1
|
Yao L, Hu Y, Yang JH, Wu R, Chen FL, Zhou X. Wastewater surveillance for chronic disease drugs in wastewater treatment plants: Mass load, removal, and sewage epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137661. [PMID: 39986104 DOI: 10.1016/j.jhazmat.2025.137661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
As the number of chronic disease patients continues to climb, vast quantities of chronic disease drugs are continuously discharged into the wastewater treatment plants (WWTPs) and then are released to the receiving environment. However, the situations of pollution, removal, and consumption of chronic disease drugs in China were not studied. Here we investigated the mass load and removal efficiency of 14 chronic disease drugs in seven wastewater treatment plants (WWTPs) of Guangdong Province, China, and estimated the proportional usage of chronic disease drugs and the prevalence of chronic diseases by wastewater-based epidemiology (WBE) method. The results showed that all target chronic disease drugs were detected in the WWTPs, among which gliclazide, valsartan, and bezafibrate were the mainly detected antidiabetic drug, antihypertensive drug, and antihyperlipidemic drug, respectively. The aqueous removal rates of chronic disease drugs ranged from -163 %-100 % in studied WWTPs, and most chronic disease drugs were mainly removed at anaerobic stage in WWTPs that using Anaerobic-Anoxic-Oxic treatment technologies. Mean mass loads of chronic disease drugs in the influent of seven WWTPs ranged at 72-318099 mg·d-1 (valsartan), and mean emission of chronic disease drugs in seven WWTPs ranged at 0-56.3 mg·d-1·1000 inhabitant-1 (valsartan). Based on the WBE method, the prevalence of diabetes, hypertension, and dyslipidemia estimated by gliclazide, glipizide, valsartan, and bezafibrate in this study was consistent with those obtained via cross-sectional survey. The results formulated the contamination characteristics of chronic disease drugs in China and assessed the accuracy of chronic disease drugs used for disease prevalence estimation.
Collapse
Affiliation(s)
- Li Yao
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| | - Yang Hu
- Soil and Landscape Science, School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia
| | - Jia-Hui Yang
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Rui Wu
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Fei-Long Chen
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Xi Zhou
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| |
Collapse
|
2
|
Jia C, Wu H, Yang A, Chen A, Wang X, Ding S, Fan B, Zhou G, Li Z, Chen J. Mechanism Research of QingReJieDu Formula for Treating Hepatitis B Virus Based on Network Pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155915. [PMID: 39550917 DOI: 10.1016/j.phymed.2024.155915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/27/2024] [Accepted: 07/25/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Hepatitis B virus (HBV) is a DNA virus known to induce hepatitis and liver dysfunction, and is one of the main causes of liver cirrhosis and liver cancer. At present, there lacks a satisfactory optimal treatment plan for HBV in clinical practice, promoting the development of a novel Chinese formula, QingReJieDu Formula (QRJDF), as a potential solution. PURPOSE This study aims to explore the underlying mechanisms of QRJDF in the treatment of Hepatitis B virus (HBV) through a combination of network pharmacology and experimental validation. METHODS/STUDY DESIGN HepG2.2.15 cells were used to study the efficacy of QRJDF against HBV in vitro. Entecavir (ETV) was used as a positive control. Additionally, HBV transgenic mice served as subjects to study the in vivo efficacy of QRJDF against HBV, with serum and tissue samples analyzed post-euthanasia at 12 weeks to observe relevant indicators. UPLC-Q-TOF-MS technology was utilized to obtain the main ingredients in QRJDF. Network pharmacology was used to explore the potential ingredients and targets of QRJDF against HBV. Transcriptome sequencing was used to further explore the potential targets of QRJDF against HBV. Finally, integration of network pharmacology and transcriptomics results facilitated the screening of potential key targets and identification of potential pathways. RESULTS QRJDF demonstrated anti-HBV effects in HepG2.2.15 cells, compared to ETV control, QRJDF was more efficient in inhibiting HBV antigen levels, although it was less efficient in inhibiting HBV DNA level. In addition, the antiviral effect was verified in HBV transgenic mice. Network pharmacology results found three major active anti-HBV ingredients from QRJDF. Network pharmacology and transcriptomics revealed that QRJDF could act on the TGFβ1/Smad4 signaling pathway. CONCLUSION The study comprehensively evaluated the efficacy in vivo and in vitro, and fully confirmed that QRJDF was a potential therapeutic agent for HBV. In addition, the transcriptome technology was verified, and the key targets and approaches of QRJDF against hepatitis B were screened in combination with network pharmacology, which provided research ideas for the follow-up research of antiviral Chinese medicine.
Collapse
Affiliation(s)
- Caixia Jia
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongxing Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aiqing Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, P.R. 100850, China
| | - Aiping Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueting Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, P.R. 100850, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, Hebei, China
| | - Shuqin Ding
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, P.R. 100850, China; College of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Baofeng Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, P.R. 100850, China.
| | - Zhihong Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; Dongzhimen Hospital, Beijing university of Chinese Medicine, No.5 Haiyuncang Hutong, Dongcheng district, Beijing 100700, China.
| | - Jianxin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
3
|
Price M, Simpson BS, Tscharke BJ, Ahmed F, Keller EL, Sussex H, Kah M, Sila-Nowicka K, Chappell A, Gerber C, Trowsdale S. Reporting population size in wastewater-based epidemiology: A scoping review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176076. [PMID: 39244059 DOI: 10.1016/j.scitotenv.2024.176076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Knowledge of the number of people present in a catchment is fundamental for the assessment of spatio-temporal trends in wastewater-based epidemiology (WBE). Accurately estimating the number of people connected to wastewater catchments is challenging however, because populations are dynamic. Methods used to estimate population size can significantly influence the calculation and interpretation of population-normalised wastewater data (PNWD). This paper systematically reviews the reporting of population data in 339 WBE studies. Studies were evaluated based on their reporting of population size, the source of population data, the population calculation methods, and the uncertainties in population estimates. Most papers reported population size (96 %) and the source of population data (60 %). Fewer studies reported the uncertainties in their population data (50 %) and the methods used to calculate these estimates (28 %). This is relevant because different methods have unique strengths and limitations which can affect the accuracy of PNWD. Only 64 studies (19 %) reported all four components of population data. The reporting of population data has remained consistent in the past decade. Based on the findings, we recommend generalised reporting criteria for population data in WBE. As WBE is further mainstreamed and applied, the clear and comprehensive reporting of population data will only become increasingly important.
Collapse
Affiliation(s)
- Mackay Price
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Bradley S Simpson
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences, University of Queensland, 20 Cornwall Street, Queensland 4102, Australia
| | - Fahad Ahmed
- Independent researcher, Brisbane, Queensland, Australia
| | - Emma L Keller
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | | | - Melanie Kah
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Katarzyna Sila-Nowicka
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-357, Poland
| | - Andrew Chappell
- Institute of Environmental Science and Research (ESR) Ltd., 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Cobus Gerber
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Sam Trowsdale
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Devianto LA, Amarasiri M, Wang L, Iizuka T, Sano D. Identification of protein biomarkers in wastewater linked to the incidence of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175649. [PMID: 39168326 DOI: 10.1016/j.scitotenv.2024.175649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/19/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Wastewater-based epidemiological (WBE) surveillance is a viable disease surveillance technique capable of monitoring the spread of infectious disease agents in sewershed communities. In addition to detecting viral genomes in wastewater, WBE surveillance can identify other endogenous biomarkers that are significantly elevated and excreted in the saliva, urine, and/or stool of infected individuals. Human protein biomarkers allow the realization of real-time WBE surveillance using highly sensitive biosensors. In this study, we analyzed endogenous protein biomarkers present in wastewater influent through liquid chromatography-tandem mass spectrophotometry and scaffold data-independent acquisition to identify candidate target protein biomarkers for WBE surveillance of SARS-CoV-2. We found that out of the 1382 proteins observed in the wastewater samples, 44 were human proteins associated with infectious diseases. These included immune response substances such as immunoglobulins, cytokine-chemokines, and complements, as well as proteins belonging to antimicrobial and antiviral groups. A significant correlation was observed between the intensity of human infectious disease-related protein biomarkers in wastewater and COVID-19 case numbers. Real-time WBE surveillance using biosensors targeting immune response proteins, such as antibodies or immunoglobulins, in wastewater holds promise for expediting the implementation of relevant policies for the effective prevention of infectious diseases in the near future.
