1
|
Huang Z, Niu S, Li X, Guo J, Yang Z, Zhou J, Cheng Y, Zhang Y, Jiang L, Yu J, Zhang X, Li H. Biochar immobilized Proteus mirabilis Ch8 to enhance the Cd phytoremediation potential of woody plant Robinia pseudoacacia L. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124620. [PMID: 39983576 DOI: 10.1016/j.jenvman.2025.124620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/29/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
The resource-oriented utilization of agricultural solid wastes as biochar is eco-friendly and cost-effective, but the application of biochar for Cd-polluted soil remediation hindered by their efficiency and complicated field condition. This study used three types of raw materials i.e. oil tea (Camellia oleifera Abel) shell, reed straw, and urban sludge to prepare pyrolysis biochar. Meanwhile, a Cd highly resistant Proteus mirabilis Ch8 isolated from Robinia pseudoacacia L. rhizosphere was immobilized to form a biochar-bacteria composite for the remediation of Cd-polluted soil. The pyrolysis configurations and adsorption curves were studied and sludge biochar prepared at 700 °C was the most suitable for Cd adsorption which could be further accelerated to 79.97 mg g-1 Cd adsorption concentration as sludge biochar-bacteria composite (CHB). After CHB treated the rhizosphere of R. pseudoacacia L. under Cd stress soil, it was shown that the CHB could synergistically (E-value > 0) enhance the Cd root enrichment level (BCF = 3.21), while soil Cd availability decreased by 78%, showing effective soil remediation potential. Further plant growth parameters indicated that plant biomass and photosynthesis level increased up to 2.25 and 2.34 folds compared to the untreated control. In addition, CHB largely improved the rhizosphere bacterial community diversity and functional species, with 13 types of rhizobia that might have N-fixing and growth promoting effects on plants. The study thoroughly explored how biochar interacts with microorganisms to improve Cd adsorption, enhance soil quality, and promote plant growth. By coupling biochar preparation configurations with enhanced Cd soil remediation efficiency, the study connects the utilization of waste biomass with the restoration of heavy metal. This highlights the potential of integrated biological and carbon-based technologies to address global environmental challenges.
Collapse
Affiliation(s)
- Zhongliang Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan academy of forestry, Changsha 410004, China
| | - Shuqi Niu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuejun Li
- China energy engineering group Hunan electric power design institute Co., LTD, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zihao Yang
- College of Life and environmental sciences, Central south University of forestry and technology, Changsha, Hunan 410004, China
| | - Jinxing Zhou
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yuanlin Cheng
- China energy engineering group Hunan electric power design institute Co., LTD, China
| | - Yi Zhang
- China energy engineering group Hunan electric power design institute Co., LTD, China
| | - Lijuan Jiang
- College of Life and environmental sciences, Central south University of forestry and technology, Changsha, Hunan 410004, China
| | - Jinlan Yu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan academy of forestry, Changsha 410004, China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan academy of forestry, Changsha 410004, China.
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan academy of forestry, Changsha 410004, China.
| |
Collapse
|
2
|
Manzoor M, Guan DX, Ma LQ. Plant-microbiome interactions for enhanced crop production under cadmium stress: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178538. [PMID: 39879949 DOI: 10.1016/j.scitotenv.2025.178538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Cadmium (Cd) is a toxic heavy metal that has detrimental effects on agriculture crops and human health. Both natural and anthropogenic processes release Cd into the environment, elevating its contents in soils. Under Cd stress, strong plant-microbiome interactions are important in improving crop production, but a systematic review is still missing. This review demonstrates the importance of microbiomes and their interactions with plants in mitigating Cd toxicity and promoting crop growth. Endogenous and exogenous microbiomes play a role to enhance plant's ability to respond to Cd stress. Specifically, the rhizosphere microbiome, which includes plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi, endosphere microbiome, and phyllosphere microbiome, are involved in Cd accumulation, immobilization, and translocation, and Cd-induced stress management. The mechanisms underlying these plant-microbiome interactions vary depending on the species and varieties of crops, composition and diversity of the microbiome, and level of Cd stress. Among the microbiome-mediated approaches, biosorption, bioprecipitation, and bioaccumulation are promising for Cd remediation in soil. Additionally, the endosphere microbiome, particularly Cd resistant endophytes, reduces Cd toxicity, increases the expression of Cd efflux genes, and enhances crop growth through regulating crops' antioxidant machinery and endogenous hormones. Furthermore, improved agricultural practices modulate the soil and plant microbiomes, thereby reducing Cd stress and increasing crop productivity.
