1
|
Limaheluw J, Dollmann S, Folpmers S, Beltrán Beut L, Lazarakou A, Vermeulen LC, de Roda Husman AM. Associations between meteorological factors and COVID-19: a global scoping review. Front Public Health 2024; 12:1183706. [PMID: 39091528 PMCID: PMC11291467 DOI: 10.3389/fpubh.2024.1183706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Background Many respiratory viruses and their associated diseases are sensitive to meteorological factors. For SARS-CoV-2 and COVID-19, evidence on this sensitivity is inconsistent. Understanding the influence of meteorological factors on SARS-CoV-2 transmission and COVID-19 epidemiology can help to improve pandemic preparedness. Objectives This review aimed to examine the recent evidence about the relation between meteorological factors and SARS-CoV-2/COVID-19. Methods We conducted a global scoping review of peer-reviewed studies published from January 2020 up to January 2023 about the associations between temperature, solar radiation, precipitation, humidity, wind speed, and atmospheric pressure and SARS-CoV-2/COVID-19. Results From 9,156 initial records, we included 474 relevant studies. Experimental studies on SARS-CoV-2 provided consistent evidence that higher temperatures and solar radiation negatively affect virus viability. Studies on COVID-19 (epidemiology) were mostly observational and provided less consistent evidence. Several studies considered interactions between meteorological factors or other variables such as demographics or air pollution. None of the publications included all determinants holistically. Discussion The association between short-term meteorological factors and SARS-CoV-2/COVID-19 dynamics is complex. Interactions between environmental and social components need further consideration. A more integrated research approach can provide valuable insights to predict the dynamics of respiratory viruses with pandemic potential.
Collapse
Affiliation(s)
- Jesse Limaheluw
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Sophia Dollmann
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Sofia Folpmers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Lola Beltrán Beut
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Afroditi Lazarakou
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lucie C. Vermeulen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Vandelli V, Palandri L, Coratza P, Rizzi C, Ghinoi A, Righi E, Soldati M. Conditioning factors in the spreading of Covid-19 - Does geography matter? Heliyon 2024; 10:e25810. [PMID: 38356610 PMCID: PMC10865316 DOI: 10.1016/j.heliyon.2024.e25810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
There is evidence in literature that the spread of COVID-19 can be influenced by various geographic factors, including territorial features, climate, population density, socioeconomic conditions, and mobility. The objective of the paper is to provide an updated literature review on geographical studies analysing the factors which influenced COVID-19 spreading. This literature review took into account not only the geographical aspects but also the COVID-19-related outcomes (infections and deaths) allowing to discern the potential influencing role of the geographic factors per type of outcome. A total of 112 scientific articles were selected, reviewed and categorized according to subject area, aim, country/region of study, considered geographic and COVID-19 variables, spatial and temporal units of analysis, methodologies, and main findings. Our literature review showed that territorial features may have played a role in determining the uneven geography of COVID-19; for instance, a certain agreement was found regarding the direct relationship between urbanization degree and COVID-19 infections. For what concerns climatic factors, temperature was the variable that correlated the best with COVID-19 infections. Together with climatic factors, socio-demographic ones were extensively taken into account. Most of the analysed studies agreed that population density and human mobility had a significant and direct relationship with COVID-19 infections and deaths. The analysis of the different approaches used to investigate the role of geographic factors in the spreading of the COVID-19 pandemic revealed that the significance/representativeness of the outputs is influenced by the scale considered due to the great spatial variability of geographic aspects. In fact, a more robust and significant association between geographic factors and COVID-19 was found by studies conducted at subnational or local scale rather than at country scale.
Collapse
Affiliation(s)
- Vittoria Vandelli
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Lucia Palandri
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Paola Coratza
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Cristiana Rizzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Alessandro Ghinoi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Elena Righi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Mauro Soldati
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| |
Collapse
|
3
|
Sun Z, Bai R, Bai Z. The application of simulation methods during the COVID-19 pandemic: A scoping review. J Biomed Inform 2023; 148:104543. [PMID: 37956729 DOI: 10.1016/j.jbi.2023.104543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
With the outbreak of COVID-19 pandemic, simulation modelling approaches have become effective tools to simulate the potential effects of different intervention measures and predict the dynamic COVID-19 trends. In this scoping review, Studies published between February 2020 and May 2022 that investigated the spread of COVID-19 using four common simulation modeling methods were systematically reported and summarized. Publication trend, characteristics, software, and code availability of included articles were analyzed. Among the included 340 studies, most articles used agent-based model (ABM; n = 258; 75.9 %), followed by the models of system dynamics (n = 42; 12.4 %), discrete event simulation (n = 25; 7.4 %), and hybrid simulation (n = 15; 4.4 %). Furthermore, our review emphasized the purposes and sample time period of included articles. We classified the purpose of the 340 included studies into five categories, most studies mainly analyzed the spread of COVID-19 under policy interventions. For the sample time period analysis, most included studies analyzed the COVID-19 spread in the second wave. Our findings play a crucial role for policymakers to make evidence-based decisions in preventing the spread of COVID-19 pandemic and help in providing scientific decision-makings resilient to similar events and infectious diseases in the future.
Collapse
Affiliation(s)
- Zhuanlan Sun
- High-Quality Development Evaluation Institute, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Ruhai Bai
- Evidence-Based Research Center of Social Science and Health, School of Public Affairs, Nanjing University of Science and Technology, Nanjing, China
| | - Zhenggang Bai
- Evidence-Based Research Center of Social Science and Health, School of Public Affairs, Nanjing University of Science and Technology, Nanjing, China.
| |
Collapse
|
4
|
Chen S, Huang L, Cai D, Li B, Yang J. Association between meteorological factors and COVID-19: a systematic review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1254-1268. [PMID: 35674116 DOI: 10.1080/09603123.2022.2083090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The outbreak of coronavirus disease in 2019 has become a serious threat to human health. Whether meteorological conditions could influence the transmission and virulence of COVID-19 remains controversial. In this study, we systematically reviewed the impact of temperature and humidity on the replication, morbidity, and mortality of COVID-19. We also discussed the main factors underlying the inconsistency across studies. Pubmed, Web of Science, Embase, and Scopus were used to identify papers published up to 7 December 2020. We initially identified 3515 papers, and 28 articles met the inclusion criteria after screening. Most studies showed high temperature and high humidity can partly reduce the reproduction, morbidity, and mortality of COVID-19. But the rest papers failed to identify a significant association. The discrepant results may be related to the difference in the climate context, study design, exposure assessment, policy intervention, socioeconomic status, and public health service.
Collapse
Affiliation(s)
- Sujuan Chen
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Lin Huang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Dongjie Cai
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Bixia Li
- College of Computer, Guangdong University of Science & Technology, Dongguan, China
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Sangkham S, Islam MA, Sarndhong K, Vongruang P, Hasan MN, Tiwari A, Bhattacharya P. Effects of fine particulate matter (PM 2.5) and meteorological factors on the daily confirmed cases of COVID-19 in Bangkok during 2020-2021, Thailand. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2023; 8:100410. [PMID: 38620170 PMCID: PMC10286573 DOI: 10.1016/j.cscee.2023.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 04/17/2024]
Abstract
The ongoing global pandemic caused by the SARS-CoV-2 virus, known as COVID-19, has disrupted public health, businesses, and economies worldwide due to its widespread transmission. While previous research has suggested a possible link between environmental factors and increased COVID-19 cases, the evidence regarding this connection remains inconclusive. The purpose of this research is to determine whether or not there is a connection between the presence of fine particulate matter (PM2.5) and meteorological conditions and COVID-19 infection rates in Bangkok, Thailand. The study employs a statistical method called Generalized Additive Model (GAM) to find a positive and non-linear association between RH, AH, and R and the number of verified COVID-19 cases. The impacts of the seasons (especially summer) and rainfall on the trajectory of COVID-19 cases were also highlighted, with an adjusted R-square of 0.852 and a deviance explained of 85.60%, both of which were statistically significant (p < 0.05). The study results assist in preventing the future seasonal spread of COVID-19, and public health authorities may use these findings to make informed decisions and assess their policies.
Collapse
Affiliation(s)
- Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Phayao, 56000, Thailand
| | - Md Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Kritsada Sarndhong
- Department of Community Health, School of Public Health, University of Phayao, Phayao, 56000, Thailand
| | - Patipat Vongruang
- Department of Environmental Health, School of Public Health, University of Phayao, Phayao, 56000, Thailand
- Atmospheric Pollution and Climate Change Research Unit, School of Energy and Environment, University of Phayao, Phayao, 56000, Thailand
| | - Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Ananda Tiwari
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland
| | - Prosun Bhattacharya
- COVID-19 Research, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE, 10044, Stockholm, Sweden
| |
Collapse
|
6
|
Ulutaş K, Abujayyab SK, Abu Amr SS, Alkarkhi AF, Duman S. The effect of air quality parameters on new COVID-19 cases between two different climatic and geographical regions in Turkey. THEORETICAL AND APPLIED CLIMATOLOGY 2023; 152:801-812. [PMID: 37016660 PMCID: PMC9999067 DOI: 10.1007/s00704-023-04420-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/26/2023] [Indexed: 06/19/2023]
Abstract
Different health management strategies may need to be implemented in different regions to cope with diseases. The current work aims to evaluate the relationship between air quality parameters and the number of new COVID-19 cases in two different geographical locations, namely Western Anatolia and Western Black Sea in Turkey. Principal component analysis (PCA) and regression model were utilized to describe the effect of environmental parameters (air quality and meteorological parameters) on the number of new COVID-19 cases. A big difference in the mean values for all air quality parameters has appeared between the two areas. Two regression models were developed and showed a significant relationship between the number of new cases and the selected environmental parameters. The results showed that wind speed, SO2, CO, NOX, and O3 are not influential variable and does not affect the number of new cases of COVID-19 in the Western Black Sea area, while only wind speed, SO2, CO, NOX, and O3 are influential parameters on the number of new cases in Western Anatolia. Although the environmental parameters behave differently in each region, these results revealed that the relationship between the air quality parameters and the number of new cases is significant.
Collapse
Affiliation(s)
- Kadir Ulutaş
- Department of Health Management, İstanbul Medeniyet University, 34720 Istanbul, Turkey
- Department of Environmental Engineering, Karabük University, 78050 Karabuk, Turkey
| | - Sohaib K.M. Abujayyab
- International College of Engineering and Management, 111 St, Seeb, Muscat, Oman
- Department of Geography, Karabük University, 78050 Karabuk, Turkey
| | - Salem S. Abu Amr
- Department of Environmental Engineering, Karabük University, 78050 Karabuk, Turkey
- International College of Engineering and Management, 111 St, Seeb, Muscat, Oman
| | - Abbas F.M. Alkarkhi
- Business School, Universiti Kuala Lumpur (UniKL Bis), 50250 Kuala Lumpur, Malaysia
| | - Sibel Duman
- Department of Chemistry, Bingöl University, 12000 Bingol, Turkey
| |
Collapse
|
7
|
Moazeni M, Rahimi M, Ebrahimi A. What are the Effects of Climate Variables on COVID-19 Pandemic? A Systematic Review and Current Update. Adv Biomed Res 2023; 12:33. [PMID: 37057247 PMCID: PMC10086649 DOI: 10.4103/abr.abr_145_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 04/15/2023] Open
Abstract
The climatological parameters can be different in various geographical locations. Moreover, they have possible impacts on COVID-19 incidence. Therefore, the purpose of this systematic review article was to describe the effects of climatic variables on COVID-19 pandemic in different countries. Systematic literature search was performed in Scopus, ISI Web of Science, and PubMed databases using ("Climate" OR "Climate Change" OR "Global Warming" OR "Global Climate Change" OR "Meteorological Parameters" OR "Temperature" OR "Precipitation" OR "Relative Humidity" OR "Wind Speed" OR "Sunshine" OR "Climate Extremes" OR "Weather Extremes") AND ("COVID" OR "Coronavirus disease 2019" OR "COVID-19" OR "SARS-CoV-2" OR "Novel Coronavirus") keywords. From 5229 articles, 424 were screened and 149 were selected for further analysis. The relationship between meteorological parameters is variable in different geographical locations. The results indicate that among the climatic indicators, the temperature is the most significant factor that influences on COVID-19 pandemic in most countries. Some studies were proved that warm and wet climates can decrease COVID-19 incidence; however, the other studies represented that warm location can be a high risk of COVID-19 incidence. It could be suggested that all climate variables such as temperature, humidity, rainfall, precipitation, solar radiation, ultraviolet index, and wind speed could cause spread of COVID-19. Thus, it is recommended that future studies will survey the role of all meteorological variables and interaction between them on COVID-19 spread in specific small areas such as cities of each country and comparison between them.
