradigm. The present review has been articulated to provide a summary of information on different aspects of biochar, such as production, characterization, modification for improvisation, issues, and remediation have been addressed.
Collapse
Affiliation(s)
- Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia.
| | - Abas Siraj Hamda
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia
| | - Lata Deso Abo
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia
| | - Bulcha Jifara Daba
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia
| | - Sundramurthy Venkatesa Prabhu
- Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Ethiopia
| | - Magesh Rangaraju
- Department of Chemical Engineering, Wachemo University, Hossana, Ethiopia
| | - Abdisa Jabesa
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - Sagadevan Suresh
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India; School of Engineering, Lebanese American University, Byblos, 1102, 2801, Lebanon.
| |
Collapse
|
11
|
Kumar K, Kumar R, Kaushal S, Thakur N, Umar A, Akbar S, Ibrahim AA, Baskoutas S. Biomass waste-derived carbon materials for sustainable remediation of polluted environment: A comprehensive review. CHEMOSPHERE 2023; 345:140419. [PMID: 37848104 DOI: 10.1016/j.chemosphere.2023.140419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
In response to the growing global concern over environmental pollution, the exploration of sustainable and eco-friendly materials derived from biomass waste has gained significant traction. This comprehensive review seeks to provide a holistic perspective on the utilization of biomass waste as a renewable carbon source, offering insights into the production of environmentally benign and cost-effective carbon-based materials. These materials, including biochar, carbon nanotubes, and graphene, have shown immense promise in the remediation of polluted soils, industrial wastewater, and contaminated groundwater. The review commences by elucidating the intricate processes involved in the synthesis and functionalization of biomass-derived carbon materials, emphasizing their scalability and economic viability. With their distinctive structural attributes, such as high surface areas, porous architectures, and tunable surface functionalities, these materials emerge as versatile tools in addressing environmental challenges. One of the central themes explored in this review is the pivotal role that carbon materials play in adsorption processes, which represent a green and sustainable technology for the removal of a diverse array of pollutants. These encompass noxious organic compounds, heavy metals, and organic matter, encompassing pollutants found in soils, groundwater, and industrial wastewater. The discussion extends to the underlying mechanisms governing adsorption, shedding light on the efficacy and selectivity of carbon-based materials in different environmental contexts. Furthermore, this review delves into multifaceted considerations, spanning the spectrum from biomass and biowaste resources to the properties and applications of carbon materials. This holistic approach aims to equip researchers and practitioners with a comprehensive understanding of the synergistic utilization of these materials, ultimately facilitating effective and affordable strategies for combatting industrial wastewater pollution, soil contamination, and groundwater impurities.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India.
| | - Ravi Kumar
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Shweta Kaushal
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Naveen Thakur
- Department of Physics, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Ahmed A Ibrahim
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|
12
|
Koné S, Galiegue X. Potential Development of Biochar in Africa as an Adaptation Strategy to Climate Change Impact on Agriculture. ENVIRONMENTAL MANAGEMENT 2023; 72:1189-1203. [PMID: 37115236 DOI: 10.1007/s00267-023-01821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
One of the most important obstacles to increasing agricultural production yields worldwide, especially in developing economies such as those in Africa is the continued degradation of soils due to climate change. In response to this threat, one of the strategies advocated is biochar technology, which is one of the emerging sustainable and climate-friendly soil amendments. This article reviews a brief description of biochar, the advantages and disadvantages of its use, and the prospects for developing its potential impact on agricultural productivity in African countries with a case study in Burkina Faso. Biochar is mainly useful for soil carbon sequestration, increasing and maintaining soil fertility, environmental management, and as a renewable energy source. However, it can have secondary effects including negative impacts on human health, pollution, and water quality. Furthermore, the positive results of biochar use in Africa suggest a prospect for ensuring the feasibility of biochar technology in policy decisions as a sustainable alternative to agricultural land management in the combat against climate change. As recommendations, a combination of improved seed varieties, and SWC (Soil and Water Conservation) techniques with the application of Biochar will be a perfect innovation for an intelligent adaptation practice to the destructive action of climate change in agriculture.
Collapse
Affiliation(s)
- Sita Koné
- Department of Agricultural Economics, Faculty of Agriculture, Ege University, 35100, Izmir, Bornova, Turkey.
| | - Xavier Galiegue
- Laboratoire d'Economie d'Orléans, Université d'Orléans, UMR7322 Faculté de Droit d'Economie et de Gestion Rue de Blois - BP 26739 45067 ORLEANS Cedex 2, Orléans, France
| |
Collapse
|
13
|
Ociński D, Jacukowicz-Sobala I, Augustynowicz J, Wołowski K, Cantero DA, García-Serna J, Pińkowska H, Przejczowski R. Algae from Cr-containing infiltrate bioremediation for valorised chemical production - Seasonal availability, composition, and screening studies on hydrothermal conversion. BIORESOURCE TECHNOLOGY 2023; 389:129798. [PMID: 37793554 DOI: 10.1016/j.biortech.2023.129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Integrating bioremediation of toxic wastewater with value-added production is increasing interest, but - due to some essential problems - it is hardly applied in industrial practice. The aim of the study was an annual observation of the taxonomic and biochemical composition of various Cr-resistant algal communities grown in the existing Cr-containing infiltrate treatment system, selection of the most suitable algal biomass for infiltrates bioremediation and chromium-loaded algae conversion under mild subcritical conditions. Considering continuous availability and relatively constant chemical composition, Cladophora sp. was selected for utilisation in the chromium bioremediation system, simultaneously as a waste biomass source suitable for hydrothermal conversion. Screening studies conducted in a continuous pilot plant confirmed the possibility of selective extraction of saccharides and their separation from the metals remaining in the solid residual. The negligible concentration of metals in the obtained sugar-rich aqueous phase is essential for its further use in biotechnological processes.
Collapse
Affiliation(s)
- Daniel Ociński
- Department of Chemical Technology, Wroclaw University of Economics and Business, 118/120 Komandorska Street, 53-345 Wrocław, Poland.
| | - Irena Jacukowicz-Sobala
- Department of Chemical Technology, Wroclaw University of Economics and Business, 118/120 Komandorska Street, 53-345 Wrocław, Poland
| | - Joanna Augustynowicz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland
| | - Konrad Wołowski
- W. Szafer Institute of Botany, Polish Academy of Sciences, ul. Lubicz 46, 31-512 Kraków, Poland
| | - Danilo A Cantero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Escuela de Ingenierías Industriales, 47011 Valladolid, Spain
| | - Juan García-Serna
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Escuela de Ingenierías Industriales, 47011 Valladolid, Spain
| | - Hanna Pińkowska
- Department of Chemical Technology, Wroclaw University of Economics and Business, 118/120 Komandorska Street, 53-345 Wrocław, Poland
| | | |
Collapse
|
14
|
Fu J, Zhou X, He Y, Liu R, Yao Y, Zhou G, Chen H, Zhou L, Fu Y, Bai SH. Co-application of biochar and organic amendments on soil greenhouse gas emissions: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:166171. [PMID: 37582442 DOI: 10.1016/j.scitotenv.2023.166171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Biochar has been shown to reduce soil greenhouse gas (GHG) and increase nutrient retention in soil; however, the interaction between biochar and organic amendments on GHG emissions remain largely unclear. In this study, we collected 162 two-factor observations to explore how biochar and organic amendments jointly affect soil GHG emissions. Our results showed that biochar addition significantly increased soil CO2 emission by 8.62 %, but reduced CH4 and N2O emissions by 27.0 % and 23.9 %, respectively. Meanwhile, organic amendments and the co-application with biochar resulted in an increase of global warming potential based on the 100-year time horizon (GWP100) by an average of 18.3 % and 26.1 %. More importantly, the interactive effect of biochar and organic amendments on CO2 emission was antagonistic (the combined effect was weaker than the sum of their individual effects), while additive on CH4 and N2O emissions. Additionally, our results suggested that when biochar is co-applied with organic amendments, soil GHG emissions were largely influenced by soil initial total carbon, soil texture, and biochar feedstocks. Our work highlights the important interactive effects of biochar and organic amendments on soil GHG emissions, and provides new insights for promoting ecosystem sustainability as well as mitigating future climate change.
Collapse
Affiliation(s)
- Jia Fu
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xuhui Zhou
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yanghui He
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Ruiqiang Liu
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yixian Yao
- Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Guiyao Zhou
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012 Sevilla, Spain
| | - Hongyang Chen
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lingyan Zhou
- Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yuling Fu
- Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shahla Hosseini Bai
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
15
|
Sokołowski A, Jędruchniewicz K, Kobyłecki R, Zarzycki R, Różyło K, Wang H, Czech B. Plant-Waste-Derived Sorbents for Nitazoxanide Adsorption. Molecules 2023; 28:5919. [PMID: 37570889 PMCID: PMC10421272 DOI: 10.3390/molecules28155919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The increased application of drugs during the COVID-19 pandemic has resulted in their increased concentration in wastewater. Conventional wastewater treatment plants do not remove such pollutants effectively. Adsorption is a cheap, effective, and environmentally friendly method that can accomplish this. On the other hand, maintaining organic waste is required. Thus, in this study, plant waste-derived pelletized biochar obtained from different feedstock and pyrolyzed at 600 °C was applied for the adsorption of nitazoxanide, an antiparasitic drug used for the treatment of SARS-CoV-2. The adsorption was fast and enables one to remove the drug in one hour. The highest adsorption capacity was noted for biochar obtained from biogas production (14 mg/g). The process of NTZ adsorption was governed by chemisorption (k2 = 0.2371 g/mg min). The presence of inorganic ions had a detrimental effect on adsorption (Cl-, NO3- in 20-30%) and carbonates were the most effective in hindering the process (60%). The environmentally relevant concentration of DOM (10 mg/L) did not affect the process. The model studies were supported by the results with a real wastewater effluent (15% reduction). Depending on the applied feedstock, various models described nitazoxanide adsorption onto tested biochars. In summary, the application of carbonaceous adsorbents in the pelletized form is effective in nitazoxanide adsorption.
