1
|
Zhang X, Si J, Li Y, Chen Z, Ren D, Zhang S. Effects of Ca 2+ and Mg 2+ on Cu binding in hydrophilic and hydrophobic dissolved organic matter fractions extracted from agricultural soil. CHEMOSPHERE 2024; 352:141441. [PMID: 38346521 DOI: 10.1016/j.chemosphere.2024.141441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Dissolved organic matter (DOM) has significant effects on soil copper (Cu) bioavailability. However, little is known about Cu interactions and major cation binding toward hydrophilic and hydrophobic DOM components extracted from soil solutions. In this study, we investigated the influence of major cations (Ca2+/Mg2+) on Cu complexing characteristics on different hydrophilic and hydrophobic DOM fractions using absorbance spectroscopy at different Cu2+ concentrations in the absence/presence of Ca2+/Mg2+. Different compositional hydrophobic and hydrophilic DOM fraction proportions occurred at three agricultural soil sites, with the hydrophobic acid (HOA) fraction accounting for the highest proportion. The addition of Cu2+ generated distinct ultraviolet (UV) bands/peaks (processed by differential linear and differential logarithmic transformation) of three hydrophilic DOM fractions, whereas Cu2+ induced less and weak specific peaks in the differential spectra and differential logarithmic of the HOA fractions, indicating hydrophilic DOM fractions tend to have a higher density of Cu2+ complexation sites. In the presence of either Ca2+/Mg2+, increased depression caused by Cu2+ binding on different DOM fractions was observed with increasing 10, 100, and 1000 μM Ca2+/Mg2+ levels, with more significant variations in peaks/banks for hydrophilic base (HIB) and HOA fractions, and less for hydrophilic acid (HIA) and hydrophilic neutral (HIN) fractions. In our study, the spectral parameters ΔS225-275 and ΔS275-325 were successfully used to quantify Cu amounts bonded to HIA and HIB, respectively. They exhibited strong linear relationships with correlation coefficients (R2) of 0.96 for HIA and 0.87 for HIB, respectively. Furthermore, Mg2+ exhibited stronger competition with Cu for HIA and HIB binding sites when compared with Ca2+.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Jiaxue Si
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Ya Li
- EVE Energy CO., LTD, Huizhou, Guangdong, 516000, China.
| | - Zhihua Chen
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Xinxiang, 453007, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| |
Collapse
|
2
|
Fan J, Ge C, Li A, Ren G, Deng H, Wu D, Luo J, He Y, Zhao Y, Li J, Feng D, Yu H. The structural transformation reversibility of biogas slurry derived dissolved organic matter and its binding properties with norfloxacin under temperature fluctuation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115953. [PMID: 38244512 DOI: 10.1016/j.ecoenv.2024.115953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
The widespread use of biogas slurry could potentially raise the environmental risk of antibiotics. Dissolved organic matter (DOM), as the most active part of biogas slurry, was able to interact with antibiotics and play a crucial role in the structure and function of soil and aquatic ecosystems. The recent shifts in global climate patterns have garnered significant attention due to their substantial impact on temperature, thereby exerting a direct influence on the characteristics of DOM and subsequently on the environmental behavior of antibiotics. However, there is limited research concerning the impact of temperature on the binding of DOM and antibiotics. Thus, this study aimed to explore the temperature-dependent structural transformation and driving factors of biogas slurry-derived DOM (BSDOM). Additionally, the binding characteristics between BSDOM and the commonly used antibiotic norfloxacin (NOR) at different temperatures were studied by using multi spectroscopic methods and two-dimensional correlation spectroscopy (2D-COS) analysis. The results suggested that the temperature-dependent structural transformation of BSDOM was reversible, with a slight lag in the transition temperature under cooling (13 °C for heating and 17 °C for cooling). Heating promoted the conversion of protein-like to humic-like substances while cooling favored the decomposition of humic-like substances. BSDOM and NOR were static quenching, with oxygen-containing functional groups such as C-O and -OH playing an important role. Temperature influenced the order of binding, the activity of the protein fraction, and its associated functional groups. At temperatures of 25 °C and 40 °C, the fluorescent components were observed to exhibit consistent binding preferences, whereby the humic-like component demonstrated a greater affinity for NOR compared to the protein-like component. However, the functional group binding order exhibited an opposite trend. At 10 °C, a new protein-like component appeared and bound preferentially to NOR, when no C-O stretch corresponding to the amide was observed. The finding will contribute to a comprehensive understanding of the interaction mechanisms between DOM and antibiotics under climate change, as well as providing a theoretical basis to reduce the environmental risks of biogas slurry and antibiotics.