Collapse
Affiliation(s)
- Malihe Moazeni
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rahimi
- Department of Combat Desertification, Faculty of Desert Studies, Semnan University, Semnan, Iran
| | - Afshin Ebrahimi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Address for correspondence: Dr. Afshin Ebrahimi, Department of Environmental Health Engineering, School of Health, Hezar-Jerib Ave., Isfahan University of Medical Sciences, Isfahan, 81676 − 36954, Iran. E-mail:
| |
Collapse
|
8
|
Alaniz AJ, Carvajal MA, Carvajal JG, Vergara PM. Effects of air pollution and weather on the initial COVID-19 outbreaks in United States, Italy, Spain, and China: A comparative study. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:8-18. [PMID: 36509703 PMCID: PMC9877606 DOI: 10.1111/risa.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
Contrasting effects have been identified in association of weather (temperature and humidity) and pollutant gases with COVID-19 infection, which could be derived from the influence of lockdowns and season change. The influence of pollutant gases and climate during the initial phases of the pandemic, before the closures and the change of season in the northern hemisphere, is unknown. Here, we used a spatial-temporal Bayesian zero-inflated-Poisson model to test for short-term associations of weather and pollutant gases with the relative risk of COVID-19 disease in China (first outbreak) and the countries with more cases during the initial pandemic (the United States, Spain and Italy), considering also the effects of season and lockdown. We found contrasting association between pollutant gases and COVID-19 risk in the United States, Italy, and Spain, while in China it was negatively associated (except for SO2 ). COVID-19 risk was positively associated with specific humidity in all countries, while temperature presented a negative effect. Our findings showed that short-term associations of air pollutants with COVID-19 infection vary strongly between countries, while generalized effects of temperature (negative) and humidity (positive) with COVID-19 was found. Our results show novel information about the influence of pollution and weather on the initial outbreaks, which contribute to unravel the mechanisms during the beginning of the pandemic.
Collapse
Affiliation(s)
- Alberto J. Alaniz
- Departamento de Ingeniería Geoespacial y Ambiental, Facultad de IngenieríaUniversidad de Santiago de ChileSantiagoChile
- Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
- Departamento de Gestión Agraria, Facultad TecnológicaUniversidad de Santiago de ChileSantiagoChile
- Centro de Estudios en Ecología Espacial y Medio AmbienteEcogeografíaSantiagoChile
| | - Mario A. Carvajal
- Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
- Departamento de Gestión Agraria, Facultad TecnológicaUniversidad de Santiago de ChileSantiagoChile
| | - Jorge G. Carvajal
- Departamento de Gestión Agraria, Facultad TecnológicaUniversidad de Santiago de ChileSantiagoChile
- Centro de Estudios en Ecología Espacial y Medio AmbienteEcogeografíaSantiagoChile
| | - Pablo M. Vergara
- Departamento de Gestión Agraria, Facultad TecnológicaUniversidad de Santiago de ChileSantiagoChile
| |
Collapse
|
9
|
Boto-García D. Investigating the two-way relationship between mobility flows and COVID-19 cases. ECONOMIC MODELLING 2023; 118:106083. [PMID: 36281432 PMCID: PMC9581521 DOI: 10.1016/j.econmod.2022.106083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/06/2022] [Accepted: 10/16/2022] [Indexed: 06/09/2023]
Abstract
Following a pandemic disease outbreak, people travel to areas with low infection risk, but at the same time the epidemiological situation worsens as mobility flows to those areas increase. These feedback effects from epidemiological conditions to inflows and from inflows to subsequent infections are underexplored to date. This study investigates the two-way relationship between mobility flows and COVID-19 cases in a context of unrestricted mobility without COVID-19 vaccines. To this end, we merge data on COVID-19 cases in Spain during the summer of 2020 at the province level with mobility records based on mobile position tracking. Using a control function approach, we find that a 1% increase in arrivals translates into a 3.5% increase in cases in the following week and 5.6% ten days later. A simulation exercise shows the cases would have dropped by around 64% if the Second State of Alarm had been implemented earlier.
Collapse
Affiliation(s)
- David Boto-García
- Oviedo Efficiency Group, Department of Economics, University of Oviedo, Avenida Del Cristo S/n, 33006, Oviedo, Asturias, Spain
| |
Collapse
|
10
|
COVID-19 and Influenza Coinfection Outcomes among Hospitalized Patients in the United States: A Propensity Matched Analysis of National Inpatient Sample. Vaccines (Basel) 2022; 10:vaccines10122159. [PMID: 36560569 PMCID: PMC9783554 DOI: 10.3390/vaccines10122159] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
This study aims to provide comparative data on clinical features and in-hospital outcomes among U.S. adults admitted to the hospital with COVID-19 and influenza infection using a nationwide inpatient sample (N.I.S.) data 2020. Data were collected on patient characteristics and in-hospital outcomes, including patient's age, race, sex, insurance status, median income, length of stay, mortality, hospitalization cost, comorbidities, mechanical ventilation, and vasopressor support. Additional analysis was performed using propensity matching. In propensity-matched cohort analysis, influenza-positive (and COVID-positive) patients had higher mean hospitalization cost (USD 129,742 vs. USD 68,878, p = 0.04) and total length of stay (9.9 days vs. 8.2 days, p = 0.01), higher odds of needing mechanical ventilation (OR 2.01, 95% CI 1.19-3.39), and higher in-hospital mortality (OR 2.09, 95% CI 1.03-4.24) relative to the COVID-positive and influenza-negative cohort. In conclusion, COVID-positive and influenza-negative patients had lower hospital charges, shorter hospital stays, and overall lower mortality, thereby supporting the use of the influenza vaccine in COVID-positive patients.
Collapse
|
11
|
Salam AA, Al-Khraif RM, Dilip TR, Elsegaey I. Coronavirus disease 2019 in proportion to population: a historical analysis of Saudi Arabia. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:198. [PMID: 35818412 PMCID: PMC9261159 DOI: 10.1186/s42269-022-00876-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/19/2022] [Indexed: 06/06/2023]
Abstract
BACKGROUND Saudi Arabia is one of the countries seriously affected by coronavirus disease 2019 (COVID-19) worldwide. With a few cases in early March, the daily spread of this disease increased to nearly 5000 at one point in time during the first wave to mid-June 2020. With committed efforts and public health interventions, it has been controlled to nearly 1000 by the end of August 2020 and less than 217 by November 28, 2020; thereafter, reporting declines and small increases. However, by December 2021, a third wave started, lasting for 2 months, during which the infection rate increased rapidly. By April 1, 2022, the number of infected persons in the country was 750,998, with 9047 deaths, 7131 active, and approximately 400 critical cases. This analysis of COVID-19 statistics of the Ministry of Health of Saudi Arabia (March 2020-April 2022) is carried out along with population data to extract patient proportions per 100,000 persons to illustrate the hypothesized social and community impact, which influences families and households. RESULTS The results showed a high rate of infection and mortality, but with recovery. These rates varied across localities and cities. A few cities with higher population densities are less affected by the spread of the epidemic. However, few localities and upcoming cities/townships were severely affected. These effects are explained as the percentage of the population affected, which exposes the impact on societies, families, and individual members. With concerted efforts, they are brought under control through recovery and adopting mitigation methods. CONCLUSIONS Localities could be classified into four categories based on the proportion of the infected population: rapidly increasing, moderately increasing, declining, and stabilizing. Moreover, differential proportions of the affected population have implications at social and familial levels. Analysis and understanding of these trends, considering the base population, are important for policy building and intervention strategies accounting for grassroots-level demographics, which might serve as a tool to enhance interventions at population and family levels. Strategies for awareness creation and compassionate care are essential to address the psychosocial impact of health emergencies, as proved by the Ministry of Health, Saudi Arabia.
Collapse
Affiliation(s)
- Asharaf Abdul Salam
- King Saud University Center for Population Studies, PB No. 2454, Riyadh, 11451 Saudi Arabia
| | - Rshood M. Al-Khraif
- King Saud University Center for Population Studies, PB No. 2454, Riyadh, 11451 Saudi Arabia
| | | | - Ibrahim Elsegaey
- King Saud University Center for Population Studies, PB No. 2454, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
12
|
Wang D, Wu X, Li C, Han J, Yin J. The impact of geo-environmental factors on global COVID-19 transmission: A review of evidence and methodology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154182. [PMID: 35231530 PMCID: PMC8882033 DOI: 10.1016/j.scitotenv.2022.154182] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Studies on Coronavirus Disease 2019 (COVID-19) transmission indicate that geo-environmental factors have played a significant role in the global pandemic. However, there has not been a systematic review on the impact of geo-environmental factors on global COVID-19 transmission in the context of geography. As such, we reviewed 49 well-chosen studies to reveal the impact of geo-environmental factors (including the natural environment and human activity) on global COVID-19 transmission, and to inform critical intervention strategies that could mitigate the worldwide effects of the pandemic. Existing studies frequently mention the impact of climate factors (e.g., temperature and humidity); in contrast, a more decisive influence can be achieved by human activity, including human mobility, health factors, and non-pharmaceutical interventions (NPIs). The above results exhibit distinct spatiotemporal heterogeneity. The related analytical methodology consists of sensitivity analysis, mathematical modeling, and risk analysis. For future studies, we recommend highlighting geo-environmental interactions, developing geographically statistical models for multiple waves of the pandemic, and investigating NPIs and care patterns. We also propose four implications for practice to combat global COVID-19 transmission.
Collapse
Affiliation(s)
- Danyang Wang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Xiaoxu Wu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China.
| | - Chenlu Li
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China; School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiatong Han
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Jie Yin
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Lin R, Wang X, Huang J. The influence of weather conditions on the COVID-19 epidemic: Evidence from 279 prefecture-level panel data in China. ENVIRONMENTAL RESEARCH 2022; 206:112272. [PMID: 34695427 PMCID: PMC8536487 DOI: 10.1016/j.envres.2021.112272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 05/10/2023]
Abstract
Studying the influence of weather conditions on the COVID-19 epidemic is an emerging field. However, existing studies in this area tend to utilize time-series data, which have certain limitations and fail to consider individual, social, and economic factors. Therefore, this study aimed to fill this gap. In this paper, we explored the influence of weather conditions on the COVID-19 epidemic using COVID-19-related prefecture-daily panel data collected in mainland China between January 1, 2020, and February 19, 2020. A two-way fixed effect model was applied taking into account factors including public health measures, effective distance to Wuhan, population density, economic development level, health, and medical conditions. We also used a piecewise linear regression to determine the relationship in detail. We found that there is a conditional negative relationship between weather conditions and the epidemic. Each 1 °C rise in mean temperature led to a 0.49% increase in the confirmed cases growth rate when mean temperature was above -7 °C. Similarly, when the relative humidity was greater than 46%, it was negatively correlated with the epidemic, where a 1% increase in relative humidity decreased the rate of confirmed cases by 0.19%. Furthermore, prefecture-level administrative regions, such as Chifeng (included as "warning cities") have more days of "dangerous weather", which is favorable for outbreaks. In addition, we found that the impact of mean temperature is greatest in the east, the influence of relative humidity is most pronounced in the central region, and the significance of weather conditions is more important in the coastal region. Finally, we found that rising diurnal temperatures decreased the negative impact of weather conditions on the spread of COVID-19. We also observed that strict public health measures and high social concern can mitigate the adverse effects of cold and dry weather on the spread of the epidemic. To the best of our knowledge, this is the first study which applies the two-way fixed effect model to investigate the influence of weather conditions on the COVID-19 epidemic, takes into account socio-economic factors and draws new conclusions.