Collapse
Affiliation(s)
- Artur Sokołowski
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland; (A.S.); (K.J.)
| | - Katarzyna Jędruchniewicz
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland; (A.S.); (K.J.)
| | - Rafał Kobyłecki
- Department of Advanced Energy Technologies, Częstochowa University of Technology, Dąbrowskiego 73, 42-201 Częstochowa, Poland; (R.K.); (R.Z.)
| | - Robert Zarzycki
- Department of Advanced Energy Technologies, Częstochowa University of Technology, Dąbrowskiego 73, 42-201 Częstochowa, Poland; (R.K.); (R.Z.)
| | - Krzysztof Różyło
- Department of Herbology and Plant Cultivation Techniques, University of Life Sciences in Lublin, 20-033 Lublin, Poland;
| | - Haitao Wang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China;
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland; (A.S.); (K.J.)
| |
Collapse
|
16
|
Nobre JRC, Queiroz LS, Castro JP, Pego MFF, Hugen LN, Costa CEFD, Pardauil JDJR, Nascimento LASD, Rocha Filho GND, Zamian JR, Souza ECD, Bianchi ML. Potential of agro-industrial residues from the Amazon region to produce activated carbon. Heliyon 2023; 9:e17189. [PMID: 37483770 PMCID: PMC10362268 DOI: 10.1016/j.heliyon.2023.e17189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
Thousands of tons of residual lignocellulosic biomass are produced and discarded by agroindustries in the Amazon. These biomasses could be harnessed and used in the preparation of activated carbon, in view of the growing demand for this product with high added value, however, little is known about their characteristics, in addition to their potential as precursors of activated carbon. Therefore, the aim of this work was to evaluate the potential of four different biomasses in the preparation and quality of activated carbon. Residues from the processing of the fruits of acai, babassu, Brazil nut, and oil palm were collected, characterized, carbonized, physically activated with CO2, and characterized. The contents of the total extractives, insoluble lignin, minerals, holocellulose, and elemental (CHNS-O) were analyzed. The surface area and surface morphology were determined from the AC produced, and adsorption tests for methylene blue and phenol were performed. The four biomasses showed potential for use in the preparation of CA; the residues presented high contents of lignin (21.83-55.76%) and carbon (46.49-53.79%). AC were predominantly microporous, although small mesopores could be observed. The AC had a surface area of 569.65-1101.26 m2 g-1, a high methylene blue (93-390 mg g-1), and phenol (159-595 mg g-1) adsorption capacities. Babassu-AC stood out compared to the AC of the other analyzed biomasses, reaching the best results.
Collapse
Affiliation(s)
- João Rodrigo Coimbra Nobre
- Department of Technology and Naturals Resources (DTRN), State University of Pará, Campus V, Travessa Éneas Pinheiro, Marco, Belém, CEP 68625-000, Brazil
- Department of Forest Science (DCF), Federal University of Lavras, C.P. 3037, 37200-000, Lavras, MG, Brazil
| | - Leandro Santos Queiroz
- Research Laboratory and Fuel Analysis, Laboratory of Amazon Oils and Graduate in Chemistry Program, Federal University of Pará, CEP 66075-110, Belém, Pará, Brazil
| | - Jonnys Paz Castro
- Federal Rural University of Amazon (UFRA), Campus Capitão Poço, Capitão Poço, Zip Code 68650-000, Pará, Brazil
| | - Matheus Felipe Freire Pego
- Department of Forest Science (DCF), Federal University of Lavras, C.P. 3037, 37200-000, Lavras, MG, Brazil
| | - Lisiane Nunes Hugen
- Department of Forest Science (DCF), Federal University of Lavras, C.P. 3037, 37200-000, Lavras, MG, Brazil
| | - Carlos Emmerson Ferreira da Costa
- Research Laboratory and Fuel Analysis, Laboratory of Amazon Oils and Graduate in Chemistry Program, Federal University of Pará, CEP 66075-110, Belém, Pará, Brazil
| | | | - Luís Adriano Santos do Nascimento
- Research Laboratory and Fuel Analysis, Laboratory of Amazon Oils and Graduate in Chemistry Program, Federal University of Pará, CEP 66075-110, Belém, Pará, Brazil
| | - Geraldo Narciso da Rocha Filho
- Research Laboratory and Fuel Analysis, Laboratory of Amazon Oils and Graduate in Chemistry Program, Federal University of Pará, CEP 66075-110, Belém, Pará, Brazil
| | - José Roberto Zamian
- Research Laboratory and Fuel Analysis, Laboratory of Amazon Oils and Graduate in Chemistry Program, Federal University of Pará, CEP 66075-110, Belém, Pará, Brazil
| | - Elias Costa de Souza
- Department of Technology and Naturals Resources (DTRN), State University of Pará, Campus V, Travessa Éneas Pinheiro, Marco, Belém, CEP 68625-000, Brazil
- Department of Forest Sciences, University of São Paulo (ESALQ/USP). Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | - Maria Lucia Bianchi
- Department of Chemistry (DQI), Federal University of Lavras, C.P. 3037, 37200-000, Lavras, MG, Brazil
| |
Collapse
|
17
|
Shrestha RK, Jacinthe PA, Lal R, Lorenz K, Singh MP, Demyan SM, Ren W, Lindsey LE. Biochar as a negative emission technology: A synthesis of field research on greenhouse gas emissions. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:769-798. [PMID: 36905388 DOI: 10.1002/jeq2.20475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 02/28/2023] [Indexed: 05/06/2023]
Abstract
Biochar is one of the few nature-based technologies with potential to help achieve net-zero emissions agriculture. Such an outcome would involve the mitigation of greenhouse gas (GHG) emission from agroecosystems and optimization of soil organic carbon sequestration. Interest in biochar application is heightened by its several co-benefits. Several reviews summarized past investigations on biochar, but these reviews mostly included laboratory, greenhouse, and mesocosm experiments. A synthesis of field studies is lacking, especially from a climate change mitigation standpoint. Our objectives are to (1) synthesize advances in field-based studies that have examined the GHG mitigation capacity of soil application of biochar and (2) identify limitations of the technology and research priorities. Field studies, published before 2022, were reviewed. Biochar has variable effects on GHG emissions, ranging from decrease, increase, to no change. Across studies, biochar reduced emissions of nitrous oxide (N2 O) by 18% and methane (CH4 ) by 3% but increased carbon dioxide (CO2 ) by 1.9%. When biochar was combined with N-fertilizer, it reduced CO2 , CH4 , and N2 O emissions in 61%, 64%, and 84% of the observations, and biochar plus other amendments reduced emissions in 78%, 92%, and 85% of the observations, respectively. Biochar has shown potential to reduce GHG emissions from soils, but long-term studies are needed to address discrepancies in emissions and identify best practices (rate, depth, and frequency) of biochar application to agricultural soils.
Collapse
Affiliation(s)
- Raj K Shrestha
- Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
| | - Pierre-Andre Jacinthe
- Department of Earth Sciences, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Rattan Lal
- CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, Columbus, Ohio, USA
| | - Klaus Lorenz
- CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, Columbus, Ohio, USA
| | - Maninder P Singh
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Scott M Demyan
- School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Wei Ren
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Laura E Lindsey
- Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Ghassemi-Golezani K, Rahimzadeh S. Biochar-based nutritional nanocomposites: a superior treatment for alleviating salt toxicity and improving physiological performance of dill (Anethum graveolens). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3089-3111. [PMID: 36153765 DOI: 10.1007/s10653-022-01397-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/13/2022] [Indexed: 06/01/2023]
Abstract
Biochar-supported metal oxide nanocomposites as functional materials could help to improve the production and stress tolerance of plants by enhancing the physicochemical properties of biochar. This experiment was carried out to assess the effects of unmodified biochar (30 g kg-1 soil) and biochar-based nanocomposites (BNCs) of iron (30 g BNC-FeO kg-1 soil), zinc (30 g BNC-ZnO kg-1 soil), and a combined form (15 g BNC-FeO + 15 g BNC-ZnO kg-1 soil) on dill (Anethum graveolens L.) plants under various salinity levels (non-saline, 6 and 12 dS m-1). The biochar-related treatments reduced sodium content of the plants, leading to a decline in osmolytes, antioxidant enzymes activities, reactive oxygen species (ROS), lipid peroxidation, NADP reduction, abscisic acid, jasmonic acid, and salicylic acid in dill leaf tissues. The combined form of BNCs reduced sodium content of leaf tissue by about 22% and 26% under 6 and 12 dS m-1 salinities, respectively. In contrast, addition of biochar, particularly biochar-based nanocomposites to the saline soil, enhanced potassium, iron, and zinc contents of leaf tissue, photosynthetic pigments, leaf water content, oxygen evolution rate, hill reaction and ATPase activities, endogenous indole-3-acetic acid, plant organs biomass, and consequently essential oil yield of plant organs. The combined form of BNCs in comparison with unmodified biochar improved vegetative, inflorescence, and seed biomass under 12 dS m-1 salinity by about 33%, 25%, and 6%, respectively. These findings revealed that BNCs with novel structure can potentially enhance salt tolerance, plant biomass, and essential oil yield of different organs in salt-stressed dill plants through decreasing leaf sodium content and ROS generation and increasing nutrient availability, water status, and photosynthetic pigments.