Collapse
Affiliation(s)
- Luhur Akbar Devianto
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan; Department of Environmental Engineering, Faculty of Agriculture Technology, Brawijaya University, Malang 65145, Indonesia
| | - Mohan Amarasiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Luyao Wang
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Takehito Iizuka
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan; Wastewater Information Research Center, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan; New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
5
|
Zou Y, Peng P, Zou H, Zhang Y, Chen C, Huang S. Transport and retention of COVID-19-related antiviral drugs in saturated porous media under various hydrochemical conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117028. [PMID: 39276648 DOI: 10.1016/j.ecoenv.2024.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Antiviral drugs have garnered considerable attention, particularly in the global battle against the COVID-19 pandemic, amid heightened concerns regarding environmentally acquired antiviral resistance. A comprehensive understanding of their transport in subsurface environments is imperative for accurately predicting their environmental fate and risks. This study investigated the mobility and retention characteristics of six COVID-19 antiviral drugs in saturated quartz sand columns. Results showed that the mobility of the drugs was primarily contingent on their hydrophobicity, with ribavirin and favipiravir exhibiting the highest transportability, while arbidol displaying the greatest retention. The transport characteristics of ribavirin and favipiravir remained largely unaffected by pH, whereas the retention of the other four antivirals remained consistently minimal under alkaline conditions. Elevating ionic strength marginally facilitated the transport of these antivirals, while the presence of Ca2+ notably enhanced their retention in quartz sand compared to Na+. Ribavirin and remdesivir warrant particular attention due to their relatively high transportability and propensity for environmentally acquired antiviral resistance. These findings contribute to an enhanced understanding of the leachate potential and transport of COVID-19-related antivirals in sandy porous media, furnishing fundamental data for predicting their environmental fate and associated risks.
Collapse
Affiliation(s)
- Yefeng Zou
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Peng Peng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Yun Zhang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Chen Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou 510535, China
| | - Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
6
|
Yigci D, Bonventre J, Ozcan A, Tasoglu S. Repurposing Sewage and Toilet Systems: Environmental, Public Health, and Person-Centered Healthcare Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300358. [PMID: 39006062 PMCID: PMC11237177 DOI: 10.1002/gch2.202300358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/27/2024] [Indexed: 07/16/2024]
Abstract
Global terrestrial water supplies are rapidly depleting due to the consequences of climate change. Water scarcity results in an inevitable compromise of safe hygiene and sanitation practices, leading to the transmission of water-borne infectious diseases, and the preventable deaths of over 800.000 people each year. Moreover, almost 500 million people lack access to toilets and sanitation systems. Ecosystems are estimated to be contaminated by 6.2 million tons of nitrogenous products from human wastewater management practices. It is therefore imperative to transform toilet and sewage systems to promote equitable access to water and sanitation, improve public health, conserve water, and protect ecosystems. Here, the integration of emerging technologies in toilet and sewage networks to repurpose toilet and wastewater systems is reviewed. Potential applications of these systems to develop sustainable solutions to environmental challenges, promote public health, and advance person-centered healthcare are discussed.
Collapse
Affiliation(s)
- Defne Yigci
- School of MedicineKoç UniversityIstanbul34450Türkiye
| | - Joseph Bonventre
- Division of Renal MedicineDepartment of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering DepartmentUniversity of CaliforniaLos AngelesCA90095USA
- Bioengineering DepartmentUniversity of CaliforniaLos AngelesCA90095USA
- California NanoSystems Institute (CNSI)University of CaliforniaLos AngelesCA90095USA
- Computer Science DepartmentUniversity of CaliforniaLos AngelesCA90095USA
- Department of SurgeryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Savas Tasoglu
- Department of Mechanical EngineeringKoç UniversitySariyerIstanbul34450Türkiye
- Koç University Translational Medicine Research Center (KUTTAM)Koç UniversityIstanbul34450Türkiye
- Boğaziçi Institute of Biomedical EngineeringBoğaziçi UniversityIstanbul34684Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR)Koç UniversityIstanbul34450Turkey
| |
Collapse
|
7
|
Shao XT, Wang YS, Gong ZF, Li YY, Tan DQ, Lin JG, Pei W, Wang DG. Surveillance of COVID-19 and influenza A(H1N1) prevalence in China via medicine-based wastewater biomarkers. WATER RESEARCH 2023; 247:120783. [PMID: 37924682 DOI: 10.1016/j.watres.2023.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
The simultaneous monitoring of individual or multiple diseases can be achieved by selecting therapeutic medicines used to treat the primary symptoms of the condition as biomarkers in wastewater. This study proposes a novel approach to monitor the prevalence of COVID-19 and influenza A (H1N1) by selecting nine medicines to serve as biomarkers, including three antipyretics, three antivirals, and three cough suppressants. To verify our approach, wastewater samples were collected from seventeen urban and five rural wastewater treatment plants (WWTPs) in a Chinese city over a period of one year. The use of antipyretics increased notably during the COVID-19 pandemic, while the consumption of antivirals for influenza A (H1N1) rose in the post-COVID-19 pandemic period, indicating a minor spike in the occurrence of influenza A (H1N1) after the COVID-19 pandemic. Fever is a significant symptom of COVID-19 and can serve as a reliable indicator of disease prevalence. Our research found that the prevalence of COVID-19 in urban areas was significantly higher (at 78.5 %, 95 % CI: 73.4 % - 83.9 %) than in rural areas (with a prevalence of 48.1 %, 95 % CI: 42.4 % - 53.8 %). The prevalence of COVID-19 in urban areas in this study was consistent with the data reported by the Chinese center for Disease Control and Prevention (82.4 %). Continuous monitoring of WWTPs in urban areas with fluctuating populations and complex demographics can provide early disease warning. Our results demonstrate the feasibility of evaluating community disease prevalence by selecting major therapeutic medicines as biomarkers in wastewater.
Collapse
Affiliation(s)
- Xue-Ting Shao
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Yan-Song Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Zhen-Fang Gong
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Yan-Ying Li
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Dong-Qin Tan
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Jian-Guo Lin
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Wei Pei
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - De-Gao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026.
| |
Collapse
|
8
|
Zhong Y, Hou C, Gao X, Wang M, Yao Y, Chen M, Di B, Su M. Application of wastewater-based epidemiology to estimate the usage of beta-agonists in 31 cities in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164956. [PMID: 37343858 DOI: 10.1016/j.scitotenv.2023.164956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
The illegal use of beta-agonists could cause severe problems to human health. In this study, the usage of beta-agonists in 31 cities across China was estimated using wastewater-based epidemiology (WBE). The proposed method is based on solid-phase extraction (SPE) and LC-MS/MS and was developed and validated to determine the concentration of seven beta-agonists in wastewater. A population model based on cotinine (COT), NH4-N and the flow volume was constructed to estimate the population equivalents for different wastewater treatment plants (WWTPs). Clenbuterol and ractopamine are banned in China for both animal husbandry and medical use, but were nevertheless detected in some wastewater samples at rates of 6.2 % and 4.7 %, respectively (n = 339). The WBE-based consumption of clenbuterol and ractopamine were compared with the acceptable daily intake (ADI) and the health risks were assessed by their hazard quotients (0.26-6.62 for clenbuterol and 9.27 × 10-4-0.05 for ractopamine). Salbutamol, clorprenaline and terbutaline were observed in practically all wastewater samples at concentrations of up to several ng/L, whereas the formoterol and bambuterol concentrations were below the detection limit in all samples. Salbutamol consumption (7.35 ± 4.14 mg/1000 inh/day) was highest among the examined beta-agonists and varied regionally. Beta-agonist consumption based on WBE was higher in some cities than that based on medical survey data, indicating potential illegal use. These results show that WBE can be a straightforward and supplementary method for monitoring beta-agonist usage at the population level and spatially.