Collapse
Affiliation(s)
- Ruofei Lin
- School of Economics and Management, Tongji University, China
| | - Xiaoli Wang
- School of Economics and Management, Tongji University, China
| | - Junpei Huang
- School of Economics and Management, Tongji University, China.
| |
Collapse
|
14
|
Abdel-Aal MAM, Eltoukhy AEE, Nabhan MA, AlDurgam MM. Impact of climate indicators on the COVID-19 pandemic in Saudi Arabia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20449-20462. [PMID: 34735701 PMCID: PMC8566192 DOI: 10.1007/s11356-021-17305-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/27/2021] [Indexed: 04/12/2023]
Abstract
The novel coronavirus (COVID-19) outbreak has left a major impact on daily lifestyle and human activities. Many recent studies confirmed that the COVID-19 pandemic has human-to-human transmissibility. Additional studies claimed that other factors affect the viability, transmissibility, and propagation range of COVID-19. The effect of weather factors on the spread of COVID-19 has gained much attention among researchers. The current study investigates the relationship between climate indicators and daily detected COVID-19 cases in Saudi Arabia, focusing on the top five cities with confirmed cases. The examined climate indicators were temperature (°F), dew point (°F), humidity (%), wind speed (mph), and pressure (Hg). Using data from Spring 2020 and 2021, we conducted spatio-temporal correlation, regression, and time series analyses. The results provide preliminary evidence that the COVID-19 pandemic spread in most of the considered cities is significantly correlated with temperature (positive correlation) and pressure (negative correlation). The discrepancies in the results from different cites addressed in this study suggest that non-meteorological factors need to be explored in conjunction with weather attributes in a sufficiently long-term analysis to provide meaningful policy measures for the future.
Collapse
Affiliation(s)
- Mohammad A. M. Abdel-Aal
- Industrial and Systems Engineering Department, King Fahd University of Petroleum and Minerals, 5063, Dhahran, 31261 Saudi Arabia
- IRC of Smart Mobility and Logistics, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
| | - Abdelrahman E. E. Eltoukhy
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR China
| | - Mohammad A. Nabhan
- Industrial and Systems Engineering Department, King Fahd University of Petroleum and Minerals, 5063, Dhahran, 31261 Saudi Arabia
| | - Mohammad M. AlDurgam
- Industrial and Systems Engineering Department, King Fahd University of Petroleum and Minerals, 5063, Dhahran, 31261 Saudi Arabia
- IRC of Smart Mobility and Logistics, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
| |
Collapse
|
15
|
Iqbal A, Haq W, Mahmood T, Raza SH. Effect of meteorological factors on the COVID-19 cases: a case study related to three major cities of the Kingdom of Saudi Arabia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21811-21825. [PMID: 34767172 PMCID: PMC8586838 DOI: 10.1007/s11356-021-17268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The COVID-19 pandemic affected the world through its ability to cause widespread infection. The Middle East including the Kingdom of Saudi Arabia (KSA) has also been hit by the COVID-19 pandemic like the rest of the world. This study aims to examine the relationships between meteorological factors and COVID-19 case counts in three cities of the KSA. The distribution of the COVID-19 case counts was observed for all three cities followed by cross-correlation analysis which was carried out to estimate the lag effects of meteorological factors on COVID-19 case counts. Moreover, the Poisson model and negative binomial (NB) model with their zero-inflated versions (i.e., ZIP and ZINB) were fitted to estimate city-specific impacts of weather variables on confirmed case counts, and the best model is evaluated by comparative analysis for each city. We found significant associations between meteorological factors and COVID-19 case counts in three cities of KSA. We also perceived that the ZINB model was the best fitted for COVID-19 case counts. In this case study, temperature, humidity, and wind speed were the factors that affected COVID-19 case counts. The results can be used to make policies to overcome this pandemic situation in the future such as deploying more resources through testing and tracking in such areas where we observe significantly higher wind speed or higher humidity. Moreover, the selected models can be used for predicting the probability of COVID-19 incidence across various regions.
Collapse
Affiliation(s)
- Anam Iqbal
- Department of Statistics, Government Graduate College for Women, Sargodha, Punjab, Pakistan
| | - Wajiha Haq
- Department of Economics, School of Social Sciences and Humanities, National University of Sciences and Technology, Islamabad, H-12, Pakistan.
| | - Tahir Mahmood
- Industrial and Systems Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Interdisciplinary Research Centre for Smart Mobility & Logistics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Syed Hassan Raza
- School of Economics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
16
|
Tang L, Liu M, Ren B, Chen J, Liu X, Wu X, Huang W, Tian J. Transmission in home environment associated with the second wave of COVID-19 pandemic in India. ENVIRONMENTAL RESEARCH 2022; 204:111910. [PMID: 34464619 PMCID: PMC8401083 DOI: 10.1016/j.envres.2021.111910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 05/02/2023]
Abstract
India has suffered from the second wave of COVID-19 pandemic since March 2021. This wave of the outbreak has been more serious than the first wave pandemic in 2020, which suggests that some new transmission characteristics may exist. COVID-19 is transmitted through droplets, aerosols, and contact with infected surfaces. Air pollutants are also considered to be associated with COVID-19 transmission. However, the roles of indoor transmission in the COVID-19 pandemic and the effects of these factors in indoor environments are still poorly understood. Our study focused on reveal the role of indoor transmission in the second wave of COVID-19 pandemic in India. Our results indicated that human mobility in the home environment had the highest relative influence on COVID-19 daily growth rate in the country. The COVID-19 daily growth rate was significantly positively correlated with the residential percent rate in most state-level areas in India. A significant positive nonlinear relationship was found when the residential percent ratio ranged from 100 to 120%. Further, epidemic dynamics modelling indicated that a higher proportion of indoor transmission in the home environment was able to intensify the severity of the second wave of COVID-19 pandemic in India. Our findings suggested that more attention should be paid to the indoor transmission in home environment. The public health strategies to reduce indoor transmission such as ventilation and centralized isolation will be beneficial to the prevention and control of COVID-19.
Collapse
Affiliation(s)
- Liwei Tang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Min Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, China; International Cancer Center, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Bingyu Ren
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, 518055, China
| | - Jinghong Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xinwei Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xilin Wu
- Department of Neurology, Fujian Medical University Union Hospital Fujian Key Laboratory of Molecular Neurology, Fuzhou, Fu Jian, 350001, China
| | - Weiren Huang
- International Cancer Center, Health Science Center, Shenzhen University, Shenzhen, 518060, China; Department of Urology, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, 518035, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
17
|
Ismail IMI, Rashid MI, Ali N, Altaf BAS, Munir M. Temperature, humidity and outdoor air quality indicators influence COVID-19 spread rate and mortality in major cities of Saudi Arabia. ENVIRONMENTAL RESEARCH 2022; 204:112071. [PMID: 34562487 PMCID: PMC8457907 DOI: 10.1016/j.envres.2021.112071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 09/11/2021] [Indexed: 05/06/2023]
Abstract
There is an increasing evidence that meteorological (temperature, relative humidity, dew) and air quality indicators (PM2.5, PM10, NO2, SO2, CO) are affecting the COVID-19 transmission rate and the number of deaths in many countries around the globe. However, there are contradictory results due to limited observations of these parameters and absence of conclusive evidence on such relationships in cold or hot arid tropical and subtropical desert climate of Gulf region. This is the first study exploring the relationships of the meteorological (temperature, relative humidity, and dew) and air quality indicators (PM10,CO, and SO2) with daily COVID-19 infections and death cases for a period of six months (1st March to August 31, 2020) in six selected cities of the Kingdom of Saudi Arabia by using generalized additive model. The Akaike information criterion (AIC) was used to assess factors affecting the infections rate and deaths through the selection of best model whereas overfitting of multivariate model was avoided by using cross-validation. Spearman correlation indicated that exponentially weighted moving average (EWMA) temperature and relative humidity (R > 0.5, P < 0.0001) are the main variables affecting the daily COVID-19 infections and deaths. EWMA temperature and relative humidity showed non linear relationships with the number of COVID-19 infections and deaths (DF > 1, P < 0.0001). Daily COVID-19 infections showed a positive relationship at temperature between 23 and 34.5 °C and relative humidity ranging from 30 to 60%; a negative relationship was found below and/or above these ranges. Similarly, the number of deaths had a positive relationship at temperature ˃28.7 °C and with relative humidity ˂40%, showing higher number of deaths above this temperature and below this relative humidity rate. All air quality indicators had linear relationships with the number of COVID-19 infections and deaths (P < 0.0001). Hence, variation in temperature, relative humidity and air pollution indicators could be important factors influencing the COVID-19 spread and mortality. Under the current scenario with rising temperature and relative humidity, the number of cases is increasing, hence it justifies an active government policy to lessen COVID-19 infection rate.
Collapse
Affiliation(s)
- Iqbal M I Ismail
- Centre of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah, 21589, Saudi Arabia; Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Muhammad Imtiaz Rashid
- Centre of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah, 21589, Saudi Arabia.
| | - Nadeem Ali
- Centre of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah, 21589, Saudi Arabia
| | - Bothinah Abdullah Saeed Altaf
- Department of Statistics, Faculty of Science, Female Campus, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, United Kingdom
| |
Collapse
|
18
|
Salam AA, Al-Khraif RM, Elsegaey I. COVID-19 in Saudi Arabia: An Overview. Front Public Health 2022; 9:736942. [PMID: 35186861 PMCID: PMC8847272 DOI: 10.3389/fpubh.2021.736942] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Saudi Arabia, a prominent Arabian country, has 35. 3 million persons living in 2.2 million square kilometers, undergone serious threats recently due to the COVID-19 pandemic. With the built-in infrastructure and disciplined lifestyle, the country could address this pandemic. AIMS This analysis of COVID-19 cases in Saudi Arabia attempts to assess the situation, explore its global percentage share, percentage of population affected, and local distribution from the beginning of infection until recently, tracing historical developments and changes. DATA AND METHODS This analysis made use of data released by the Ministry of Health on a daily basis for a number of parameters. They are compiled on an excel sheet on a daily basis: the dataset has undergone rigorous analysis along with the trends and patterns; proportion to the world statistics and geographic distribution. RESULTS COVID-19 spread rapidly in the country with periodic variations, during June-August, 2020. But, recoveries accelerated in the period, thus bridging the gap of increasing infections. In comparison with the world statistics, the country proportions are lower, while the percentage of population affected is similar. It appears that the intensity varied across all 13 administrative areas. CONCLUSION COVID-19 transmission since March 2020 is considered to be widespread, creating excess burden on the public health system, delineated into stages (early infection, rapid spread, declining, stabilizing, and second wave). Control measures are set, stage-wise, without impinging upon normal life but to ensure that the proportion of globally affected persons is lesser than the population share: credit goes to the Ministry of Health. Area-wise spread depends largely on population density and development infrastructure dimensions. Ultimately, the disciplined life in compliance with law and order paved the way for effective program implementation and epidemic control.
Collapse
Affiliation(s)
| | - Rshood M Al-Khraif
- Center for Population Studies, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim Elsegaey
- Center for Population Studies, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Olak AS, Santos WS, Susuki AM, Pott-Junior H, V Skalny A, Tinkov AA, Aschner M, Pinese JPP, Urbano MR, Paoliello MMB. Meteorological parameters and cases of COVID-19 in Brazilian cities: an observational study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:14-28. [PMID: 34474657 DOI: 10.1080/15287394.2021.1969304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Meteorological parameters modulate transmission of the SARS-Cov-2 virus, the causative agent related to coronavirus disease-2019 (COVID-19) development. However, findings across the globe have been inconsistent attributed to several confounding factors. The aim of the present study was to investigate the relationship between reported meteorological parameters from July 1 to October 31, 2020, and the number of confirmed COVID-19 cases in 4 Brazilian cities: São Paulo, the largest city with the highest number of cases in Brazil, and the cities with greater number of cases in the state of Parana during the study period (Curitiba, Londrina and Maringa). The assessment of meteorological factors with confirmed COVID-19 cases included atmospheric pressure, temperature, relative humidity, wind speed, solar irradiation, sunlight, dew point temperature, and total precipitation. The 7- and 15-day moving averages of confirmed COVID-19 cases were obtained for each city. Pearson's correlation coefficients showed significant correlations between COVID-19 cases and all meteorological parameters, except for total precipitation, with the strongest correlation with maximum wind speed (0.717, <0.001) in São Paulo. Regression tree analysis demonstrated that the largest number of confirmed COVID-19 cases was associated with wind speed (between ≥0.3381 and <1.173 m/s), atmospheric pressure (<930.5mb), and solar radiation (<17.98e+3). Lower number of cases was observed for wind speed <0.3381 m/s and temperature <23.86°C. Our results encourage the use of meteorological information as a critical component in future risk assessment models.