Collapse
Affiliation(s)
- Jinluo Fan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Ailing Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Guoliang Ren
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Dongming Wu
- Hainan Key Laboratory of Tropical Eco-circuling Agriculture, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Ministry Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jiwei Luo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Yanhu He
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangzhou 510006, China
| | - Yuanyuan Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Jiatong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Dan Feng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Huamei Yu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| |
Collapse
|
3
|
Zhou Y, Meng F, Ochieng B, Xu J, Zhang L, Kimirei IA, Feng M, Zhu L, Wang J. Climate and Environmental Variables Drive Stream Biofilm Bacterial and Fungal Diversity on Tropical Mountainsides. MICROBIAL ECOLOGY 2024; 87:28. [PMID: 38182675 DOI: 10.1007/s00248-023-02335-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
High mountain freshwater systems are particularly sensitive to the impacts of global warming and relevant environmental changes. Microorganisms contribute substantially to biogeochemical processes, yet their distribution patterns and driving mechanism in alpine streams remain understudied. Here, we examined the bacterial and fungal community compositions in stream biofilm along the elevational gradient of 745-1874 m on Mt. Kilimanjaro and explored their alpha and beta diversity patterns and the underlying environmental drivers. We found that the species richness and evenness monotonically increased towards higher elevations for bacteria, while were non-significant for fungi. However, both bacterial and fungal communities showed consistent elevational distance-decay relationships, i.e., the dissimilarity of assemblage composition increased with greater elevational differences. Bacterial alpha diversity patterns were mainly affected by chemical variables such as total nitrogen and phosphorus, while fungi were affected by physical variables such as riparian shading and stream width. Notably, climatic variables such as mean annual temperature strongly affected the elevational succession of bacterial and fungal community compositions. Our study is the first exploration of microbial biodiversity and their underlying driving mechanisms for stream ecosystems in tropical alpine regions. Our findings provide insights on the response patterns of tropical aquatic microbial community composition and diversity under climate change.
Collapse
Affiliation(s)
- Yanan Zhou
- College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Fanfan Meng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beryl Ochieng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianing Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | | | - Muhua Feng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China.
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
4
|
Gu X, Chen B, Liu H, Feng Y, Wang B, He S, Feng M, Pan G, Han S. Photochemical behavior of dissolved organic matter derived from Alternanthera philoxeroides hydrochar: Insights from molecular transformation and photochemically reactive intermediates. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132591. [PMID: 37778307 DOI: 10.1016/j.jhazmat.2023.132591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Hydrochar-derived dissolved organic matter (HDOM) enters aquatic ecosystems through soil leaching and surface runoff following the application of hydrochar. However, the photochemical behavior of HDOM remains unclear. The photo-transformation of HDOM was analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), multiple spectroscopy methods, high-performance liquid chromatography, and combining synchronous fluorescence and Fourier-transform infrared spectroscopy with two-dimensional correlation spectroscopy. The results showed that with the increase of carbonization temperature, amide II in protein-like substances were observed to be preferentially photolyzed, and the protein-like substances were more sensitive to low irradiation time, while the duration time of the photochemical behavior of amide II and aliphatic C-H were more persistent. FT-ICR MS results showed that N and S-containing molecules, including lignins and lipids were more sensitive to ultraviolet irradiation. Furthermore, the photo-transformation of HDOMs was accompanied by the generation of triple excited state dissolved organic matter and singlet oxygen. Our findings will be beneficial for understanding the mechanisms of photo-transformation of HDOM and for predicting the possible behaviors of hydrochar produced at different temperatures before large-scale application.
