1
|
Yan T, Ma Y, Song X, Hu B, Liu W, Chen Y, Liu X, Ding C, Kou Z, Ding X, Chen T, Zhu X. Associations between multi-metal joint exposure and decreased estimated glomerular filtration rate (eGFR) in solar greenhouse workers: A study of a unique farmer group. CHEMOSPHERE 2024; 366:143467. [PMID: 39368494 DOI: 10.1016/j.chemosphere.2024.143467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Solar greenhouse workers, a unique farmer group, have been reported to have a higher risk of chronic kidney disease (CKD) compared to the general population, possible due to exposure to multiple metals. OBJECTIVE This study aimed to investigate the associations between exposure to multiple metals and the estimated glomerular filtration rate (eGFR). METHODS A cross-sectional study was conducted in the Northwest China. Urine samples were tested for concentration of 14 metals, including chromium, manganese, iron et al. Blood creatinine was measured to calculate eGFR, which was to evaluate the kidney function. Linear model and the Bayesian Kernel Machine Regression (BKMR) models were used to evaluate the associations between metals exposure and eGFR. RESULT The study included 281 solar greenhouse workers, with 128 (45.6%) males and 153 (54.4%) females. The highest median concentrations of metals were zinc (418.55 μg/L), strontium (368.77 μg/L), and iron (55.73 μg/L), respectively. The linear model analysis showed that urinary levels of copper and zinc were negatively associated with eGFR [β = -0.021, 95% CI (-0.048, -0.007); β = -0.018, 95% CI (-0.068, -0.005)] considering a false discovery rate. BKMR results indicated a significant overall negative effect of 14 metals exposure on the eGFR when all metal levels were above the 50th percentile compared to the median value. CONCLUSIONS The decrease in eGFR among solar greenhouse workers was related to mixed metal exposure. Reducing exposure to the metals of copper, zinc, and lead could effectively protects kidney function. Further prospective studies are needed to resolve concerns about reverse causality.
Collapse
Affiliation(s)
- Tenglong Yan
- Beijing Institute of Occupational Disease Prevention and Control, Beijing, 100093, China.
| | - Yetong Ma
- Department of Nutrition, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xin Song
- School of Public Health and the Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Binshuo Hu
- Beijing Institute of Occupational Disease Prevention and Control, Beijing, 100093, China
| | - Wu Liu
- Jingyuan Country Center for Disease Control and Prevention, Baiyin, 730699, China
| | - Yonglan Chen
- Jingyuan Country Center for Disease Control and Prevention, Baiyin, 730699, China
| | - Xiaodong Liu
- Beijing Institute of Occupational Disease Prevention and Control, Beijing, 100093, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing, 102308, China
| | - Zhenxia Kou
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, 730000, China
| | - Xiaowen Ding
- Beijing Institute of Occupational Disease Prevention and Control, Beijing, 100093, China
| | - Tian Chen
- School of Public Health and the Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiaojun Zhu
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing, 102308, China.
| |
Collapse
|
2
|
Deng Y, Shen R, Zhang X, Li Y, Chen X, He RR, Tian H, Tang S, Luo X, Li J, Sun WY, Tan H. Invisible hazards: Exploring neonicotinoid contamination and its environmental risks in urban parks across China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176715. [PMID: 39368502 DOI: 10.1016/j.scitotenv.2024.176715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/14/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Neonicotinoids (NEOs) are commonly used pesticides in agriculture. Urban parks containing numerous green plants and flowers also require NEOs for pest control. However, information on the distribution patterns and environmental risks of NEOs and their metabolites in urban park soils has yet to be discovered, which seriously limits the comprehensive evaluation of the potential hazards of NEOs. Our study explored the occurrence and distribution patterns of ten NEOs and five major metabolites in park soils from Guangzhou, Shijiazhuang, and Urumqi of China. At least three NEOs were detected in 95 % of soil samples, with the sum of all NEOs (∑10NEOs) ranging from 2.21 to 204 ng/g. Guangzhou has the highest levels of ∑10NEOs (median: 52.1 ng/g), followed by Urumqi (49.3 ng/g) and Shijiazhuang (21.7 ng/g). The top three most common NEOs in all three cities are imidacloprid, acetamiprid, and thiacloprid, which together account for 67 % to 70 % of ∑10NEOs. The levels of the metabolites of NEOs show a significant positive correlation with their corresponding parent NEOs. These NEOs pose detrimental effects to non-targeted invertebrates in the soil. Our findings raise concern about the environmental risks posed by NEO exposure to humans and other organisms in urban parks.
Collapse
Affiliation(s)
- Yongfeng Deng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ruqin Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xue Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yang Li
- Jiangsu Key Laboratory of Big Data Security & Intelligent Processing, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Xingguo Chen
- Jiangsu Key Laboratory of Big Data Security & Intelligent Processing, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Hao Tian
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Shuqin Tang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiang Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jing Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| | - Hongli Tan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Zhang Y, Zhu W, Wang Y, Li X, Lv J, Luo J, Yang M. Insight of neonicotinoid insecticides: Exploring exposure, mechanisms in non-target organisms, and removal technologies. Pharmacol Res 2024; 209:107415. [PMID: 39306021 DOI: 10.1016/j.phrs.2024.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Neonicotinoid insecticides (NEOs) have garnered global attention due to their selective toxicity to insects and minimal impact on mammals. However, growing concerns about their extensive use and potential adverse effects on the ecological environment and non-target organisms necessitate further investigation. This study utilized bibliometric tools to analyze Web of Science data from 2003 to 2024, elucidating the current research landscape, identifying key research areas, and forecasting future trends related to NEOs. This paper provides an in-depth analysis of NEO exposure in non-target organisms, including risk assessments for various samples and maximum residue limits established by different countries. Additionally, it examines the impacts and mechanisms of NEOs on non-target organisms. Finally, it reviews the current methods for NEO removal and degradation. This comprehensive analysis provides valuable insights for regulating NEO usage and addressing associated exposure challenges.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wanxuan Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Wang
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing 102629, China
| | - Xueli Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianxin Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
4
|
Sun X, Qin L, Yu L, Wang J, Liu J, Wang M, Chen S. Ecological risk threshold for chromium in Chinese soils and its prediction models. ENVIRONMENTAL RESEARCH 2024; 262:119935. [PMID: 39270954 DOI: 10.1016/j.envres.2024.119935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
The derivation of chromium (Cr) ecological risk thresholds in soils remains limited, despite their importance as measurement standards and indicators for enacting soil protection policies. In this study, toxicity of Cr in soil to different species was tested based on Log-Logistic dose-effect relationship. On this basis, combined with Cr toxicity measurement data in literature, the ecological risk threshold HC5 for protecting 95% species safety in soils with different properties was obtained by fitting species sensitivity distribution curve (SSD). This research collected various Cr toxicological data from Chinese cropland soils, based on 31 different endpoints covering soil fauna, functional indicators of microorganisms, terrestrial plants, etc., sourced from both our laboratory and existing literature. We applied the SSD method to estimate the hazardous concentration of Cr for HC5 and ultimately established a predictive model according to HC5 and different soil properties. As a result, the EC10 (an effective concentration of Cr resulting in 10% suppression of terminal biological activity) based on 7 different soils and 4 endpoints ranged from 16.8 to 148.0 mg kg-1, and the hormesis of Cr induction reached up to 109%. Overall, the toxicity (EC10) to microorganisms was much lower, while it was higher for graminoids. All the toxicity data were corrected through an aging factor with up to 540 days of equilibration before fitting the SSD curves. After that, a prediction model considering HC5 values and soil properties was established as LogHC5 = 3.003LogpH +0.651LogOC +0.013LogCEC - 0.476. The model was well-verified in field experiments, as the actual and predicted values fell within a 2-fold error range. This approach offers a rigorous scientific foundation for determining the Cr ecological risk threshold and could be important for the conservation of ecological species in soils.
Collapse
Affiliation(s)
- Xiaoyi Sun
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Luyao Qin
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Lei Yu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jiaxiao Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Meng Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Shibao Chen
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
5
|
Liu J, Wang X. Multisource information fusion method for vegetable disease detection. BMC PLANT BIOLOGY 2024; 24:738. [PMID: 39095689 PMCID: PMC11295898 DOI: 10.1186/s12870-024-05346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/26/2024] [Indexed: 08/04/2024]
Abstract
Automated detection and identification of vegetable diseases can enhance vegetable quality and increase profits. Images of greenhouse-grown vegetable diseases often feature complex backgrounds, a diverse array of diseases, and subtle symptomatic differences. Previous studies have grappled with accurately pinpointing lesion positions and quantifying infection degrees, resulting in overall low recognition rates. To tackle the challenges posed by insufficient validation datasets and low detection and recognition rates, this study capitalizes on the geographical advantage of Shouguang, renowned as the "Vegetable Town," to establish a self-built vegetable base for data collection and validation experiments. Concentrating on a broad spectrum of fruit and vegetable crops afflicted with various diseases, we conducted on-site collection of greenhouse disease images, compiled a large-scale dataset, and introduced the Space-Time Fusion Attention Network (STFAN). STFAN integrates multi-source information on vegetable disease occurrences, bolstering the model's resilience. Additionally, we proposed the Multilayer Encoder-Decoder Feature Fusion Network (MEDFFN) to counteract feature disappearance in deep convolutional blocks, complemented by the Boundary Structure Loss function to guide the model in acquiring more detailed and accurate boundary information. By devising a detection and recognition model that extracts high-resolution feature representations from multiple sources, precise disease detection and identification were achieved. This study offers technical backing for the holistic prevention and control of vegetable diseases, thereby advancing smart agriculture. Results indicate that, on our self-built VDGE dataset, compared to YOLOv7-tiny, YOLOv8n, and YOLOv9, the proposed model (Multisource Information Fusion Method for Vegetable Disease Detection, MIFV) has improved mAP by 3.43%, 3.02%, and 2.15%, respectively, showcasing significant performance advantages. The MIFV model parameters stand at 39.07 M, with a computational complexity of 108.92 GFLOPS, highlighting outstanding real-time performance and detection accuracy compared to mainstream algorithms. This research suggests that the proposed MIFV model can swiftly and accurately detect and identify vegetable diseases in greenhouse environments at a reduced cost.