Collapse
Affiliation(s)
- André S Olak
- Department of Architecture and Urbanism; State University of Londrina (Uel), Londrina, PR, Brazil
- Department of Statistics, State University of Londrina (Uel), Londrina, Pr, Brazil
| | - Willian S Santos
- Department of Geoscience, State University of Londrina (Uel), Londrina, PR, Brazil
| | - Aline M Susuki
- Department of Architecture and Urbanism; State University of Londrina (Uel), Londrina, PR, Brazil
| | - Henrique Pott-Junior
- Department of Medicine, Federal University of São Carlos (Ufscar), São Carlos, SP, Brazil
| | - Anatoly V Skalny
- Department of Bioelementology, K.g. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Im Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexey A Tinkov
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Im Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Michael Aschner
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Im Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - José P P Pinese
- Department of Geoscience, State University of Londrina (Uel), Londrina, PR, Brazil
- Centre of Studies in Geography and Spatial Planning, CEGOT, Coimbra, Portugal
| | - Mariana R Urbano
- Department of Statistics, State University of Londrina (Uel), Londrina, Pr, Brazil
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
20
|
Khan YA. Risk of mortality due to COVID-19 and air pollution in Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2063-2072. [PMID: 34363580 PMCID: PMC8349147 DOI: 10.1007/s11356-021-15654-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The present research aims to investigate the impact of air pollution on the number of mortalities caused by COVID-19 per Pakistani province. To do so, for each independent area of Pakistan, the observed mortality due to COVID-19 has been standardized over the entire population using standard age groups ranging from 0 to 4, 5 to 9, 10 to 14,…, 65, and above years, supported by the 2017 state people census. The impact of air pollution and COVID-19 transience among Pakistani areas, Islamabad Capital Territory (ICT), and the Federally Administered Tribal Region (FATA) was analyzed by a multiple-linear regression model, while the broad collection of attributes was observed by the resources of local spatial autocorrelation indicators, including the spatial portion of COVID-19 association. The result indicates that the observed mortality rate is much higher than predicted in certain provinces, namely, the Khyber Pakhtunkhwa and Punjab provinces, and the prevalence of PM10 was independently linked to mortality due to the corona virus. Additionally, the results of the local spatial autocorrelation indicators on the standardized mortality rate and PM10 define a collection of very higher ideologies in the broad range of KPK and the southern part of Punjab province, respectively, with a definite degree of connection between the two distributions in the Khyber Pakhtunkhwa region. In brief, this research seems to find a justification for confirming the existence of a correlation between the possibility of COVID-19 mortality and air pollution, more precisely considering air pollutants (i.e., particulate (PM10) and land take-over. To this end, the need to mediate in favor of measures aimed at eliminating emissions in the environment will be reiterated by speeding up current proposals and policies aimed at all causes of atmospheric pollution: urbanization, water and manufacturing, home heating, and transportation.
Collapse
Affiliation(s)
- Yousaf Ali Khan
- Department of Mathematics and Statistics, Hazara University, Mansehra, 23010, Pakistan.
- School of Statistics, Jiangxi University of Finance and Economics, Nanchang, 330013, China.
| |
Collapse
|
21
|
Roshan G, Sarli R, Grab SW. The case of Tehran's urban heat island, Iran: Impacts of urban 'lockdown' associated with the COVID-19 pandemic. SUSTAINABLE CITIES AND SOCIETY 2021; 75:103263. [PMID: 36568531 PMCID: PMC9760287 DOI: 10.1016/j.scs.2021.103263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 05/21/2023]
Abstract
The increasing expansion of urban environments with associated transformation of land-cover has led to the formation of urban heat islands (UHI) in many urbanized regions worldwide. COVID-19 related environmental impacts, through reduced urban activities, is worthy of investigation as it may demonstrate human capacity to manage UHI. We aim to establish the thermal impacts associated with COVID-19 induced urban 'lockdown' from 20 March to 20 April 2020 over Tehran. Areal changes in UHI are assessed through Classification and Regression Trees (CART), measured against background synoptic scale temperature changes over the years 1950-2020. Results indicate that monthly Tmean, Tmax and Tmin values during this time were considerably lower than long-term mean values for the reference period. Although the COVID-19 initiated shutdown led to an identifiable temperature anomaly, we demonstrate that this is not a product of upper atmospheric or synoptic conditions alone. We also show that the cooling effect over Tehran was not spatially uniform, which is likely due to the complexity of land uses such as industrial as opposed to residential. Our findings provide potentially valuable insights and implications for future management of urban heat islands during extreme heat waves that pose a serious threat to human health.
Collapse
Affiliation(s)
- Gholamreza Roshan
- Department of Geography, Golestan University, Shahid Beheshti, Gorgan 49138-15759, Iran
| | - Reza Sarli
- Department of Geography, Golestan University, Shahid Beheshti, Gorgan 49138-15759, Iran
| | - Stefan W Grab
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg 2050, South Africa
| |
Collapse
|
22
|
Constantinou A, Oikonomou S, Konstantinou C, Makris KC. A randomized cross-over trial investigating differences in 24-h personal air and skin temperatures using wearable sensors between two climatologically contrasting settings. Sci Rep 2021; 11:22020. [PMID: 34759278 PMCID: PMC8580978 DOI: 10.1038/s41598-021-01180-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/25/2021] [Indexed: 11/08/2022] Open
Abstract
The influence of elevated air temperatures recorded in various urban microenvironments in adversely impacting biologically relevant disease end points has not yet been extensively tackled. This study is a post hoc analysis of the TEMP pilot trial, a randomized 2 × 2 cross-over trial that examined changes in metabolic and stress hormonal profiles of healthy adults in two settings (urban vs. rural) with distinctly different climatological characteristics during the Mediterranean summer. This analysis aimed to study the association between the 24-h personal air or skin temperature sensor measurements and the diary-based location type (indoors vs. outdoors) in urban (seaside) vs. rural (higher in altitude) microenvironments. Out of 41 eligible participants, a total of 37 participants were included in this post-hoc TEMP trial analysis. Wearable sensors recorded personal air temperature, skin temperature, and activity (as a surrogate marker of physical activity) in each setting, while a time-stamped personal diary recorded the types of indoor or outdoor activities. Temperature peaks during the 24-h sampling period were detected using a peak finding algorithm. Mixed effect logistic regression models were fitted for the odds of participant location (being indoors vs. outdoors) as a function of setting (urban vs. rural) and sensor-based personal temperature data (either raw temperature values or number of temperature peaks). During the study period (July-end of September), median [interquartile range, IQR] personal air temperature in the rural (higher altitude) settings was 1.5 °C lower than that in the urban settings (27.1 °C [25.4, 29.2] vs. 28.6 °C [27.1, 30.5], p < 0.001), being consistent with the Mediterranean climate. Median [IQR] personal air temperature in indoor (micro)environments was lower than those in outdoors (28.0 °C [26.4, 30.3] vs 28.5 °C [26.8, 30.7], p < 0.001). However, median [IQR] skin temperature was higher in indoor (micro)environments vs. outdoors (34.8 °C [34.0, 35.6] and 33.9 °C [32.9, 34.8], p < 0.001) and the number of both personal air and skin temperature peaks was higher indoors compared to outdoors (median [IQR] 3.0 [2.0,4.0] vs 1.0 [1.0,1.3], p < 0.007, for the skin sensors). A significant association between the number of temperature peaks and indoor location types was observed with either the personal air sensor (OR 3.1; 95% CI 1.2-8.2; p = 0.02) or the skin sensor (OR 3.7; 95% CI 1.4-9.9; p = 0.01), suggesting higher number of indoor air temperature fluctuations. Amidst the global climate crisis, more population health studies or personalized medicine approaches that utilize continuous tracking of individual-level air/skin temperatures in both indoor/outdoor locations would be warranted, if we were to better characterize the disease phenotype in response to climate change manifestations.
Collapse
Affiliation(s)
- Andria Constantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Stavros Oikonomou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
23
|
Rios V, Gianmoena L. On the link between temperature and regional COVID-19 severity: Evidence from Italy. REGIONAL SCIENCE POLICY & PRACTICE 2021; 13:109-137. [PMID: 38607900 PMCID: PMC8661898 DOI: 10.1111/rsp3.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/30/2021] [Accepted: 08/22/2021] [Indexed: 05/07/2023]
Abstract
This study analyzes the link between temperature and COVID-19 incidence in a sample of Italian regions during the period that covers the first epidemic wave of 2020. To that end, Bayesian model averaging techniques are used to analyze the relevance of temperature together with a set of additional climatic, demographic, social, and health policy factors. The robustness of individual predictors is measured through posterior inclusion probabilities. The empirical analysis provides conclusive evidence on the role played by temperature given that it appears as one of the most relevant determinants reducing regional coronavirus disease 2019 (COVID-19) severity. The strong negative link observed in our baseline analysis is robust to the specification of priors, the scale of analysis, the correction of measurement errors in the data due to under-reporting, the time window considered, and the inclusion of spatial effects in the model. In a second step, we compute relative importance metrics that decompose the variability explained by the model. We find that cross-regional temperature differentials explain a large share of the observed variation on the number of infections.
Collapse
Affiliation(s)
- Vicente Rios
- Department of EconomicsUniversity of MilanVia Festa del Perdono, 7Milano20122Italy
| | - Lisa Gianmoena
- Department of Economics and ManagementUniversity of PisaCosimo Ridolfi 10Pisa56124Italy
| |
Collapse
|
24
|
Khan YA. The COVID-19 pandemic and its impact on environment: the case of the major cities in Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54728-54743. [PMID: 34014482 PMCID: PMC8134810 DOI: 10.1007/s11356-021-13851-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/05/2021] [Indexed: 04/16/2023]
Abstract
In Wuhan city, China, a pneumonia-like disease of unknown origin triggered a catastrophe. This disease has spread to 215 nations, affecting a diverse variety of persons. It was formally called extreme acute respiratory syndrome coronavirus 2 (SARS CoV-2), also known as coronavirus disease, by the World Health Organization as a pandemic. This pandemic forced countries to enforce a socio-economic lockdown to avoid its widespread presence. This study focuses on how the pollution of particulate matter during the coronavirus pandemic in the period from 23 March 2020 to 31 December 2020 was reduced compared to the pre-pandemic situation in the country. The improvement in air quality and atmosphere due to the coronavirus pandemic in Pakistan was identified by both ground-based and satellite observations with a primary focus on the four provincial capitals and country capitals, namely, Peshawar, Karachi, Quetta, Lahore, and Islamabad, and statistically verified through paired Student's t test. Both datasets have shown a significant decrease in the levels of PM2.5 pollutions across Pakistan (ranging from 15 to 35% for satellite observations, while 27 to 61% for ground-based observations). The result shows that poor air quality is one of the key factors for a higher COVID-19 spread rate in major Pakistani cities. By extending the same investigation across the nation, there is a greater need to investigate the connections between COVID-19 spread and air pollution. However, both higher population density rates and frequent population exposure can be partially attributed to increased levels of PM2.5 concentrations before the pandemic of the coronavirus.
Collapse
Affiliation(s)
- Yousaf Ali Khan
- Department of Mathematic and Statistics, Hazara University, Mansehra, 23010, Pakistan.
- School of Statistics, Jiangxi University of Finance and Economics, Nanchang, 330013, China.
| |
Collapse
|
25
|
Sharma GD, Tiwari AK, Jain M, Yadav A, Srivastava M. COVID-19 and environmental concerns: A rapid review. RENEWABLE & SUSTAINABLE ENERGY REVIEWS 2021; 148:111239. [PMID: 34234623 PMCID: PMC8189823 DOI: 10.1016/j.rser.2021.111239] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 has slowed global economic growth and consequently impacted the environment as well. Parallelly, the environment also influences the transmission of this novel coronavirus through various factors. Every nation deals with varied population density and size; air quality and pollutants; the nature of land and water, which significantly impact the transmission of coronavirus. The WHO (Ziaeepour et al., 2008) [1] has recommended rapid reviews to provide timely evidence to the policymakers to respond to the emergency. The present study follows a rapid review along with a brief bibliometric analysis of 328 research papers, which synthesizes the evidence regarding the environmental concerns of COVID-19. The novel contribution of this rapid review is threefold. One, we take stock of the diverse findings as regards the transmission of the novel coronavirus in different types of environments for providing conclusive directions to the ongoing debate regarding the transmission of the virus. Two, our findings provide topical insights as well as methodological guidance for future researchers in the field. Three, we inform the policymakers on the efficacy of environmental measures for controlling the spread of COVID-19.