Collapse
Affiliation(s)
- Yuling Zhong
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Chenzhi Hou
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Xinyi Gao
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Mingyu Wang
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Yan Yao
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Mengyi Chen
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, No. 639 Longmian Avenue, Nanjing, 211100, China.
| | - Mengxiang Su
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, No. 639 Longmian Avenue, Nanjing, 211100, China.
| |
Collapse
|
9
|
Reeves A, Shaikh WA, Chakraborty S, Chaudhuri P, Biswas JK, Maity JP. Potential transmission of SARS-CoV-2 through microplastics in sewage: A wastewater-based epidemiological review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122171. [PMID: 37437759 DOI: 10.1016/j.envpol.2023.122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
In light of the current COVID-19 pandemic caused by the virus SARS-CoV-2, there is an urgent need to identify and investigate the various pathways of transmission. In addition to contact and aerosol transmission of the virus, this review investigated the possibility of its transmission via microplastics found in sewage. Wastewater-based epidemiological studies on the virus have confirmed its presence and persistence in both influent sewage as well as treated ones. The hypothesis behind the study is that the huge amount of microplastics, especially Polyvinyl Chloride and Polyethylene particles released into the open waters from sewage can become a good substrate and vector for microbes, especially Polyvinyl Chloride and Polyethylene particles, imparting stability to microbes and aiding the "plastisphere" formation. A bibliometric analysis highlights the negligence of research toward plastispheres and their presence in sewage. The ubiquity of microplastics and their release along with the virus into the open waters increases the risk of viral plastispheres. These plastispheres may be ingested by aquatic organisms facilitating reverse zoonosis and the commercial organisms already reported with accumulating microplastics through the food chain poses a risk to human populations as well. Reliance of high population density areas on open waters served by untreated sewage in economically less developed countries might bring back viral transmission.
Collapse
Affiliation(s)
- Arijit Reeves
- Department of Environmental Science, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Wasim Akram Shaikh
- Department of Basic Sciences, School of Science and Technology, The Neotia University, Sarisha, South 24 Parganas, West Bengal, 743368, India
| | - Sukalyan Chakraborty
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Jharkhand, 835215, India.
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Jyoti Prakash Maity
- Environmental Science Laboratory, Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
10
|
Yu ZQ, Bai XY, Ruan GC, Han W, Xu TM, Zhang MY, Wang BM, Zhang YJ, Guo MY, Yang H. Autoimmune pancreatitis associated with inflammatory bowel diseases: A retrospectively bidirectional case-control study in China. J Dig Dis 2023; 24:452-460. [PMID: 37503771 DOI: 10.1111/1751-2980.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/02/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES Autoimmune pancreatitis (AIP) is a rare and enigmatic immune-mediated inflammatory disease. We aimed to investigate the prevalence, characteristics, and associated factors of AIP-inflammatory bowel disease (IBD) in China. METHODS A retrospective bidirectional case-control study was performed. The diagnoses of IBD and AIP were made based on the European Crohn's and Colitis Organization guidelines and the International Consensus Diagnostic Criteria. IBD controls were matched by age, sex, and IBD type at a ratio of 1:4, while AIP controls were matched by AIP types. RESULTS The age-standardized prevalence of AIP-IBD patients in the IBD and AIP population were 292.0 and 8151.93 per 100 000 population, respectively. IBD patients had a higher risk of AIP compared to non-IBD patients (odds ratio 8.4, 95% confidence interval 4.7-14.9, P < 0.0001), and AIP patients had a higher risk of developing IBD compared to the general population in China. The mean age at diagnosis of IBD and AIP was 34.83 years and 40.42 years. IBD was diagnosed before AIP in seven cases. The median total IBD and AIP duration was 43.5 months and 13.5 months. Use of mesalamine and tuberculosis were associated with AIP in IBD patients (P = 0.031). And fecal occult blood test was associated with IBD in AIP patients (P = 0.008). CONCLUSIONS Most AIP-IBD patients had ulcerative colitis and type 2 AIP. IBD patients are more likely to develop AIP compared to the general population, and vice versa. Use of mesalamine and tuberculosis infection were associated with AIP, and fecal occult blood test was associated with IBD.
Collapse
Affiliation(s)
- Zi Qing Yu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Yin Bai
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ge Chong Ruan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Han
- Department of Epidemiology and Biostatistics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tian Ming Xu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meng Yuan Zhang
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bei Ming Wang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Jia Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Yue Guo
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Wen J, Duan L, Wang B, Dong Q, Liu Y, Huang J, Yu G. Stability and WBE biomarkers possibility of 17 antiviral drugs in sewage and gravity sewers. WATER RESEARCH 2023; 238:120023. [PMID: 37150064 PMCID: PMC10149109 DOI: 10.1016/j.watres.2023.120023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) is a promising technique for monitoring the rapidly increasing use of antiviral drugs during the COVID-19 pandemic. It is essential to evaluate the in-sewer stability of antiviral drugs in order to determine appropriate biomarkers. This study developed an analytical method for quantification of 17 typical antiviral drugs, and investigated the stability of target compounds in sewer through 4 laboratory-scale gravity sewer reactors. Nine antiviral drugs (lamivudine, acyclovir, amantadine, favipiravir, nevirapine, oseltamivir, ganciclovir, emtricitabine and telbivudine) were observed to be stable and recommended as appropriate biomarkers for WBE. As for the other 8 unstable drugs (abacavir, arbidol, ribavirin, zidovudine, ritonavir, lopinavir, remdesivir and efavirenz), their attenuation was driven by adsorption, biodegradation and diffusion. Moreover, reaction kinetics revealed that the effects of sediments and biofilms were regarded to be independent in gravity sewers, and the rate constants of removal by biofilms was directly proportional to the ratio of surface area against wastewater volume. The study highlighted the potential importance of flow velocity for compound stability, since an increased flow velocity significantly accelerated the removal of unstable biomarkers. In addition, a framework for graded evaluation of biomarker stability was proposed to provide reference for researchers to select suitable WBE biomarkers. Compared with current classification method, this framework considered the influences of residence time and different removal mechanisms, which additionally screened four antiviral drugs as viable WBE biomarkers. This is the first study to report the stability of antiviral drugs in gravity sewers.
Collapse
Affiliation(s)
- Jiaqi Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Qian Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
12
|
Gentry Z, Zhao L, Faust RA, David RE, Norton J, Xagoraraki I. Wastewater surveillance beyond COVID-19: a ranking system for communicable disease testing in the tri-county Detroit area, Michigan, USA. Front Public Health 2023; 11:1178515. [PMID: 37333521 PMCID: PMC10272568 DOI: 10.3389/fpubh.2023.1178515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Throughout the coronavirus disease 2019 (COVID-19) pandemic, wastewater surveillance has been utilized to monitor the disease in the United States through routine national, statewide, and regional monitoring projects. A significant canon of evidence was produced showing that wastewater surveillance is a credible and effective tool for disease monitoring. Hence, the application of wastewater surveillance can extend beyond monitoring SARS-CoV-2 to encompass a diverse range of emerging diseases. This article proposed a ranking system for prioritizing reportable communicable diseases (CDs) in the Tri-County Detroit Area (TCDA), Michigan, for future wastewater surveillance applications at the Great Lakes Water Authority's Water Reclamation Plant (GLWA's WRP). Methods The comprehensive CD wastewater surveillance ranking system (CDWSRank) was developed based on 6 binary and 6 quantitative parameters. The final ranking scores of CDs were computed by summing the multiplication products of weighting factors for each parameter, and then were sorted based on decreasing priority. Disease incidence data from 2014 to 2021 were collected for the TCDA. Disease incidence trends in the TCDA were endowed with higher weights, prioritizing the TCDA over the state of Michigan. Results Disparities in incidences of CDs were identified between the TCDA and state of Michigan, indicating epidemiological differences. Among 96 ranked CDs, some top ranked CDs did not present relatively high incidences but were prioritized, suggesting that such CDs require significant attention by wastewater surveillance practitioners, despite their relatively low incidences in the geographic area of interest. Appropriate wastewater sample concentration methods are summarized for the application of wastewater surveillance as per viral, bacterial, parasitic, and fungal pathogens. Discussion The CDWSRank system is one of the first of its kind to provide an empirical approach to prioritize CDs for wastewater surveillance, specifically in geographies served by centralized wastewater collection in the area of interest. The CDWSRank system provides a methodological tool and critical information that can help public health officials and policymakers allocate resources. It can be used to prioritize disease surveillance efforts and ensure that public health interventions are targeted at the most potentially urgent threats. The CDWSRank system can be easily adopted to geographical locations beyond the TCDA.