Collapse
Affiliation(s)
- Jun Liu
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Weifang, China.
| | - Xuewei Wang
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Weifang, China
| |
Collapse
|
6
|
Liao L, Sun T, Gao Z, Lin J, Gao M, Li A, Gao T, Gao Z. Neonicotinoids as emerging contaminants in China's environment: a review of current data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51098-51113. [PMID: 39110283 DOI: 10.1007/s11356-024-34571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2024] [Indexed: 09/06/2024]
Abstract
Neonicotinoids (NEOs), the most widely used class of insecticides, are pervasive in the environment, eliciting concerns due to their hydrophilicity, persistence, and potential ecological risks. As the leading pesticide consumer, China shows significant regional disparities in NEO contamination. This review explores NEO distribution, sources, and toxic risks across China. The primary NEO pollutants identified in environmental samples include imidacloprid, thiamethoxam, and acetamiprid. In the north, corn cultivation represents the principal source of NEOs during wet seasons, while rice dominates in the south year-round. The high concentration levels of NEOs have been detected in the aquatic environment in the southern regions (130.25 ng/L), the urban river Sects. (157.66 ng/L), and the downstream sections of the Yangtze River (58.9 ng/L), indicating that climate conditions and urban pollution emissions are important drivers of water pollution. Neonicotinoids were detected at higher levels in agricultural soils compared to other soil types, with southern agricultural areas showing higher concentrations (average 27.21 ng/g) than northern regions (average 12.77 ng/g). Atmospheric NEO levels were lower, with the highest concentration at 1560 pg/m3. The levels of total neonicotinoid pesticides in aquatic environments across China predominantly exceed the chronic toxicity ecological threshold of 35 ng/L, particularly in the regions of Beijing and the Qilu Lake Basin, where they likely exceed the acute toxicity ecological threshold of 200 ng/L. In the future, efforts should focus on neonicotinoid distribution in agriculturally developed regions of Southwest China, while also emphasizing their usage in urban greening and household settings.
Collapse
Affiliation(s)
- Lingzhi Liao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, PR China
| | - Ting Sun
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jianing Lin
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China.
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Meng Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ao Li
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Teng Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ziqin Gao
- Fuxin Experimental Middle School, Fuxin, 123099, PR China
| |
Collapse
|
7
|
Liao L, Feng S, Zhao D, Yang X, Lin J, Guo C, Xu J, Gao Z. Neonicotinoid insecticides in well-developed agricultural cultivation areas: Seawater occurrence, spatial-seasonal variability and ecological risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134621. [PMID: 38795494 DOI: 10.1016/j.jhazmat.2024.134621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Neonicotinoids (NEOs) are widely used insecticides and have been detected in aquatic environments globally. However, little is known about NEOs contamination in the coastal environments under the terrestrial pressure of multiple planting types simultaneously. This study investigated the occurrence, spatial-seasonal variability, and ecological risks of NEOs along the coast of the Shandong Peninsula during the dry and wet seasons, where located many largest fruit, vegetable, and grain production bases in China. The concentrations of ∑NEOs in seawater were higher in wet seasons (surface: 195.46 ng/L; bottom: 14.56 ng/L) than in dry seasons (surface: 10.07 ng/L; bottom: 8.45 ng/L). During the wet seasons, NEOs peaked in the northern and eastern areas of the Shandong Peninsula, where the inland fruit planting area is located. While dry seasons had higher concentrations in Laizhou Bay, influenced by rivers from vegetable-growing areas. Grain crops, fruit, and cotton planting were major NEOs sources during wet seasons, while wheat and vegetables dominated in dry seasons. Moderate or above ecological risks appeared at 53.8% of the monitoring sites. Generally, NEOs caused high risks in the wet seasons mainly caused by Imidacloprid, and medium risk in the dry seasons caused by Clothianidin, which should be prevented and controlled in advance.
Collapse
Affiliation(s)
- Lingzhi Liao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Song Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Decun Zhao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China; Shandong Yellow River Delta National Nature Reserve Administration Committee, Dongying 257091, PR China
| | - Xiaoxian Yang
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Jianing Lin
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Changsheng Guo
- Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Jian Xu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
8
|
Liu Z, Zhang F, Gao S, Zhang L, Fu Q, Cui S. Neonicotinoid insecticides in paddy fields: Dissipation dynamics, migration, and dietary risk. CHEMOSPHERE 2024; 359:142371. [PMID: 38768784 DOI: 10.1016/j.chemosphere.2024.142371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/20/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Neonicotinoid insecticides (NNIs) have caused widespread contamination of multiple environmental media and posed a serious threat to ecosystem health by accidently injuring non-target species. This study collected samples of water, soil, and rice plant tissues in a water-soil-plant system of paddy fields after spaying imidacloprid (IMI), thiamethoxam (THM), and clothianidin (CLO) to analyze their distribution characteristics and migration procedures and to assess related dietary risks of rice consumption. In the paddy water, the concentrations of NNIs showed a dynamic change of increasing and then decreasing during about a month period, and the initial deposition of NNIs showed a trend of CLO (3.08 μg/L) > THM (2.74 μg/L) > IMI (0.97 μg/L). In paddy soil, the concentrations of the three NNIs ranged from 0.57 to 68.3 ng/g, with the highest residual concentration at 2 h after application, and the concentration trend was opposite to that in paddy water. The initial deposition amounts of IMI, THM, and CLO in the root system were 5.19, 3.02, and 5.24 μg/g, respectively, showing a gradual decrease over time. In the plant, the initial deposition amounts were 19.3, 9.36, and 52.6 μg/g for IMI, THM, and CLO, respectively, exhibiting concentration trends similar to those in the roots. Except for IMI in soil, the dissipation of the NNIs conformed to the first-order kinetic equation in paddy water, soil, and plant. The results of bioconcentration factors (BCFs) and translocation factor (TF) indicated that NNIs can be bi-directionally transported in plants through leaf absorption and root uptake. The risk of NNIs intake through rice consumption was low for all age groups, with a slightly higher risk of exposure in males than in females.
Collapse
Affiliation(s)
- Zhikun Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; School of Advanced Agricultural Sciences, Weifang University, Weifang, Shandong, 261061, China
| | - Fuxiang Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Shang Gao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
9
|
Hou J, Wang L, Wang J, Chen L, Han B, Li Y, Yu L, Liu W. A comprehensive evaluation of influencing factors of neonicotinoid insecticides (NEOs) in farmland soils across China: First focus on film mulching. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134284. [PMID: 38615648 DOI: 10.1016/j.jhazmat.2024.134284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Neonicotinoid insecticide (NEO) residues in agricultural soils have concerning and adverse effects on agroecosystems. Previous studies on the effects of farmland type on NEOs are limited to comparing greenhouses with open fields. On the other hand, both NEOs and microplastics (MPs) are commonly found in agricultural fields, but their co-occurrence characteristics under realistic fields have not been reported. This study grouped farmlands into three types according to the covering degree of the film, collected 391 soil samples in mainland China, and found significant differences in NEO residues in the soils of the three different farmlands, with greenhouse having the highest NEO residue, followed by farmland with film mulching and farmland without film mulching (both open fields). Furthermore, this study found that MPs were significantly and positively correlated with NEOs. As far as we know this is the first report to disclose the association of film mulching and MPs with NEOs under realistic fields. Moreover, multiple linear regression and random forest models were used to comprehensively evaluate the factors influencing NEOs (including climatic, soil, and agricultural indicators). The results indicated that the random forest model was more reliable, with MPs, farmland type, and total nitrogen having higher relative contributions.