Collapse
Affiliation(s)
- Kazem Ghassemi-Golezani
- Department of Plant Eco-Physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Saeedeh Rahimzadeh
- Department of Plant Eco-Physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
19
|
Wang L, Yu B, Ji J, Khan I, Li G, Rehman A, Liu D, Li S. Assessing the impact of biochar and nitrogen application on yield, water-nitrogen use efficiency and quality of intercropped maize and soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1171547. [PMID: 37223811 PMCID: PMC10200913 DOI: 10.3389/fpls.2023.1171547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/07/2023] [Indexed: 05/25/2023]
Abstract
Introduction Biochar (BC) and nitrogen (N) application have the potential to increase grain yield and resource use efficiency in intercropping systems. However, the effects of different levels of BC and N application in these systems remain unclear. To address this gap, the study is intended to ascertain the impact of various combinations of BC and N fertilizer on the performance of maize-soybean intercropping and determine the optimum application of BC and N for maximizing the effect of the intercropping system. Methods A two-year (2021-2022) field experiment was conducted in Northeast China to assess the impact of BC (0, 15, and 30 t ha-1) and N application (135, 180, and 225 kg ha-1) on plant growth, yield, water use efficiency (WUE), N recovery efficiency (NRE) and quality in an intercropping system. Maize and soybean were selected as materials in the experiment, where every 2 rows of maize were intercropped with 2 rows of soybean. Results and discussion The results showed that the combination of BC and N significantly affected the yield, WUE, NRE and quality of intercropped maize and soybean. The treatment of 15 t ha-1 BC and 180 kg ha-1 N increased grain yield and WUE, while that of 15 t ha-1 BC and 135 kg ha-1 N enhanced NRE in both years. Nitrogen promoted the protein and oil content of intercropped maize, but decreased the protein and oil content of intercropped soybean. BC did not enhance the protein and oil content of intercropped maize, especially in the first year, but increased maize starch content. BC was found to have no positive impact on soybean protein, but it unexpectedly increased soybean oil content. The TOPSIS method revealed that the comprehensive assessment value first increased and then declined with increasing BC and N application. BC improved the performance of maize-soybean intercropping system in terms of yield, WUE, NRE, and quality while N fertilizer input was reduced. The highest grain yield in two years was achieved for BC of 17.1-23.0 t ha-1 and N of 156-213 kg ha-1 in 2021, and 12.0-18.8 t ha-1 BC and 161-202 kg ha-1 N in 2022. These findings provide a comprehensive understanding of the growth of maize-soybean intercropping system and its potential to enhance the production in northeast China.
Collapse
Affiliation(s)
- Lixue Wang
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Binhang Yu
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Jianmei Ji
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Ismail Khan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Guanlin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Abdul Rehman
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Dan Liu
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Sheng Li
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
20
|
Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. FRONTIERS IN PLANT SCIENCE 2023; 14:1073546. [PMID: 37063190 PMCID: PMC10101342 DOI: 10.3389/fpls.2023.1073546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture practices involve the application of environment-friendly plant growth promoters and additives that do not negatively impact the health of the ecosystem. Stringent regulatory frameworks restricting the use of synthetic agrochemicals and the increase in demand for organically grown crops have paved the way for the development of novel bio-based plant growth promoters. In this context, microalgae biomass and derived agrochemicals offer novel sources of plant growth promotors that enhance crop productivity and impart disease resistance. These beneficial effects could be attributed to the presence of wide range of biomolecules such as soluble amino acid (AA), micronutrients, polysaccharides, phytohormones and other signaling molecules in microalgae biomass. In addition, their phototrophic nature, high photosynthetic efficiency, and wide environmental adaptability make them an attractive source of biostimulants, biofertilizers and biopesticides. The present review aims to describe the various plant growth promoting metabolites produced by microalgae and their effects on plant growth and productivity. Further, the effects elicited by microalgae biostimulants with respect to different modes of applications such as seed treatments, foliar spray and soil/root drenching is reviewed in detail. In addition, the ability of microalgae metabolites to impart tolerance against various abiotic and biotic stressors along with the mechanism of action is discussed in this paper. Although the use of microalgae based biofertilizers and biostimulants is gaining popularity, the high nutrient and water requirements and energy intensive downstream processes makes microalgae based technology commercially unsustainable. Addressing this challenge, we propose a circular economy model of microalgae mediated bioremediation coupled with biorefinery approaches of generating high value metabolites along with biofertilizer applications. We discuss and review new trends in enhancing the sustainability of microalgae biomass production by co-cultivation of algae with hydroponics and utilization of agriculture effluents.
Collapse
Affiliation(s)
- Priyanka Parmar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Raman Kumar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Yograj Neha
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
21
|
Sadati H, Ayati B. Using a promising biomass-based biochar in photocatalytic degradation: highly impressive performance of RHB/SnO 2/Fe 3O 4 for elimination of AO7. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00389-2. [PMID: 36781702 DOI: 10.1007/s43630-023-00389-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
The release of industrial dyes into the environment has recently increased, resulting in harmful effects on people and ecosystems. In recent years, the use of adsorbents in photocatalytic nanocomposites has attracted significant interest due to their low cost, efficiency, and eco-friendly physical and chemical characteristics. Herein, Acid Orange 7 (AO7) removal was investigated by photocatalytic degradation using Rice Rusk Biochar (RHB), Tin (IV) Oxide (SnO2), and Iron Oxide (Fe3O4) as heterogeneous nanocomposite. After the preparation of RHB, the nanocomposite was synthesized and characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Powder Diffraction (XRD), Brunauer-Emmett-Teller (BET), and Fourier-Transform Infrared Spectroscopy (FT-IR). To optimize the elimination of AO7 by the One-Factor-At-a-Time (OFAT) method, effective parameters including mixing ratio (RHB:SnO2:Fe3O4), dye concentration, solution pH, and nanocomposite dose were studied. The results showed that the removal efficiency of AO7 after 120 min under the optimal mixing ratio of 1:1.5:0.6, dye concentration of 75 mg/l, solution pH of 4, and nanocomposite dose of 0.7 g/l was 92.37%. Moreover, Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal rates were obtained at 82.22 and 72.22%, respectively. The Average Oxidation State (AOS) and Carbon Oxidation State (COS) of the AO7 solution were increased after the process, indicating biodegradability improvement. Various scavenger effects were studied under optimal conditions, and the results revealed that O2- and H+ reactive species play a crucial role in the photocatalytic degradation of AO7. The reusability and stability of nanocomposite were tested in several consecutive experiments, and the degradation efficiency was reduced from 92 to 79% after five consecutive cycles. It is expected that this research contributes significantly to the utilization of agricultural waste in photocatalytic nanocomposites for the degradation of environmental pollutants.
Collapse
Affiliation(s)
- Hamid Sadati
- Civil and Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-397, Tehran, Iran
| | - Bita Ayati
- Department of Environmental Engineering, Civil and Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-397, Tehran, Iran.
| |
Collapse
|
22
|
Fusinato MD, da Silva Amaral MAF, de Irigon PI, Calgaro CO, de Los Santos DG, Filho PJS. Silica extraction from rice hull ash through the sol-gel process under ultrasound. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21494-21511. [PMID: 36272000 DOI: 10.1007/s11356-022-23687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Rice is among the main foods produced in the world and is part of the daily diet of most families. The main waste from rice processing is rice husk (RH), which has been used as biomass for energy generation through combustion. In this process, rice husk ash (RHA) is generated as a residue, and its silica (SiO2) content varies from 85 to 98%. The present work describes the study of the extraction of silica from RHA by the ultrasound-assisted sol-gel method. An experimental design based on the response surface methodology (RSM) with the symmetrical, second-order rotational central composite design (RCCD) was applied to determine the best extraction conditions considering extraction time and molar ratio (n) as variables = nNaOH/nSilica). These optimal conditions were then applied to three ash samples, two obtained by the combustion process in a boiler furnace, with a mobile grate system (RHAC1 and RHAC2), and one obtained by the pyrolysis process (RHAP) carried out in a fixed bed reactor. Results showed that a molar ratio of 4.4, and an extraction time of 107 min were the best extraction conditions, leading to a yield of 73.3% for RHAP, 43.9% for RHAC1, and 31.1% for RHAC2. It was found that the extraction yield and textural properties of the silica obtained depend on the characteristics of the ash used. The silica extracted from RHAC1 presented a surface area of 465 m2.g-1, mesopores of 4.69 nm, purity greater than 95%, and an ultra-fine granulometric distribution, reaching nanoparticle dimensions, characteristics comparable to commercially available silicas.