Collapse
Affiliation(s)
- Zachary Gentry
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | - Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | | | - Randy E. David
- Wayne State University School of Medicine, Detroit, MI, United States
| | - John Norton
- Great Lakes Water Authority, Detroit, MI, United States
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
13
|
Xu L, Lu YT, Wu DF, Li X, Song M, Hang TJ, Su MX. Application of the metal ions as potential population biomarkers for wastewater-based epidemiology: estimating tobacco consumption in Southern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:1-13. [PMID: 37060434 PMCID: PMC10105154 DOI: 10.1007/s10653-023-01558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Wastewater-based epidemiology (WBE) is an objective approach for the estimation of population-level exposure to a wide range of substances, in which the use of a population biomarker (PB) could significantly reduce back-calculation errors. Although some endogenous or exogenous compounds such as cotinine and other hormones have been developed as PBs, more PBs still need to be identified and evaluated. This study aimed to propose a novel method to estimate population parameters from the mass load of metal ion biomarkers in wastewater, and estimate the consumption of tobacco in 24 cities in Southern China using the developed method. Daily wastewater samples were collected from 234 wastewater treatment plants (WWTPs) in 24 cities in Southern China. Atomic absorption spectroscopy (AAS) was applied to determine the concentrations of common health-related metal ions in wastewater, including sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), iron (Fe), and zinc (Zn), and compared them with the daily mass load of cotinine corresponding to catchment populations. The concentrations of cotinine in wastewater samples were measured using liquid chromatography-tandem mass spectrometry. There were clear and strong correlations between the target metal ion equivalent population and census data. The correlation coefficients (R) were RK = 0.78, RNa = 0.66, RCa = 0.81, RMg = 0.77, and RFe = 0.69, at p < 0.01 and R2 > 0.6. Subsequently, the combination of WBE and metal ion PBs was used to estimate tobacco consumption. Daily consumption of nicotine was estimated to be approximately 1.76 ± 1.19 mg/d/capita, equivalent to an average of 13.0 ± 8.75 cigarettes/d being consumed by smokers. The data on tobacco consumption in this study were consistent with those in traditional surveys in Southern China. The metal ion potassium is an appropriate PB for reflecting the real-time population and could be used to evaluate the tobacco consumption in WBE study.
Collapse
Affiliation(s)
- Lei Xu
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
- Department of Pharmacy, Ordos Central Hospital, No. 23 Yijinhuoluo Road, Ordos, 017000, China
| | - Yu-Ting Lu
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Dong-Feng Wu
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Xuan Li
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Min Song
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Tai-Jun Hang
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China.
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China.
| | - Meng-Xiang Su
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China.
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China.
| |
Collapse
|
14
|
Yang J, Luo Y, Chen M, Lu H, Zhang H, Liu Y, Guo C, Xu J. Occurrence, spatial distribution, and potential risks of organic micropollutants in urban surface waters from qinghai, northwest China. CHEMOSPHERE 2023; 318:137819. [PMID: 36640988 DOI: 10.1016/j.chemosphere.2023.137819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Lack of knowledge on the destiny of organic micropollutants (OMPs) in the Tibetan Plateau region of China prevents the public from being aware of the need for protecting these unique aquatic ecosystems that are precious water resources and source areas of the Yellow River. To address this knowledge gap, this study systematically investigated the multi-residue analysis, distribution, and potential risks of six types of OMPs, namely, neonicotinoid pesticides (NEOs), fungicides, organophosphate esters (OPEs), organophosphorus pesticides (OPPs), psychoactive substances (PSs), and antidepressants (ADs), in surface waters of major cities in Qinghai. A total of 31 compounds, consisting of 8 NEOs, 1 fungicide, 12 OPEs, 2 OPPs, 5 PSs, and 3 ADs, were detected in >50% of the sites, showing their ubiquitous nature in the study area. Results showed that the total OMP concentration in surface water was 28.3-908 ng/L, and OPEs were the dominant composition (48.6%-97.4%). The risk quotient values of the detected diazinon and dursban regularly exceeded 1 for aquatic organisms at all sampling sites, indicating moderate-high chronic ecological risk. The joint probability curves showed that dursban and NEOs have higher risk levels than other OMPs. Although the results of the non-carcinogenic total hazard quotient of the OMPs in the surface water was less than 1 in all age groups and the carcinogenic risk was lower than the negligible risk level, the potential risks to children and infants were considerably greater and should not be underestimated. In addition to pollutant concentration and exposure duration, ingestion rate and body weight (BW) are also important factors affecting health risk, with BW having a negative effect. To the best of the authors' knowledge, this report is the first to describe OMP pollution in Qinghai, and the results provide new insight into the ecological security of the water resources of the Tibetan Plateau.
Collapse
Affiliation(s)
- Jiangtao Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Miao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haijian Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
15
|
Rainey AL, Buschang K, O’Connor A, Love D, Wormington AM, Messcher RL, Loeb JC, Robinson SE, Ponder H, Waldo S, Williams R, Shapiro J, McAlister EB, Lauzardo M, Lednicky JA, Maurelli AT, Sabo-Attwood T, Bisesi J. Retrospective Analysis of Wastewater-Based Epidemiology of SARS-CoV-2 in Residences on a Large College Campus: Relationships between Wastewater Outcomes and COVID-19 Cases across Two Semesters with Different COVID-19 Mitigation Policies. ACS ES&T WATER 2023; 3:16-29. [PMID: 37552720 PMCID: PMC9762499 DOI: 10.1021/acsestwater.2c00275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Wastewater-based epidemiology (WBE) has been utilized for outbreak monitoring and response efforts in university settings during the coronavirus disease 2019 (COVID-19) pandemic. However, few studies examined the impact of university policies on the effectiveness of WBE to identify cases and mitigate transmission. The objective of this study was to retrospectively assess relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wastewater outcomes and COVID-19 cases in residential buildings of a large university campus across two academic semesters (August 2020-May 2021) under different COVID-19 mitigation policies. Clinical case surveillance data of student residents were obtained from the university COVID-19 response program. We collected and processed building-level wastewater for detection and quantification of SARS-CoV-2 RNA by RT-qPCR. The odds of obtaining a positive wastewater sample increased with COVID-19 clinical cases in the fall semester (OR = 1.50, P value = 0.02), with higher odds in the spring semester (OR = 2.63, P value < 0.0001). We observed linear associations between SARS-CoV-2 wastewater concentrations and COVID-19 clinical cases (parameter estimate = 1.2, P value = 0.006). Our study demonstrated the effectiveness of WBE in the university setting, though it may be limited under different COVID-19 mitigation policies. As a complementary surveillance tool, WBE should be accompanied by robust administrative and clinical testing efforts for the COVID-19 pandemic response.