Collapse
Affiliation(s)
- Maria Manzoor
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Wan S, Wang S, Li Y, Xie Y, Li Q, Fang Y, Yin Z, Wang S, Zhai Y, Tang B. Megoura crassicauda promote the ability of Vicia faba L. to remediate cadmium pollution of water and soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117777. [PMID: 39854864 DOI: 10.1016/j.ecoenv.2025.117777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
With the increasing severity of heavy metal pollution in soil and water, phytoremediation is becoming increasingly popular because of its low cost, high returns, and environmental friendliness. The use of leguminous plants such as the broad bean for heavy metal remediation is becoming a research hotspot because of their symbiotic relationship with rhizobia. This study investigated the cadmium (Cd) remediation ability of fava beans by M. crassicauda feeding on or not using both hydroponic and soil cultures containing varying concentrations of Cd. Under hydroponic conditions, the Cd content in fava beans increased significantly following aphid invasion. while the Cd content decreased after aphid infestation under soil cultivation conditions. Aphid infestation significantly decreased the Cd content in both soil and hydroponic solution. However, there were no significant changes in germination rate and phenotype. We also found that prolonged Cd treatment increased the activities of stress-related antioxidant enzymes in fava beans, including superoxide dismutase, peroxidase, and malondialdehyde. After consumption by M. crassicauda, the levels of total sugar content underwent varying changes. These results demonstrate that fava beans not only exhibit high Cd tolerance but can also effectively absorb Cd ions from soil and water. Moreover, pest infestation can enhance broad bean remediation efficiency, making them potential targets for use in the phytoremediation of heavy metal pollution.
Collapse
Affiliation(s)
- Sijing Wan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Shasha Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Yan Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Yexin Xie
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Qimei Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Yinjie Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China; Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, PR China.
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China.
| |
Collapse
|
4
|
Chi Y, Wang R, Zhang X, Ma X, Qin T, Zhang D, Chu S, Zhao T, Zhou P, Zhang D. Identification of cadmium-tolerant plant growth-promoting rhizobacteria and characterization of its Cd-biosorption and strengthening effect on phytoremediation: Development of a new amphibious-biocleaner for Cd-contaminated site. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123225. [PMID: 39504667 DOI: 10.1016/j.jenvman.2024.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
The use of plant growth-promoting rhizobacteria (PGPR) in decontaminating cadmium-contaminated soil and water is a sustainable and eco-friendly approach. This study aimed to isolate a PGPR strain from the rhizosphere soil of Solanum nigrum and evaluate its potential and mechanisms in remediating Cd-contaminated environments. The results showed that the isolated strain, Klebsiella sp. AW2, can tolerate 240 mg/L Cd2+. Batch biosorption experiments indicated that the optimal conditions for PGPR biosorption were a pH of 5.0, a biosorbent dosage of 1.0 g/L, and a Cd2+ concentration of 10 mg/L, resulting in a biosorption rate of 40.99%. Model fitting results revealed that the Cd biosorption process followed a uniform surface monolayer chemisorption mechanism, likely involving complexation with functional groups such as -NH, -OH, and -C=O, according to Fourier transform infrared spectrometer and desorption experiments. Furthermore, pot experiments demonstrated that PGPR application significantly enhanced the phytoremediation efficiency of Cd-contaminated soil, increasing the phytoextraction ratio by 32.41%. This improvement was primarily achieved by promoting S. nigrum growth and facilitating Cd horizontal transfer from rhizosphere soil to plants through influencing the rhizosphere soil physicochemical properties and Cd2+ influx in roots. In addition, the copy number of the 16S rRNA gene of the PGPR revealed that the PGPR was predominantly localized in the rhizosphere soil, directly leading to increased availability of Cd for plant uptake. Overall, these findings indicate that Klebsiella sp. AW2 is a promising biocleaner for Cd-contaminated environments and provide valuable insights into the application of biosorbents in phytoremediation efforts.
Collapse
Affiliation(s)
- Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Xianzhong Ma
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Tian Qin
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Dongwei Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Ting Zhao
- Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Liu S, Huang Y, Zheng Q, Zhan M, Hu Z, Ji H, Zhu D, Zhao X. Cd-Resistant Plant Growth-Promoting Rhizobacteria Bacillus siamensis R27 Absorbed Cd and Reduced Cd Accumulation in Lettuce ( Lactuca sativa L.). Microorganisms 2024; 12:2321. [PMID: 39597710 PMCID: PMC11596447 DOI: 10.3390/microorganisms12112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
The use of plant growth-promoting rhizobacteria (PGPR) for the bioremediation of heavy metal cadmium (Cd) and for enhancing plant growth in Cd-polluted soil is widely recognized as an effective approach. This study aimed to isolate Cd-resistant bacteria with plant growth-promoting (PGP) traits from the rhizosphere of vegetables subjected to metal contamination and to investigate the mechanisms associated with Cd adsorption as well as its impact on Cd uptake in lettuce. Six Cd-resistant bacterial strains were isolated from rhizosphere soil, among which the R27 strain exhibited the highest tolerance to Cd (minimum inhibitory concentration of 2000 mg/L) along with PGP traits, including phosphate solubilization (385.11 mg/L), the production of indole-3-acetic acid (IAA) (35.92 mg/L), and siderophore production (3.34 mg/L). Through a range of physiological, biochemical, and molecular assessments, the R27 strain was classified as Bacillus siamensis. This strain demonstrated notable efficiency in removing Cd2+ from the growth medium, achieving an efficacy of 80.1%. This removal was facilitated by cell surface adsorption through functional groups such as O-H, C=O, -CO-NH-, and C-O, alongside intracellular Cd accumulation, as evidenced by SEM, TEM, EDX, and FTIR analyses. Pot culture experiments indicated that R27 significantly promoted lettuce seedling growth and helped plants tolerate Cd stress, with the underlying mechanisms likely involving increased antioxidant activities for scavenging reactive oxygen species (ROS) induced by Cd stress, and reduced Cd2+ levels in lettuce seedlings to mitigate Cd2+ toxicity. These physiological changes were further supported by the down-regulation of genes associated with cadmium transport, including IRT1, Nramp1, HMA2, HMA4, ZIP4, and ZIP12, as well as the significantly reduced root bio-concentration factor (BCF) and translocation factor (TF). In summary, the R27 strain offers considerable potential in the bioremediation of Cd-polluted soils and can serve as a bio-fertilizer to enhance plant growth.