Collapse
Affiliation(s)
- Mirian Dosolina Fusinato
- Grupo de Pesquisa de Contaminantes Ambientais (GPCA), Instituto Federal de Educação, Ciência E Tecnologia Sul-Rio-Grandense (IFSul), Campus Pelotas, Endereço postal: Praça 20 de Setembro, 455, Centro, Pelotas, RS, 96015360, Brasil.
| | - Maria Alice Farias da Silva Amaral
- Grupo de Pesquisa de Contaminantes Ambientais (GPCA), Instituto Federal de Educação, Ciência E Tecnologia Sul-Rio-Grandense (IFSul), Campus Pelotas, Endereço postal: Praça 20 de Setembro, 455, Centro, Pelotas, RS, 96015360, Brasil
| | - Paula Irigon de Irigon
- Grupo de Pesquisa de Contaminantes Ambientais (GPCA), Instituto Federal de Educação, Ciência E Tecnologia Sul-Rio-Grandense (IFSul), Campus Pelotas, Endereço postal: Praça 20 de Setembro, 455, Centro, Pelotas, RS, 96015360, Brasil
| | - Camila Ottonelli Calgaro
- Grupo de Pesquisa de Contaminantes Ambientais (GPCA), Instituto Federal de Educação, Ciência E Tecnologia Sul-Rio-Grandense (IFSul), Campus Pelotas, Endereço postal: Praça 20 de Setembro, 455, Centro, Pelotas, RS, 96015360, Brasil
| | - Diego Gil de Los Santos
- Grupo de Pesquisa de Contaminantes Ambientais (GPCA), Instituto Federal de Educação, Ciência E Tecnologia Sul-Rio-Grandense (IFSul), Campus Pelotas, Endereço postal: Praça 20 de Setembro, 455, Centro, Pelotas, RS, 96015360, Brasil
| | - Pedro José Sanches Filho
- Grupo de Pesquisa de Contaminantes Ambientais (GPCA), Instituto Federal de Educação, Ciência E Tecnologia Sul-Rio-Grandense (IFSul), Campus Pelotas, Endereço postal: Praça 20 de Setembro, 455, Centro, Pelotas, RS, 96015360, Brasil
| |
Collapse
|
23
|
Garba K, Mohammed IY, Isa YM, Abubakar LG, Abakr YA, Hameed BH. Pyrolysis of Canarium schweinfurthii hard-shell: Thermochemical characterisation and pyrolytic kinetics studies. Heliyon 2023; 9:e13234. [PMID: 36785823 PMCID: PMC9918767 DOI: 10.1016/j.heliyon.2023.e13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Canarium schweinfurthii fruit used in food and cosmetics produces waste nuts with a hard shell (hard-shell) and kernel. The hard-shell contained lignin and holocellulose, besides 51.99 wt% carbon, 6.0 wt% hydrogen, 41.68 wt% oxygen, and 70.97 wt% volatile matter. Therefore, this study commenced thermochemical investigations on the hard-shell through extensive intermediate pyrolysis and kinetic studies. During the active stage of thermogravimetric pyrolysis, the hard-shell lost a maximum of 56.45 wt%, and the activation energies obtained by the Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, and Starink methods were 223, 221 and 217 kJ/mol, respectively. The Flynn-Wall-Ozawa method depicted the degradation process accurately, where the Coat-Redfern method's contraction and diffusion mechanisms governed the pyrolysis reactions at activation energies of 16.62 kJ/mol and 38.83 kJ/mol, respectively. The pyrolysis process produced 25 wt% biochar and 25 wt% bio-oil under optimum conditions. The calorific values of the bio-oils with 6.81-7.11 wt% hydrogen and 68.01-71.12 wt% carbon was 26.32-27.83 MJ/kg, with phenolics and n-hexadecanoic and oleic acids as major compounds. Biochar, by contrast, has a high carbon content of 75.11-79.32 wt% and calorific values of 25.45-28.61 MJ/kg. These properties assert the biochar and bio-oils among viable bioenergy sources.
Collapse
Affiliation(s)
- Kabir Garba
- Department of Chemical Engineering, Abubakar Tafawa Balewa University, P. M. B. 0248, Bauchi, Nigeria
- Corresponding author.;
| | - Isah Yakub Mohammed
- Department of Chemical Engineering, Abubakar Tafawa Balewa University, P. M. B. 0248, Bauchi, Nigeria
| | - Yusuf Makarfi Isa
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, 2000, Johannesburg, South Africa
| | - Lawan Garba Abubakar
- Department of Agricultural and Bioresource Engineering, Abubakar Tafawa Balewa University, P. M. B. 0248, Bauchi, Nigeria
| | - Yousif Abdalla Abakr
- Department of Mechanical, Manufacturing and Material Engineering, The University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, 43500, Selangor Darul Eshan, Malaysia
| | - Bassim H. Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box: 2713, Doha, Qatar
| |
Collapse
|
24
|
Khan AHA, Kiyani A, Santiago-Herrera M, Ibáñez J, Yousaf S, Iqbal M, Martel-Martín S, Barros R. Sustainability of phytoremediation: Post-harvest stratagems and economic opportunities for the produced metals contaminated biomass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116700. [PMID: 36423411 DOI: 10.1016/j.jenvman.2022.116700] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals (HMs) are indestructible and non-biodegradable. Phytoremediation presents an opportunity to transfer HMs from environmental matrices into plants, making it easy to translocate from one place to another. The ornate features of HMs' phytoremediation are biophilia and carbon neutrality, compared to the physical and chemical remediation methods. Some recent studies related to LCA also support that phytoremediation is technically more sustainable than competing technologies. However, one major post-application challenge associated with HMs phytoremediation is properly managing HMs contaminated biomass generated. Such a yield presents the problem of reintroducing HMs into the environment due to natural decomposition and release of plant sap from the harvested biomass. The transportation of high yields can also make phytoremediation economically inviable. This review presents the design of a sustainable phytoremediation strategy using an ever-evolving life cycle assessment tool. This review also discusses possible post-phytoremediation biomass management strategies for the HMs contaminated biomass management. These strategies include composting, leachate compaction, gasification, pyrolysis, torrefaction, and metal recovery. Further, the commercial outlook for properly utilizing HMs contaminated biomass was presented.
Collapse
Affiliation(s)
- Aqib Hassan Ali Khan
- International Research Center in Critical Raw Materials and Advanced Industrial Technologies, Universidad de Burgos, Burgos, 09001, Spain.
| | - Amna Kiyani
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, 45550, Pakistan
| | - Mario Santiago-Herrera
- International Research Center in Critical Raw Materials and Advanced Industrial Technologies, Universidad de Burgos, Burgos, 09001, Spain
| | - Jesús Ibáñez
- International Research Center in Critical Raw Materials and Advanced Industrial Technologies, Universidad de Burgos, Burgos, 09001, Spain
| | - Sohail Yousaf
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mazhar Iqbal
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sonia Martel-Martín
- International Research Center in Critical Raw Materials and Advanced Industrial Technologies, Universidad de Burgos, Burgos, 09001, Spain
| | - Rocío Barros
- International Research Center in Critical Raw Materials and Advanced Industrial Technologies, Universidad de Burgos, Burgos, 09001, Spain.
| |
Collapse
|
25
|
Zamanzadeh-Nasrabadi SM, Mohammadiapanah F, Hosseini-Mazinani M, Sarikhan S. Salinity stress endurance of the plants with the aid of bacterial genes. Front Genet 2023; 14:1049608. [PMID: 37139239 PMCID: PMC10149814 DOI: 10.3389/fgene.2023.1049608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/23/2023] [Indexed: 05/05/2023] Open
Abstract
The application of plant growth-promoting bacteria (PGPB) is vital for sustainable agriculture with continuous world population growth and an increase in soil salinity. Salinity is one of the severe abiotic stresses which lessens the productivity of agricultural lands. Plant growth-promoting bacteria are key players in solving this problem and can mitigate salinity stress. The highest of reported halotolerant Plant growth-promoting bacteria belonged to Firmicutes (approximately 50%), Proteobacteria (40%), and Actinobacteria (10%), respectively. The most dominant genera of halotolerant plant growth-promoting bacteria are Bacillus and Pseudomonas. Currently, the identification of new plant growth-promoting bacteria with special beneficial properties is increasingly needed. Moreover, for the effective use of plant growth-promoting bacteria in agriculture, the unknown molecular aspects of their function and interaction with plants must be defined. Omics and meta-omics studies can unreveal these unknown genes and pathways. However, more accurate omics studies need a detailed understanding of so far known molecular mechanisms of plant stress protection by plant growth-promoting bacteria. In this review, the molecular basis of salinity stress mitigation by plant growth-promoting bacteria is presented, the identified genes in the genomes of 20 halotolerant plant growth-promoting bacteria are assessed, and the prevalence of their involved genes is highlighted. The genes related to the synthesis of indole acetic acid (IAA) (70%), siderophores (60%), osmoprotectants (80%), chaperons (40%), 1-aminocyclopropane-1-carboxylate (ACC) deaminase (50%), and antioxidants (50%), phosphate solubilization (60%), and ion homeostasis (80%) were the most common detected genes in the genomes of evaluated halotolerant plant growth-promoting and salinity stress-alleviating bacteria. The most prevalent genes can be applied as candidates for designing molecular markers for screening of new halotolerant plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Seyyedeh Maryam Zamanzadeh-Nasrabadi
- Pharmaceutial Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Mohammadiapanah
- Pharmaceutial Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
- *Correspondence: Fatemeh Mohammadiapanah,
| | | | - Sajjad Sarikhan
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| |
Collapse
|
26
|
Rashid MS, Liu G, Yousaf B, Hamid Y, Rehman A, Arif M, Ahmed R, Ashraf A, Song Y. A critical review on biochar-assisted free radicals mediated redox reactions influencing transformation of potentially toxic metals: Occurrence, formation, and environmental applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120335. [PMID: 36202269 DOI: 10.1016/j.envpol.2022.120335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Potentially toxic metals have become a viable threat to the ecosystem due to their carcinogenic nature. Biochar has gained substantial interest due to its redox-mediated processes and redox-active metals. Biochar has the capacity to directly adsorb the pollutants from contaminated environments through several mechanisms such as coprecipitation, complexation, ion exchange, and electrostatic interaction. Biochar's electron-mediating potential may be influenced by the cyclic transition of surface moieties and conjugated carbon structures. Thus, pyrolysis configuration, biomass material, retention time, oxygen flow, and heating time also affect biochar's redox properties. Generally, reactive oxygen species (ROS) exist as free radicals (FRs) in radical and non-radical forms, i.e., hydroxyl radical, superoxide, nitric oxide, hydrogen peroxide, and singlet oxygen. Heavy metals are involved in the production of FRs during redox-mediated reactions, which may contribute to ROS formation. This review aims to critically evaluate the redox-mediated characteristics of biochar produced from various biomass feedstocks under different pyrolysis conditions. In addition, we assessed the impact of biochar-assisted FRs redox-mediated processes on heavy metal immobilization and mobility. We also revealed new insights into the function of FRs in biochar and its potential uses for environment-friendly remediation and reducing the dependency on fossil-based materials, utilizing local residual biomass as a raw material in terms of sustainability.