Collapse
Affiliation(s)
- Andrew L. Rainey
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Katherine Buschang
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Amber O’Connor
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Deirdre Love
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Alexis M. Wormington
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Rebeccah L. Messcher
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Julia C. Loeb
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Sarah E. Robinson
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Hunter Ponder
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Sarah Waldo
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Roy Williams
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Jerne Shapiro
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
- Department of Epidemiology, College of Public
Health and Health Professions and College of Medicine, Gainesville,
Florida32611, United States
| | | | - Michael Lauzardo
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Department of Medicine, College of Medicine,
University of Florida, Gainesville, Florida32611,
United States
| | - John A. Lednicky
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Anthony T. Maurelli
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Joseph
H. Bisesi
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| |
Collapse
|
16
|
Xie D, Ying M, Lian J, Li X, Liu F, Yu X, Ni C. Serological indices and ultrasound variables in predicting the staging of hepatitis B liver fibrosis: A comparative study based on random forest algorithm and traditional methods. J Cancer Res Ther 2022; 18:2049-2057. [PMID: 36647969 DOI: 10.4103/jcrt.jcrt_1394_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective To compare the diagnostic efficacy of serological indices and ultrasound (US) variables in hepatitis B virus (HBV) liver fibrosis staging using random forest algorithm (RFA) and traditional methods. Methods The demographic and serological indices and US variables of patients with HBV liver fibrosis were retrospectively collected and divided into serology group, US group, and serology + US group according to the research content. RFA was used for training and validation. The diagnostic efficacy was compared to logistic regression analysis (LRA) and APRI and FIB-4 indices. Results For the serology group, the diagnostic performance of RFA was significantly higher than that of APRI and FIB-4 indices. The diagnostic accuracy of RFA in the four classifications (S0S1/S2/S3/S4) of the hepatic fibrosis stage was 79.17%. The diagnostic accuracy for significant fibrosis (≥S2), advanced fibrosis (≥S3), and cirrhosis (S4) was 87.99%, 90.69%, and 92.40%, respectively. The area under the curve (AUC) values were 0.945, 0.959, and 0.951, respectively. For the US group, there was no significant difference in diagnostic performance between RFA and LRA. The diagnostic performance of RFA in the serology + US group was significantly better than that of LRA. The diagnostic accuracy of the four classifications (S0S1/S2/S3/S4) of the hepatic fibrosis stage was 77.21%. The diagnostic accuracy for significant fibrosis (≥S2), advanced fibrosis (≥S3), and cirrhosis (S4) was 87.50%, 90.93%, and 93.38%, respectively. The AUC values were 0.948, 0.959, and 0.962, respectively. Conclusion RFA can significantly improve the diagnostic performance of HBV liver fibrosis staging. RFA based on serological indices has a good ability to predict liver fibrosis staging. RFA can help clinicians accurately judge liver fibrosis staging and reduce unnecessary biopsies.
Collapse
Affiliation(s)
- Daolin Xie
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou; Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Minghua Ying
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jingru Lian
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Li
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fangyi Liu
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoling Yu
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Parra-Arroyo L, Martinez-Ruiz M, Lucero S, Oyervides-Muñoz MA, Wilkinson M, Melchor-Martínez EM, Araújo RG, Coronado-Apodaca KG, Velasco Bedran H, Buitrón G, Noyola A, Barceló D, Iqbal HM, Sosa-Hernández JE, Parra-Saldívar R. Degradation of viral RNA in wastewater complex matrix models and other standards for wastewater-based epidemiology: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Joseph-Duran B, Serra-Compte A, Sàrrias M, Gonzalez S, López D, Prats C, Català M, Alvarez-Lacalle E, Alonso S, Arnaldos M. Assessing wastewater-based epidemiology for the prediction of SARS-CoV-2 incidence in Catalonia. Sci Rep 2022; 12:15073. [PMID: 36064874 PMCID: PMC9443647 DOI: 10.1038/s41598-022-18518-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
While wastewater-based epidemiology has proven a useful tool for epidemiological surveillance during the COVID-19 pandemic, few quantitative models comparing virus concentrations in wastewater samples and cumulative incidence have been established. In this work, a simple mathematical model relating virus concentration and cumulative incidence for full contagion waves was developed. The model was then used for short-term forecasting and compared to a local linear model. Both scenarios were tested using a dataset composed of samples from 32 wastewater treatment plants and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) incidence data covering the corresponding geographical areas during a 7-month period, including two contagion waves. A population-averaged dataset was also developed to model and predict the incidence over the full geography. Overall, the mathematical model based on wastewater data showed a good correlation with cumulative cases and allowed us to anticipate SARS-CoV-2 incidence in one week, which is of special relevance in situations where the epidemiological monitoring system cannot be fully implemented.
Collapse
Affiliation(s)
| | | | - Miquel Sàrrias
- CETAQUA Water Technology Center, Cornellà de Llobregat, Catalonia, Spain
| | - Susana Gonzalez
- CETAQUA Water Technology Center, Cornellà de Llobregat, Catalonia, Spain
| | - Daniel López
- Department of Physics, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Barcelona, Catalonia, Spain
| | - Clara Prats
- Department of Physics, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Barcelona, Catalonia, Spain
| | - Martí Català
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Enric Alvarez-Lacalle
- Department of Physics, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Barcelona, Catalonia, Spain
| | - Sergio Alonso
- Department of Physics, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Barcelona, Catalonia, Spain
| | - Marina Arnaldos
- CETAQUA Water Technology Center, Cornellà de Llobregat, Catalonia, Spain
| |
Collapse
|
19
|
Che L, Du ZB, Wang WH, Wu JS, Han T, Chen YY, Han PY, Lei Z, Chen XX, He Y, Xu L, Lin X, Lin ZN, Lin YC. Intracellular antibody targeting HBx suppresses invasion and metastasis in hepatitis B virus-related hepatocarcinogenesis via protein phosphatase 2A-B56γ-mediated dephosphorylation of protein kinase B. Cell Prolif 2022; 55:e13304. [PMID: 35811356 PMCID: PMC9628248 DOI: 10.1111/cpr.13304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives Hepatitis B virus X (HBx) is closely associated with HBV‐related hepatocarcinogenesis via the inactivation of tumour suppressors. Protein phosphatase 2A (PP2A) regulatory subunit B56 gamma (B56γ), as a tumour suppressor, plays a critical role in regulating cellular phosphorylation signals via dephosphorylation of signalling proteins. However, the underlying mechanism that B56γ involved in regulating HBx‐associated hepatocarcinogenesis phenotypes and mediating anti‐HBx antibody‐mediated tumour suppression remains unknown. Materials and Methods We used bioinformatics analysis, paired HCC patient specimens, HBx transgenic (HBx‐Tg) mice, xenograft nude mice, HBV stable replication in the HepG2.2.15 cells, and anti‐HBx antibody intervention to systematically evaluate the biological function of protein kinase B (AKT) dephosphorylation through B56γ in HBx‐associated hepatocarcinogenesis. Results Bioinformatics analysis revealed that AKT, matrix metalloproteinase 2 (MMP2), and MMP9 were markedly upregulated, while cell migration and viral carcinogenesis pathways were activated in HBV‐infected liver tissues and HBV‐associated HCC tissues. Our results demonstrated that HBx‐expression promotes AKT phosphorylation (p‐AKTThr308/Ser473), mediating the migration and invasion phenotypes in vivo and in vitro. Importantly, in clinical samples, HBx and B56γ were downregulated in HBV‐associated HCC tumour tissues compared with peritumor tissues. Moreover, intervention with site‐directed mutagenesis (AKTT308A, AKTS473A) of p‐AKTThr308/Ser473 mimics dephosphorylation, genetics‐based B56γ overexpression, and intracellular anti‐HBx antibody inhibited cell growth, migration, and invasion in HBx‐expressing HCC cells. Conclusions Our results demonstrated that B56γ inhibited HBV/HBx‐dependent hepatocarcinogenesis by regulating the dephosphorylation of p‐AKTThr308/Ser473 in HCC cells. The intracellular anti‐HBx antibody and the activator of B56γ may provide a multipattern chemopreventive strategy against HBV‐related HCC.
Collapse
Affiliation(s)
- Lin Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Ze-Bang Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Wei-Hua Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jia-Shen Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Tun Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yuan-Yuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Pei-Yu Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xiao-Xuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yun He
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ling Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Han S, Wang Z, Huang H, Wang T, Zhou Z, Bai Y, Du P, Li X. Estimating antibiotics use in major cities in China through wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154116. [PMID: 35219670 DOI: 10.1016/j.scitotenv.2022.154116] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics have been widely used for disease treatment and may pose adverse effects on human health due to increasing presence of antibiotic-resistant genes in environment. Therefore, it is important to understand antibiotic use in a specific region or country. China is a major producer of antibiotic and has a large number of consumers. In this work, wastewater samples were collected from 76 wastewater treatment plants in 31 major cities covering all of the geographic regions of China. Concentrations of eight metabolites of sulfonamide, quinolone and macrolide antibiotics were determined. The consumption levels of corresponding antibiotics were estimated based on wastewater-based epidemiology (WBE) approach. Desmethyl ofloxacin, desethylene norfloxacin, desmethyl azithromycin and N4-acetyl sulfamethoxazole were detected in all or the overwhelming majority of wastewater samples. The estimated ∑8Antibiotics consumption levels ranged from 275.1 ± 139.4 mg/1000 inh/d (Nanchang) to 3860.9 ± 1332.3 mg/1000 inh/d (Harbin) with a mean level of 1170.0 ± 452.1 mg/1000 inh/d. Quinolones accounted for the highest proportion (74.3%, national average contribution) in the total consumption level, with norfloxacin being the dominant one (38.4%), followed by ofloxacin (29.1%) and ciprofloxacin (6.8%). The ∑8Antibiotics consumption level in northern China (1517.0 ± 1022.8 mg/1000 inh/d) was statistically higher than the level in southern China (1060.7 ± 989.1 mg/1000 inh/d) (t-test, p < 0.05). In contrast, no significant difference was found between eastern (1256.2 ± 1105.1 mg/1000 inh/d) and western China (988.3 ± 474.5 mg/1000 inh/d) (t-test, p > 0.05). The overview of antibiotics consumption derived from this work can serve as a baseline to assess the implementation of related plans/policies in China.