Collapse
Affiliation(s)
- Shaofang Liu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (S.L.); (Y.H.); (Q.Z.); (M.Z.); (Z.H.)
- State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yushan Huang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (S.L.); (Y.H.); (Q.Z.); (M.Z.); (Z.H.)
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Qinyuan Zheng
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (S.L.); (Y.H.); (Q.Z.); (M.Z.); (Z.H.)
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Mengting Zhan
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (S.L.); (Y.H.); (Q.Z.); (M.Z.); (Z.H.)
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Zhihong Hu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (S.L.); (Y.H.); (Q.Z.); (M.Z.); (Z.H.)
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Hongjie Ji
- State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| | - Du Zhu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (S.L.); (Y.H.); (Q.Z.); (M.Z.); (Z.H.)
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Xia Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Lanzhou 730000, China;
| |
Collapse
|
6
|
Li J, Yang X, Chen M, Zhang L. Enhancing the effect of novel cd mobilization bacteria on phytoremediation and microecology of cadmium contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 27:287-297. [PMID: 39400042 DOI: 10.1080/15226514.2024.2414911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The efficacy of phytoextraction for remediating heavy-metal contaminated soil depends on the bioavailability of the heavy metals and plant growth. In this study, we employed a synergistic system comprising water-soluble chitosan and the novel Cd mobilization bacteria, Serratia sp. K6 (hereafter K6), to enhance cadmium (Cd) extraction by Lolium perenne L. (ryegrass). The application of chitosan and K6 resulted in an increase in the biomass of ryegrass by 11.81% and Cd accumulation by 73.99% and effective-state Cd by 43.69% and pH decreased by 4.67%, compared to the control group. Microbiome and metabolomics analyses revealed significant alterations in the inter-root microbial ommunity, with rhizobacteria such as Sphingomonas, Nocardioides, and Bacillus likely contributing to enhanced plant growth and Cd accumulation in response to chitosan and K6 addition. Additionally, the contents of various organic acids, amino acids, lipids, and other metabolites exhibited significant changes under different additive treatments, suggesting that ryegrass can regulate its own metabolites to resist Cd stress. This study provides valuable insights into the effects of additives on phytoextraction efficiency and the soil bacterial community, offering a promising approach for phytoremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Jiapeng Li
- College of Resources and Environment, Qingdao Agricultural University Qingdao, P.R. China
| | - Xiaoqian Yang
- College of Resources and Environment, Qingdao Agricultural University Qingdao, P.R. China
| | - Mengxin Chen
- College of Resources and Environment, Qingdao Agricultural University Qingdao, P.R. China
| | - Lei Zhang
- College of Resources and Environment, Qingdao Agricultural University Qingdao, P.R. China
| |
Collapse
|
7
|
Chi Y, Ma X, Zhang X, Wang R, Zhang D, Chu S, Zhao T, Zhou P, Zhang D. Plant growth promoting endophyte modulates soil ecological characteristics during the enhancement process of cadmium phytoremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122206. [PMID: 39197342 DOI: 10.1016/j.jenvman.2024.122206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024]
Abstract
Endophyte assisted phytoremediation of cadmium (Cd) contaminated soil represents a promising strategy. However, the precise soil ecological regulatory mechanisms by which endophyte enhance the Cd phytoextraction remain unclear. Here, we employed the plant growth promoting endophyte (PGPE) Pseudomonas sp. E3, which has been validated to effectively enhance Cd extraction in Solanum nigrum L., to investigate its regulatory mechanism on soil ecology. The results demonstrated that while PGPE inoculation resulted in minimal alterations to the physicochemical properties of the bulk soil, it led to a notable increase in acid phosphatase activity by 17.86% and urease activity by 24.85% in the rhizosphere soil. This, in turn, significantly raised the available nitrogen and phosphorus contents by 16.93% and 21.27%, respectively, in the rhizosphere soil. Additionally, PGPE inoculation effectively replenished the bioavailable fractions of Fe and Cd, which had been depleted due to root uptake. Importantly, the inoculation specifically augmented the abundance of biomarkers p_Patescibacteria, f_Saccharimonadales, and g_Saccharimonadales in the rhizosphere soil. These biomarkers exhibited a significant positive correlation with the available nutrient and metal element contents. Moreover, the co-occurrence network analysis demonstrated that the inoculation resulted in a simplified bacterial community network, which may have facilitated community synergism by displacing bacteria with a negative association. This regulation appears to occur independently of PGPE colonization. Overall, our findings suggested that PGPE also exerts a regulatory influence on soil ecological features, significantly aiding hyperaccumulators in nutrient acquisition and heavy metal accumulation.