Collapse
Affiliation(s)
- Muhammad Saqib Rashid
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Abdul Rehman
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Muhammad Arif
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yu Song
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| |
Collapse
|
27
|
Life Cycle Assessment (LCA) of Biochar Production from a Circular Economy Perspective. Processes (Basel) 2022. [DOI: 10.3390/pr10122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Climate change and environmental sustainability are among the most prominent issues of today. It is increasingly fundamental and urgent to develop a sustainable economy, capable of change the linear paradigm, actively promoting the efficient use of resources, highlighting product, component and material reuse. Among the many approaches to circular economy and zero-waste concepts, biochar is a great example and might be a way to push the economy to neutralize carbon balance. Biochar is a solid material produced during thermochemical decomposition of biomass in an oxygen-limited environment. Several authors have used life cycle assessment (LCA) method to evaluate the environmental impact of biochar production. Based on these studies, this work intends to critically analyze the LCA of biochar production from different sources using different technologies. Although these studies reveal differences in the contexts and characteristics of production, preventing direct comparison of results, a clear trend appears. It was proven, through combining life cycle assessment and circular economy modelling, that the application of biochar is a very promising way of contributing to carbon-efficient resource circulation, mitigation of climate change, and economic sustainability.
Collapse
|
28
|
Garza-Alonso CA, Olivares-Sáenz E, González-Morales S, Cabrera-De la Fuente M, Juárez-Maldonado A, González-Fuentes JA, Tortella G, Valdés-Caballero MV, Benavides-Mendoza A. Strawberry Biostimulation: From Mechanisms of Action to Plant Growth and Fruit Quality. PLANTS (BASEL, SWITZERLAND) 2022; 11:3463. [PMID: 36559576 PMCID: PMC9784621 DOI: 10.3390/plants11243463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The objective of this review is to present a compilation of the application of various biostimulants in strawberry plants. Strawberry cultivation is of great importance worldwide, and, there is currently no review on this topic in the literature. Plant biostimulation consists of using or applying physical, chemical, or biological stimuli that trigger a response-called induction or elicitation-with a positive effect on crop growth, development, and quality. Biostimulation provides tolerance to biotic and abiotic stress, and more absorption and accumulation of nutrients, favoring the metabolism of the plants. The strawberry is a highly appreciated fruit for its high organoleptic and nutraceutical qualities since it is rich in phenolic compounds, vitamins, and minerals, in addition to being a product with high commercial value. This review aims to present an overview of the information on using different biostimulation techniques in strawberries. The information obtained from publications from 2000-2022 is organized according to the biostimulant's physical, chemical, or biological nature. The biochemical or physiological impact on plant productivity, yield, fruit quality, and postharvest life is described for each class of biostimulant. Information gaps are also pointed out, highlighting the topics in which more significant research effort is necessary.
Collapse
Affiliation(s)
| | - Emilio Olivares-Sáenz
- Protected Agriculture Center, Faculty of Agronomy, Universidad Autónoma de Nuevo León, General Escobedo 66050, Mexico
| | - Susana González-Morales
- National Council of Science and Technology (CONACYT), Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | | | | | | | - Gonzalo Tortella
- Center of Excellence in Biotechnological Research Applied to the Environment, CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4811230, Chile
| | | | | |
Collapse
|
29
|
Efficient Remediation of Cadmium Contamination in Soil by Functionalized Biochar: Recent Advances, Challenges, and Future Prospects. Processes (Basel) 2022. [DOI: 10.3390/pr10081627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heavy metal pollution in soil seriously harms human health and animal and plant growth. Among them, cadmium pollution is one of the most serious issues. As a promising remediation material for cadmium pollution in soil, functionalized biochar has attracted wide attention in the last decade. This paper summarizes the preparation technology of biochar, the existing forms of heavy metals in soil, the remediation mechanism of biochar for remediating cadmium contamination in soil, and the factors affecting the remediation process, and discusses the latest research advances of functionalized biochar for remediating cadmium contamination in soil. Finally, the challenges encountered by the implementation of biochar for remediating Cd contamination in soil are summarized, and the prospects in this field are highlighted for its expected industrial large-scale implementation.
Collapse
|
30
|
Martínez-Gómez Á, Poveda J, Escobar C. Overview of the use of biochar from main cereals to stimulate plant growth. FRONTIERS IN PLANT SCIENCE 2022; 13:912264. [PMID: 35982693 PMCID: PMC9378993 DOI: 10.3389/fpls.2022.912264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The total global food demand is expected to increase up to 50% between 2010 and 2050; hence, there is a clear need to increase plant productivity with little or no damage to the environment. In this respect, biochar is a carbon-rich material derived from the pyrolysis of organic matter at high temperatures with a limited oxygen supply, with different physicochemical characteristics that depend on the feedstock and pyrolysis conditions. When used as a soil amendment, it has shown many positive environmental effects such as carbon sequestration, reduction of greenhouse gas emissions, and soil improvement. Biochar application has also shown huge benefits when applied to agri-systems, among them, the improvement of plant growth either in optimal conditions or under abiotic or biotic stress. Several mechanisms, such as enhancing the soil microbial diversity and thus increasing soil nutrient-cycling functions, improving soil physicochemical properties, stimulating the microbial colonization, or increasing soil P, K, or N content, have been described to exert these positive effects on plant growth, either alone or in combination with other resources. In addition, it can also improve the plant antioxidant defenses, an evident advantage for plant growth under stress conditions. Although agricultural residues are generated from a wide variety of crops, cereals account for more than half of the world's harvested area. Yet, in this review, we will focus on biochar obtained from residues of the most common and relevant cereal crops in terms of global production (rice, wheat, maize, and barley) and in their use as recycled residues to stimulate plant growth. The harvesting and processing of these crops generate a vast number and variety of residues that could be locally recycled into valuable products such as biochar, reducing the waste management problem and accomplishing the circular economy premise. However, very scarce literature focused on the use of biochar from a crop to improve its own growth is available. Herein, we present an overview of the literature focused on this topic, compiling most of the studies and discussing the urgent need to deepen into the molecular mechanisms and pathways involved in the beneficial effects of biochar on plant productivity.
Collapse
Affiliation(s)
- Ángela Martínez-Gómez
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
31
|
Biochar: Production, Applications, and Market Prospects in Portugal. ENVIRONMENTS 2022. [DOI: 10.3390/environments9080095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biochar produced during the thermochemical decomposition of biomass is an environmentally friendly replacement for different carbon materials and can be used for carbon sequestration to mitigate climate change. In this paper, current biochar production processes and top market applications are reviewed, as well as emerging biochar uses gaining momentum in the market. Various application fields of biochar, including agricultural applications (e.g., soil conditioning), adsorption (for soil and water pollutants), carbon sequestration, catalysis, or incorporation into composites or construction materials, are also presented and discussed. According to this literature overview, slow pyrolysis is the preferred process for biochar production, whereas agricultural applications (for soil conditioning and fertilization) are the most studied and market-ready solutions for biochar use. The Alentejo region (Portugal) shows tremendous potential to be a major player in the developing biochar market considering feedstock availability and large areas for biochar agricultural application. Biochar’s production potential and possible benefits were also estimated for this Portuguese region, proving that agricultural application can effectively lead to many environmental, economic, and social gains.
Collapse
|
32
|
Abstract
Animal production is a significant contributor of organic and inorganic contaminants in air, soil, and water systems. These pollutants are present beginning in animal houses and impacts continue through manure storage, treatment, and land application. As the industry is expected to expand, there is still a lack of affordable, sustainable solutions to many environmental concerns in animal production. Biochar is a low-cost, sustainable biomaterial with many environmental remediation applications. Its physicochemical properties have been proven to provide environmental benefits via the adsorption of organic and inorganic contaminants, promote plant growth, improve soil quality, and provide a form of carbon sequestration. For these reasons, biochar has been researched regarding biochar production, and application methods to biological systems have a significant influence on the moisture content, pH, microbial communities, and carbon and nitrogen retention. There remain unanswered questions about how we can manipulate biochar via physical and chemical activation methods to enhance the performance for specific applications. This review article addresses the positive and negative impacts of biochar addition at various stages in animal production from feed intake to manure land application.
Collapse
|
33
|
Exploring the Adsorption of Pb on Microalgae-Derived Biochar: A Versatile Material for Environmental Remediation and Electroanalytical Applications. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Biochar, a carbon material obtained by pyrolysis of biomasses, is increasingly applied in environmental remediation and sensing thanks to its functional properties, cost-effectiveness and eco-friendliness. The adsorption capacity of biochar, strictly dependent on its specific surface area, heteroatom doping and surface functional groups, is crucial for these applications. Here, biochar produced at low temperature (350 °C) from a marine microalga (Nannochloropsis sp.) is proposed as an efficient adsorbent of lead (II) ions in aqueous solution; this production strategy promotes the natural self-doping of biochar without requiring harsh conditions. The kinetics and thermodynamics of the adsorption process, as well as the effect of pH, ionic strength and dissolved organic matter on the adsorption efficiency were systematically assessed. The microalgae-derived biochar shows superior adsorption performances compared to a nutshell-derived one (used as a reference of lignocellulosic feedstocks) under all the tested conditions. The microalgae-derived biochar was finally used to decorate screen-printed carbon electrodes to improve the electroanalytical performances towards the voltammetric detection of lead (II) ions. A two-fold increase in sensitivity was obtained compared to the unmodified electrode thanks to the enhanced electron transfer and adsorption properties provided by biochar. These results highlight the potentialities of microalgae-derived biochar for environmental and sensing applications.