Collapse
Affiliation(s)
- Xincai Gu
- Jiangsu Key Laboratory of Environmental Science and Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bingfa Chen
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Hong Liu
- Jiangsu Key Laboratory of Environmental Science and Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shiying He
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Muhua Feng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guojun Pan
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shiqun Han
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
5
|
Huang X, Fu X, Zhao Z, Yin H. The telltale fluorescence fingerprints of sewer flows for interpreting the low influent concentration in wastewater treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119517. [PMID: 37952380 DOI: 10.1016/j.jenvman.2023.119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Low degradability of wastewater treatment plant (WWTP) influents negatively affects its ability to effectively remove pollutants through wastewater treatment processes. Proactive assessment of urban sewer system performance is highly valued in the selection of targeted countermeasures for this occurrence. In this study, a fluorescence spectrum interpretation approach was developed to identify the causes of low biodegradability of WWTP influent by using parallel factor analysis (PARAFAC) and fluorescence regional integration (FRI) of excitation-emission matrix spectroscopy. Statistical analysis was also used to further interpret the PARAFAC- and FRI-derived data. The urban sewer catchment served by a WWTP in Wuhan City, China, was used as the test site to demonstrate the effectiveness of this approach. The results showed that electronics manufacturing industrial wastewater and groundwater input into the urban sewer would significantly decrease the biodegradability of the WWTP influents, and these sources were characterized by much lower fluorescence peak intensities, especially for protein-like substances, including tryptophan-like T and tyrosine-like B1 and B2. The potential conversion of high freshness T into low freshness B2 within the sewer may also contribute to this undesirable scenario. The ratio of peak T to peak B2 and the ratio of the FRI fraction of region I to that of region II can be used together to determine the predominance of industrial wastewater and groundwater. T/B2 < 1.3 indicates the entry of industrial wastewater or groundwater into urban sewers, and I/II > 0.5 further confirms the input of industrial wastewater. Accordingly, the low biodegradability of the WWTP influents in our study site is mostly due to the inflow of industrial wastewater rather than groundwater infiltration into the urban sewers. Therefore, actions should be focused on the surveillance of industrial wastewater rather than widespread sewer inspection and repairs. In this way, this methodology is cost-effective in aiding targeted countermeasures to improve the urban sewer system performance.
Collapse
Affiliation(s)
- Xiaomin Huang
- Changjiang Institute of Survey, Planning, Design and Research, Wuhan, China; Hubei Provincial Engineering Research Center for Comprehensive Water Environment Treatment in the Yangtze River Basin, Wuhan, China
| | - Xiaowei Fu
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhichao Zhao
- Changjiang Institute of Survey, Planning, Design and Research, Wuhan, China; Hubei Provincial Engineering Research Center for Comprehensive Water Environment Treatment in the Yangtze River Basin, Wuhan, China
| | - Hailong Yin
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
6
|
Touseef B, Yang X, Fan W, Liu S. Investigating spectroscopic and copper binding characteristics of dissolved organic matter in wastewater using EEMs with two-dimensional Savitzky-Golay second-order differentiation-PARAFAC. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85405-85414. [PMID: 37386222 DOI: 10.1007/s11356-023-28408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Dissolved organic matter (DOM) in wastewater interacts with heavy metal particles in aquatic environments, which changes their dynamics and bioavailability. For quantifying the DOM, an excitation-emission matrix (EEM) paired alongside parallel factor analysis (PARAFAC) is typically employed. However, a drawback of PARAFAC has been revealed in recent studies, i.e., the rise of overlapping spectra or wavelength shifts in fluorescent components. Here, traditional EEM-PARAFAC and, for the first time, two-dimensional Savitzky-Golay second-order differential-PARAFAC (2D-SG-2nd-df-PARAFAC) were used to study the DOM-heavy metal binding. The samples from four treatment units of a wastewater treatment plant, i.e., influent, anaerobic, aerobic, and effluent, underwent the process of fluorescence titration with Cu2+. Four components were separated with dominant peaks in regions I, II, and III (proteins and fulvic acid-like) through PARAFAC and 2D-SG-2nd-df-PARAFAC. A single peak was observed in region V (humic acid-like) by PARAFAC. In addition, Cu2+-DOM complexation indicated clear differences in DOM compositions. The binding strength increased between Cu2+ and fulvic acid-like components in contrast to protein-like components from influent to the effluent, and increasing fluorescence intensity with the addition of Cu2+ in the effluent indicated changes in their structural composition. Moreover, when comparing both methods, the 2D-SG-2nd-df-PARAFAC provided the components without peak shifts and better fitting for Cu2+-DOM complexation model, demonstrating it to be a more reliable technique compared to only traditional PARAFAC for DOM characterization and quantifying metal-DOM in wastewater.