Collapse
Affiliation(s)
- Jie Hou
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - LiXi Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - JinZe Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - LiYuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - BingJun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - YuJun Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lu Yu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - WenXin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Wang X, Liu J. An efficient deep learning model for tomato disease detection. PLANT METHODS 2024; 20:61. [PMID: 38725014 PMCID: PMC11080254 DOI: 10.1186/s13007-024-01188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
Tomatoes possess significant nutritional and economic value. However, frequent diseases can detrimentally impact their quality and yield. Images of tomato diseases captured amidst intricate backgrounds are susceptible to environmental disturbances, presenting challenges in achieving precise detection and identification outcomes. This study focuses on tomato disease images within intricate settings, particularly emphasizing four prevalent diseases (late blight, gray leaf spot, brown rot, and leaf mold), alongside healthy tomatoes. It addresses challenges such as excessive interference, imprecise lesion localization for small targets, and heightened false-positive and false-negative rates in real-world tomato cultivation settings. To address these challenges, we introduce a novel method for tomato disease detection named TomatoDet. Initially, we devise a feature extraction module integrating Swin-DDETR's self-attention mechanism to craft a backbone feature extraction network, enhancing the model's capacity to capture details regarding small target diseases through self-attention. Subsequently, we incorporate the dynamic activation function Meta-ACON within the backbone network to further amplify the network's ability to depict disease-related features. Finally, we propose an enhanced bidirectional weighted feature pyramid network (IBiFPN) for merging multi-scale features and feeding the feature maps extracted by the backbone network into the multi-scale feature fusion module. This enhancement elevates detection accuracy and effectively mitigates false positives and false negatives arising from overlapping and occluded disease targets within intricate backgrounds. Our approach demonstrates remarkable efficacy, achieving a mean Average Precision (mAP) of 92.3% on a curated dataset, marking an 8.7% point improvement over the baseline method. Additionally, it attains a detection speed of 46.6 frames per second (FPS), adeptly meeting the demands of agricultural scenarios.
Collapse
Affiliation(s)
- Xuewei Wang
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Weifang, China
| | - Jun Liu
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Weifang, China.
| |
Collapse
|
11
|
Okeke ES, Olisah C, Malloum A, Adegoke KA, Ighalo JO, Conradie J, Ohoro CR, Amaku JF, Oyedotun KO, Maxakato NW, Akpomie KG. Ecotoxicological impact of dinotefuran insecticide and its metabolites on non-targets in agroecosystem: Harnessing nanotechnology- and bio-based management strategies to reduce its impact on non-target ecosystems. ENVIRONMENTAL RESEARCH 2024; 243:117870. [PMID: 38072111 DOI: 10.1016/j.envres.2023.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/26/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The class of insecticides known as neonicotinoid insecticides has gained extensive application worldwide. Two characteristics of neonicotinoid pesticides are excellent insecticidal activity and a wide insecticidal spectrum for problematic insects. Neonicotinoid pesticides can also successfully manage pest insects that have developed resistance to other insecticide classes. Due to its powerful insecticidal properties and rapid plant absorption and translocation, dinotefuran, the most recent generation of neonicotinoid insecticides, has been widely used against biting and sucking insects. Dinotefuran has a wide range of potential applications and is often used globally. However, there is growing evidence that they negatively impact the biodiversity of organisms in agricultural settings as well as non-target organisms. The objective of this review is to present an updated summary of current understanding regarding the non-target effects of dinotefuran; we also enumerated nano- and bio-based mitigation and management strategies to reduce the impact of dinotefuran on non-target organisms and to pinpoint knowledge gaps. Finally, future study directions are suggested based on the limitations of the existing studies, with the goal of providing a scientific basis for risk assessment and the prudent use of these insecticides.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China.
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00, Brno, Czech Republic
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria; Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11, Hoffman St, Potchefstroom, 2520, South Africa
| | - James F Amaku
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London 5200, South Africa
| | - Kabir O Oyedotun
- College of Science, Engineering and Technology (CSET), University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Nobanathi W Maxakato
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
12
|
Li L, Yin S, Kang S, Chen Z, Wang F, Pan W. Comprehensive effects of thiamethoxam from contaminated soil on lettuce growth and metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123186. [PMID: 38142029 DOI: 10.1016/j.envpol.2023.123186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
The second-generation neonicotinoid thiamethoxam, is prevalent in soils because of its extensive application and persistence. However, the comprehensive effects of thiamethoxam residue in soils on cultivated plants are still poorly understood. This study examined variations of growth state, physiological parameters, antioxidant activity, and metabolites in lettuce after thiamethoxam exposure; the removal effects of different washing procedures were also investigated. The results indicated that thiamethoxam in soils significantly increased the fresh weight, seedling height and chlorophyll content in lettuce, and also altered its lipid, carbohydrate, nucleotide and amino acids composition based on untargeted metabolomics. KEGG pathway analysis uncovered a disruption of lipid pathways in lettuce exposed to both low and high concentrations of thiamethoxam treatments. In addition, the terminal residues of thiamethoxam in lettuce were below the corresponding maximum residue limits stipulated for China. The thiamethoxam removal rates achieved by common washing procedures in lettuce ranged from 26.9% to 42.6%. This study thus promotes the understanding of the potential food safety risk caused by residual thiamethoxam in soils.
Collapse
Affiliation(s)
- Li Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030031, China.
| | - Shijie Yin
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Shanshan Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fuyun Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Wei Pan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030031, China
| |
Collapse
|
13
|
Li L, Yin S, Pan W, Wang F, Fan J. Comprehensive metabolome and growth effects of thiamethoxam uptake and accumulation from soil on pak choi. Food Chem 2024; 433:137286. [PMID: 37669575 DOI: 10.1016/j.foodchem.2023.137286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Extensive use of the neonicotinoid thiamethoxam (TMX) results in its deposition in soil, which can then be absorbed and translocated in vegetables. Here we analyzed the comprehensive effects of TMX on pak choi. The TMX translocation factor (TF) was 0.37-11.65 and 0.46-39.75 for low and high treatments over 28 d, respectively, indicating its ready ability to move from the roots to the leaves of these plants. This uptake was associated with significant decrease in the fresh weight, and increase in vitamin C (VC), soluble sugars and soluble solid of pak choi. A metabolomic analysis revealed that fatty acids and purine nucleosides significantly decreased, and flavonoids and carbohydrates increased in the presence of TMX. TMX exposure thus influenced plant growth and disrupted the carbohydrate and lipid metabolism pathways. Our study raises concerns for food safety risk associated with TMX-contaminated soil.
Collapse
Affiliation(s)
- Li Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China.
| | - Shijie Yin
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Wei Pan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Fuyun Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jiqiao Fan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
14
|
Hou J, Chen L, Han B, Li Y, Yu L, Wang L, Tao S, Liu W. Distribution characteristics and risk assessment of neonicotinoid insecticides in planting soils of mainland China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166000. [PMID: 37541504 DOI: 10.1016/j.scitotenv.2023.166000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Neonicotinoid insecticides (NEOs) are generally used in crop production. Their widespread use on agricultural soil has raised concerns regarding their health and ecological risks. Previous studies have reported the contamination of the farmland soils with NEOs from the coastal provinces of China. Information about NEOs at the national scale as well as the residues of their metabolites are relatively unknown. In this study, 391 soil samples were collected from 31 provinces in nine agricultural regions across mainland China, and the concentrations of ten parent NEOs and three metabolites were determined. At least one NEO was detected in all soil samples, with the sum of the NEOs (ΣNEOs) ranging from 0.04 to 702 μg/kg. The most common parent NEO and metabolite are imidacloprid and imidacloprid-urea, respectively. The concentrations of NEOs in coastal regions at the same latitude were higher than those in inland regions. The NEOs were further compared in the soils of seven types of monocrops and three types of multiple crops (multicrops) (i.e., two types of crops were produced in succession or simultaneously within the decade of this study). The results showed that the highest NEO residues were found in soils planted with vegetables (VE), fruits (FR), and cotton (CO) monocrops and VE & FR multicrops. Differences in NEO concentrations were observed between soils planted with monocrops and multicrops. For example, VE & FR > VE > vegetables and grains (VE & GR) > GR. Moreover, the health risks posed by NEOs in agricultural soils in China are extremely low, and the ecological risks require urgent attention. Particularly, individual NEOs in > 45% of agricultural soils in mainland China may have sublethal effects on two non-target species (HQnon-target > 0.01).
Collapse
Affiliation(s)
- Jie Hou
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Liyuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bingjun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yujun Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lu Yu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lixi Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wenxin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Li Y, Hou F, Shi R, Li X, Lan J, Zhao Z. Contamination Status, Environmental Factor and Risk Assessment of Polychlorinated Biphenyls and Hexachlorobutadiene in Greenhouse and Open-Field Agricultural Soils across China. TOXICS 2023; 11:941. [PMID: 37999593 PMCID: PMC10675547 DOI: 10.3390/toxics11110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
With the popularization and high-intensity utilization of greenhouse cultivation for crops growth, the pollution of greenhouse soils has been of concern. Therefore, a national-scale survey was conducted to investigate the contamination status, sources, influence factors and the risks of polychlorinated biphenyls (PCBs) and hexachlorobutadiene (HCBD) in greenhouse and nearby open-field soils. Contents of PCBs ranged from 10-6). This study provided a full insight on the contamination status and risks of PCBs and HCBD when guiding greenhouse agriculture activities.
Collapse
Affiliation(s)
- Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.L.); (Z.Z.)
| | - Fangwei Hou
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China;
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
| | - Xiaohua Li
- Rural Energy & Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China;
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.L.); (Z.Z.)