Collapse
Affiliation(s)
- Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China.
| | - Xianzhong Ma
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Dongwei Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Ting Zhao
- Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Gao Y, Zhang X, Wang L, Guan E, Zhu L, Wang J, Kim YM, Wang J. Contribution of Cd passivating functional bacterium H27 to tobacco growth under Cd stress. CHEMOSPHERE 2024; 362:142552. [PMID: 38849098 DOI: 10.1016/j.chemosphere.2024.142552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
The cadmium (Cd) embedded in tobacco not only affects yield and quality but also harms human health. Microbial remediation has attracted widespread attention due to its low cost and minimal risk of secondary pollution. Therefore, researching microbes capable of inhibiting crop absorption of heavy metals or removing heavy metals from the environment has significant practical implications. This study screened a strain named H27 with a Cd immobilization efficiency of up to 76.60%. Static cultivation experiments showed that immobilization of Cd by H27 is achieved through intracellular absorption, hydroxyl, carboxyl, and phosphate group reactions on the cell wall. The bacterium can also secrete extracellular substances to adsorb Cd and increase the environmental pH, reducing the bioavailability of Cd. H27 reduced the accumulation of Cd in the stems of hydroponically grown tobacco by 55.23% and decreased the expression of three Cd transport genes, HAM2, IRT1, and NRAMP1, in the roots. Additionally, H27 increased the mineralization rate of organic matter, increased the content of humic acid in the soil, promoted the formation of smaller soil particles, and enhanced the adsorption and fixation of Cd by soil components while simultaneously raising the pH of rhizosphere and non-rhizosphere soils in tobacco growth environments. Both hydroponic and potted experiments showed that H27 alleviated the inhibitory effect of Cd on tobacco growth, significantly reducing Cd accumulation in various parts of tobacco and lowering the transfer coefficient of Cd within the tobacco plant. This study aims to effectively reduce the Cd content in tobacco using microbes, mitigate the harm of heavy metals in cigarettes to human health, and provide theoretical and practical basis for the application of microbial techniques to control heavy metal absorption in tobacco.
Collapse
Affiliation(s)
- Yuanfei Gao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Xingtao Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Lanjun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Ensen Guan
- Shandong Weifang Tobacco Company Limited, Weifang, 261000, China.
| | - Lusheng Zhu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Jinhua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
9
|
Niu SQ, Song HR, Zhang X, Bao XW, Li T, He LY, Li Y, Li Y, Zhang DX, Bai J, Liu SJ, Guo JL. The Cd resistant mechanism of Proteus mirabilis Ch8 through immobilizing and detoxifying. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116432. [PMID: 38728947 DOI: 10.1016/j.ecoenv.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Cadmium (Cd) pollution is a serious global environmental problem, which requires a global concern and practical solutions. Microbial remediation has received widespread attention owing to advantages, such as environmental friendliness and soil amelioration. However, Cd toxicity also severely deteriorates the remediation performance of functional microorganisms. Analyzing the mechanism of bacterial resistance to Cd stress will be beneficial for the application of Cd remediation. In this study, the bacteria strain, up to 1400 mg/L Cd resistance, was employed and identified as Proteus mirabilis Ch8 (Ch8) through whole genome sequence analyses. The results indicated that the multiple pathways of immobilizing and detoxifying Cd maintained the growth of Ch8 under Cd stress, which also possessed high Cd extracellular adsorption. Firstly, the changes in surface morphology and functional groups of Ch8 cells were observed under different Cd conditions through SEM-EDS and FTIR analyses. Under 100 mg/L Cd, Ch8 cells exhibited aggregation and less flagella; the Cd biosorption of Ch8 was predominately by secreting exopolysaccharides (EPS) and no significant change of functional groups. Under 500 mg/L Cd, Ch8 were present irregular polymers on the cell surface, some cells with wrapping around; the Cd biosorption capacity exhibited outstanding effects (38.80 mg/g), which was mainly immobilizing Cd by secreting and interacting with EPS. Then, Ch8 also significantly enhanced the antioxidant enzyme activity and the antioxidant substance content under different Cd conditions. The activities of SOD and CAT, GSH content of Ch8 under 500 mg/L Cd were significantly increased by 245.47%, 179.52%, and 241.81%, compared to normal condition. Additionally, Ch8 significantly induced the expression of Acr A and Tol C (the resistance-nodulation-division (RND) efflux pump), and some antioxidant genes (SodB, SodC, and Tpx) to reduce Cd damage. In particular, the markedly higher expression levels of SodB under Cd stress. The mechanism of Ch8 lays a foundation for its application in solving soil remediation.