Collapse
Affiliation(s)
- Bilal Touseef
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China
| | - Xiaolong Yang
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China
| | - Wenhong Fan
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Shu Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China.
| |
Collapse
|
7
|
Sun T, Sun Y, Huang Q, Xu Y, Jia H. Sustainable exploitation and safe utilization of biochar: Multiphase characterization and potential hazard analysis. BIORESOURCE TECHNOLOGY 2023:129241. [PMID: 37247790 DOI: 10.1016/j.biortech.2023.129241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
Pyrolysis temperature determines the multiphase (solid and dissolved) structure of biochar (BC). In this study, the temperature-dependent evolution of characteristics and potential hazards of three crop (cotton, alfalfa, and wheat) residue BC were systematically investigated. The results showed that pyrolysis temperature significantly affected the elemental composition and morphology of BC. A higher pyrolysis temperature led to a higher aromatization and graphitization degree of BC. A numerical relationship between pyrolysis temperature and BC surface properties (functional groups, carbonization degree) was established. Pyrolysis temperature controlled the content, composition, and functional group evolution of BC-derived dissolved organic matter. Although the amount of potentially toxic elements (PTEs) in BC was concentrated after pyrolysis, the potentially risk of PTEs significantly decreased. The spin concentration of persistent free radicals in BC prepared at 500 °C was the highest. These findings will hopefully offer comprehensive guidance for sustainable utilization of crop straw and fit-for-purpose exploitation of BC.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-Environment and Agro-Products, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-Environment and Agro-Products, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Qingqing Huang
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-Environment and Agro-Products, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yingming Xu
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-Environment and Agro-Products, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hongtao Jia
- College of Resources and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
8
|
Tang JY, Xiong YS, Li MX, Jia R, Zhou LS, Fan BH, Li K, Li W, Li H, Lu HQ. Hyperbranched polyethyleneimine-functionalised chitosan aerogel for highly efficient removal of melanoidins from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130731. [PMID: 36640505 DOI: 10.1016/j.jhazmat.2023.130731] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Melanoidins are hazardous dark-coloured substances contained in molasses-based distillery wastewater. Adsorption is an effective approach to eliminate melanoidins from wastewater. However, melanoidin adsorption capacities of available adsorbents are unsatisfactory, which seriously limits their practical application. A hyperbranched polyethyleneimine-functionalised chitosan aerogel (HPCA) was fabricated as an effective adsorbent for melanoidin scavenging. HPCA demonstrated superior melanoidin adsorption efficiency because of its high specific surface area, abundant amino functional groups, and high hydrophilicity. Melanoidin removal rate of HPCA was 94.95%, which remained at 91.45% after 5 cycles. Notably, using the Langmuir isothermal model, the maximum melanoidin adsorption capacity of HPCA was determined to be 868.36 mg/g, surpassing those of most of previously reported adsorbents. Toxicity experiments indicated that HPCA can be considered a safe adsorbent with excellent biocompatibility that hardly threatens aquatic organisms. The efficient melanoidin removal of HPCA was attributed to electrostatic attraction, H-bonding, and van der Waals force. However, the adsorption might be predominantly controlled by electrovalent interaction between protonated amino groups of HPCA and carboxyl/carboxylate groups of melanoidins. Two novel models, namely, external diffusion resistance-internal diffusion resistance mixed model and adsorption on active site model, were employed to describe the dynamic mass transfer characteristics of melanoidin adsorption by HPCA.