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.L.); (Z.Z.)
| |
Collapse
|
16
|
Wang R, Yang X, Wang T, Kou R, Liu P, Huang Y, Chen C. Synergistic effects on oxidative stress, apoptosis and necrosis resulting from combined toxicity of three commonly used pesticides on HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115237. [PMID: 37451096 DOI: 10.1016/j.ecoenv.2023.115237] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The widespread use of pesticides performs a vital role in safeguarding crop yields and quality, providing the opportunity for multiple pesticides to co-exist, which poses a significant potential risk to human health. To assess the toxic effects caused by exposures to individual pesticides (chlorpyrifos, carbofuran and acetamiprid), binary combinations and ternary combinations, individual and combined exposure models were developed using HepG2 cells and the types of combined effects of pesticide mixtures were assessed using concentration addition (CA), independent action (IA) and combination index (CI) models, respectively, and the expression of biomarkers related to oxidative stress, apoptosis and cell necrosis was further examined. Our results showed that both individual pesticides and mixtures exerted toxic effects on HepG2 cells. The CI model indicated that the toxic effects of pesticide mixtures exhibited synergistic effects. The results of the lactate dehydrogenase (LDH) release and apoptosis assay revealed that the pesticide mixture increased the release of LDH and apoptosis levels. Moreover, our results also showed that individual pesticides and mixtures disrupted redox homeostasis and that pesticide mixtures produced more intense oxidative stress effects. In conclusion, we have illustrated the enhanced combined toxicity of pesticide mixtures by in-vitro experiments, which provides a theoretical basis and scientific basis for further toxicological studies.
Collapse
Affiliation(s)
- Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xi Yang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Tiancai Wang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Ruirui Kou
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Panpan Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Yueqing Huang
- Department of General Medicine, The Affliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou 215026, China.
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
17
|
Liu Z, Cui S, Fu Q, Zhang F, Zhang Z, Hough R, An L, Li YF, Zhang L. Transport of neonicotinoid insecticides in a wetland ecosystem: Has the cultivation of different crops become the major sources? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117838. [PMID: 37027902 DOI: 10.1016/j.jenvman.2023.117838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Extensive application of neonicotinoid insecticides (NNIs) in agricultural production has resulted in widespread contamination of multiple environmental media. To investigate the occurrence and fate of NNIs in the largest marsh distribution area in Northeast China, an integrated ecosystem covering farmlands, rivers, and marshes, referred to as the farmland-river-marsh continuum in this study, was chosen for soil, water, and sediment sampling. Five NNIs were detected, with imidacloprid (IMI), thiamethoxam (THM), and clothianidin (CLO) being the most frequently detected ones in different samples. Concentrations of target NNIs in soil, surface water, and sediment samples were 2.23-136 ng/g dry weight (dw), 3.20-51.7 ng/L, and 1.53-8.40 ng/g dw, respectively. In soils, NNIs were detected more often and at higher concentrations in upland fields, while the concentration of NNIs in the soybean-growing soils (71.5 ng/g dw) was significantly higher than in the rice-growing soils (18.5 ng/g dw) (p < 0.05). Total concentration of NNIs in surface water was lower in the Qixing River channel than inside the marsh, while that in sediments showed an opposite trend. Total migration mass of IMI from approximately 157,000 ha of farmland soil by surface runoff was estimated to be 2636-3402 kg from the application time to the sampling period. The storage of NNIs in sediments was estimated to range from 45.9 to 252 ng/cm2. The estimated environmental risks, calculated as the risk quotients (RQs), revealed low risks to aquatic organisms (RQs <0.1) from the residual concentrations of NNIs in water.
Collapse
Affiliation(s)
- Zhikun Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuxiang Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Lihui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4 Canada.
| |
Collapse
|
18
|
Gu S, Li Z, Yang L, Bao X, Ying C, Zhang Q. The distribution and human health risk assessment of eight neonicotinoid residues in agricultural soils from four provinces, south China. CHEMOSPHERE 2023; 322:138143. [PMID: 36791816 DOI: 10.1016/j.chemosphere.2023.138143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
The widespread use of neonicotinoid (neonic) insecticides in China's agricultural sector has led to high residual concentrations in the agroecosystem. Since soil is the primary source of direct pesticide exposure, soil contamination is a significant concern, particularly in regions with extensive agricultural production. This study aims to determine the spatial distribution of neonics in farmlands from four southern provinces that are home to China's crucial commercial grain bases. By combining eight neonics into imidacloprid-equivalent total neonics (IMIRPF) using the relative potency factor method, the ecological risks to humans were also assessed. The results showed that imidacloprid had the highest detection rate (96%-100%), followed by thiamethoxam and clothianidin, which ranged from 44% to 64%. Maximum and average IMIRPF values in soil samples from Zhejiang Province were 277.02 and 46.05 μg kg-1 (dry weight), respectively. Guangdong (maximum = 191.62 μg kg-1, mean = 39.70 μg kg-1) and Jiangxi (maximum = 199.13 μg kg-1, mean = 28.95 μg kg-1) had comparable IMIRPF while Jiangsu had the lowest level of total neonics, with a maximum of 86.07 μg kg-1 and a mean of 19.49 μg kg-1. A significant positive correlation between IMIRPF and total organic carbon in soils was also found. The average daily doses of neonics from soil-borne exposure through food intake, soil ingestion, inhalation, and dermal contact calculated for adults and children in each province were all lower than the reference dose (RfD, 57 μg kg-1 d-1) of imidacloprid. However, the potential health risk to human health cannot be disregarded, given their increasing use and pervasiveness in the environment. Our results help to raise concerns about the safety of the agroecological environment under neonic exposure in the major agricultural provinces of southern China.
Collapse
Affiliation(s)
- Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Zhe Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Liuqing Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Xiaoqi Bao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Chengfeng Ying
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China.
| |
Collapse
|
19
|
Baihetiyaer B, Jiang N, Li X, He B, Wang J, Fan X, Sun H, Yin X. Oxidative stress and gene expression induced by biodegradable microplastics and imidacloprid in earthworms (Eisenia fetida) at environmentally relevant concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121285. [PMID: 36796666 DOI: 10.1016/j.envpol.2023.121285] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The environmental issues caused by biodegradable microplastics (BMPs) from polylactic acid (PLA) as well as pesticides are of increasing concern nowadays. In this study, the toxicological effects of the single and combined exposure of PLA BMPs and imidacloprid (IMI), a neonicotinoid insecticide, on earthworms (Eisenia fetida) were investigated in terms of oxidative stress, DNA damage, and gene expression, respectively. The results showed that compared with the control, SOD, CAT and AChE activities in the single and combined treatments decreased significantly, and POD activity showed an "inhibition-activation" trend. SOD and CAT activities of combined treatments on day 28 and AChE activity of combined treatment on day 21 were significantly higher than those of the single treatments. For the rest of the exposure period, SOD, CAT and AChE activities in the combined treatments were lower than those in the single treatments. POD activity in the combined treatment was significantly lower than those of single treatments at day 7 and higher than that of single treatments at day 28. MDA content showed an "inhibition-activation-inhibition" trend, and the ROS level and 8-OHdG content increased significantly in both the single and combined treatments. This shows that both single and combined treatments led to oxidative stress and DNA damage. ANN and HSP70 were expressed abnormally, while the SOD and CAT mRNA expression changes were generally consistent with the corresponding enzyme activities. The integrated biomarker response (IBR) values were higher under combined exposures than single exposures at both biochemical and molecular levels, indicating that combined treatment exacerbated the toxicity. However, the IBR value of the combined treatment decreased consistently at the time axis. Overall, our results suggest that PLA BMPs and IMI induce oxidative stress and gene expression in earthworms at environmentally relevant concentrations, thereby increasing the risk of earthworms.
Collapse
Affiliation(s)
- Baikerouzi Baihetiyaer
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Nan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Bo He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712000, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712000, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712000, PR China.