Collapse
|
34
|
Chagas JKM, Figueiredo CCD, Ramos MLG. Biochar increases soil carbon pools: Evidence from a global meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114403. [PMID: 34991026 DOI: 10.1016/j.jenvman.2021.114403] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/10/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Biochar is a carbon-rich material that increases soil C sequestration and mitigates climate change. However, due to the variability of experimental conditions, types of biochar and soil, the influence of biochar on the accumulation of different soil carbon fractions remains unclear. Therefore, a meta-analysis was performed that included 586 paired comparisons obtained from 169 studies conducted in various countries around the globe. The data set average showed significant relative increases of 64.3, 84.3, 20.1, 22.9 and 42.1% for total C, organic C, microbial biomass C, labile C and fulvic acid, respectively. The dissolved organic C, humic acid and humin fractions showed no significant variations. The relative increase in TC was favored by increasing biochar rates applied to fine-textured soils with low C content in temperate climate regions seen through short-term experiments conducted under controlled conditions. This behavior was different for each soil C fraction. Therefore, variations between experimental conditions, types of biochar and soil show that it is necessary to consider multiple factors when choosing the conditions of biochar use to maximize C sequestration in the soil and/or the increase of labile C fractions in the soil.
Collapse
Affiliation(s)
- Jhon Kenedy Moura Chagas
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, 70910-970, Brasília, DF, Brazil
| | | | | |
Collapse
|
35
|
Abstract
Worldwide, the wastes derived from food production are generated in elevated volumes annually. In particular, the cocoa industrial wastes represent a source of usable biomass for the elaboration of new products such as food, livestock feed, cosmetics, and chemical products, and they can even be used for the generation of biofuels. The cocoa industrial wastes include cocoa pod husk, mucilage, and bean shells, which contain compounds of interest for different industries. However, the lignocellulose content of these by-products requires a pretreatment to fully utilize them; thus, different biofuels can be produced, depending on the conversion technology used to obtain the highest biomass yield. Recent studies reported the use of cocoa industrial wastes for the production of solid, liquid, and gaseous biofuels; nevertheless, the most common use reported is as a direct combustion source, which is used to supply the same production plants. Therefore, the objective of this work is to carry out a review on the uses of the by-products generated from cocoa for the generation of biofuels, as well as the technological concept applied for the transformation. In addition, the future trends indicate the relevance of using catalysts in production to increase reactions in the conversion of compounds, including the use of statistical models to optimize the processing variables.
Collapse
|
36
|
Chang X, Song Z, Xu Y, Gao M. Response of soil characteristics to biochar and Fe-Mn oxide-modified biochar application in phthalate-contaminated fluvo-aquic soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112755. [PMID: 34500388 DOI: 10.1016/j.ecoenv.2021.112755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/15/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Biochar (BC) derived from agricultural biomass is effective at immobilizing phthalate in the agricultural soil environment. In this study, we assessed the effects of 0.5%, 1%, and 2% BC and Fe-Mn oxide-modified biochar (FMBC) addition on dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) residues and biochemical characteristics in the rhizosphere soil of mature wheat polluted with DBP and DEHP using a pot experiment. Scanning electron microscopy showed that the surfaces and pores of BC and FMBC adhered soil mineral particles after remediation. Therefore, DBP and DEHP residues were increased in BC- and FMBC-treated soils. Illumina HiSeq sequencing showed that, compared with the control, BC and FMBC addition significantly enhanced the relative abundance of Firmicutes and reduced Proteobacteria. The abundance of Sphenodons and Pseudomonas, which degrade phthalates, tended to be higher in FMBC-amended soils than in BC-amended and control soils. This result may be related to an increase in available nutrients and organic matter following BC and FMBC application. Subsequently, the changes in soil bacterial abundance and community structure induced an increase in polyphenol oxidase, β-glucosidase, neutral phosphatase, and protease activity in BC and FMBC remediation. In comparison with the BC treatment, FMBC addition had a significantly positive effect on enzyme activity, and the microbial structure and was therefore more effective at immobilizing DBP and DEHP in the soil. Thus, our findings strongly suggest that FMBC is a reliable remediation material for phthalate-contaminated soil.
Collapse
Affiliation(s)
- Xipeng Chang
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Yalei Xu
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China.
| |
Collapse
|
37
|
Jayakumar A, Wurzer C, Soldatou S, Edwards C, Lawton LA, Mašek O. New directions and challenges in engineering biologically-enhanced biochar for biological water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148977. [PMID: 34273833 DOI: 10.1016/j.scitotenv.2021.148977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/07/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Cost-effective, efficient, and sustainable water treatment solutions utilising existing materials and technology will make it easier for low and middle-income countries to adopt them, improving public health. The ability of biochar to mediate and support microbial degradation of contaminants, combined with its carbon-sequestration potential, has attracted attention in recent years. Biochar is a possible candidate for use in cost-effective and sustainable biological water treatment, especially in agrarian economies with easy access to abundant biomass in the form of crop residues and organic wastes. This review evaluates the scope, potential benefits (economic and environmental) and challenges of sustainable biological water treatment using 'Biologically-Enhanced Biochar' or BEB. We discuss the various processes occurring in BEB systems and demonstrate the urgent need to investigate microbial degradation mechanisms. We highlight the need to correlate biochar properties to biofilm development, which can eventually determine process efficiency. We also demonstrate the various opportunities in adopting BEB as a cheaper and more viable alternative in Low and Middle Income Countries and compare it to the current benchmark, 'Biological Activated Carbon'. We focus on the recent advances in the areas of data science, mathematical modelling and molecular biology to systematically and sustainably design BEB filters, unlike the largely empirical design approaches seen in water treatment. 'Sequential biochar systems' are introduced as specially designed end-of-life techniques to lower the environmental impact of BEB filters and examples of their integration into biological water treatment that can fulfil zero waste criteria for BEBs are given.
Collapse
Affiliation(s)
- Anjali Jayakumar
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh, UK.
| | - Christian Wurzer
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Sylvia Soldatou
- CyanoSol, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Christine Edwards
- CyanoSol, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Linda A Lawton
- CyanoSol, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
38
|
Cuong Nguyen X, Thanh Huyen Nguyen T, Hong Chuong Nguyen T, Van Le Q, Yen Binh Vo T, Cuc Phuong Tran T, Duong La D, Kumar G, Khanh Nguyen V, Chang SW, Jin Chung W, Duc Nguyen D. Sustainable carbonaceous biochar adsorbents derived from agro-wastes and invasive plants for cation dye adsorption from water. CHEMOSPHERE 2021; 282:131009. [PMID: 34091298 DOI: 10.1016/j.chemosphere.2021.131009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
This study investigated methyl orange (MO) dye adsorption using three biochars produced from agro-waste and invasive plants; the latter consisted of wattle bark (BA), mimosa (BM), and coffee husks (BC). BC had the lowest specific surface area (2.62 m2/g) compared to BA (393.15 m2/g) and BM (285.53 m2/g). The adsorption efficiency of MO was stable at pH 2-7 (95%-96%), whilst it had reduced stability at pH 7-12. Between 0 and 30 min, MO adsorption efficiency was >82%, and at 120 min, representative adsorption equilibrium had occurred. The maximum adsorption capacity of the biochars was 12.3 mg/g. The underlying adsorption mechanisms of the three biochars were governed by electrostatic adsorption and pore diffusion. There was an abundance of active sites for adsorption in BA and BM, while chemical adsorption appeared to be more vital for BC, as it contained more functional groups on its surface. The highest MO adsorption efficiency occurred with BM. BC was not recommended for MO removal, as it was observed to stain the water when a dose exceeding 5.0 g/L was utilized.
Collapse
Affiliation(s)
- X Cuong Nguyen
- Laboratory of Energy and Environmental Science, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - T Thanh Huyen Nguyen
- Laboratory of Energy and Environmental Science, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - T Hong Chuong Nguyen
- Laboratory of Energy and Environmental Science, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Quyet Van Le
- Laboratory of Energy and Environmental Science, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - T Yen Binh Vo
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Campus, Viet Nam
| | - T Cuc Phuong Tran
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Campus, Viet Nam
| | - D Duong La
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - V Khanh Nguyen
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - S Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - W Jin Chung
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - D Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea.
| |
Collapse
|
39
|
Yuan Y, Li J, Wang C, An G. Contrasting microcystin-LR sorption and desorption capability of different farmland soils amended with biochar: Effects of biochar dose and aging time. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117364. [PMID: 34052651 DOI: 10.1016/j.envpol.2021.117364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
This study explored biochar (BC) amendment effects on microcystin-LR (MCLR) concentration-dependent sorption and sequential desorption (SDE) by diverse soils to assess MCLR-trapping by BC-amended soils. Soil properties varied with rising BC dose and aging time. As aging proceeded, BC-amended soils shared a generally similar 'firstly increase and then decrease' trend of MCLR sorption and 'firstly decrease and then increase' trend of desorption at most cases. It appeared that MCLR sorption by BC-amended soils was most positively correlated with mesoporosity and surface basic functionality. BC-amendment increased MCLR-trapping for most soils, especially 4% BC at 3 month-aging maximized trapping ratio of GZ, SY and SX to 86.59%-95.43%, 80.01%-87.20% and 78.73%-90.85%, respectively, at 50-500 μg/L MCLR by largely increasing sorption and decreasing desorption. BC-amendment best matched GZ soil because MCLR-trapping of BC-amended GZ exceeded other amended soils at the same BC dose and aging time, but failed to obviously increase MCLR-trapping of HS soil at most cases, except only case with 2% BC at 3 month-aging. Site energy distribution verified that maximally enhanced MCLR-trapping of most soils was due to greatly enhanced sorption affinity during sorption and 1st desorption cycle, making closer MCLR-binding that more resistant to desorption. Contrarily, BC-amendment did not enhance sorption affinity of HS along sorption-SDE to compromise MCLR-trapping increase at most cases. This study validated 3 months as suitable BC-aging time to maximize MCLR-trapping in diverse soils, and elucidated influencing factors and mechanisms from view of site energy distribution, which shed novel insights on MCLR sorption-desorption by BC-amended soils, and guided to optimize BC-amendment strategy for efficient MCLR-immobilization and eco-risk elimination in diverse soils.