Collapse
Affiliation(s)
- Gagan Deep Sharma
- University School of Management Studies, Guru Gobind Singh Indraprastha University, Sector 16 C, Dwarka, New Delhi, India
| | | | - Mansi Jain
- University School of Management Studies, Guru Gobind Singh Indraprastha University, Sector 16 C, Dwarka, New Delhi, India
| | - Anshita Yadav
- University School of Management Studies, Guru Gobind Singh Indraprastha University, Sector 16 C, Dwarka, New Delhi, India
| | - Mrinalini Srivastava
- University School of Management Studies, Guru Gobind Singh Indraprastha University, Sector 16 C, Dwarka, New Delhi, India
| |
Collapse
|
26
|
Ma Y, Cheng B, Shen J, Wang H, Feng F, Zhang Y, Jiao H. Association between environmental factors and COVID-19 in Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45087-45095. [PMID: 33856634 PMCID: PMC8047551 DOI: 10.1007/s11356-021-13834-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/05/2021] [Indexed: 05/02/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) continues to spread worldwide and has led to recession, rising unemployment, and the collapse of the health-care system. The aim of this study was to explore the exposure-response relationship between daily confirmed COVID-19 cases and environmental factors. We used a time-series generalized additive model (GAM) to investigate the short-term association between COVID-19 and environmental factors by using daily meteorological elements, air pollutant concentration, and daily confirmed COVID-19 cases from January 21, 2020, to February 29, 2020, in Shanghai, China. We observed significant negative associations between daily confirmed COVID-19 cases and mean temperature (Tave), temperature humidity index (THI), and index of wind effect (K), whereas air quality index (AQI), PM2.5, PM10 NO2, and SO2 were significantly associated with the increase in daily confirmed COVID-19 cases. A 1 °C increase in Tave, one-unit increase in THI, and 10-unit increase in K (lag 0-7 days) were associated with 4.7, 1.8, and 1.6% decrease in daily confirmed cases, respectively. Daily Tave, THI, K, PM10, and SO2 had significant lag and persistence (lag 0-7 days), whereas the lag and persistence of AQI, PM2.5, and NO2 were significant at both lag 0-7 and 0-14 days. A 10-μg/m3 increase in PM10 and 1-μg/m3 increase in SO2 was associated with 13.9 and 5.7% increase in daily confirmed cases at lag 0-7 days, respectively, whereas a 10-unit increase in AQI and a 10-μg/m3 increase in PM2.5 and NO2 were associated with 7.9, 7.8, and 10.1% increase in daily confirmed cases at lag 0-14 days, respectively. Our findings have important implications for public health in the city of Shanghai.
Collapse
Affiliation(s)
- Yuxia Ma
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Bowen Cheng
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Jiahui Shen
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Hang Wang
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Fengliu Feng
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yifan Zhang
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Haoran Jiao
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
27
|
Hakim A, Hasan MM, Hasan M, Lokman SM, Azim KF, Raihan T, Chowdhury PA, Azad AK. Major Insights in Dynamics of Host Response to SARS-CoV-2: Impacts and Challenges. Front Microbiol 2021; 12:637554. [PMID: 34512561 PMCID: PMC8424194 DOI: 10.3389/fmicb.2021.637554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), a pandemic declared by the World Health Organization on March 11, 2020, is caused by the infection of highly transmissible species of a novel coronavirus called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). As of July 25, 2021, there are 194,372,584 cases and 4,167,937 deaths with high variability in clinical manifestations, disease burden, and post-disease complications among different people around the globe. Overall, COVID-19 is manifested as mild to moderate in almost 90% of the cases and only the rest 10% of the cases need hospitalization. However, patients with older age and those having different comorbidities have made worst the pandemic scenario. The variability of pathological consequences and clinical manifestations of COVID-19 is associated with differential host-SARS-CoV-2 interactions, which are influenced by the factors that originated from the SARS-CoV-2 and the host. These factors usually include the genomic attributes and virulent factors of the SARS-CoV-2, the burden of coinfection with other viruses and bacteria, age and gender of the individuals, different comorbidities, immune suppressions/deficiency, genotypes of major histocompatibility complex, and blood group antigens and antibodies. We herein retrieved and reviewed literatures from PubMed, Scopus, and Google relevant to clinical complications and pathogenesis of COVID-19 among people of different age, sex, and geographical locations; genomic characteristics of SARS-CoV-2 including its variants, host response under different variables, and comorbidities to summarize the dynamics of the host response to SARS-CoV-2 infection; and host response toward approved vaccines and treatment strategies against COVID-19. After reviewing a large number of published articles covering different aspects of host response to SARS-CoV-2, it is clear that one aspect from one region is not working with the scenario same to others, as studies have been done separately with a very small number of cases from a particular area/region of a country. Importantly, to combat such a pandemic as COVID-19, a conclusive understanding of the disease dynamics is required. This review emphasizes on the identification of the factors influencing the dynamics of host responses to SARS-CoV-2 and offers a future perspective to explore the molecular insights of COVID-19.
Collapse
Affiliation(s)
- Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md. Mahbub Hasan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, London, United Kingdom
| | - Mahmudul Hasan
- Department of Pharmaceutical and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Syed Mohammad Lokman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | - Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
28
|
Superposed Natural Hazards and Pandemics: Breaking Dams, Floods, and COVID-19. SUSTAINABILITY 2021. [DOI: 10.3390/su13168713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Within the engineering domain, safety issues are often related to engineering design and typically exclude factors such as epidemics, famine, and disease. This article provides a perspective on the reciprocal relationship and interaction between a natural hazard and a simultaneous pandemic outbreak and discusses how a catastrophic dam break, combined with the ongoing COVID-19 pandemic, poses a risk to human life. The paper uses grey- and peer-reviewed literature to support the discussion and reviews fundamentals of dam safety management, potential loss of life due to a dam break, and the recent evolution in dam risk analysis to account for the COVID-19 outbreak. Conventional risk reduction recommendations, such as quick evacuation and sheltering in communal centers, are revisited in the presence of a pandemic when social distancing is recommended. This perspective manuscript aims to provide insight into the multi-hazard risk problem resulting from a concurring natural hazard and global pandemic.
Collapse
|
29
|
Abdelhafez E, Dabbour L, Hamdan M. The effect of weather data on the spread of COVID-19 in Jordan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40416-40423. [PMID: 33420694 PMCID: PMC7794072 DOI: 10.1007/s11356-020-12338-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/30/2020] [Indexed: 04/16/2023]
Abstract
This study aims to analyze the correlation between the daily confirmed COVID-19 cases in Jordan and metrological parameters including the average daily temperature (°C), maximum ambient temperature (°C), relative humidity (%), wind speed (m/s), pressure (kPa), and average daily solar radiation (W/m2). This covers the first and the second waves in Jordan. The data were obtained from both the Jordanian Ministry of health and the Jordan Metrological Department. In this work, the Spearman correlation test was used for data analysis, since the normality assumption was not fulfilled. It was found that the most effective weather parameters on the active cases of COVID-19 in the initial wave transmission was the average daily solar radiation (r = - 0.503; p = 0.000), while all other tests for other parameters failed. In the second wave of COVID-19 transmission, it was found that the most effective weather parameter on the active cases of COVID-19 was the maximum temperature (r = 0.394; p = 0.028). This was followed by wind speed (r = 0.477; p = 0.007), pressure (r = - 0.429; p = 0.016), and average daily solar radiation (r = - 0.757; p = 0.000). Furthermore, the independent variable importance of multilayer perceptron showed that wind speed has a direct relationship with active cases. Conversely, areas characterized by low values of pressure and daily solar radiation exposure have a high rate of infection. Finally, a global sensitivity analysis using Sobol analysis showed that daily solar radiation has a high rate of active cases that support the virus' survival in both wave transmissions.
Collapse
Affiliation(s)
- Eman Abdelhafez
- Faculty of Engineering and Technology, Department of Alternative Energy Technology, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan.
| | - Loai Dabbour
- Faculty of Architecture and Design, Department of Architecture, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Mohammad Hamdan
- School of Engineering, Department of Mechanical Engineering, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
30
|
Saddique A, Adnan S, Bokhari H, Azam A, Rana MS, Khan MM, Hanif M, Sharif S. Prevalence and Associated Risk Factor of COVID-19 and Impacts of Meteorological and Social Variables on Its Propagation in Punjab, Pakistan. EARTH SYSTEMS AND ENVIRONMENT 2021; 5:785-798. [PMID: 34723081 PMCID: PMC8260326 DOI: 10.1007/s41748-021-00218-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/10/2021] [Indexed: 06/13/2023]
Abstract
The current study identifies the spatial distribution of COVID-19 cases and its association with meteorological and social variables in Punjab (densely populated province of Pakistan). To identify the COVID-19 propagation, the weekly growth, recovery, and deaths rate have also been calculated. The geographic information system (GIS) has used to determine COVID-19 impacts on gender (male/female), age groups, and causalities over an affected population (km-2) for the period of 11th March to 12th August, 2020 in each district of province. Our results show that 43 peak days (where daily positive cases were above 900) have been observed in Punjab during 27th May to 8th July, 2020. The high population density districts, i.e., Lahore and Islamabad, have been affected (five persons per square kilometers) due to COVID-19, whereas the maximum death tolls (> 50 persons per millions) have also been observed in these urban districts. The meteorological variables (temperature, humidity, heat index, and ultraviolet index) show negative significant relationship to basic reproduction number (R0), whereas daily COVID-19 cases are positively correlated to aerosols concentration at 95% confidence level. The government intervention (stringency index) shows a positive impact to reduce the COVID-19 cases over the province. Keeping in view the COVID-19 behavior and climatology of the region, it has been identified that the COVID-19 cases may likely to increase during the dry period (high concentration of aerosols) i.e., October-December, 2020 and post-spring season (April to June), 2021 in urban areas of Pakistan. This study provides an overview on districts vulnerability that would help the policy makers, health agencies to plan their activities to reduce the COVID-19 impacts.
Collapse
Affiliation(s)
- Arbab Saddique
- COMSATS University Islamabad/Kohsar University, Islamabad/Murree, Pakistan
| | - Shahzada Adnan
- Pakistan Meteorological Department, Sector H-8/2, Islamabad, Pakistan
| | - Habib Bokhari
- COMSATS University Islamabad/Kohsar University, Islamabad/Murree, Pakistan
| | - Asima Azam
- Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | | | | | - Muhammad Hanif
- Pakistan Meteorological Department, Sector H-8/2, Islamabad, Pakistan
| | - Shawana Sharif
- Shaheed Benazir Bhutto Hospital, Rawalpindi Medical University, Rawalpindi, Pakistan
| |
Collapse
|
31
|
Alamo T, G Reina D, Millán Gata P, Preciado VM, Giordano G. Data-driven methods for present and future pandemics: Monitoring, modelling and managing. ANNUAL REVIEWS IN CONTROL 2021; 52:448-464. [PMID: 34220287 PMCID: PMC8238691 DOI: 10.1016/j.arcontrol.2021.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 05/29/2023]
Abstract
This survey analyses the role of data-driven methodologies for pandemic modelling and control. We provide a roadmap from the access to epidemiological data sources to the control of epidemic phenomena. We review the available methodologies and discuss the challenges in the development of data-driven strategies to combat the spreading of infectious diseases. Our aim is to bring together several different disciplines required to provide a holistic approach to epidemic analysis, such as data science, epidemiology, and systems-and-control theory. A 3M-analysis is presented, whose three pillars are: Monitoring, Modelling and Managing. The focus is on the potential of data-driven schemes to address three different challenges raised by a pandemic: (i) monitoring the epidemic evolution and assessing the effectiveness of the adopted countermeasures; (ii) modelling and forecasting the spread of the epidemic; (iii) making timely decisions to manage, mitigate and suppress the contagion. For each step of this roadmap, we review consolidated theoretical approaches (including data-driven methodologies that have been shown to be successful in other contexts) and discuss their application to past or present epidemics, such as Covid-19, as well as their potential application to future epidemics.