Collapse
Affiliation(s)
- Jia-Yi Tang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yan-Shu Xiong
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ming-Xing Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ran Jia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Li-Shu Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Bo-Huan Fan
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Wen Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China.
| | - Hong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Hai-Qin Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China.
| |
Collapse
|
9
|
Guo X, Zhang M, Yang L, Wu Y, Peng Y, Dai L. Influence of thermal air oxidation on the chemical composition and uranium binding property of intrinsic dissolved organic matter from biochar. CHEMOSPHERE 2023; 317:137896. [PMID: 36682631 DOI: 10.1016/j.chemosphere.2023.137896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/28/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
In this work, uranium (U(VI)) binding characteristics of the intrinsic dissolved organic matters (DOM) from the biochars prepared under thermal air oxidation (TAO) and non-TAO conditions were studied using synchronous fluorescence spectra (SFS) and Fourier transform infrared (FTIR) in conjunction with the general two-dimensional correlation spectroscopy (2D-COS), heterospectral 2D-COS and moving-window (MW) 2D-COS. The chemical compositions of the intrinsic DOMs from biochars with/without TAO were investigated by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). Results showed that the preferential binding of U(VI) to functional groups followed the order: 937 (carboxyl γC-OH), 981 (carboxyl γC-OH), 1511 (aromatic vC = C), 1108 (esters or ethers vC-O), 1282 (esters or carboxyl vC-O), 1698 (saturated carboxylic acid or ketone vC = O) cm-1 for biochar DOM after TAO (OB600), and 937 (carboxyl γC-OH), 1484 (lipids δC-H or phenolic vC-O), 1201 (esters or carboxyl vC-O), 1112 (esters or ethers vC-O), 1706 (saturated aldehyde, carboxylic acid or ketone vC = O), 1060 (phenolic, esters or ethers vC-O), 1014 (phenolic, esters or ethers vC-O) cm-1 for the pristine biochar (B600). Fulvic-like substances at 375 nm in the biochar DOM showed a preferential binding with U(VI) after TAO, while humic-like substances played a more critical role in the U(VI) complexation with biochar DOM obtained from non-TAO condition. The results also indicated that TAO increased the content of fluorescent DOM and the chemical stability of DOM-U(VI) complexes. The FT-ICR MS results showed an increase in the relative abundance of protein-like, carbohydrates-like, tannins-like, unsaturated hydrocarbons, and condensed aromatic structure and a decrease in the relative abundance of lipid-like and lignin-like after TAO. Consequently, although biochar after TAO had a much poorer content of intrinsic DOM, its intrinsic DOM showed a much higher capacity in U(VI) precipitation. Therefore, the TAO substantially changed the chemical composition, binding property and environmental behavior of intrinsic DOM from biochar.
Collapse
Affiliation(s)
- Xujing Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Meifeng Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Lijun Yang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China
| | - Yi Wu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Yuyao Peng
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Lichun Dai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China.