Collapse
Affiliation(s)
- Sheng Han
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing 210098, PR China
| | - Hongmei Huang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Ting Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Zilei Zhou
- Hubei Provincial Academy of Eco-environmental Sciences, Wuhan 430070, PR China
| | - Ya Bai
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China.
| |
Collapse
|
21
|
Dawadi P, Syangtan G, Lama B, Kanel SR, Raj Joshi D, Pokhrel LR, Adhikari R, Joshi HR, Pavel I. Understanding COVID-19 Situation in Nepal and Implications for SARS-CoV-2 Transmission and Management. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221104348. [PMID: 35694428 PMCID: PMC9178984 DOI: 10.1177/11786302221104348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Background The pandemic of Coronavirus Disease 2019 (COVID-19), one of the most infectious diseases in the modern history, is caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and has had a profound health and economic toll, globally. This paper identifies the overall health status associated with COVID-19 pandemic in all 7 provinces of Nepal, a developing country in South Asia, analyzing data from January 2020 to February 2022. It focuses on the SARS-CoV-2 prevalence, transmission through wastewater and other routes, diagnostics, treatment options, and alternative medicines, thereby offering key perspectives for its management. Materials and Methods Studies regarding coronavirus spanning the 2017 to 2022 period were searched on the web, Nepalese database, and Web of Science. Refined criteria included SARS-CoV-2 in wastewater of Nepal or worldwide. Demographic data (sex, age-group, and geographic location) were also obtained from websites and relevant reports of the Ministry of Health and Population (MOHP) of Nepal, ranging from January 2020 to February 2022. Moreover, trends concerning lockdown, business, and border activities in Nepal between February 2020 and October 2020 were evaluated. The viral dissemination pathways, diagnosis, and available treatment options, including the Ayurvedic medicine, were also examined. Results Aerosols generated during the hospital, industrial, recreational, and household activities were found to contribute to the propagation of SARS-CoV-2 into environmental wastewater, thereby putting the surrounding communities at risk of infection. When lockdown ended and businesses opened in October 2020, the number of active cases of COVID-19 increased exponentially. Bagmati Province had the highest number of cases (53.84%), while the remaining 6 provinces tallied 46.16%. Kathmandu district had the highest number of COVID-19 cases (138, 319 cases), while Manang district had the smallest number of infections (81 cases). The male population was found to be predominantly infected (58.7%). The most affected age groups were the 31 to 40 years old males (25.92%) and the 21 to 30 years old females (26.85%). Conclusion The pandemic impacted the public health and economic growth in our study duration. SARS-CoV-2 was prevalent in the wastewater of Nepal. The Terai districts and the megacities were mostly affected by SARS-CoV-2 infections. Working-age groups and males were identified as the highest risk groups. More investigations on the therapeutic and alternative cures are recommended. These findings may guide the researchers and professionals with handling the COVID-19 challenges in developing countries such as Nepal and better prepare for future pandemics.
Collapse
Affiliation(s)
- Prabin Dawadi
- Biological Resources Unit, Nepal Academy of Science and Technology, Lalitpur, Bagmati, Nepal
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Bagmati, Nepal
| | - Gopiram Syangtan
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Bagmati, Nepal
- Shi-Gan International College of Science and Technology, Tribhuvan University, Kathmandu, Bagmati, Nepal
| | - Bhupendra Lama
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Bagmati, Nepal
| | - Sushil R. Kanel
- Department of Chemistry, Wright State University, Dayton, OH, USA
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Bagmati, Nepal
| | - Lok R. Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Rameshwar Adhikari
- Research Center for Applied Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Hem R. Joshi
- Department of Mathematics, Xavier University, Cincinnati, OH, USA
| | - Ioana Pavel
- Department of Physical and Environmental Sciences, Texas A&M University at Corpus Christi, Corpus Christi, TX, USA
| |
Collapse
|
22
|
Ashimkhanova A, Syssoyev D, Gusmanov A, Yesmembetov K, Yespotayeva A, Abbay A, Nurpeissova A, Sarria-Santamera A, Gaipov A. Epidemiological Characteristics of Chronic Viral Hepatitis in Kazakhstan: Data from Unified Nationwide Electronic Healthcare System 2014–2019. Infect Drug Resist 2022; 15:3333-3346. [PMID: 35782528 PMCID: PMC9248955 DOI: 10.2147/idr.s363609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Aiymkul Ashimkhanova
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan
| | - Dmitriy Syssoyev
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan
| | - Arnur Gusmanov
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan
| | | | - Arina Yespotayeva
- Al-Farabi University, Faculty of Medicine and Healthcare, Almaty, Kazakhstan
| | - Anara Abbay
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan
| | - Aiymzhan Nurpeissova
- Department of Medical Information Analysis of Outpatient and Polyclinic Care, Republican Center of Electronic Healthcare, Nur-Sultan, Kazakhstan
| | | | - Abduzhappar Gaipov
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan
- Correspondence: Abduzhappar Gaipov, Department of Medicine, Nazarbayev University School of Medicine, Kerey and Zhanibek Khans Street 5/1, Nur-Sultan, 010000, Kazakhstan, Tel +7 7172 706 297, Email
| |
Collapse
|
23
|
Amoah ID, Mthethwa NP, Pillay L, Deepnarain N, Pillay K, Awolusi OO, Kumari S, Bux F. RT-LAMP: A Cheaper, Simpler and Faster Alternative for the Detection of SARS-CoV-2 in Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:447-456. [PMID: 34308531 PMCID: PMC8310731 DOI: 10.1007/s12560-021-09489-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/14/2021] [Indexed: 05/05/2023]
Abstract
Reverse transcription loop-mediated isothermal amplification (RT-LAMP) has the potential to become a cheaper and faster option for monitoring COVID-19 infections through wastewater-based epidemiology. However, its application in COVID-19 surveillance has been limited to clinical testing only. We present in this paper two optimized RT-LAMP protocols based on colour change and fluorescence detection and application of these protocols for wastewater monitoring from four wastewater treatment plants over 4 weeks. The optimized RT-LAMP protocols have a limit of detection of 10 copies/25 µl reaction with positive amplification within 35 minutes. Over the 4 weeks of monitoring, the colorimetric protocol detected a prevalence of 12.5%, when 1 µl of extracted RNA with 92.7(± 28.2) ng/µl concentration was analysed. When the RNA template was increased by fivefold, the prevalence increased to 44%. The fluorescent RT-LAMP had a prevalence of 31% and 47% for starting templates of 92.7(± 28.2) ng/µl and 480(± 134.5) ng/µl of the extracted RNA, respectively. All samples were positive for SARS-CoV-2 when analysed with droplet digital PCR, with viral loads ranging from 18.1 to 195.6 gc/ml of wastewater. The RT-ddPCR, therefore, confirms the presence of the viral RNA in the wastewater samples, albeit at low concentrations. Additionally, the RT-LAMP protocols positively detected SARS-CoV-2 in wastewater samples with copies as low as 20.7 gc/ml. The results obtained in our study show the potential application of RT-LAMP for the detection of SARS-CoV-2 in wastewater, which could provide a cheaper and faster alternative to RT-qPCR or RT-ddPCR for wastewater-based epidemiological monitoring of COVID-19 and other viral infections.