| |
Collapse
|
20
|
Zhang J, Ruan H, Wang Y, Wang Y, Ke T, Guo M, Tian J, Huang Y, Luo J, Yang M. Broad-specificity monoclonal antibody against neonicotinoid insecticides via a multi-immunogen strategy and development of a highly sensitive GNP-based multi-residue immunoassay in ginseng and tomato. Food Chem 2023; 420:136115. [PMID: 37062080 DOI: 10.1016/j.foodchem.2023.136115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
Neonicotinoid insecticides (NNIs) are extensively used across the agricultural products and foods. In order to meet the rapid detection requirements, a novel broad-specificity monoclonal antibody against NNIs was developed for the first time using a multi-immunogen strategy. The antibody's high affinity and its ability to bind target molecules were verified by ic-ELISA. Furthermore, molecular docking was used to evaluate the pivotal forces affecting binding affinity and to determine binding sites. Subsequently, a highly sensitive gold nanoparticle-based immunochromatographic assay was established for the rapid detection of eight NNIs and the IC50 values were 0.03-1.61 ng/mL. The limits of detection for ginseng and tomato ranged from 0.76 to 30.19 μg/kg and 0.87 to 31.57 μg/kg, respectively. The spiked recovery ranged from 72.04% to 120.74%, and the coefficient of variation were less than 9.0%. This study provides a new direction for the development of multiple NNIs residue immunoassays.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yudan Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tongwei Ke
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengyue Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiao Tian
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
21
|
Xu M, Hu J. Residue analysis and dietary risk assessment of thiamethoxam, flonicamid and their metabolites in cucumber under field conditions in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55471-55484. [PMID: 36892702 DOI: 10.1007/s11356-023-26227-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Thiamethoxam and flonicamid are two representative insecticides of neonicotinoids which are used to treat cucumber aphids, causing food safety and human health problems. A 60% thiamethoxam-flonicamid commercial mixture water dispersible granule (WDG) is being prepared for registering in China, so it is essential to investigate the residue levels of these neonicotinoids and their metabolites in cucumber and evaluate the dietary risks of these insecticides. We developed a modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method combined with high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) for the simultaneous determination of thiamethoxam and its metabolite clothianidin, flonicamid and its metabolites 4-trifluoromethylnicotinic acid (TFNA), 4-trifluoromethilnicotinamide (TFNA-AM), 4-(trifluoromethyl) nicotinol glycine (TFNG) in cucumber. Method validation indicated good selectivity, linearity (r ≥ 0.9996), accuracy (recoveries of 80-101%), precision (relative standard deviations (RSD) ≤ 9.1%), sensitivity (limits of detection (LOD), 0.28-1.44 × 10-3 mg/L; limits of quantification (LOQ), 0.01 mg/kg) and minor matrix effect (ME) ( ≤|± 5%|). In the terminal residue trials under good agricultural practice (GAP) conditions, the residue levels of six analytes in cucumber samples were ˂0.01-0.215 mg/kg after application trice with an interval of 7 days based on pre-harvest interval (PHI) of 3 days under the high recommended dosage of 54 g active ingredient/ha (g a.i./ha). Relevant toxicological, residual chemistry parameters and dietary consumption of the residents were applied to assess the potential risk of dietary exposure. The chronic and acute dietary exposure assessment risk quotient (RQ) values were less than 1. The above results indicated that the potential dietary intake risk of this formulation was negligible to consumers.
Collapse
Affiliation(s)
- Mengyue Xu
- Laboratory of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jiye Hu
- Laboratory of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
22
|
Nie C, Geng X, Ouyang H, Wang L, Li Z, Wang M, Sun X, Wu Y, Qin Y, Xu Y, Tang X, Chen J. Abundant bacteria and fungi attached to airborne particulates in vegetable plastic greenhouses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159507. [PMID: 36257421 DOI: 10.1016/j.scitotenv.2022.159507] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The proliferation of modern vegetable plastic greenhouses (VPGS) supplies more and more vegetables for food all over the world. The airborne bacteria and fungi induce more exposure opportunities for workers toiling in confined plastic greenhouses. Culture-independent approaches by qPCR and high-throughput sequencing technology were used to study the airborne particulates microbiota in typic VPGS in Shandong, a large base of vegetables in China. The result revealed the mean airborne bacteria concentrations reached 1.67 × 103 cells/m3 (PM2.5) and 2.38 × 103 cells/m3 (PM10), and the mean airborne fungal concentrations achieved 1.49 × 102 cells/m3 (PM2.5) and 3.19 × 102 cells/m3 (PM10) in VPGS. The predominant bacteria in VPGS included Ralstonia, Alcanivorax, Pseudomonas, Bacillus, and Acinetobacter. Botrytis, Alternaria, Fusarium, Sporobolomyces, and Cladosporium were frequently detected fungal genera in VPGS. A higher Chao1 of bacteria in PM10 was significantly different from PM2.5 in VPGS. The potential pathogens in VPGS include Raltonia picketti, Acinetobacter lwoffii, Bacillus anthracis, Botrytis cinerea, and Cladosporium sphaerospermum. The network analysis indicated that airborne microbiota was associated with soil microbiota which was affected by anthropologic activities. The predicted gene functions revealed that bacterial function mainly involved metabolism, neurodegenerative diseases, and fungal trophic mode dominated by Pathotroph-Saprotroph in VPGS. These findings unveiled airborne microbiomes in VPGS so that a strategy for improving air quality can be applied to safeguard health and vegetation.
Collapse
Affiliation(s)
- Changliang Nie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Xueyun Geng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Huiling Ouyang
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China
| | - Zongzhen Li
- Weifang University of Science and Technology, Weifang 262700, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yunhan Qin
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Youxin Xu
- Weifang University of Science and Technology, Weifang 262700, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xu Tang
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China.
| |
Collapse
|
23
|
Graciani TS, Bandeira FO, Cardoso EJBN, Alves PRL. Influence of temperature and soil moisture on the toxic potential of clothianidin to collembolan Folsomia candida in a tropical field soil. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:82-92. [PMID: 36648631 DOI: 10.1007/s10646-023-02621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Climate change can alter the toxic effects of pesticides on soil invertebrates. However, the nature and magnitude of the influence of climatic factors on clothianidin impacts in tropical soils are still unknown. The influence of increasing atmospheric temperature and the reduction in soil moisture on the toxicity and risk of clothianidin (seed dressing formulation Inside FS®) were assessed through chronic toxicity tests with collembolans Folsomia candida in a tropical field soil (Entisol). The risk of clothianidin for collembolans was estimated using the Toxicity-Exposure Ratio (TER) approach. Organisms were exposed to increasing clothianidin concentrations at 20, 25 and 27 °C in combination with two soil moisture conditions (30 and 60% of the maximum water holding capacity-WHC). The effect of temperature and soil moisture content on clothianidin toxicity was verified through the number of F. candida juveniles generated after 28 days of exposure to the spiked soil. The toxicities estimated at 25 °C (EC50_30%WHC = 0.014 mg kg-1; EC50_60%WHC = 0.010 mg kg-1) and 27 °C (EC50_30%WHC = 0.006 mg kg-1; EC50_60%WHC = 0.007 mg kg-1) were 2.9-3.0-fold (25 °C) and 4.3-6.7-fold (27 °C) higher than those found at 20 °C (EC50_30%WHC = 0.040 mg kg-1; EC50_60%WHC = 0.030 mg kg-1), indicating that clothianidin toxicity increases with temperature. No clear influence of soil moisture content on clothianidin toxicity could be observed once the EC50 values estimated at 30% and 60% WHC, within the same temperature, did not significantly differ. A significant risk was detected in all temperatures and soil moisture scenarios studied, and the TER values indicate that the risk can increase with increasing temperatures. Our results revealed that temperature could overlap with soil moisture in regulating clothianidin toxicity and reinforce the importance of including climatic factors in the prospective risk assessment of pesticides.
Collapse
Affiliation(s)
| | - Felipe Ogliari Bandeira
- Department of Soil Science, Santa Catarina State University, Av. Luiz de Camões, 2090, 88520-000, Lages, SC, Brazil
| | | | - Paulo Roger Lopes Alves
- Federal University of Fronteira Sul, Av. Fernando Machado 108 E, 89802112, Chapecó, SC, Brazil.
| |
Collapse
|
24
|
Zhang H, Bai X, Zhang T, Song S, Zhu H, Lu S, Kannan K, Sun H. Neonicotinoid Insecticides and Their Metabolites Can Pass through the Human Placenta Unimpeded. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17143-17152. [PMID: 36441562 DOI: 10.1021/acs.est.2c06091] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Studies on neonicotinoid (NEO) exposure in pregnant women and fetuses are scarce, and transplacental transfer of these insecticides is unknown. In this study, parent NEOs (p-NEOs) and their metabolites (m-NEOs) were determined in 95 paired maternal (MS) and cord serum (CS) samples collected in southern China. Imidacloprid was the predominant p-NEO in both CS and MS samples, found at median concentrations of 1.84 and 0.79 ng/mL, respectively, whereas N-desmethyl-acetamiprid was the most abundant m-NEO in CS (median: 0.083 ng/mL) and MS (0.13 ng/mL). The median transplacental transfer efficiencies (TTEs) of p-NEOs and m-NEOs were high, ranging from 0.81 (thiamethoxam, THM) to 1.61 (olefin-imidacloprid, of-IMI), indicating efficient placental transfer of these insecticides. Moreover, transplacental transport of NEOs appears to be passive and structure-dependent: cyanoamidine NEOs such as acetamiprid and thiacloprid had higher TTE values than the nitroguanidine NEOs, namely, clothianidin and THM. Multilinear regression analysis revealed that the concentrations of several NEOs in MS were associated significantly with hematological parameters related to hepatotoxicity and renal toxicity. To our knowledge, this is the first analysis of the occurrence and distribution of NEOs in paired maternal-fetal serum samples.