Collapse
Affiliation(s)
- Yue Yuan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| | - Chengyu Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Guangqi An
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
40
|
Możdżeń K, Barabasz-Krasny B, Kviatková T, Zandi P, Turisová I. Effect of Sorbent Additives to Copper-Contaminated Soils on Seed Germination and Early Growth of Grass Seedlings. Molecules 2021; 26:5449. [PMID: 34576920 PMCID: PMC8469091 DOI: 10.3390/molecules26185449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Heavy metal and metalloid-contaminated soil is a serious barrier to colonization for many plant species. The problem of the elimination of toxic waste accumulated in technogenous soils in many highly transformed regions is extremely important. Hence, another attempt was made to analyze the effect of the addition of sorbents (BCH-biochar, B-bentonite, ChM-chicken manure, OS-organo-zeolitic substrate) to contaminated copper soil on the germination and early growth of Eurasian common grass species (Agrostis capillaris, A. stolonifera, Festuca rubra and Poa pratensis), which could potentially be used in recultivation. This experiment was based on the laboratory sandwich method. Standard germination indexes, morphometry and biomass analysis were used. The percentage of germinating seeds was lower in each of the soil variants and sorbents used compared to the control. Dry mass was positively stimulated by all sorbents. The response to the addition of sorbents, expressed as the electrolyte leakage of seedlings, was different depending on the species and type of sorbent. Among all sorbents, the most positive effects on germination and growth were observed in the case of OS. Overall, the response to the addition of sorbents was different in the studied species, depending on their stage of development.
Collapse
Affiliation(s)
- Katarzyna Możdżeń
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Kraków, Poland;
| | - Beata Barabasz-Krasny
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Kraków, Poland;
| | - Tatiana Kviatková
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Tajovského 40, 97401 Banská Bystrica, Slovakia; (T.K.); (I.T.)
| | - Peiman Zandi
- International Faculty of Applied Technology, Yibin University, Yibin 644000, China;
| | - Ingrid Turisová
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Tajovského 40, 97401 Banská Bystrica, Slovakia; (T.K.); (I.T.)
| |
Collapse
|
41
|
Abstract
Biochar can be derived from a wide variety of organic materials including agricultural wastes and residues, animal wastes, municipal solid wastes, pulp and paper mill wastes, and sewage sludge. Its productivity relies on feedstock type and thermochemical conditions of production. Biochar has many application advantages in several fields and has been widely studied in recent years. However, most of these studies are mainly on the powder form of biochar, while its pelleted form is sparsely reported. Even with the reported studies on biochar pellets, there is still lack of knowledge and awareness of the effects of different feedstock on the densification behavior of biochar. The mechanisms of biochar densification, which appear to be sensitive to the conditions predominating during its thermochemical production, are affected by the material from which the biochar is derived. This partly accounts for why biochar pellets have not been widely adopted in various application fields. Therefore, this paper presents an overview of the benefits associated with the use of biochar pellets and discusses the challenges encountered when pelleting biochars that are derived from different feedstock under various carbonization conditions. Research priority areas needed to overcome the challenges are also identified and discussed. The purpose is to contribute to better understanding on biochar pelletization behavior, and to offer insights useful to comprehend some basic principles that may occur in the pelleting process and to ease further and more thorough investigations.
Collapse
|
42
|
Zulfiqar F, Chen J, Younis A, Abideen Z, Naveed M, Koyro HW, Siddique KHM. Biochar, Compost, and Biochar-Compost Blend Applications Modulate Growth, Photosynthesis, Osmolytes, and Antioxidant System of Medicinal Plant Alpinia zerumbet. FRONTIERS IN PLANT SCIENCE 2021; 12:707061. [PMID: 34497622 PMCID: PMC8419328 DOI: 10.3389/fpls.2021.707061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Alpinia zerumbet (Zingiberaceae) is a unique ornamental and medicinal plant primarily used in food ingredients and traditional medicine. While organic amendments such as biochar (BC) and compost (Co) have been demonstrated to improve plant productivity, no studies have examined their effects on the growth, physiology, and secondary metabolites of A. zerumbet. This study evaluated the impact of the amendment of BC, Co, or a biochar and compost mixture (BC+Co) on modifying and improving the growth, photosynthesis, antioxidant status, and secondary metabolism of A. zerumbet grown on sandy loam soil. The morpho-physiological and biochemical investigation revealed variation in the response of A. zerumbet to organic amendments. The amendment of BC and BC+Co significantly increased net photosynthetic rates of plants by more than 28%, chlorophyll a and b contents by 92 and 78%, respectively, and carboxylation efficiency by 50% compared with those grown in the sandy loam soil without amendment. Furthermore, the amendment significantly decreased plant oxidative stress, measured as leaf free proline and glycine betaine. Enzymatic antioxidant activity, total phenols, and flavonoids also varied in their response to the organic amendments. In conclusion, this study shows that BC and/or Co amendments are an efficient and sustainable method for improving the metabolite contents and reducing oxidative stress in A. zerumbet.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jianjun Chen
- Environmental Horticulture Department and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Adnan Younis
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zainul Abideen
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Muhammad Naveed
- Institute of Soil Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hans-Werner Koyro
- Institute of Plant Ecology, Justus-Liebig-University Giessen, Giessen, Germany
| | | |
Collapse
|
43
|
Mona S, Malyan SK, Saini N, Deepak B, Pugazhendhi A, Kumar SS. Towards sustainable agriculture with carbon sequestration, and greenhouse gas mitigation using algal biochar. CHEMOSPHERE 2021; 275:129856. [PMID: 33636519 DOI: 10.1016/j.chemosphere.2021.129856] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/31/2020] [Accepted: 02/02/2021] [Indexed: 05/18/2023]
Abstract
With the increase in the world's population, demand for food and other products is continuously rising. This has put a lot of pressure on the agricultural sector. To fulfill these demands, the utilization of chemical fertilizers and pesticides has also increased. Consequently, to overcome the adverse effects of agrochemicals on our environment and health, there has been a shift towards organic fertilizers or other substitutes, which are ecofriendly and help to maintain a sustainable environment. Microalgae have a very high potential of carbon dioxide (CO2) capturing and thus, help in mitigating the greenhouse effect. It is the most productive biological system for generating biomass. The high growth rate and higher photosynthetic efficiency of the algal species compared to the terrestrial plants make them a wonderful alternative towards a sustainable environment. Moreover, they could be cultivated in photobioreactors or open ponds, which in turn reduce the demand for arable land. Biochar derived from algae is high in nutrients and exhibits the property of ion exchange. Therefore, it can be utilized for sustainable agriculture by partial substituting the chemical fertilizers that degrade the fertility of the soil in the long run. This review provides a detailed insight on the properties of algal biochar as a potential fertilizer for sustainable agriculture. Application of algal biochar in bio-refinery and its economic aspects, challenges faced and future perspective are also discusses in this study.
Collapse
Affiliation(s)
- Sharma Mona
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India.
| | - Sandeep K Malyan
- Research Management and Outreach Division, National Institute of Hydrology, Jalvigyan Bhawan, Roorkee, Uttarakhand, 247667, India.
| | - Neha Saini
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India.
| | | | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Smita S Kumar
- Department of Environmental Sciences, J.C. Bose University of Science and Technology YMCA, Faridabad, India.
| |
Collapse
|
44
|
Hammo MM, Akar T, Sayin F, Celik S, Akar ST. Efficacy of green waste-derived biochar for lead removal from aqueous systems: Characterization, equilibrium, kinetic and application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112490. [PMID: 33819651 DOI: 10.1016/j.jenvman.2021.112490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The removal of toxic metals from the aquatic ecosystem is one of the most pressing environmental and public health concerns today. A strong potential has recently emerged for the removal of such metals using biochar sorbents. Biosorption technology could make a significant difference in the future. It is a viable and cost-effective alternative to the remediation of toxic pollutants utilizing various biomaterials. In the current study, batch and fixed-bed studies were performed to evaluate the performance of Capsicum annuum L. seeds biochar (CASB) as an alternative material in removing toxic Pb(II) from aqueous solutions. Removal characteristics were investigated by considering the equilibrium and kinetic aspects. Biosorption equilibrium was established within 40 min. The optimum dosage of CASB for Pb(II) removal was determined as 2.0 g L-1. Biosorption data were well predicted by a non-linear Langmuir isotherm model. Monolayer biosorption occurred for CASB with a maximum capacity of 36.43 mg g-1. Biosorption kinetics fitted well with a pseudo-first-order kinetic model. The external mass transfer may control Pb(II) transport mechanism. Dynamic flow mode biosorption and regeneration potential of CASB were also examined. The application of CASB exhibited a 100% removal yield in real apple juice samples spiked with low concentrations of Pb(II). Exhausted points for the CASB packed columns were recorded as 195 and 320 min for simulated wastewater (SW) and synthetic Pb(II) solution, respectively. FTIR, BET, SEM-EDX analysis, and zeta potential measurements were used for the characterization of biochar and assessment of the metal ion-biosorbent interaction mechanism. Finally, our study provides a practical approach for the uptake of Pb(II) ions from contaminated solutions.