Collapse
Affiliation(s)
- Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Nonsikelelo Precios Mthethwa
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Leanne Pillay
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Nashia Deepnarain
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Kriveshin Pillay
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Oluyemi Olatunji Awolusi
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
24
|
Picó Y, Barceló D. Identification of biomarkers in wastewater-based epidemiology: Main approaches and analytical methods. Trends Analyt Chem 2021; 145:116465. [PMID: 34803197 PMCID: PMC8591405 DOI: 10.1016/j.trac.2021.116465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Wastewater-based epidemiology (WBE) has become popular to estimate the use of drugs of abuse and recently to establish the incidence of CoVID 19 in large cities. However, its possibilities have been expanded recently as a technique that allows to establish a fingerprint of the characteristics of a city, such as state of health/disease, healthy/unhealthy living habits, exposure to different types of contaminants, etc. with respect to other cities. This has been thanks to the identification of human biomarkers as well as to the fingerprinting and profiling of the characteristics of the wastewater catchment that determine these circumstances. The purpose of this review is to analyze the different methodological schemes that have been developed to perform this biomarker identification as well as the most characteristic analytical techniques in each scheme, their advantages and disadvantages and the knowledge gaps identified. We also discussed the future scope for development.
Collapse
Affiliation(s)
- Yolanda Picó
- Environmental and Food Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Moncada Naquera Road Km 4.3, 46113 Moncada, Valencia, Spain
| | - Damià Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
- Catalan Institute for Water Research, ICRA - CERCA, Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
25
|
Yao L, Chen ZY, Dou WY, Yao ZK, Duan XC, Chen ZF, Zhang LJ, Nong YJ, Zhao JL, Ying GG. Occurrence, removal and mass loads of antiviral drugs in seven wastewater treatment plants with various treatment processes. WATER RESEARCH 2021; 207:117803. [PMID: 34741900 DOI: 10.1016/j.watres.2021.117803] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Antiviral drugs are among the most common and important classes of pharmaceuticals to treat viral infections, however their continuous emission and persistence in the receiving environment has attracted increasing attention about their potential ecological risks. Here we investigated the occurrence, fate and mass load of 9 antiviral drugs for acquired immunodeficiency syndrome and hepatitis B, in 7 wastewater treatment plants (WWTPs) with different treatment processes in Guangdong, China. Totally, 8 target antiviral drugs were detected in the WWTPs influent wastewater, effluent wastewater and sludge, with maximal concentrations up to 7624 ng/L (telbivudine), 568 ng/L (telbivudine), and 2013 ng/g wet weight (telbivudine), respectively. The removal efficiency varied widely between different antiviral drugs, with the mean aqueous removal efficiency and total removal efficiency ranging from -6.2% (nevirapine) to 100% (lamivudine) and -1.2% (nevirapine) to 100% (lamivudine), respectively. Mass balance analysis showed that their elimination was mostly attributed to the biodegradation/biotransformation. The total back-estimated usage and emission of 9 target antiviral drugs were 77.8 t/y and 13.2 t/y in Guangdong province, China, respectively. Based on the sewage epidemiology approach, the consumption and emission of antiviral drugs in seven studied WWTPs were ranged at 2.31 mg/d/1000 people (nevirapine) to 4970 mg/d/1000 people (telbivudine), and 0 (lamivudine) to 900 mg/d/1000 people (telbivudine), respectively. Preliminary risk assessment showed that the antiviral drugs of zidovudine, ritonavir, lopinavir, and telbivudine in the receiving rivers could pose high ecological risks for aquatic environment. The findings from the present study illustrate the persistence of nevirapine in WWTPs, and provide essential evidence for further study into the development of wastewater treatment technologies.
Collapse
Affiliation(s)
- Li Yao
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Zhi-Yong Chen
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Wen-Yuan Dou
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Zhi-Kai Yao
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Xing-Chun Duan
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Zhi-Feng Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li-Juan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yun-Jun Nong
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
26
|
Lu Y, Zhou C, Yan R, Lian J, Cai H, Yu J, Chen D, Su X, Qian J, Yang Y, Li L. Dynamic metabolic profiles for HBeAg seroconversion in chronic hepatitis B (CHB) patients by gas chromatography-mass spectrometry (GC-MS). J Pharm Biomed Anal 2021; 206:114349. [PMID: 34597840 DOI: 10.1016/j.jpba.2021.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022]
Abstract
Chronic hepatitis B (CHB) remains a major public health problem globally. HBeAg seroconversion is a vital hallmark for the improvement of CHB. The plasma metabolic profile has not been clear in CHB patients and searching metabolic candidates to represent HBeAg seroconversion is also difficult currently. In this study, CHB patients were recruited, followed and divided into the HBeAg-positive (HBeAg-pos.) group (n = 29) and the HBeAg-negative (HBeAg-neg.) group (n = 29) based on HBeAg seroconversion or not. The plasma metabolic profiles were measured by gas chromatography-mass spectrometry (GC-MS) at 0 week (0w), 24 weeks (24w) and 48 weeks (48w) after administration. The acquired data was analyzed using orthogonal partial least squares discriminate analysis (OPLS-DA) and the differential metabolites were further assessed by self and group comparison. No differences of age, gender and serological characteristics were observed between two groups at 0w and 48w separately. The OPLS-DA score plots depending on administration time displayed robust metabolic differences no matter HBeAg turned to be negative or not. According to VIP> 1.0, a total of 15 differential metabolites were same in the two groups, 7 differential metabolites (glycolic acid, D-talose, L-proline, L-(-)-arabitol, ethyl-alpha-D-glucopyranoside, L-leucine and dihydroxybutanoic acid) were derived from one group alone and considered as metabolic candidates. At 0w versus (vs.) 24w, only 3 of 7 candidates (L-proline, L-(-)-arabitol, dihydroxybutanoic acid) showed nonuniform in the two groups, while at 0w vs. 48w, all of them varied inconsistently. Conclusively the dynamic metabolic profiles assayed by GC-MS were different between CHB patients with and without HBeAg seroconversion. The 7 metabolic candidates probably had the ability to reflect the CHB progression for HBeAg seroconversion and 3 of them showed strong relationship with HbeAg seroconversion early.
Collapse
Affiliation(s)
- Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chiyan Zhou
- Department of Prenatal Diagnosis, The Affiliated Women and Children Hospital, Jiaxing University School of Medicine, Jiaxing, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangshan Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Deyin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajie Qian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
27
|
Han S, Li X, Huang H, Wang T, Wang Z, Fu X, Zhou Z, Du P, Li X. Simultaneous Determination of Seven Antibiotics and Five of Their Metabolites in Municipal Wastewater and Evaluation of Their Stability under Laboratory Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010640. [PMID: 34682386 PMCID: PMC8535447 DOI: 10.3390/ijerph182010640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 01/05/2023]
Abstract
The selection and spread of antibiotic resistance poses risks to public health by reducing the therapeutic potential of antibiotics against human pathogens. Wastewater-based epidemiology (WBE) is potentially the most reliable approach to estimate antibiotics use. Previous WBE studies used parent antibiotics as biomarkers, which may lead to overestimation since parent antibiotics may be directly disposed of. Using metabolites as biomarkers can avoid this drawback. This study developed a simultaneous solid-phase extraction coupled with ultra-high-performance liquid chromatography tandem mass spectrometry method for analyzing 12 antibiotics and human metabolites in wastewater to help assess health risk. Optimum conditions were achieved using a PEP cartridge at pH 3.0. The extraction efficiencies were 73.3~95.4% in influent and 72.0~102.7% in effluent for most of the target analytes. Method detection limit ranged from 0.1 to 1.5 ng/L for influent wastewater and 0.03 to 0.7 ng/L for effluent wastewater. A stability experiment showed that sulfonamide parents and their metabolites were stable at 4 °C, −20 °C and −80 °C, while macrolides metabolites were more stable than their corresponding parents at 4 °C and −20 °C. Finally, the method was applied to measure these analytes in wastewater samples collected from three Beijing WWTPs and to derive apparent removal rates. All metabolites were detected in wastewater samples with concentrations ranging from 1.2 to 772.2 ng/L in influent, from <MDL to 235.6 ng/L in effluent. The apparent removal rates of five metabolites were above 72.6%. These results set a solid foundation for applying WBE to evaluate antibiotics use and its public health effects.