Collapse
Affiliation(s)
- Henglin Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Xueyuan Bai
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510275, P.R. China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P.R. China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016, United States
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
25
|
Chang F, Yi M, Li H, Wang J, Zhao X, Hu X, Qi Q. Antibiotic Toxicity Isolated and as Binary Mixture to Freshwater Algae Raphidocelis subcapitata: Growth Inhibition, Prediction Model, and Environmental Risk Assessment. TOXICS 2022; 10:739. [PMID: 36548572 PMCID: PMC9785756 DOI: 10.3390/toxics10120739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Antibiotics in aqueous environments can have extremely adverse effects on non-targeted organisms. However, many research projects have only focused on the toxicological evaluation of individual antibiotics in various environments. In the present work, individual and binary mixture toxicity experiments have been conducted with the model organism Raphidocelis subcapitata (R. subcapitata), and a mixture concentration-response curve was established and contrasted with the estimated effects on the basis of both the concentration addition (CA) and the independent action (IA) models. In addition, different risk assessment methods were used and compared to evaluate the environmental risk of binary mixtures. The toxic ranking of the selected antibiotics to R. subcapitata was erythromycin (ERY) > sulfamethoxazole (SMX) > sulfamethazine (SMZ). In general, the conclusion of this study is that the adverse effects of binary mixtures are higher than the individual antibiotics. The CA model and RQSTU are more suitable for toxicity prediction and risk assessment of binary mixtures. This study reveals the potential ecological risks that antibiotics and their mixtures may pose to water ecosystems, thus providing scientific information for environmental quality regulation.
Collapse
Affiliation(s)
- Fang Chang
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China
| | - Malan Yi
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China
| | - Huiting Li
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China
| | - Jiangnan Wang
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China
| | - Xuefeng Zhao
- Hanjiang Bureau of Hydrology and Water Resources, Bureau of Hydrology, Changjiang Water Resources Commission, Xiangyang 441000, China
| | - Xiaoyue Hu
- Hanjiang Bureau of Hydrology and Water Resources, Bureau of Hydrology, Changjiang Water Resources Commission, Xiangyang 441000, China
| | - Qianju Qi
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
26
|
Li L, Liang H, Zhao T, Liu Y, Yan S, Zhu W. Differential effects of thiamethoxam and clothianidin exposure on their tissue distribution and chronic toxicity in mice. Chem Biol Interact 2022; 366:110149. [PMID: 36084723 DOI: 10.1016/j.cbi.2022.110149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022]
Abstract
The frequent application of second-generation neonicotinoids thiamethoxam (TMX) and clothianidin (CLO) has led to a high detectable rate in environment samples and poses threats to nontarget organisms and human beings, however, the information on the influences of long-term exposure at low doses was limited. In this study, the tissue distribution of TMX and CLO in mice at acceptable daily intake (ADI) level and 5 × ADI was determined and the health effects were assessed. TMX and CLO were detected in the liver, serum, lung, heart and kidney in the TMX exposure groups, which indicated that TMX degraded to CLO in mice. Residue levels of TMX in tissues increased with the increasing of doses. The concentrations of CLO in different tissues in the CLO exposure groups were in the order Ckidney > Clung > Cheart > Cliver. Measurement of biochemical indicators, combined with metabolomic analysis of liver, kidney, and cecal contents, examination of changes in the gut microbiota, and histopathological assessment indicated that both TMX and CLO affected energy absorption and lipid metabolism in mice and destroyed tissue structures. Furthermore, we found that CLO had a stronger effect on metabolism in mice, despite its lower acute toxicity. These results have prompted us to consider the chronic toxicity and potential hazards of chemicals in future risk assessments.
Collapse
Affiliation(s)
- Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030031, PR China.
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Yu Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
27
|
Liu Z, Zhang L, Zhang Z, An L, Hough R, Hu P, Li YF, Zhang F, Wang S, Zhao Y, Ke Y, Cui S. A review of spatiotemporal patterns of neonicotinoid insecticides in water, sediment, and soil across China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55336-55347. [PMID: 35665457 DOI: 10.1007/s11356-022-21226-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Neonicotinoid insecticides (NNIs) have been widely used to control insect pests, while their environmental residues and associated hazardous impacts on human and ecosystem health have attracted increasing attention worldwide. In this study, we examined the current levels and associated spatial and temporal patterns of NNIs in multiple environmental media across China. Concentrations of NNIs in surface water, sediment, and soil were in the range of 9.94-755 ng·L-1, 0.07-8.30 ng·g-1 DW, and 0.009-356 ng·g-1 DW, respectively. The high levels of NNIs in surface water, such as in Yangtze River (755 ng·L-1), North River (539 ng·L-1), Nandu River (519 ng·L-1), and Minjiang River (514 ng·L-1), were dominated by imidacloprid, thiamethoxam, and acetamiprid due to their extensive use. The levels of NNIs in sediments were relatively low, and the highest concentration (8.30 ng·g-1 DW) was observed in Dongguan ditch. Sediment-water exchange calculated from fugacity fraction indicated that NNIs in sediment can be released back into the water due to their high solubility and low KOW. Soils from agricultural zones contained the largest residual NNIs, with imidacloprid concentrations in cultivated soil reaching 119 ng·g-1 DW. The calculated leaching potential showed that clothianidin has the highest migration potential to deep soil or groundwater. The monitored data of NNIs presented a decreasing trend from 2016 to 2018, which might be caused by the implementation of relevant control policies for NNI applications. The high levels of NNIs mainly occurred in southern China due to frequent agricultural activities and warm and humid meteorological conditions. The results from this study improve our understanding of the pollution levels and environmental behavior of NNIs in different environmental media across China and provide new knowledge that is needed for making future control policies for NNIs production and application.
Collapse
Affiliation(s)
- Zhikun Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Lihui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Peng Hu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Yi-Fan Li
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fuxiang Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Shuang Wang
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yunqing Zhao
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yuxin Ke
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
28
|
Wang D, Liu Y, Xu Z, Ji Y, Si X, Lin T, Liu H, Liu Z. Generic imprinted fiber array strategy for high-throughput and ultrasensitive simultaneous determination of multiple neonicotinoids. Food Chem 2022; 382:132407. [PMID: 35152016 DOI: 10.1016/j.foodchem.2022.132407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
Abstract
Herein, a new generic fiber array based on molecular imprinting solid-phase microextraction (MIP-SPME) technology, was described to enrich trace multiple neonicotinoids with high flux from the food matrix. To begin with adsorption experiments coupled with theoretical calculations provided universal means for selecting the preferred template molecule clothianidin (CLT). Results demonstrated that the CLT-MIP fiber array exhibited significantly superior enrichment ability of 1189-2356-folds for six neonicotinoids compared with two kinds of commercial fiber arrays. Furthermore, the practicability of the CLT-MIP fiber array was verified by simultaneously determining multiple neonicotinoids in tea and honey samples. The CLT-MIP fiber array showed a limit of detection (LOD) of 0.03-0.58 μg/L for six neonicotinoids. The method also exhibited satisfactory recoveries ranging from 85.4% to 116.8% with RSD (n = 3) less than 8.8%. The imprinted fiber array has the advantages of high-throughput, predominant reproducibility, and accurate quantitation multi-component, and it may open up a new mean to efficiently enrich high-throughput and simultaneously detect multiple compounds from food samples.
Collapse
Affiliation(s)
- Dan Wang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuanchen Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yang Ji
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxi Si
- R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming 650231, China.
| | - Tao Lin
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agriculture Science, Kunming 650223, China
| | - Hongcheng Liu
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agriculture Science, Kunming 650223, China
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
29
|
Gao Q, Hu J, Shi L, Zhang Z, Liang Y. Dynamics and residues of difenoconazole and chlorothalonil in leafy vegetables grown in open-field and greenhouse. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Chen Y, Wu R, Zhang L, Ling J, Yu W, Shen G, Du W, Zhao M. High spatial resolved cropland coverage and cultivation category determine neonicotinoid distribution in agricultural soil at the provincial scale. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128476. [PMID: 35739663 DOI: 10.1016/j.jhazmat.2022.128476] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
Croplands are experiencing increasing neonicotinoid pollution and ecological health problems, which are especially widely applied in China. However, the large regional scale distribution of neonicotinoids and the key factors have seldom been determined. We show that the total residual concentration of neonicotinoids ranged from 13.4 to 157 ng/g with an average level of 75.8 ng/g and imidacloprid which was the dominant compound ranged from 10.4 to 81.3 ng/g during 2017-2021 in the Yangtze River Delta, China. In comparison, the neonicotinoid residues detected here were mostly higher than those in other regions. We further show that the 1-km spatial resolution cropland coverage (78.0%) and crop type (18.1%) predominantly contributed to the large spatial variation of neonicotinoids after adjusting for the factors including temperature, soil pH, soil moisture, and precipitation via automatic linear regression modeling at the provincial scale. Additional analyses revealed that tea croplands had significantly lowest concentration and fruit fields had the highest level due to the different application methods. Our findings provide new insight into key factors quantifying the high spatial resolved distribution of neonicotinoids and urgently call for reasonable application methods against rapidly growing ecology threats from neonicotinoid pollution in China.