Collapse
Affiliation(s)
- Teodoro Alamo
- Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Escuela Superior de Ingenieros, Sevilla, Spain
| | - Daniel G Reina
- Departamento de Ingeniería Electrónica, Universidad de Sevilla, Escuela Superior de Ingenieros, Sevilla, Spain
| | - Pablo Millán Gata
- Departamento de Ingeniería, Universidad Loyola Andalucía, Seville, Spain
| | - Victor M Preciado
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA
| | - Giulia Giordano
- Department of Industrial Engineering, University of Trento, Trento, Italy
| |
Collapse
|
32
|
Dadashi M, Khaleghnejad S, Abedi Elkhichi P, Goudarzi M, Goudarzi H, Taghavi A, Vaezjalali M, Hajikhani B. COVID-19 and Influenza Co-infection: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:681469. [PMID: 34249971 PMCID: PMC8267808 DOI: 10.3389/fmed.2021.681469] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Background and Aim: Co-infection of COVID-19 with other respiratory pathogens which may complicate the diagnosis, treatment, and prognosis of COVID-19 emerge new concern. The overlap of COVID-19 and influenza, as two epidemics at the same time can occur in the cold months of the year. The aim of current study was to evaluate the rate of such co-infection as a systematic review and meta-analysis. Methods: A systematic literature search was performed on September 28, 2019 for original research articles published in Medline, Web of Science, and Embase databases from December 2019 to September 2020 using relevant keywords. Patients of all ages with simultaneous COVID-19 and influenza were included. Statistical analysis was performed using STATA 14 software. Results: Eleven prevalence studies with total of 3,070 patients with COVID-19, and 79 patients with concurrent COVID-19 and influenza were selected for final evaluation. The prevalence of influenza infection was 0.8% in patients with confirmed COVID-19. The frequency of influenza virus co-infection among patients with COVID-19 was 4.5% in Asia and 0.4% in the America. Four prevalence studies reported the sex of patients, which were 30 men and 31 women. Prevalence of co-infection with influenza in men and women with COVID-19 was 5.3 and 9.1%, respectively. Eight case reports and 7 case series with a total of 123 patients with COVID-19 were selected, 29 of them (16 men, 13 women) with mean age of 48 years had concurrent infection with influenza viruses A/B. Fever, cough, and shortness of breath were the most common clinical manifestations. Two of 29 patients died (6.9%), and 17 out of 29 patients recovered (58.6%). Oseltamivir and hydroxychloroquine were the most widely used drugs used for 41.4, and 31% of patients, respectively. Conclusion: Although a low proportion of COVID-19 patients have influenza co-infection, however, the importance of such co-infection, especially in high-risk individuals and the elderly, cannot be ignored. We were unable to report the exact rate of simultaneous influenza in COVID-19 patients worldwide due to a lack of data from several countries. Obviously, more studies are needed to evaluate the exact effect of the COVID-19 and influenza co-infection in clinical outcomes.
Collapse
Affiliation(s)
- Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Saeedeh Khaleghnejad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Abedi Elkhichi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsoon Taghavi
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vaezjalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Sharun K, Tiwari R, Dhama K. COVID-19 and sunlight: Impact on SARS-CoV-2 transmissibility, morbidity, and mortality. Ann Med Surg (Lond) 2021; 66:102419. [PMID: 34094531 PMCID: PMC8164734 DOI: 10.1016/j.amsu.2021.102419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has already affected millions of people worldwide. There are reports of SARS-CoV-2 transmission as a consequence of environmental contamination. The SARS-CoV-2 laden infective droplets can actively persist on the surface of different materials for several hours to days. Sunlight can affect the stability of SARS-CoV-2 in these aerosols and thereby have an impact on the decay rate of the virus. Solar radiation might play an important role in inactivating SARS-CoV-2 that persists in different surfaces and the environment. Among the different climatological factors, ultraviolet radiation was found to have an important role in determining the spread of SARS-CoV-2. Although ultraviolet radiation C (UVC), UVB, UVA, visible light, and infrared radiation possess germicidal properties, human CoVs including the recently emerged SARS-CoV-2 are inherently sensitive to UVC. However, the successful decontamination using other wavebands requires higher dosages and longer administration times. Furthermore, studies have also identified association between COVID-19 fatalities and the latitude. The intensity of sunlight is highest near the equator, and therefore populations in these regions with more regular exposure to sunlight are less susceptible to vitamin D deficiency. This article has analyzed the potential impact of sunlight in reducing SARS-CoV-2 transmissibility, morbidity, and mortality. It is evident that there exists an interesting link between sunlight exposure, latitude, and vitamin D status with COVID-19 incidence, fatality and recovery rates that requires further investigation.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| |
Collapse
|
34
|
Paraskevis D, Kostaki EG, Alygizakis N, Thomaidis NS, Cartalis C, Tsiodras S, Dimopoulos MA. A review of the impact of weather and climate variables to COVID-19: In the absence of public health measures high temperatures cannot probably mitigate outbreaks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144578. [PMID: 33450689 DOI: 10.1016/j.scitotenv.2020.144578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 05/28/2023]
Abstract
The new severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) pandemic was first recognized at the end of 2019 and has caused one of the most serious global public health crises in the last years. In this paper, we review current literature on the effect of weather (temperature, humidity, precipitation, wind, etc.) and climate (temperature as an essential climate variable, solar radiation in the ultraviolet, sunshine duration) variables on SARS-CoV-2 and discuss their impact to the COVID-19 pandemic; the review also refers to respective effect of urban parameters and air pollution. Most studies suggest that a negative correlation exists between ambient temperature and humidity on the one hand and the number of COVID-19 cases on the other, while there have been studies which support the absence of any correlation or even a positive one. The urban environment and specifically the air ventilation rate, as well as air pollution, can probably affect, also, the transmission dynamics and the case fatality rate of COVID-19. Due to the inherent limitations in previously published studies, it remains unclear if the magnitude of the effect of temperature or humidity on COVID-19 is confounded by the public health measures implemented widely during the first pandemic wave. The effect of weather and climate variables, as suggested previously for other viruses, cannot be excluded, however, under the conditions of the first pandemic wave, it might be difficult to be uncovered. The increase in the number of cases observed during summertime in the Northern hemisphere, and especially in countries with high average ambient temperatures, demonstrates that weather and climate variables, in the absence of public health interventions, cannot mitigate the resurgence of COVID-19 outbreaks.
Collapse
Affiliation(s)
- Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistiopolis Zografou, 15771 Athens, Greece
| | - Constantinos Cartalis
- Department of Environmental Physics - Meteorology, Department of Physics, National and Kapodistrian University of Athens, Panepistiopolis Zografou, 15771 Athens, Greece
| | - Sotirios Tsiodras
- Fourth Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
35
|
Paraskevis D, Kostaki EG, Alygizakis N, Thomaidis NS, Cartalis C, Tsiodras S, Dimopoulos MA. A review of the impact of weather and climate variables to COVID-19: In the absence of public health measures high temperatures cannot probably mitigate outbreaks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144578. [PMID: 33450689 PMCID: PMC7765762 DOI: 10.1016/j.scitotenv.2020.144578] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 04/15/2023]
Abstract
The new severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) pandemic was first recognized at the end of 2019 and has caused one of the most serious global public health crises in the last years. In this paper, we review current literature on the effect of weather (temperature, humidity, precipitation, wind, etc.) and climate (temperature as an essential climate variable, solar radiation in the ultraviolet, sunshine duration) variables on SARS-CoV-2 and discuss their impact to the COVID-19 pandemic; the review also refers to respective effect of urban parameters and air pollution. Most studies suggest that a negative correlation exists between ambient temperature and humidity on the one hand and the number of COVID-19 cases on the other, while there have been studies which support the absence of any correlation or even a positive one. The urban environment and specifically the air ventilation rate, as well as air pollution, can probably affect, also, the transmission dynamics and the case fatality rate of COVID-19. Due to the inherent limitations in previously published studies, it remains unclear if the magnitude of the effect of temperature or humidity on COVID-19 is confounded by the public health measures implemented widely during the first pandemic wave. The effect of weather and climate variables, as suggested previously for other viruses, cannot be excluded, however, under the conditions of the first pandemic wave, it might be difficult to be uncovered. The increase in the number of cases observed during summertime in the Northern hemisphere, and especially in countries with high average ambient temperatures, demonstrates that weather and climate variables, in the absence of public health interventions, cannot mitigate the resurgence of COVID-19 outbreaks.
Collapse
Affiliation(s)
- Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistiopolis Zografou, 15771 Athens, Greece
| | - Constantinos Cartalis
- Department of Environmental Physics - Meteorology, Department of Physics, National and Kapodistrian University of Athens, Panepistiopolis Zografou, 15771 Athens, Greece
| | - Sotirios Tsiodras
- Fourth Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
36
|
Byun WS, Heo SW, Jo G, Kim JW, Kim S, Lee S, Park HE, Baek JH. Is coronavirus disease (COVID-19) seasonal? A critical analysis of empirical and epidemiological studies at global and local scales. ENVIRONMENTAL RESEARCH 2021; 196:110972. [PMID: 33705770 PMCID: PMC7941024 DOI: 10.1016/j.envres.2021.110972] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 05/03/2023]
Abstract
Coronavirus disease (COVID-19) has infected more than 50 million people and killed more than one million, worldwide, during less than a year course. COVID-19, which has already become the worst pandemic in the last 100 years, is still spreading worldwide. Since the beginning of the outbreak, it has been of particular interest to understand whether COVID-19 is seasonal; the finding might help for better planning and preparation for the fight against the disease. Over the past 12 months, numerous empirical and epidemiological studies have been performed to define the distinct diffusion patterns of COVID-19. Thereby, a wealth of data has accumulated on the relationship between various seasonal meteorological factors and COVID-19 transmissibility at global and local scales. In this review, we aimed to discuss whether COVID-19 exhibits any seasonal features in a global and local perspective by collecting and providing summaries of the findings from empirical and epidemiological studies on the COVID-19 pandemic during its first seasonal cycle.
Collapse
Affiliation(s)
- Woo Seok Byun
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Sin Woo Heo
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Gunhee Jo
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jae Won Kim
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Sarang Kim
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Sujie Lee
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Hye Eun Park
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jea-Hyun Baek
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
| |
Collapse
|
37
|
Zhang C, Liao H, Strobl E, Li H, Li R, Jensen SS, Zhang Y. The role of weather conditions in COVID-19 transmission: A study of a global panel of 1236 regions. JOURNAL OF CLEANER PRODUCTION 2021; 292:125987. [PMID: 33495673 PMCID: PMC7816859 DOI: 10.1016/j.jclepro.2021.125987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Accepted: 01/12/2021] [Indexed: 05/21/2023]
Abstract
It is believed that weather conditions such as temperature and humidity have effects on COVID-19 transmission. However, these effects are not clear due to the limited observations and difficulties in separating impact of social distancing. COVID-19 data and social-economic features of 1236 regions in the world (1112 regions at the provincial level and 124 countries with the small land area) were collected. Large-scale satellite data was combined with these data with a regression analysis model to explore the effects of temperature and relative humidity on COVID-19 spreading, as well as the possible transmission risk by seasonal cycles. The result shows that temperature and relative humidity are negatively correlated with COVID-19 transmission throughout the world. Government intervention (e.g. lockdown policies) and lower population movement contributed to decrease the new daily case ratio. Weather conditions are not the decisive factor in COVID-19 transmission, in that government intervention as well as public awareness, could contribute to the mitigation of the spreading of the virus. So, it deserves a dynamic government policy to mitigate COVID-19 transmission in winter.
Collapse
Affiliation(s)
- Chen Zhang
- School of Management and Economics, Beijing Institute of Technology, South Zhongguancun Street 5, Haidian District, Beijing, 100081, China
- Environmental and Health Research Group, Center for Energy and Environmental Policy Research, Beijing Institute of Technology, South Zhongguancun Street 5, Haidian District, Beijing, 100081, China
- Department of Economics, University of Bern, Hochschulstrasse 6, 3012, Bern, Switzerland
| | - Hua Liao
- School of Management and Economics, Beijing Institute of Technology, South Zhongguancun Street 5, Haidian District, Beijing, 100081, China
- Environmental and Health Research Group, Center for Energy and Environmental Policy Research, Beijing Institute of Technology, South Zhongguancun Street 5, Haidian District, Beijing, 100081, China
| | - Eric Strobl
- Department of Economics, University of Bern, Hochschulstrasse 6, 3012, Bern, Switzerland
| | - Hui Li
- School of Management and Economics, Beijing Institute of Technology, South Zhongguancun Street 5, Haidian District, Beijing, 100081, China
- Environmental and Health Research Group, Center for Energy and Environmental Policy Research, Beijing Institute of Technology, South Zhongguancun Street 5, Haidian District, Beijing, 100081, China
| | - Ru Li
- School of Management and Economics, Beijing Institute of Technology, South Zhongguancun Street 5, Haidian District, Beijing, 100081, China
- Environmental and Health Research Group, Center for Energy and Environmental Policy Research, Beijing Institute of Technology, South Zhongguancun Street 5, Haidian District, Beijing, 100081, China
- LEURE Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015, Lausanne, Switzerland
| | - Steen Solvang Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Ying Zhang
- Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, 119 NansihuanXi Road, FengTai District, Beijing, 100070, China
| |
Collapse
|
38
|
Ali SM, Malik F, Anjum MS, Siddiqui GF, Anwar MN, Lam SS, Nizami AS, Khokhar MF. Exploring the linkage between PM 2.5 levels and COVID-19 spread and its implications for socio-economic circles. ENVIRONMENTAL RESEARCH 2021; 193:110421. [PMID: 33160973 PMCID: PMC7645282 DOI: 10.1016/j.envres.2020.110421] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/05/2020] [Accepted: 10/29/2020] [Indexed: 05/13/2023]
Abstract
A pneumonia-like disease of unknown origin caused a catastrophe in Wuhan city, China. This disease spread to 215 countries affecting a wide range of people. World health organization (WHO) called it a pandemic and it was officially named as Severe Acute Respiratory Syndrome Corona virus 2 (SARS CoV-2), also known as Corona virus disease (COVID-19). This pandemic compelled countries to enforce a socio-economic lockdown to prevent its widespread. This paper focuses on how the particulate matter pollution was reduced during the lockdown period (23 March to April 15, 2020) as compared to before lockdown. Both ground-based and satellite observations were used to identify the improvement in air quality of Pakistan with primary focus on four major cities of Lahore, Islamabad, Karachi and Peshawar. Both datasets have shown a substantial reduction in PM2.5 pollution levels (ranging from 13% to 33% in case of satellite observations, while 23%-58% in ground-based observations) across Pakistan. Result shows a higher rate of COVID-19 spread in major cities of Pakistan with poor air quality conditions. Yet more research is needed in order to establish linkage between COVID-19 spread and air pollution. However, it can be partially attributed to both higher rate of population density and frequent exposure of population to enhanced levels of PM2.5 concentrations before lockdown period.