Collapse
Affiliation(s)
- Sheng Han
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (S.H.); (H.H.); (T.W.); (X.F.)
| | - Xinyue Li
- Development Research Center, Ministry of Water Resources of China, Beijing 100036, China;
| | - Hongmei Huang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (S.H.); (H.H.); (T.W.); (X.F.)
| | - Ting Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (S.H.); (H.H.); (T.W.); (X.F.)
| | - Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing 210098, China;
| | - Xiaofang Fu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (S.H.); (H.H.); (T.W.); (X.F.)
| | - Zilei Zhou
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430070, China;
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China;
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (S.H.); (H.H.); (T.W.); (X.F.)
- Correspondence:
| |
Collapse
|
28
|
Yan J, Lin W, Gao Z, Ren Y. Use of selected NSAIDs in Guangzhou and other cities in the world as identified by wastewater analysis. CHEMOSPHERE 2021; 279:130529. [PMID: 33878693 DOI: 10.1016/j.chemosphere.2021.130529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
The mass load of pharmaceuticals in the municipal wastewater based on wastewater-based epidemiology (WBE) is a good indication of population consumption in the catchment. After successful application of illicit drugs' estimation, this method holds the potential to measure the geographical and temporal consumption of prescription medicines. In this study, we investigated the occurrence of four non-steroidal anti-inflammatory drugs (NSAIDs), acetaminophen (ACM), diclofenac (DCF), ibuprofen (IBU) and naproxen (NPX), in two wastewater treatment plants in Guangzhou City, China and compared the spatial and temporal consumption variation of them. Over a period of 28 days' sampling, the detection frequency of ACM, DCF, IBU, and NPX in the influent of two wastewater treatment plants (WWTPs) in Guangzhou City were 91%, 66%, 100%, and 95%, and their concentrations were up to 128, 131, 372, and 324 ng/L, respectively. No significant inter-catchment difference was observed regarding the per capita mass load in the two WWTPs investigated. A literature review which covered 160 WWTPs in 18 countries was conducted to compare the population normalized mass load of four commonly used NSAIDs. ACM had the highest population normalized mass loads (29-17,430 mg/d/1000 inhabitants) and DCF had the lowest population normalized mass load (6.5-628 mg/d/1000 inhabitants) in the catchments located in 18 countries. The mass loads of selected NSAIDs in China were lower than those in European and North American. ACM and IBU consumptions were at least 2 times higher in winter than that in summer, in contrast, DCF and NPX consumptions had no significant seasonal variation.
Collapse
Affiliation(s)
- Jingna Yan
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China; Guangdong Zhongzheng Environmental Science and Technology Service Co.,Ltd, 505, 5th Floor, Times-park Building, No.231 Gaotang Road, Tianhe District, Guangzhou, 510630, China.
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.
| | - Zhihan Gao
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China.
| |
Collapse
|
29
|
Huang H, Wang T, Han S, Bai Y, Li X. Occurrence of areca alkaloids in wastewater of major Chinese cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146961. [PMID: 33872910 DOI: 10.1016/j.scitotenv.2021.146961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Areca nut is a widely used psychoactive product that can cause multiple health problems, such as oral and pharyngeal cancers. Therefore, it is important to estimate areca nut use and the exposure levels of areca alkaloids that are responsible for its health effects. China is a major producer of areca nut and has a large number of areca nut chewers. In this study, occurrence of areca alkaloids and metabolites in wastewater of major cities across China was examined via wastewater-based epidemiology (WBE). Arecoline, arecaidine, and their metabolite, N-methylnipecotic acid (NMNA) were detected in the overwhelming majority of wastewater samples, with concentrations up to several μg/L. In contrast, guvacoline was only occasionally detected and guvacine was below detection limit in all samples, possibly due to their low contents in areca nut products, low excretion rates, and/or low stability in sewer systems. Strong positive correlations existed between arecoline, arecaidine, and NMNA concentrations. In addition, their loads were much higher in Central and Southern China. This geographic pattern is consistent with previous survey results on prevalence of areca nut chewing. These results indicate that WBE is a potentially useful method to monitor areca nut consumption and to estimate the exposure levels of areca alkaloids.
Collapse
Affiliation(s)
- Hongmei Huang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Ting Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Sheng Han
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Ya Bai
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China.
| |
Collapse
|
30
|
Anand U, Adelodun B, Pivato A, Suresh S, Indari O, Jakhmola S, Jha HC, Jha PK, Tripathi V, Di Maria F. A review of the presence of SARS-CoV-2 RNA in wastewater and airborne particulates and its use for virus spreading surveillance. ENVIRONMENTAL RESEARCH 2021; 196:110929. [PMID: 33640498 PMCID: PMC7906514 DOI: 10.1016/j.envres.2021.110929] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 05/08/2023]
Abstract
According to the WHO, on October 16, 2020, the spreading of the SARS-CoV-2, responsible for the COVID-19 pandemic, reached 235 countries and territories, and resulting in more than 39 million confirmed cases and 1.09 million deaths globally. Monitoring of the virus outbreak is one of the main activities pursued to limiting the number of infected people and decreasing the number of deaths that have caused high pressure on the health care, social, and economic systems of different countries. Wastewater based epidemiology (WBE), already adopted for the surveillance of life style and health conditions of communities, shows interesting features for the monitoring of the COVID-19 diffusion. Together with wastewater, the analysis of airborne particles has been recently suggested as another useful tool for detecting the presence of SARS-CoV-2 in given areas. The present review reports the status of research currently performed concerning the monitoring of SARS-CoV-2 spreading by WBE and airborne particles. The former have been more investigated, whereas the latter is still at a very early stage, with a limited number of very recent studies. Nevertheless, the main results highlights in both cases necessitate more research activity for better understating and defining the biomarkers and the related sampling and analysis procedures to be used for this important aim.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Bashir Adelodun
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria; Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Alberto Pivato
- DICEA - Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462 003, Madhya Pradesh, India
| | - Omkar Indari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, Indore, Madhya Pradesh, India
| | - Shweta Jakhmola
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, Indore, Madhya Pradesh, India
| | - Hem Chandra Jha
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, Indore, Madhya Pradesh, India
| | - Pawan Kumar Jha
- Centre for Environmental Studies, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India.
| | - Francesco Di Maria
- LAR(5) Laboratory - Dipartimento di Ingegneria - University of Perugia, via G. Duranti 93, 06125, Perugia, Italy.
| |
Collapse
|
31
|
Pons MN, Louis P, Vignati D. Effect of lockdown on wastewater characteristics: a comparison of two large urban areas. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2813-2822. [PMID: 33341772 DOI: 10.2166/wst.2020.520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effect of the lockdown imposed to limit the spread of SARS-CoV-2 in France between March 14 and May 11, 2020 on the wastewater characteristics of two large urban areas (with between 250,000 and 300,000 inhabitants) was studied. The number of outward and inward daily commuters was extracted from national census databases related to the population and their commuting habits. For urban area A, with the larger number of daily inward commuters (110,000, compared to 53,000 for B), lockdown was observed to have an effect on the monthly load averages of chemical oxygen demand, biochemical oxygen demand, total Kjeldahl nitrogen, total suspended solids and total phosphorus, all of which decreased (confidence level of 95%). This decrease, which varied between 20% and 40% and reached 45% for COD, can be related to the cessation of catering and activities such as hairdressing, which generate large amounts of graywater. The ammonium loads, due to the use of toilets before leaving for work and after returning from work, remained constant. In the case of urban area B, lockdown had no noticeable effect. More data would be necessary in the long term to analyze the effect of changes in the balance between ammonia and carbon sources on the operation of wastewater treatment plants.
Collapse
Affiliation(s)
- Marie-Noëlle Pons
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, 1 rue Grandville, BP 20451, Nancy cedex F-54001, France E-mail: ; Laboratoire Réactions et Génie des Procédés, LTSER-Zone Atelier du Bassin de la Moselle, 1 rue Grandville, BP 20451, Nancy cedex F-54001, France
| | - Pauline Louis
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, 1 rue Grandville, BP 20451, Nancy cedex F-54001, France E-mail:
| | - Davide Vignati
- Laboratoire Interdisciplinaire des Environnements Continentaux, Université de Lorraine, CNRS, Campus Bridoux, Rue du Général Delestraint, Metz F-57070, France
| |
Collapse
|