Collapse
Affiliation(s)
- Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ruxin Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Li Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jun Ling
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guofeng Shen
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China; Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
31
|
Gu YX, Yan TC, Yue ZX, Liu FM, Cao J, Ye LH. Recent developments and applications in the microextraction and separation technology of harmful substances in a complex matrix. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Niu YH, Wang L, Wang Z, Yu SX, Zheng JY, Shi ZH. High-frequency monitoring of neonicotinoids dynamics in soil-water systems during hydrological processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118219. [PMID: 34626917 DOI: 10.1016/j.envpol.2021.118219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Neonicotinoids pollution poses a serious threat to aquatic ecosystems. However, there is currently little knowledge about how neonicotinoids are transferred from the agricultural environment to the aquatic environment. Here, we conducted in situ high-frequency monitoring of neonicotinoids in soil-water systems along the hydrological flow path during rainfall to explore the horizontal and vertical transport mechanisms of neonicotinoids. The collected samples included 240 surface runoff, 128 subsurface runoff, 60 eroded sediment, 120 soil and 144 soil solution, which were used to analyse neonicotinoids concentrations. Surface runoff, subsurface runoff and eroded sediment were the three main paths for the horizontal migration of neonicotinoids. In the CK (citrus orchards without grass cover) and grass-covered citrus orchards, there are 15.89% and 2.29% of the applied neonicotinoids were transported with surface runoff, respectively. While in the CK and grass-covered citrus orchards, there are only 1.23% and 0.19% of the applied neonicotinoids were transported with eroded sediment and subsurface runoff. Although the amount of neonicotinoids lost along with eroded sediment was small, the concentration of neonicotinoids in eroded sediment was two orders of magnitude higher than the concentration of neonicotinoids in sediments of the surface water. Meanwhile, neonicotinoids migrated vertically in soil due to water infiltration. In the CK and grass-covered citrus orchards, there are 57.64% and 24.36% of the applied neonicotinoids were retained in soil and soil solution, respectively, and their concentration decreased as soil depth increased. Another noteworthy phenomenon is that more neonicotinoids migrated to deeper soil layers under grass cover compared with no grass cover because grass roots promoted the formation of cracks and vertical preferential flow. Our results are expected to improve the accuracy of neonicotinoids pollution prediction by considering migration paths, including surface and subsurface runoff and eroded sediment.
Collapse
Affiliation(s)
- Y H Niu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430072, China
| | - L Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430072, China.
| | - Z Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430072, China
| | - S X Yu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430072, China
| | - J Y Zheng
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430072, China
| | - Z H Shi
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430072, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| |
Collapse
|
33
|
Bandeira FO, Alves PRL, Hennig TB, Brancalione J, Nogueira DJ, Matias WG. Chronic effects of clothianidin to non-target soil invertebrates: Ecological risk assessment using the species sensitivity distribution (SSD) approach. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126491. [PMID: 34323739 DOI: 10.1016/j.jhazmat.2021.126491] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to assess the chronic toxicity and risk of clothianidin in a seed dressing formulation to non-target soil invertebrates. The toxicity assays were performed with two oligochaetes (earthworms Eisenia andrei and enchytraeids Enchytraeus crypticus) and three collembolans (Folsomia candida, Proisotoma minuta and Sinella curviseta) species following ISO protocols. Risk assessment (via Hazard Quotient approach - HQ) was based on the hazardous concentrations for 95% of the species (HC5), derived from chronic Species Sensitivity Distributions (SSD) for clothianidin, and on its predicted environmental concentrations (PEC). Four SSD scenarios were generated with literature and/or this study data, following different data selection criteria (i.e., general, only data from tests using similar formulations, similar soils, or identical soil/formulation). In our experiments, a higher clothianidin toxicity (EC50-based) was found for collembolans (varying from 0.11 to 0.28 mg kg-1 between species) followed by the earthworms (4.35 mg kg-1), while the enchytraeids were the least sensitive (33.5 mg kg-1). HQ indicated a significant risk of clothianidin to soil invertebrates because the estimated PEC were at least 16.6 times higher than HC5 and are expected to affect the whole group of collembolans. Despite the criteria for data inclusion have influenced the HC5 values, no substantial changes were observed for the risk outcomes. To our knowledge, this is the first study assessing the chronic ecological risk of clothianidin to beneficial soil fauna based on a probabilistic SSD approach. Data from this study can help to derive more reliable protection thresholds for clothianidin in soils.
Collapse
Affiliation(s)
- Felipe Ogliari Bandeira
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | - Paulo Roger Lopes Alves
- Federal University of Fronteira Sul, Av. Fernando Machado 108 E, 89802112 Chapecó, SC, Brazil
| | - Thuanne Braúlio Hennig
- Department of Soil Science, Santa Catarina State University, Av. Luis de Camões, 2090, 88520-000 Lages, SC, Brazil
| | - Juliane Brancalione
- Federal University of Fronteira Sul, Av. Fernando Machado 108 E, 89802112 Chapecó, SC, Brazil
| | - Diego José Nogueira
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | - William Gerson Matias
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil.
| |
Collapse
|
34
|
Liu Z, Cui S, Zhang L, Zhang Z, Hough R, Fu Q, Li YF, An L, Huang M, Li K, Ke Y, Zhang F. Occurrence, variations, and risk assessment of neonicotinoid insecticides in Harbin section of the Songhua River, northeast China. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 8:100128. [PMID: 36156999 PMCID: PMC9488002 DOI: 10.1016/j.ese.2021.100128] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 05/04/2023]
Abstract
Neonicotinoid insecticides (NNIs) have been intensively used and exploited, resulting in their presence and accumulation in multiple environmental media. We herein investigated the current levels of eight major NNIs in the Harbin section of the Songhua River in northeast China, providing the first systematic report on NNIs in this region. At least four NNIs in water and three in sediment were detected, with total concentrations ranging from 30.8 to 135 ng L-1 and from 0.61 to 14.7 ng g-1 dw, respectively. Larger spatial variations in surface water NNIs concentrations were observed in tributary than mainstream (p < 0.05) due to the intensive human activities (e.g., horticulture, urban landscaping, and household pet flea control) and the discharge of wastewater from many treatment plants. There was a significant positive correlation (p < 0.05) between the concentrations of residual imidacloprid (IMI), clothianidin (CLO), and Σ4NNIs in the sediment and total organic carbon (TOC). Due to its high solubility and low octanol-water partition coefficient (K ow), the sediment-water exchange behavior shows that NNIs in sediments can re-enter into the water body. Human exposure risk was assessed using the relative potency factor (RPF), which showed that infants have the highest exposure risk (estimated daily intake (ΣIMIeq EDI): 31.9 ng kg-1 bw·d-1). The concentration thresholds of NNIs for aquatic organisms in the Harbin section of the Songhua River were determined using the species sensitivity distribution (SSD) approach, resulting in a value of 355 ng L-1 for acute hazardous concentration for 5% of species (HC5) and 165 ng L-1 for chronic HC5. Aquatic organisms at low trophic levels were more vulnerable to potential harm from NNIs.
Collapse
Affiliation(s)
- Zhikun Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lihui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Mingzhi Huang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Kunyang Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuxin Ke
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuxiang Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
35
|
Zhang H, Aspinall JV, Lv W, Zheng X, Zhang H, Li S, Zhang J, Bai N, Zhang Y, Wang X. Differences in kinetic metabolomics in Eisenia fetida under single and dual exposure of imidacloprid and dinotefuran at environmentally relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126001. [PMID: 33992008 DOI: 10.1016/j.jhazmat.2021.126001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Metabolomic responses of earthworms to neonicotinoids are important for understanding their molecular-level toxicity and assessing their ecological risks, but little is known until now. We investigated impact of imidacloprid (IMI, 52.6 ng/g) and dinotefuran (DIN, 52.5 ng/g) on Eisenia fetida metabolomics under single- and dual-compound exposure scenarios for one to four weeks. Dissimilar metabolites and anti-stress strategies were found for different neonicotinoids and exposure scenarios. Specifically, IMI exposure first increased myo-inositol and UDP-glucuronate associated with transmembrane absorption and transformation to IMI-urea, and then increased glutathione and fourteen amino acids (TCA cycle precursors) to resist stress and replenish energy. In contrast, worms exposed to DIN first prepared TCA cycle intermediates from glucosamine-6-phosphate and amino acids, suppressed urea cycle and DIN transformation, and then alleviated oxidative stress by increasing carnosine, nicotinate-D-ribonucleotide and nicotinamide-β-riboside. Dual exposure increased four eicosanoids by 1.6-1.9-fold, possibly associated with membrane lipid peroxidation; the amino acids consumed to balance the energy metabolism exhibited a wave-like pattern. This study first systematically revealed the compound/time/exposure scenario- dependent effects of trace neonicotinoids on earthworm metabolomics and advanced the understanding of their action modes. Neonicotinoid transformation was closely related to worms' metabolic profiles, providing important insights in contaminant fate in soil ecosystems.