| |
Collapse
|
10
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121636. [PMID: 36229084 DOI: 10.1016/j.saa.2022.121636] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
In this review, the comprehensive summary of two-dimensional correlation spectroscopy (2D-COS) for the last two years is covered. The remarkable applications of 2D-COS in diverse fields using many types of probes and perturbations for the last two years are highlighted. IR spectroscopy is still the most popular probe in 2D-COS during the last two years. Applications in fluorescence and Raman spectroscopy are also very popularly used. In the external perturbations applied in 2D-COS, variations in concentration, pH, and relative compositions are dramatically increased during the last two years. Temperature is still the most used effect, but it is slightly decreased compared to two years ago. 2D-COS has been applied to diverse systems, such as environments, natural products, polymers, food, proteins and peptides, solutions, mixtures, nano materials, pharmaceuticals, and others. Especially, biological and environmental applications have significantly emerged. This survey review paper shows that 2D-COS is an actively evolving and expanding field.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
11
|
Zhu Y, Guan Q, Kong L, Yang R, Wang W, Jin Y, Liu X, Qu J. Overlooked mechanism of Pb immobilization on montmorillonite mediated by dissolved organic matter in manure compost. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120706. [PMID: 36427824 DOI: 10.1016/j.envpol.2022.120706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
In this study, three kinds of dissolved organic matter (DOM) derived from fresh chicken manure (FDOM), immature compost (IDOM) and mature compost (MDOM) were employed to compare their effects on Pb adsorption onto montmorillonite (MMT). The potential mechanism was revealed by characterization of mineral structure and calculation of interface force. The results demonstrated that the adsorption capacity (qmax) of Pb onto MMT was decreased by 14.3% and 29.8% in the presence of FDOM and IDOM, respectively, while increased by 44.4% in the presence of MDOM, resulting from the release or co-adsorption of DOM-Pb complexes. Parallel factor (PARAFAC) further indicated that Pb mainly bound to protein-like substances in FDOM and IDOM, and fulvic-like in MDOM. The X-ray diffraction (XRD) analysis proved that MDOM-Pb complex had a stronger ability to enter into the interlayer of MMT. The van der Waals force dominated the adsorption of FDOM-Pb and IDOM-Pb, while ligand exchange was involved in the case of MDOM-Pb. This study provided a comprehensive insight into the geochemical behavior of livestock manure and its compost as well as their interactions with heavy metal and soil mineral.
Collapse
Affiliation(s)
- Yuanchen Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Qingkai Guan
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Linghui Kong
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Rui Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Academy of Agriculture and Science, Soil Fertilizer and Environment Resource Institute, Harbin, China
| | - Yu Jin
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xuesheng Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Juanjuan Qu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
12
|
Huang N, Zhang J, Zhao C, Li S, Lu Z. Characterising the interactions between Cu(II) and fulvic acid subcomponents using differential fluorescence spectroscopy combined with parallel factor analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88925-88937. [PMID: 35842512 DOI: 10.1007/s11356-022-22060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Fulvic acid (FA) consists of various organic compounds that interact with metals in the aquatic environment. Interactions between subcomponents (FA3, FA5, FA7, FA9 and FA13) of FA and Cu(II) were investigated using fluorescence quenching titration by coupling differential fluorescence spectroscopy (DFS) and parallel factor analysis (PARAFAC). The material fluorescence intensities derived from FA subcomponents decreased with Cu(II) concentration increase, and stronger quenching was experienced at low Cu(II) concentrations. Humic-like materials of FA3 and protein-like materials of FA9 have relatively higher presence of carboxylic groups with greater molecular polarity, and preferential interaction of Cu(II) occurs. Fluorescence DFSs can be successfully broken down into five components as follows: fulvic-like components of a major compound containing carboxylic-like and phenolic-like groups, fulvic-like components of a major compound containing groups of other components, humic-like components of a major compound containing carboxylic-like and phenolic-like groups, humic-like components of a major compound containing carboxylic-like groups, and protein-like components. The fulvic-like components of a major compound containing carboxylic-like and phenolic-like groups exhibited stronger quenching with Cu(II) in five FA subcomponents. Static quenching is the dominant mechanism for the binding of Cu(II) by the FA subcomponent. The log K of quenching constants fitted using the modified Ryan-Weber equation (R2 = 0.9368-0.9985) ranged from 4.32 to 6.14 for five components derived from FA subcomponents. Subcomponents that were eluted earlier exhibited stronger binding affinity with Cu(II).