Collapse
Affiliation(s)
- Syeda Mahnoor Ali
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology Islamabad, Pakistan
| | - Fatima Malik
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology Islamabad, Pakistan
| | - Muhammad Shehzaib Anjum
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology Islamabad, Pakistan
| | | | - Muhammad Naveed Anwar
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Fahim Khokhar
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology Islamabad, Pakistan.
| |
Collapse
|
39
|
Adnan S, Hanif M, Khan AH, Latif M, Ullah K, Bashir F, Kamil S, Haider S. Impact of Heat Index and Ultraviolet Index on COVID-19 in Major Cities of Pakistan. J Occup Environ Med 2021; 63:98-103. [PMID: 33021515 PMCID: PMC7864608 DOI: 10.1097/jom.0000000000002039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The world population is under the grip of global pandemic of COVID-19. The present study analyzed relationship between meteorological parameters and COVID-19 in three major cities of Pakistan, that is, Karachi, Lahore, and Peshawar. METHODS The impacts of heat index (HI) and ultraviolet index (UVI) over daily COVID-19 cases have examined to identify its transmission and propagation. The significance of basic reproductive number (R0), growth rate (Gr) and doubling time (Td) of COVID-19 with HI and UVI was determined. RESULTS Both indices show a significant positive correlation (at 5% significance level) to R0, Td, and Gr of COVID-19 patients. Our results showed that the minimum threshold temperature of 33 °C for HI (with a positive variation of 3 °C to 5 °C) put a significant impact on new cases. CONCLUSION HI and UVI impacted significantly to decline COVID-19 cases over the region.
Collapse
Affiliation(s)
- Shahzada Adnan
- Pakistan Meteorological Department (Dr Adnan, Dr Hanif, Dr Khan, Dr Bashir, Dr Kamil, Dr Haider); Department of Meteorology, COMSATS University Islamabad, Chak Shazad (Dr Latif, Dr Ullah), Islamabad, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Salom I, Rodic A, Milicevic O, Zigic D, Djordjevic M, Djordjevic M. Effects of Demographic and Weather Parameters on COVID-19 Basic Reproduction Number. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.617841] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is hard to overstate the importance of a timely prediction of the COVID-19 pandemic progression. Yet, this is not possible without a comprehensive understanding of environmental factors that may affect the infection transmissibility. Studies addressing parameters that may influence COVID-19 progression relied on either the total numbers of detected cases and similar proxies (which are highly sensitive to the testing capacity, levels of introduced social distancing measures, etc.), and/or a small number of analyzed factors, including analysis of regions that display a narrow range of these parameters. We here apply a novel approach, exploiting widespread growth regimes in COVID-19 detected case counts. By applying nonlinear dynamics methods to the exponential regime, we extract basic reproductive number R0 (i.e., the measure of COVID-19 inherent biological transmissibility), applying to the completely naïve population in the absence of social distancing, for 118 different countries. We then use bioinformatics methods to systematically collect data on a large number of potentially interesting demographics and weather parameters for these countries (where data was available), and seek their correlations with the rate of COVID-19 spread. While some of the already reported or assumed tendencies (e.g., negative correlation of transmissibility with temperature and humidity, significant correlation with UV, generally positive correlation with pollution levels) are also confirmed by our analysis, we report a number of both novel results and those that help settle existing disputes: the absence of dependence on wind speed and air pressure, negative correlation with precipitation; significant positive correlation with society development level (human development index) irrespective of testing policies, and percent of the urban population, but absence of correlation with population density per se. We find a strong positive correlation of transmissibility on alcohol consumption, and the absence of correlation on refugee numbers, contrary to some widespread beliefs. Significant tendencies with health-related factors are reported, including a detailed analysis of the blood type group showing consistent tendencies on Rh factor, and a strong positive correlation of transmissibility with cholesterol levels. Detailed comparisons of obtained results with previous findings, and limitations of our approach, are also provided.
Collapse
|
41
|
Meteorological parameters and COVID-19 spread-Russia a case study. ENVIRONMENTAL RESILIENCE AND TRANSFORMATION IN TIMES OF COVID-19 2021. [PMCID: PMC8137802 DOI: 10.1016/b978-0-323-85512-9.00033-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
An attempt was made in this chaper to understand the meteorological controls on SARS-CoV-2 (COVID-19) spread in Russia. Russia is one of the most affected country for COVID-19 and significant death cases were recorded. A continuous seven-month data from 31 January to 23 August 2020 from different locations in the country was collected through the commonly available websites. COVID data (total cases (966189), daily new cases (11656), daily deaths (232), and total recovered (777960)) and meteorological parameters (temperature, dew, precipitation, humidity, and wind speed) were used for this analysis. The results show an increasing trend of daily new cases and daily deaths during lock down period, and it gradually decreased or stabilized in the post lock down period. It infers the effectiveness of movement control during the lock down period, that stops further spreading. The positive correlation between COVID cases and temperature indicate that the increase of temperature increases the spreading and vice versa. The negative relationship of humidity with death cases also facilitates the pandemic spread. Thus, the outcome of this study may help to address concerns about the COVID-19 pandemic among the public and policymakers.
Collapse
|
42
|
Hassaan MA, Abdelwahab RG, Elbarky TA, Ghazy RM. GIS-Based Analysis Framework to Identify the Determinants of COVID-19 Incidence and Fatality in Africa. J Prim Care Community Health 2021; 12:21501327211041208. [PMID: 34435530 PMCID: PMC8404668 DOI: 10.1177/21501327211041208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/22/2022] Open
Abstract
Corona virus diseases 2019 (COVID-19) pandemic is an extraordinary threat with significant implications in all aspects of human life; therefore, it represents the most immediate challenge for the countries all over the world. This study, hence, is intended to identify the best GIS-based model that can explore, quantify, and model the determinants of COVID-19 incidence and fatality. For this purpose, geospatial models were developed to estimate COVID-19 incidence and fatality rates in Africa, up to 16th of August 2020 at the national level. The models involved Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR) analysis using ArcGIS. Spatial autocorrelation analysis recorded a positive spatial autocorrelation in COVID-19 incidence (Moran index 0.16, P = 0.1) and fatality (Moran index 0.26, P = 0.01) rates within different African countries. GWR model had higher R2 than OLS for prediction of incidence and mortality (58% vs 45% and 55% vs 53%). The main predictors of COVID-19 incidence rate were overcrowding, health expenditure, HIV infections, air pollution, and BCG vaccination (mean β = 3.10, 1.66, 0.01, 3.79, and -66.60 respectively, P < 0.05). The main determinants of COVID-19 fatality were prevalence of bronchial asthma, tobacco use, poverty, aging, and cardiovascular diseases fatality (mean β = 0.00162, 0.00004, -0.00025, -0.00144, and -0.00027 respectively, P < 0.05). Application of the suggested model can assist in guiding intervention strategies, particularly at the local and community level whenever the data on COVID-19 cases and predictors variables are available.
Collapse
Affiliation(s)
| | | | - Toka A. Elbarky
- Institute of Graduate Studies & Research, Alexandria University Egypt
| | - Ramy Mohamed Ghazy
- High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
43
|
Rahman MM, Bodrud-Doza M, Shammi M, Md Towfiqul Islam AR, Moniruzzaman Khan AS. COVID-19 pandemic, dengue epidemic, and climate change vulnerability in Bangladesh: Scenario assessment for strategic management and policy implications. ENVIRONMENTAL RESEARCH 2021; 192:110303. [PMID: 33069704 PMCID: PMC7561529 DOI: 10.1016/j.envres.2020.110303] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/30/2020] [Accepted: 10/05/2020] [Indexed: 05/18/2023]
Abstract
Bangladesh is one of the most vulnerable countries to climate change impacts also struck by the COVID-19 pandemic. The lockdown measures were ineffective with no sign of flattening the curve. Therefore, the high risk of transmission is evident with an increasing number of affected people. Under this circumstance, a multiple hazards scenario can be developed in this country due to climatic hazards such as cyclones, floods, landslides, heat waves, and the outbreak of infectious diseases such as dengue, cholera, and diarrhoea. The country experiences simultaneously the global pandemic, exceptionally prolonged flood along with the recovery stage from the damages due to the cyclone (Amphan). Therefore, these multiple factors have been putting pressure on losing millions of homes, livelihoods, and agricultural crops. This study aimed to assess the potential impact of a simultaneous strike of climatic hazards and infectious disease outbreaks and their possible strategic management in Bangladesh under different scenarios. A mixed methodological approach was followed in this study including a questionnaire survey, in-depth discussion with experts, and extensive literature review to assess the multi-hazard scenario in a resource-limited setting with high population density. A set of statistical techniques were used to analyze the responses (n = 1590) from different social groups (healthcare professionals, academicians, students, Government and NGO officials, and businessman) under three scenarios. The results revealed the high possibility of aggravating the impact of COVID-19 pandemic if there is a climatic hazard such as flood, cyclone have appeared. The majority of the respondents agreed that the situation will become more devastating if there is another outbreak of diseases such as dengue, cholera, and diarrhoea. The poor and fragile healthcare system of this country cannot bear such unprecedented pressure. The lack of risk assessment and communication, lack of sectoral coordination might restrict the contingency plan of the government. Therefore, considering the unprecedented worst cases a stringent strategic plan for emergency response, short term and long-term management should have to be formulated. Resilience building through proactive planning and implementation of integrated, inclusive and sustainable strategies will be effective to ensure the health and socio-economic security for multi-hazard threats in the country.
Collapse
Affiliation(s)
- Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh.
| | | | - Mashura Shammi
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | | | | |
Collapse
|
44
|
Jegasothy R, Sengupta P, Dutta S, Jeganathan R. Climate change and declining fertility rate in Malaysia: the possible connexions. J Basic Clin Physiol Pharmacol 2020; 32:911-924. [PMID: 33580644 DOI: 10.1515/jbcpp-2020-0236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/04/2020] [Indexed: 12/24/2022]
Abstract
Climate change is an incessant global phenomenon and has turned contentious in the present century. Malaysia, a developing Asian country, has also undergone significant vicissitudes in climate, which has been projected with significant deviations in forthcoming decades. As per the available studies, climate changes may impact on the fertility, either via direct effects on the gonadal functions and neuroendocrine regulations or via several indirect effects on health, socioeconomic status, demeaning the quality of food and water. Malaysia is already observing a declining trend in the Total fertility rate (TFR) over the past few decades and is currently recorded below the replacement level of 2.1 which is insufficient to replace the present population. Moreover, climate changes reportedly play a role in the emergence and cessation of various infectious diseases. Besides its immediate effects, the long-term effects on health and fertility await to be unveiled. Despite the huge magnitude of the repercussion of climate changes in Malaysia, research that can explain the exact cause of the present reduction in fertility parameters in Malaysia or any measures to preserve the national population is surprisingly very scarce. Thus, the present review aims to elucidate the possible missing links by which climate changes are impairing fertility status in Malaysia.