Collapse
Affiliation(s)
- Haiyun Zhang
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China
| | | | - Weiguang Lv
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China.
| | - Xianqing Zheng
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China
| | - Hanlin Zhang
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China
| | - Shuangxi Li
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China
| | - Juanqin Zhang
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China
| | - Naling Bai
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China
| | - Yue Zhang
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xilong Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
36
|
Kaczyński P, Łozowicka B, Perkowski M, Hrynko I, Zoń W. Exposure of wild boars (Sus scrofa L) to neonicotinoid insecticides. CHEMOSPHERE 2021; 279:130519. [PMID: 33862362 DOI: 10.1016/j.chemosphere.2021.130519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
The aim was to determine, for the first time, concentrations of 7 neonicotinoids (NEOs) and 5 metabolites in Sus scrofa from hunting areas in north-eastern Poland and assess the risk to consumers eating boar meat. 42 wild boar muscle samples were collected over a one-year period. The concentrations of 12 NEOs were determined by a fully validated LC-ESI-MS/MS protocol based on ultrasonic, freezing and cleanup EMR-lipid sample preparation. NEOs were present in over 83% of samples, 17% had no residue, and one pesticide was present in 36% of samples. Most often found were: clothianidin (35%), acetamiprid and imidacloprid (33%), thiacloprid (31%), thiamethoxam (9%), and the average concentrations were (ng g-1): thiacloprid 6.2 > imidacloprid 5.7 > acetamiprid 4.6 > clothianidin 2.2 > thiacloprid 1.6 > thiamethoxam 1.0. Multi-residue samples were found, one with 7 and one with 5 NEOs. Two NEOs were present in 24%; 3 in 39% and 4 in 10% of samples. In the metabolic degradation of acetamiprid, imidacloprid and thiacloprid, it was observed that metabolites account for no more than 8.5% of the measured parent substance. Acetamiprid-n-desmethyl was noted most often (21%). Due to the detection of NEOs in a large proportion of samples, chronic and acute risk assessment were performed. The estimated chronic and acute risk for consumers from NEOs neonicotinoids through the consumption of wild boar was very low and amounted to respectively 0.02% of ADI and 0.86% of ARfD.
Collapse
Affiliation(s)
- Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22, 15-195, Białystok, Poland.
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22, 15-195, Białystok, Poland
| | - Maciej Perkowski
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1, 15-213, Białystok, Poland
| | - Izabela Hrynko
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22, 15-195, Białystok, Poland
| | - Wojciech Zoń
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1, 15-213, Białystok, Poland
| |
Collapse
|
37
|
Kang L, Liu H, Zhao D, Pan C, Wang C. Pesticide Residue Behavior and Risk Assessment in Celery after Se Nanoparticles Application. Foods 2021; 10:foods10091987. [PMID: 34574104 PMCID: PMC8470415 DOI: 10.3390/foods10091987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/03/2022] Open
Abstract
This study investigates pesticide levels in celery, and compares their degradation, dissipation, distribution, and dietary risk after spraying with selenium (Se) nanoparticles. Abamectin, imidacloprid, acetamiprid, thiamethoxam, and lambda-cyhalothrin were sprayed at 1.6, 6.8, 2.0, 1.0, and 0.7 g a.i. ha−1 followed by a 2 g·ha−1 Se nanoparticle application during the growing period. Thiamethoxam, abamectin, imidacloprid, lambda-cyhalothrin, and acetamiprid in celery degraded following a first order kinetic model after 2 g·ha−1 Se nanoparticles application. With the exception of acetamiprid, the half-lives of thiamethoxam, abamectin, imidacloprid, and lambda-cyhalothrin were reduced from 2.4, 0.5, 1.2, 4.2 days without Se nanoparticles application to 1.4, 0.2, 0.9, 3.7 days with the addition of Se nanoparticles (2 g·ha−1), respectively. The chronic dietary exposure risk probability (RQc) and the acute dietary exposure risk probability (RQa) of celery after Se nanoparticles application were within acceptable limits for consumption except for abamectin.
Collapse
Affiliation(s)
- Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China;
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.L.); (D.Z.)
| | - Hejiang Liu
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.L.); (D.Z.)
| | - Duoyong Zhao
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.L.); (D.Z.)
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China;
- Correspondence: (C.P.); (C.W.); Tel.: +86-10-6273-1978 (C.P.); +86-991-4502-047 (C.W.); Fax: +86-10-6273-3620 (C.P.)
| | - Cheng Wang
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.L.); (D.Z.)
- Correspondence: (C.P.); (C.W.); Tel.: +86-10-6273-1978 (C.P.); +86-991-4502-047 (C.W.); Fax: +86-10-6273-3620 (C.P.)
| |
Collapse
|
38
|
Zhou Y, Lu X, Yu B, Wang D, Zhao C, Yang Q, Zhang Q, Tan Y, Wang X, Guo J. Comparison of neonicotinoid residues in soils of different land use types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146803. [PMID: 33848872 DOI: 10.1016/j.scitotenv.2021.146803] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 05/27/2023]
Abstract
Neonicotinoid insecticides (NEOs) have attracted particular attention in recent years due to their wide occurrence and potential impacts on the ecosystem and human health. This study aimed to compare the composition and level of NEOs in soils of different land use types. Two rounds of sampling were performed in Tianjin, China, with 158 soil samples in fall and 61 soil samples in spring collected from five types of land, i.e., greenhouse, orchard, farm, park and residential area. The concentrations of eight NEOs, i.e., imidacloprid (IMI), acetamiprid (ACE), thiamethoxam (THX), clothianidin (CLO), thiacloprid (THA), dinotefuran (DIN), nitenpyram (NIT) and flonicamid (FLO), were analyzed in the soil samples using LC-MS/MS. Six NEOs were detected, with IMI, ACE and THX being the most frequently detected ones. Concentrations of NEOs (arithmetic means in fall and spring, respectively) in greenhouse were the highest (2.52×102 and 4.59×102 ng g-1), followed by in orchard (35.1 and 1.31×102 ng g-1), park (50.4 and 1.02×102 ng g-1), residential area (20.2 and 1.38×102 ng g-1) and farm (25.5 and 84.2 ng g-1). The contribution of individual NEO varied in soils of different land use types. Both IMI and THX were largely used in greenhouse, while IMI was the main NEO in the other four lands. The NEO levels in soils planted with different crops varied greatly. Extremely high levels of NEOs (>103 ng g-1) were observed in soils planted with watermelon, tomato and peach in greenhouse. The ubiquitous presence of NEOs in soils deserves more attention, particularly in greenhouse.
Collapse
Affiliation(s)
- Ying Zhou
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China; State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaoxia Lu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China.
| | - Bo Yu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Dan Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Cheng Zhao
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Qiong Yang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Qi Zhang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Ying Tan
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Xinyi Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Junyu Guo
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
39
|
Touzout N, Mehallah H, Moralent R, Moulay M, Nemmiche S. Phytotoxic evaluation of neonicotinoid imidacloprid and cadmium alone and in combination on tomato (Solanum lycopersicum L.). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1126-1137. [PMID: 34085160 DOI: 10.1007/s10646-021-02421-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoids and heavy metals pollution exist simultaneously in agro ecosystem. However, little is known about their combined ecotoxicological effects on non-target crop plants. We have selected imidacloprid (IMI) and cadmium (Cd), applied alone and in combination, to evaluate their effect on growth, physiological and biochemical parameters of tomato. Results showed that the single application of contaminants (IMI and/or Cd) adversely affected both the growth and chlorophyll pigment, and Cd alone application was more phytotoxic than IMI. However, their combined action aggravated the inhibitory effect and indicate a synergistic effect, but it exerted antagonistic effects on chlorophyll pigment inhibition compared with IMI and Cd alone treatments. Both chemicals increased hydrogen peroxide level and generated lipid peroxidation, and the co-contamination exacerbates oxidative stress by their synergistic effect. Those results implicate that disturbance of cellular redox status is the plausible mechanism for IMI and Cd induced toxicity. In conclusion, the single or combined IMI and Cd cause negative effects on tomatoes.
Collapse
Affiliation(s)
- Nabil Touzout
- Faculty of Nature and Life Sciences, Department of Agronomy, University of Mostaganem, Mostaganem, 27000, Algeria
| | - Hafidha Mehallah
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria
| | - Radia Moralent
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria
| | - Mohammed Moulay
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria
- Stem Cells Research Group, KFMRC, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Saïd Nemmiche
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria.
| |
Collapse
|
40
|
Li Z, Sun J, Zhu L. Organophosphorus pesticides in greenhouse and open-field soils across China: Distribution characteristic, polluted pathway and health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142757. [PMID: 33097252 DOI: 10.1016/j.scitotenv.2020.142757] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
A national-scale survey was conducted to investigate the distribution characteristic, polluted pathway and health risk of organophosphorus pesticides (OPPs) in greenhouse and open-field soils in 20 regions across China. The total concentrations of eight OPPs ranged from 22.1 to 435 ng/g with a mean of 96.2 ng/g in greenhouses, and from 9.93 to 303 ng/g with a mean of 66.6 ng/g in open fields. Due to the intensive agricultural activities, the high residue of OPPs in greenhouse and open-field soils was found in the northeastern, northern and central areas. Furthermore, the effect of environmental factors (i.e. human activities, soil properties, heavy metals and microorganism) on OPPs were evaluated through the partial least squares path modeling. Apart from microorganisms, all the other factors affected the soil contamination of OPPs directly (p < 0.05), where the soil properties occupied the most important position (p < 0.01). In greenhouses, the highest correlation was observed in the relationship between human activities and soil properties, indicating that their combination was more likely to cause the contamination of OPPs in greenhouses indirectly. Moreover, the soil properties had the significant effect on the heavy metals in open fields (p < 0.05), suggesting that the residual OPPs in open fields was sensitive to interaction of these two factors. Although the hazard indexes in all soil samples were less than 1.0, the children were more susceptible to the non-cancer risks of OPPs in greenhouse. This study provided valuable information to understand the pollution status of OPPs in farmlands and protect the agroecological environment.
Collapse
Affiliation(s)
- Zhiheng Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|