Collapse
Affiliation(s)
- Shu-Qi Niu
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Hao-Ran Song
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Xiu-Wen Bao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Ting Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Li-Ying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Yong Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Yang Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Dai-Xi Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Jing Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Si-Jing Liu
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China.
| |
Collapse
|
10
|
Gol-Soltani M, Ghasemi-Fasaei R, Ronaghi A, Zarei M, Zeinali S, Haderlein SB. Efficient Immobilization of heavy metals using newly synthesized magnetic nanoparticles and some bacteria in a multi-metal contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39602-39624. [PMID: 38822962 DOI: 10.1007/s11356-024-33808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Simultaneous application of modified Fe3O4 with biological treatments in remediating multi-metal polluted soils, has rarely been investigated. Thus, a pioneering approach towards sustainable environmental remediation strategies is crucial. In this study, we aimed to improve the efficiency of Fe3O4 as adsorbents for heavy metals (HMs) by applying protective coatings. We synthesized core-shell magnetite nanoparticles coated with modified nanocellulose, nanohydrochar, and nanobiochar, and investigated their effectiveness in conjunction with bacteria (Pseudomonas putida and Bacillus megaterium) for remediating a multi-metal contamination soil. The results showed that the coatings significantly enhanced the immobilization of heavy metals in the soil, even at low doses (0.5%). The coating of nanocellulose had the highest efficiency in stabilizing metals due to the greater variety of surface functional groups and higher specific surface area (63.86 m2 g-1) than the other two coatings. Interestingly, uncoated Fe3O4 had lower performance (113.6 m2 g-1) due to their susceptibility to deformation and oxidation. The use of bacteria as a biological treatment led to an increase in the stabilization of metals in soil. In fact, Pseudomonas putida and Bacillus megaterium increased immobilization of HMs in soil successfully because of extracellular polymeric substances and intensive negative charges. Analysis of metal concentrations in plants revealed that Ni and Zn accumulated in the roots, while Pb and Cd were transferred from the roots to the shoots. Treatment Fe3O4 coated with modified nanocellulose at rates of 0.5 and 1% along with Pseudomonas putida showed the highest effect in stabilizing metals. Application of coated Fe3O4 for in-situ immobilization of HMs in contamination soils is recommendable due to their high metal stabilization efficiency and suitability to apply in large quantities.
Collapse
Affiliation(s)
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sedigheh Zeinali
- Department of Nanochemical Engineering, Shiraz University, Shiraz, Iran
| | - Stefan B Haderlein
- Department of Environmental Mineralogy, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Zainab N, Glick BR, Bose A, Amna, Ali J, Rehman FU, Paker NP, Rengasamy K, Kamran MA, Hayat K, Munis MFH, Sultan T, Imran M, Chaudhary HJ. Deciphering the mechanistic role of Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) in bio-sorption and phyto-assimilation of Cadmium via Linum usitatissimum L. Seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108652. [PMID: 38723488 DOI: 10.1016/j.plaphy.2024.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Three Cd2+ resistant bacterium's minimal inhibition concentrations were assessed and their percentages of Cd2+ accumulation were determined by measurements using an atomic absorption spectrophotometer (AAS). The results revealed that two isolates Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52), identified by 16S rDNA gene sequencing, showed a higher percentage of Cd2+ accumulation i.e., 83.78% and 81.79%, respectively. Moreover, both novel strains can tolerate Cd2+ levels up to 2000 mg/L isolated from district Chakwal. Amplification of the czcD, nifH, and acdS genes was also performed. Batch bio-sorption studies revealed that at pH 7.0, 1 g/L of biomass, and an initial 150 mg/L Cd2+ concentration were the ideal bio-sorption conditions for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52). The experimental data were fit to Langmuir isotherm measurements and Freundlich isotherm model R2 values of 0.999 for each of these strains. Bio sorption processes showed pseudo-second-order kinetics. The intra-diffusion model showed Xi values for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) of 2.26 and 2.23, respectively. Different surface ligands, was investigated through Fourier-transformation infrared spectroscopy (FTIR). The scanning electron microscope SEM images revealed that after Cd2+ adsorption, the cells of both strains became thick, adherent, and deformed. Additionally, both enhanced Linum usitatissimum plant seed germination under varied concentrations of Cd2+ (0 mg/L, 250 mg/L,350 mg/L, and 500 mg/L). Current findings suggest that the selected strains can be used as a sustainable part of bioremediation techniques.