Collapse
Affiliation(s)
- Nannan Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 10012, China
| | - Jin Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Chen Zhao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Siyang Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhen Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
13
|
Zhou X, Wang Q, Guo Y, Sun X, Li T, Yang C. Spectroscopic characterization of dissolved organic matter from macroalgae Ulva pertusa decomposition and its binding behaviors with Cu(II). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112811. [PMID: 34563880 DOI: 10.1016/j.ecoenv.2021.112811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/05/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Dissolved organic matter (DOM) from macroalgae is regarded a crucial source of autochthonous DOM in coastal ocean. In the present study, the characteristics of DOM from the macroalgae Ulva pertusa decomposition (U. pertusa-DOM) and its binding behaviors with Cu(II) using multiple spectroscopic techniques and chemometric analyses. The labile U. pertusa-DOM could be consumed and transformed by microorganisms. The absorption spectroscopic descriptors indicate that the hydrophobicity, aromaticity, and molecular weight of the U. pertusa-DOM increase during the 27-day incubation period. Fluorescence excitation-emission matrix spectroscopy combined with parallel factor analysis suggests that the relative abundance of the protein-like component (C1) (96.10-84.96%) sequentially decreases, whereas the humic-like components (C2) (2.16-9.73%) and (C3) (1.75-5.31%) in the U. pertusa-DOM increase with the U. pertusa decomposition. The Cu(II) binding properties of the U. pertusa-DOM are dependent on the decomposition time. The order of the conditional stability constant (logKM) is C2 > C1 > C3. The complexation capacity (f) of C1 is higher than those of C2 and C3 at a specific time. Synchronous fluorescence spectroscopy coupled with two-dimensional correlation spectroscopy reveals that the microbial degradation could accelerate the Cu(II) binding to humic-like fractions in the U. pertusa-DOM. These findings will help us better understand the biogeochemical behaviors of macroalgal DOM and heavy metal in coastal ecosystems.
Collapse
Affiliation(s)
- Xiaotian Zhou
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Qilu Wang
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Yuanming Guo
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Xiumei Sun
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Tiejun Li
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Chenghu Yang
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China.
| |
Collapse
|
14
|
Zhu Y, Jin Y, Liu X, Miao T, Guan Q, Yang R, Qu J. Insight into interactions of heavy metals with livestock manure compost-derived dissolved organic matter using EEM-PARAFAC and 2D-FTIR-COS analyses. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126532. [PMID: 34252653 DOI: 10.1016/j.jhazmat.2021.126532] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 05/10/2023]
Abstract
Dissolved organic matter (DOM), as the most active ingredient in compost, directly determines the speciation and environmental behavior of HMs. Here, the binding properties of DOM derived from chicken-manure compost (CHM), cow-manure compost (COM) and pig-manure compost (PIM) with HMs were explored by analyses of Fluorescence excitation-emission matrix parallel factor (EEM-PARAFAC) and two-dimensional correlation Fourier transform infrared spectroscopy (2D-FTIR-COS). Results showed that the binding characteristics vary with origin of DOM and type of HMs. The fulvic-like component dominated the transformation of HMs speciation, and CHM-DOM had higher affinity with HMs and greater risk causing pollution due to its higher aromaticity, molecular weight and distribution of fluorescent components. Moreover, Cu(II) can efficiently bind to DOM with the stability constants (log kM) ranging from 4.53 to 5.38, followed by Pb(II) (3.34-3.57), whereas Cd(II) can hardly bind to DOM. The amide and polysaccharide were the predominant sites for HMs binding in CHM-DOM, and polysaccharide and phenolic in COM-DOM, while phenolic and amide in PIM-DOM, respectively. Although the proportion of protein-like components and non-fluorescent polysaccharides in DOM were low, their role in HMs binding should not be ignored. In brief, the environmental risk caused by livestock manure compost may originate from interactions between DOM and HMs.
Collapse
Affiliation(s)
- Yuanchen Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Jin
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xuesheng Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tianlin Miao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingkai Guan
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Rui Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Juanjuan Qu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|