Collapse
Affiliation(s)
- Ravindran Jegasothy
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur, Malaysia
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur, Malaysia
| | - Sulagna Dutta
- Department of Oral Biology & Biomedical Sciences, Faculty of Dentistry, MAHSA University, Kuala Lumpur, Malaysia
| | | |
Collapse
|
45
|
Espejo W, Celis JE, Chiang G, Bahamonde P. Environment and COVID-19: Pollutants, impacts, dissemination, management and recommendations for facing future epidemic threats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141314. [PMID: 32795798 PMCID: PMC7385928 DOI: 10.1016/j.scitotenv.2020.141314] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 05/04/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has become a global pandemic. Its relationship with environmental factors is an issue that has attracted the attention of scientists and governments. This article aims to deal with a possible association between COVID-19 and environmental factors and provide some recommendations for adequately controlling future epidemic threats. Environmental management through ecosystem services has a relevant role in exposing and spreading infectious diseases, reduction of pollutants, and control of climatic factors. Pollutants and viruses (such as COVID-19) produce negative immunological responses and share similar mechanisms of action. Therefore, they can have an additive and enhancing role in viral diseases. Significant associations between air pollution and COVID-19 have been reported. Particulate matter (PM2.5, PM10) can obstruct the airway, exacerbating cases of COVID-19. Some climatic factors have been shown to affect SARS-CoV-2 transmission. Yet, it is not well established if climatic factors might have a cause-effect relationship to the spreading of SARS-CoV-2. So far, positive as well as negative indirect environmental impacts have been reported, with negative impacts greater and more persistent. Too little is known about the current pandemic to evaluate whether there is an association between environment and positive COVID-19 cases. We recommend smart technology to collect data remotely, the implementation of "one health" approach between public health physicians and veterinarians, and the use of biodegradable medical supplies in future epidemic threats.
Collapse
Affiliation(s)
- Winfred Espejo
- Department of Animal Science, Facultad de Ciencias Veterinarias, Universidad de Concepción, P.O. Box 537, Chillán, Chile..
| | - José E Celis
- Department of Animal Science, Facultad de Ciencias Veterinarias, Universidad de Concepción, P.O. Box 537, Chillán, Chile
| | - Gustavo Chiang
- Center for Applied Ecology & Sustainability (CAPES), Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Paulina Bahamonde
- Center for Genomics, Ecology & Environment (GEMA), Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile.; Núcleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
46
|
Ahasan R, Alam MS, Chakraborty T, Hossain MM. Applications of GIS and geospatial analyses in COVID-19 research: A systematic review. F1000Res 2020; 9:1379. [PMID: 35186280 PMCID: PMC8822139 DOI: 10.12688/f1000research.27544.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Geographic information science (GIS) has established itself as a distinct domain and incredibly useful whenever the research is related to geography, space, and other spatio-temporal dimensions. However, the scientific landscape on the integration of GIS in COVID-related studies is largely unknown. In this systematic review, we assessed the current evidence on the implementation of GIS and other geospatial tools in the COVID-19 pandemic. Methods: We systematically retrieved and reviewed 79 research articles that either directly used GIS or other geospatial tools as part of their analysis. We grouped the identified papers under six broader thematic groups based on the objectives and research questions of the study- environmental, socio-economic, and cultural, public health, spatial transmission, computer-aided modeling, and data mining. Results: The interdisciplinary nature of how geographic and spatial analysis was used in COVID-19 research was notable among the reviewed papers. Geospatial techniques, especially WebGIS, have even been widely used to visualize the data on a map and were critical to informing the public regarding the spread of the virus, especially during the early days of the pandemic. This review not only provided an overarching view on how GIS has been used in COVID-19 research so far but also concluded that geospatial analysis and technologies could be used in future public health emergencies along with statistical and other socio-economic modeling techniques. Our review also highlighted how scientific communities and policymakers could leverage GIS to extract useful information to make an informed decision in the future. Conclusions: Despite the limited applications of GIS in identifying the nature and spatio-temporal pattern of this raging pandemic, there are opportunities to utilize these techniques in handling the pandemic. The use of spatial analysis and GIS could significantly improve how we understand the pandemic as well as address the underserviced demographic groups and communities.
Collapse
Affiliation(s)
- Rakibul Ahasan
- Nature Study Society of Bangladesh, Khulna Unit, Khulna, 9000, Bangladesh
- EviSyn Health, Khulna, 9000, Bangladesh
- Texas A&M University, College Station, Texas, 77843, USA
| | | | | | - Md. Mahbub Hossain
- Nature Study Society of Bangladesh, Khulna Unit, Khulna, 9000, Bangladesh
- EviSyn Health, Khulna, 9000, Bangladesh
- Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
47
|
Ahasan R, Alam MS, Chakraborty T, Hossain MM. Applications of GIS and geospatial analyses in COVID-19 research: A systematic review. F1000Res 2020; 9:1379. [PMID: 35186280 PMCID: PMC8822139 DOI: 10.12688/f1000research.27544.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 07/22/2023] Open
Abstract
Background: Geographic information science (GIS) has established itself as a distinct domain and incredibly useful whenever the research is related to geography, space, and other spatio-temporal dimensions. However, the scientific landscape on the integration of GIS in COVID-related studies is largely unknown. In this systematic review, we assessed the current evidence on the implementation of GIS and other geospatial tools in the COVID-19 pandemic. Methods: We systematically retrieved and reviewed 79 research articles that either directly used GIS or other geospatial tools as part of their analysis. We grouped the identified papers under six broader thematic groups based on the objectives and research questions of the study- environmental, socio-economic, and cultural, public health, spatial transmission, computer-aided modeling, and data mining. Results: The interdisciplinary nature of how geographic and spatial analysis was used in COVID-19 research was notable among the reviewed papers. Although GIS has substantial potential in planning to slow down the spread, surveillance, contact tracing, and identify the trends and hotspots of breakdowns, it was not employed as much as it could have been. This review not only provided an overarching view on how GIS has been used in COVID-19 research so far but also concluded that this geospatial analysis and technologies could be used in future public health emergencies along with statistical and other socio-economic modeling techniques. Our systematic review also provides how both scientific communities and policymakers could leverage GIS to extract useful information to make an informed decision in the future. Conclusions: Despite the limited applications of GIS in identifying the nature and spatio-temporal pattern of this raging pandemic, there are opportunities to utilize these techniques in handling the pandemic. The use of spatial analysis and GIS could significantly improve how we understand the pandemic as well as address the underserviced demographic groups and communities.
Collapse
Affiliation(s)
- Rakibul Ahasan
- Nature Study Society of Bangladesh, Khulna Unit, Khulna, 9000, Bangladesh
- EviSyn Health, Khulna, 9000, Bangladesh
- Texas A&M University, College Station, Texas, 77843, USA
| | | | | | - Md. Mahbub Hossain
- Nature Study Society of Bangladesh, Khulna Unit, Khulna, 9000, Bangladesh
- EviSyn Health, Khulna, 9000, Bangladesh
- Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
48
|
Rehman Y, Rehman N. Association of climatic factors with COVID-19 in Pakistan. AIMS Public Health 2020; 7:854-868. [PMID: 33294487 PMCID: PMC7719562 DOI: 10.3934/publichealth.2020066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Environmental factors such as wind, temperature, humidity, and sun exposure are known to affect influenza and viruses such as severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) transmissions. COVID-19 is a new pandemic with very little information available about its transmission and association with environmental factors. The goal of this paper is to explore the association of environmental factors on daily incidence rate, mortality rate, and recoveries of COVID-19. METHODS The environmental data for humidity, temperature, wind, and sun exposure were recorded from metrological websites and COVID-19 data such as the daily incidence rate, death rate, and daily recovery were extracted from the government's official website available to the general public. The analysis for each outcome was adjusted for factors such as lock down status, nationwide events, and the number of daily tests performed. Analysis was completed with negative binominal regression log link using generalised linear modelling. RESULTS Daily temperature, sun exposure, wind, and humidity were not significantly associated with daily incidence rate. Temperature and nationwide social gatherings, although non-significant, showed trends towards a higher chance of incidence. An increase in the number of daily testing was significantly associated with higher COVID-19 incidences (effect size ranged from 2.17-9.96). No factors were significantly associated with daily death rates. Except for the province of Balochistan, a lower daily temperature was associated with a significantly higher daily recovery rate. DISCUSSION Environmental factors such as temperature, humidity, wind, and daily sun exposure were not consistently associated with COVID-19 incidence, death rates, or recovery. More policing about precautionary measures and ensuring diagnostic testing and accuracy are needed.
Collapse
Affiliation(s)
- Yasir Rehman
- Canadian Academy of Osteopathy, 66 Ottawa Street North, Canada
| | | |
Collapse
|
49
|
Kumar G, Kumar RR. A correlation study between meteorological parameters and COVID-19 pandemic in Mumbai, India. Diabetes Metab Syndr 2020; 14:1735-1742. [PMID: 32919321 PMCID: PMC7467899 DOI: 10.1016/j.dsx.2020.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Meteorological parameters play a major role in the transmission of infectious diseases such as COVID-19. In this study, we aim to analyze the correlation between meteorological parameters and COVID-19 pandemic in the financial capital of India, Mumbai. METHODS In this research, we collected data from April 27 till July 25, 2020 (90 days). A Spearman rank correlation test along with two-tailed p test and an Artificial Neural Network (ANN) technique have been used to predict the associations of COVID-19 with meteorological parameters. RESULTS A significant correlation of COVID-19 was found with temperature (Tmin), dew point (DPmax), relative humidity (RHmax, RHavg, RHmin) and surface pressure (Pmax, Pavg, Pmin). The parameters which showed significant correlation were then taken for the modeling and prediction of COVID-19 infections using Artificial Neural Network technique. CONCLUSIONS It was found that the relative humidity and pressure parameters had the most influencing effect out of all other significant parameters (obtained from Spearman's method) on the active number of COVID-19 cases. The finding in this study might be useful for the public, local authorities, and the Ministry of Health, Govt. of India to combat COVID-19.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Mechanical Engineering, School of Engineering, Cochin University of Science and Technology, Kerala, 682022, India.
| | - Ritu Raj Kumar
- Department of Mechanical Engineering, School of Engineering, Cochin University of Science and Technology, Kerala, 682022, India.
| |
Collapse
|
50
|
Singh O, Bhardwaj P, Kumar D. Association between climatic variables and COVID-19 pandemic in National Capital Territory of Delhi, India. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2020; 23:9514-9528. [PMID: 33041646 PMCID: PMC7538367 DOI: 10.1007/s10668-020-01003-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/23/2020] [Indexed: 05/29/2023]
Abstract
Globally, since the end of December 2019, coronavirus disease (COVID-19) has been recognized as a severe infectious disease. Therefore, this study has been attempted to examine the linkage between climatic variables and COVID-19 particularly in National Capital Territory of Delhi (NCT of Delhi), India. For this, daily data of COVID-19 has been used for the period March 14 to June 11, 2020, (90 days). Eight climatic variables such as maximum, minimum and mean temperature (°C), relative humidity (%), bright sunshine hours, wind speed (km/h), evaporation (mm), and rainfall (mm) have been analyzed in relation to COVID-19. To study the relationship among different climatic variables and COVID-19 spread, Karl Pearson's correlation analysis has been performed. The Mann-Kendall method and Sen's slope estimator have been used to detect the direction and magnitude of COVID-19 trends, respectively. The results have shown that out of eight selected climatic variables, six variables, viz. maximum temperature, minimum temperature, mean temperature, relative humidity, evaporation, and wind speed are positively associated with coronavirus disease cases (statistically significant at 95 and 99% confidence levels). No association of coronavirus disease has been found with bright sunshine hours and rainfall. Besides, COVID-19 cases and deaths have shown increasing trends, significant at 99% confidence level. The results of this study suggest that climatic conditions in NCT of Delhi are favorable for COVID-19 and the disease may spread further with the increasing temperature, relative humidity, evaporation and wind speed. This is the only study which has presented the analysis of COVID-19 spread in relation to several climatic variables for the most densely populated and rapidly growing city of India. Thus, considering the results obtained, effective policies and actions are necessary especially by identifying the areas where the spread rate is increasing rapidly in this megacity. The prevention and protection measures should be adopted aiming at to reduce the further transmission of disease in the city.
Collapse
Affiliation(s)
- Omvir Singh
- Department of Geography, Kurukshetra University, Kurukshetra, 136119 India
| | - Pankaj Bhardwaj
- Department of Geography, Government College, Bahu, Jhajjar, 124142 India
| | - Dinesh Kumar
- Department of Geography, Government College for Women, Gohana, 131301 India
| |
Collapse
|