Collapse
Affiliation(s)
- Nida Zainab
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Bernard R Glick
- Department of Biology, University of Water Loo, Ontario, Canada
| | - Arpita Bose
- Department of Biology Washington University in St. Louis (WUSTL), United States
| | - Amna
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Botany, Rawalpindi Women University, 6th Road Sattellite Town, Rawalpindi, Pakistan
| | - Javed Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fazal Ur Rehman
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, Tasmania, Australia
| | - Najeeba Parre Paker
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | - Muhammad Aqeel Kamran
- College of Environmental and Resource Sciences, Zhejiang University Hangzhou China, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Tariq Sultan
- Land Resource Research Institute, NARC, Islamabad, Pakistan
| | - Muhammad Imran
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
12
|
Yan ZX, Li Y, Peng SY, Wei L, Zhang B, Deng XY, Zhong M, Cheng X. Cadmium biosorption and mechanism investigation using two cadmium-tolerant microorganisms isolated from rhizosphere soil of rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134134. [PMID: 38554514 DOI: 10.1016/j.jhazmat.2024.134134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
Microbial remediation of cadmium-contaminated soil offers advantages like environmental friendliness, cost-effectiveness, and simple operation. However, the efficacy of this remediation process relies on obtaining dominant strains and a comprehensive understanding of their Cd adsorption mechanisms. This study identified two Cd-resistant bacteria, Burkholderia sp. 1-22 and Bacillus sp. 6-6, with significant growth-promoting effects from rice rhizosphere soil. The strains showed remarkable Cd resistance up to ∼200 mg/L and alleviated Cd toxicity by regulating pH and facilitating bacterial adsorption of Cd. FTIR analysis showed crucial surface functional groups, like carboxyl and amino groups, on bacteria played significant roles in Cd adsorption. The strains could induce CdCO3 formation via a microbially induced calcium precipitation (MICP) mechanism, confirmed by SEM-EDS, X-ray analysis, and elemental mapping. Pot experiments showed these strains significantly increased organic matter and enzyme activity (e.g., urease, sucrase, peroxidase) in the rhizosphere soil versus the control group. These changes are crucial for restricting Cd mobility. Furthermore, strains 6-6 and 1-22 significantly enhance plant root detoxification of Cd, alleviating toxicity. Notably, increased pH likely plays a vital role in enhancing Cd precipitation and adsorption by strains, converting free Cd into non-bioavailable forms.
Collapse
Affiliation(s)
- Zu-Xuan Yan
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi Li
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuai-Ying Peng
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lei Wei
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bao Zhang
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin-Yao Deng
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Min Zhong
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xin Cheng
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
13
|
Lin L, Wu X, Deng X, Lin Z, Liu C, Zhang J, He T, Yi Y, Liu H, Wang Y, Sun W, Xu Z. Mechanisms of low cadmium accumulation in crops: A comprehensive overview from rhizosphere soil to edible parts. ENVIRONMENTAL RESEARCH 2024; 245:118054. [PMID: 38157968 DOI: 10.1016/j.envres.2023.118054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal often found in soil and agricultural products. Due to its high mobility, Cd poses a significant health risk when absorbed by crops, a crucial component of the human diet. This absorption primarily occurs through roots and leaves, leading to Cd accumulation in edible parts of the plant. Our research aimed to understand the mechanisms behind the reduced Cd accumulation in certain crop cultivars through an extensive review of the literature. Crops employ various strategies to limit Cd influx from the soil, including rhizosphere microbial fixation and altering root cell metabolism. Additional mechanisms include membrane efflux, specific transport, chelation, and detoxification, facilitated by metalloproteins such as the natural resistance-associated macrophage protein (Nramp) family, heavy metal P-type ATPases (HMA), zinc-iron permease (ZIP), and ATP-binding cassette (ABC) transporters. This paper synthesizes differences in Cd accumulation among plant varieties, presents methods for identifying cultivars with low Cd accumulation, and explores the unique molecular biology of Cd accumulation. Overall, this review provides a comprehensive resource for managing agricultural lands with lower contamination levels and supports the development of crops engineered to accumulate minimal amounts of Cd.