Collapse
Affiliation(s)
- Mahmoud M Hammo
- Eskisehir Osmangazi University, Graduate School of Natural and Applied Sciences, Department of Chemistry, 26040, Eskisehir, Turkey
| | - Tamer Akar
- Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Chemistry, TR-26040, Eskisehir, Turkey.
| | - Fatih Sayin
- Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Chemistry, TR-26040, Eskisehir, Turkey
| | - Sema Celik
- Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Chemistry, TR-26040, Eskisehir, Turkey
| | - Sibel Tunali Akar
- Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Chemistry, TR-26040, Eskisehir, Turkey
| |
Collapse
|
45
|
Xiu L, Zhang W, Wu D, Sun Y, Zhang H, Gu W, Wang Y, Meng J, Chen W. Biochar can improve biological nitrogen fixation by altering the root growth strategy of soybean in Albic soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:144564. [PMID: 33940700 DOI: 10.1016/j.scitotenv.2020.144564] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 05/22/2023]
Abstract
Albic soil is a low-yielding soil that is widely distributed in Northeast China. The high viscosity and acidity and the lack of nutrients in the Albic layer limit the growth of crop. In our previous studies, we found that applying biochar as a soil amendment could improve the properties of Albic soil and promote soybean growth. Increases in the nitrogen contents of the soil and the soybeans were key aspects of these improvements. Soybean is a nitrogen-fixing crop, the increase in nitrogen in the Albic soil may have been due to an improvement in biological nitrogen fixation by the soybean with biochar amendment, but the function mechanism was still uncertain. We hypothesized that biochar could improve biological nitrogen fixation of soybean by affecting soybean root growth in the Albic soil. Therefore, we conducted pot experiments with five treatment levels (0, 10, 20, 30, and 40 g·kg-1 biochar) for two years to study how biochar affects the root growth strategy and biological nitrogen fixation of soybean based on its root structure and root nutrient acquisition ability at different stages. The soybean root structure and activity indexes, nodulation ability and nitrogen uptake were measured at different growth stages; in the second year, at the late seed-filling stage, the stable 15N isotope method was used to elucidate the biological nitrogen fixation process. Regarding root structure at the pod-setting stage, biochar resulted in increases in root length density, specific root length, root diameter and specific tip density but a decrease in root tissue mass density at the pod-setting stage. Biochar improved root nutrient acquisition by increasing root activity, root tip number and root-bleeding sap amount. The change in root growth strategy contributed to the promotion of biological nitrogen fixation by the rhizobia that live symbiotically with soybean, thereby increasing crop yield.
Collapse
Affiliation(s)
- Liqun Xiu
- Biochar Engineering & Technology Research Center of Liaoning Province, Rice Research Institute, Agronomy College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Weiming Zhang
- Biochar Engineering & Technology Research Center of Liaoning Province, Rice Research Institute, Agronomy College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Di Wu
- Biochar Engineering & Technology Research Center of Liaoning Province, Rice Research Institute, Agronomy College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yuanyuan Sun
- Biochar Engineering & Technology Research Center of Liaoning Province, Rice Research Institute, Agronomy College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Honggui Zhang
- Biochar Engineering & Technology Research Center of Liaoning Province, Rice Research Institute, Agronomy College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Wenqi Gu
- Biochar Engineering & Technology Research Center of Liaoning Province, Rice Research Institute, Agronomy College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yuning Wang
- Biochar Engineering & Technology Research Center of Liaoning Province, Rice Research Institute, Agronomy College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Jun Meng
- Biochar Engineering & Technology Research Center of Liaoning Province, Rice Research Institute, Agronomy College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Wenfu Chen
- Biochar Engineering & Technology Research Center of Liaoning Province, Rice Research Institute, Agronomy College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
46
|
Abstract
Rice husk (RH) is one of the most important crop residues around the world, making its valorization an urgent and important topic in recent years. This work focused on the production of RH-based biochars at different pyrolysis temperatures from 400 to 900 °C and holding times from 0 to 90 min. Furthermore, the variations in the yields and pore properties of the resulting biochars were related to these process conditions. The results showed that the pore properties (i.e., BET surface area and porosity) of the resulting RH-based biochar were positively correlated with the ranges of pyrolysis temperature and holding time studied. The maximal pore properties with a BET surface area of around 280 m2/g and porosity of 0.316 can be obtained from the conditions at 900 °C for a holding time of 90 min. According to the data on the nitrogen (N2) adsorption–desorption isotherms and pore size distributions, both microporous and mesoporous structures exist in the resulting biochar. In addition, the EDS and FTIR analyses also supported the slight hydrophilicity on the surface of the RH-based biochar due to the oxygen/silica-containing functional groups. Based on the findings of this work, the RH-based biochar could be used as a material in environmental applications for water conservation, wastewater treatment and soil amendment.
Collapse
|
47
|
Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, Wang Z, Yang J. Recent advances in the valorization of plant biomass. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:102. [PMID: 33892780 PMCID: PMC8063360 DOI: 10.1186/s13068-021-01949-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/07/2021] [Indexed: 05/28/2023]
Abstract
Plant biomass is a highly abundant renewable resource that can be converted into several types of high-value-added products, including chemicals, biofuels and advanced materials. In the last few decades, an increasing number of biomass species and processing techniques have been developed to enhance the application of plant biomass followed by the industrial application of some of the products, during which varied technologies have been successfully developed. In this review, we summarize the different sources of plant biomass, the evolving technologies for treating it, and the various products derived from plant biomass. Moreover, the challenges inherent in the valorization of plant biomass used in high-value-added products are also discussed. Overall, with the increased use of plant biomass, the development of treatment technologies, and the solution of the challenges raised during plant biomass valorization, the value-added products derived from plant biomass will become greater in number and more valuable.
Collapse
Affiliation(s)
- Peng Ning
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Jingxin Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lina Shi
- Agricultural Integrated Service Center of Zhuyouguan, Longkou, Yantai, China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
48
|
Farhangi-Abriz S, Ghassemi-Golezani K. Changes in soil properties and salt tolerance of safflower in response to biochar-based metal oxide nanocomposites of magnesium and manganese. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111904. [PMID: 33453639 DOI: 10.1016/j.ecoenv.2021.111904] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
This original research was performed to assess the possible effects of solid biochar (25 g biochar kg-1 soil) and biochar-based nanocomposites (BNCs) of magnesium oxide (25 g BNC-MgO kg-1 soil), manganese oxide (25 g BNC-MnO biochar kg-1 soil) and combined use of these nanocomposites (12.5 g BNC-MgO + 12.5 g BNC-MnO kg-1 soil) on soil properties and salinity (non-saline, 6 and 12 dSm-1) tolerance of safflower plants (Carthamus tinctorius L.). Application of biochar, particularly BNCs increased the pH and cation exchange capacity of soil, and the contents of water, potassium, calcium, magnesium, manganese, chlorophyll (a & b), nutrients uptake, water use efficiency and plant growth. Sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP) of soil, sodium absorption rate of plants and osmolyte production (soluble carbohydrates and proteins, proline and glycine betaine) under 6 and 12 dSm-1 salinities were decreased by biochar and BNCs treatments. Sodium sorption capacity of BNCs was much higher than the solid biochar, which reflected the superiority of BNCs in decreasing sodium uptake by plants. The combined application of BNC-MgO + BNC-MnO proved to be the preferable treatment for decreasing salt toxicity in safflower. Biochar and BNCs improved root and shoot growth by lowering SAR, ESP, sodium absorption rate of plants and osmotic stress under saline conditions. These results conclude that BNCs can enrich the plant cells with nutrients, increase the nutrients absorption rate and maintain the plant tissue water content at an optimum level to improve plant growth under salt stress.
Collapse
Affiliation(s)
- Salar Farhangi-Abriz
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Kazem Ghassemi-Golezani
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
49
|
Cybulak M, Sokołowska Z, Boguta P. The influence of biochar on the content of carbon and the chemical transformations of fallow and grassland humic acids. Sci Rep 2021; 11:5698. [PMID: 33707615 PMCID: PMC7952729 DOI: 10.1038/s41598-021-85239-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/26/2021] [Indexed: 11/09/2022] Open
Abstract
There is limited information regarding the effect of biochar (BioC) on the fertility of fallow and grassland soils, as well as on the properties of their humic acids (HAs). The objective of this study was to evaluate with a 3-year field experiment the influence of BioC on the organic matter (OM) in Haplic Luvisol. BioC (obtained via wood waste pyrolysis at 650 °C) was applied to the soil of subplots under fallow and grassland at doses of 0, 1, 2 and 3 kg m-2. The soil samples were collected eight times. The physicochemical properties were determined for the soil and BioC by analysing the density, pH, surface charge, ash, and organic carbon content. Based on the changes in the structure of the HAs and their quantity in the soils, the chemical properties of the HAs were determined. The maximum BioC dose caused an increase in the content of Corg and HAs. BioC did not influence the humification degree coefficients of the HAs originated from fallow, whereas in the grassland, there were significant changes observed in these coefficient values, indicating that BioC may stimulate and accelerate the humification process of soil HAs. Increasing the BioC doses caused an increase in the soil's HA content, suggesting an increase in soil sorption capacity. The fluorescence data showed BioC addition to the soil caused an increase in the number of structures characterised by low molecular weight and a low degree of humification.
Collapse
Affiliation(s)
- Marta Cybulak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Zofia Sokołowska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Patrycja Boguta
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| |
Collapse
|
50
|
Wang H, Lou X, Hu Q, Sun T. Adsorption of antibiotics from water by using Chinese herbal medicine residues derived biochar: Preparation and properties studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114967] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|