Collapse
Affiliation(s)
- Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zheng Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Chunguang Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China
| | - Jiexiang Zhang
- GRG Metrology& Test Group Co., Ltd., Guangzhou, 510656, China
| | - Tao He
- College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Yunqiang Yi
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhimin Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
14
|
Roy V, Saha BK, Adhikary S, Chaki MG, Sarkar M, Pal A. Isolation, characterization, identification, genomics and analyses of bioaccumulation and biosorption potential of two arsenic-resistant bacteria obtained from natural environments. Sci Rep 2024; 14:5716. [PMID: 38459150 PMCID: PMC10924095 DOI: 10.1038/s41598-024-56082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Arsenic (As) is a significant contaminant whose unrestrained entrance into different ecosystems has created global concern. At the cellular level, As forms unsteady intermediates with genetic materials and perturbs different metabolic processes and proper folding of proteins. This study was the first in this region to explore, isolate, screen systematically, and intensively characterize potent As-tolerant bacterial strains from natural environments near Raiganj town of Uttar Dinajpur, West Bengal. In this study, two potent Gram-negative bacterial strains with high tolerance to the poisonous form of As, i.e., As(III) and As(V), were obtained. Both the isolates were identified using biochemical tests and 16S rRNA gene sequencing. These bacteria oxidized toxic As(III) into less poisonous As(V) and depicted tolerance towards other heavy metals. Comparative metabolic profiling of the isolates in control and As-exposed conditions through Fourier-transform infrared spectroscopy showed metabolic adjustments to cope with As toxicity. The metal removal efficiency of the isolates at different pH showed that one of the isolates, KG1D, could remove As efficiently irrespective of changes in the media pH. In contrast, the efficiency of metal removal by PF14 was largely pH-dependent. The cell mass of both the isolates was also found to favourably adsorb As(III). Whole genome sequence analysis of the isolates depicted the presence of the arsRBC genes of the arsenic operon conferring resistance to As. Owing to their As(III) oxidizing potential, high As bioaccumulation, and tolerance to other heavy metals, these bacteria could be used to bioremediate and reclaim As-contaminated sites.
Collapse
Affiliation(s)
- Vivek Roy
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Barnan Kumar Saha
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Samarpita Adhikary
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Madhumita G Chaki
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Monalisha Sarkar
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Ayon Pal
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India.
| |
Collapse
|
15
|
Yang W, Sun T, Sun Y. Adsorption mechanism of Cd 2+ on microbial inoculant and its potential for remediation Cd-polluted farmland soils. CHEMOSPHERE 2024; 352:141349. [PMID: 38307335 DOI: 10.1016/j.chemosphere.2024.141349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The adsorption characteristics and mechanism of Cd2+ on microbial inoculant (MI) mainly composed of Bacillus subtilis, Bacillus thuringiensis and Bacillus amyloliquefaciens, and its potential for remediation Cd polluted soils through batch adsorption and soil incubation experiments. It was found that the Freundlich isotherm model and the pseudo-second-order kinetics were more in line with the adsorption processes of Cd2+. The maximum adsorption capacity predicted by Langmuir isotherm model suggested that of MI was 57.38 mg g-1. Scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) images exhibited the surface structure of MI was damaged to varying degrees after adsorption, and Cd element was distributed on the surface of MI through ion exchange. X-ray diffraction (XRD) results showed that CdCO3 was formed on the surface of MI. Moreover, the functional groups (-OH, C-H, and -NH) involved in the adsorption of Cd2+ through fourier transform infrared spectroscopy (FTIR). After applying MI to Cd-contaminated soil, it was found that soil pH, conductivity (EC) and soil organic matter (SOM) increased by 0.84 %-2.43 %, 31.6 %-241.48 %, and 8.11 %-24.1 %, respectively, when compared with the control treatments. The content of DTPA-Cd in the soils was significantly (P < 0.05) reduced by 15.48 %-29.68 % in contrast with CK, and the Cd speciation was transformed into a more stable residual fraction. The activities of urease, phosphatase and sucrose were increased by 3.5 %-45.18 %, 57.00 %-134.18 % and 52.51 %-70.52 %, respectively, compared with CK. Therefore, MI could be used as an ecofriendly and sustainable material for bioremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Wenhao Yang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA)/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA)/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
16
|
Diez-Marulanda JC, Brandão PFB. Potential use of two Serratia strains for cadmium remediation based on microbiologically induced carbonate precipitation and their cadmium resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5319-5330. [PMID: 38114705 DOI: 10.1007/s11356-023-31062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/11/2023] [Indexed: 12/21/2023]
Abstract
Cadmium (Cd) presence and bioavailability in soils is a serious concern for cocoa producers. Cocoa plants can bioaccumulate Cd that can reach humans through the food chain, thus posing a threat to human health, as Cd is a highly toxic metal. Currently, microbiologically induced carbonate precipitation (MICP) by the ureolytic path has been proposed as an effective technique for Cd remediation. In this work, the Cd remediation potential and Cd resistance of two ureolytic bacteria, Serratia sp. strains 4.1a and 5b, were evaluated. The growth of both Serratia strains was inhibited at 4 mM Cd(II) in the culture medium, which is far higher than the Cd content that can be found in the soils targeted for remediation. Regarding removal efficiency, for an initial concentration of 0.15 mM Cd(II) in liquid medium, the maximum removal percentages for Serratia sp. 4.1.a and 5b were 99.3% and 99.57%, respectively. Their precipitates produced during Cd removal were identified as calcite by X-ray diffraction. Energy dispersive X-ray spectroscopy analysis showed that a portion of Cd was immobilized in this matrix. Finally, the presence of a partial gene from the czc operon, involved in Cd resistance, was observed in Serratia sp. 5b. The expression of this gene was found to be unaffected by the presence of Cd(II), and upregulated in the presence of urea. This work is one of the few to report the use of bacterial strains of the Serratia genus for Cd remediation by MICP, and apparently the first one to report differential expression of a Cd resistance gene due to the presence of urea.
Collapse
Affiliation(s)
- Juan C Diez-Marulanda
- Universidad Nacional de Colombia - Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente (GERMINA), Av. Carrera 30 # 45-03, 111321, Bogotá, Colombia.
| | - Pedro F B Brandão
- Universidad Nacional de Colombia - Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente (GERMINA), Av. Carrera 30 # 45-03, 111321, Bogotá, Colombia
| |
Collapse
|
17
|
Qi WY, Chen H, Wang Z, Xing SF, Song C, Yan Z, Wang SG. Biochar-immobilized Bacillus megaterium enhances Cd immobilization in soil and promotes Brassica chinensis growth. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131921. [PMID: 37406520 DOI: 10.1016/j.jhazmat.2023.131921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Phosphate solubilizing bacteria (PSB) has been considered an environmental-friendly phosphate fertilizer without cadmium (Cd) input into soils, but its possibility of Cd fixation in soil needs to be explored. Since direct inoculation results in a rapid decline of the population and activity, we immobilized Bacillus megaterium with maize straw biochar (B-PSB) and investigated its feasibility in remediating Cd-contaminated soil. Pot experiments showed that the application of B-PSB significantly ameliorated the growth of Brassica chinensis under Cd stress, with a fresh weight increased by 59.08% compared to the Cd-control. B-PSB reduced Cd accumulation in Brassica chinensis by 61.69%, and promoted the uptake of P and N by 134.97% and 98.71% respectively. Microbial community analysis showed B-PSB recruited more plant growth-promoting bacteria in near-rhizosphere soil, which provides a favorable microenvironment for both PSB and crops. Column leaching experiments verified that B-PSB achieved the dissolution of stable P while fixing Cd. Batch tests further revealed that biochar served as a successful carrier facilitating the growth of B. megaterium and Cd immobilization. Given the widespread Cd contamination in agricultural soils, our results indicate that B-PSB is a promising soil amendment to secure food safety.
Collapse
Affiliation(s)
- Wen-Yu Qi
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hui Chen
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| | - Zhe Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's A1B 3×5, NL, Canada
| | - Su-Fang Xing
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
18
|
Huang J, Tan X, Ali I, Duan Z, Naz I, Cao J, Ruan Y, Wang Y. More effective application of biochar-based immobilization technology in the environment: Understanding the role of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162021. [PMID: 36775150 DOI: 10.1016/j.scitotenv.2023.162021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biochar-based immobilization technology (BIT) has been widely used to treat different environmental issues because of its cost-effectiveness and high removal performance. However, the complexity of the real environment is always ignored, which hinders the transfer of the BIT from lab-scale to commercial applications. Therefore, in this review, the analysis is performed separately on the internal side of the BIT (microbial fixation and growth) and on the external side of the BIT (function) to achieve effective BIT performance. Importantly, the internal two stages of BIT have been discussed concisely. Further, the usage of BIT in different areas is summarized precisely. Notably, the key impacts were systemically analyzed during BIT applications including environmental conditions and biochar types. Finally, the suggestions and perspectives are elucidated to solve current issues regarding BIT.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Kingdom of Saudi Arabia
| | - Jun Cao
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
19
|
Khanniri E, Yousefi M, Mortazavian AM, Khorshidian N, Sohrabvandi S, Koushki MR, Esmaeili S. Biosorption of cadmium from aqueous solution by combination of microorganisms and chitosan: response surface methodology for optimization of removal conditions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:433-446. [PMID: 37035917 DOI: 10.1080/10934529.2023.2188023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/27/2022] [Accepted: 01/07/2023] [Indexed: 06/19/2023]
Abstract
The food-grade adsorbents of Saccharomyces cerevisiae (108 CFU/mL), Bifidobacterium longum (108 CFU/mL) and chitosan (1%w/v) alone or in combination were used for biosorption of cadmium (Cd) from aqueous solution. Among the tested adsorbents, combination of B. longum and chitosan had the highest efficiency. Therefore, biosorption process with B. longum/chitosan as the most efficient biosorbent was optimized by variables of pH (3-6), temperature (4-37 °C), contact time (5-180 min) and Cd concentrations (0.01-5 mg/L) using RSM. Twenty-seven tests were carried out and the data fitted to the second-order polynomial models. Results revealed that 99.11% of Cd was reduced within 180 min at concentration of 2.5 mg/L, pH 6 and temperature of 20.5 °C that were considered as the optimal conditions for Cd removal. The trend of isotherm was more fitted to the Langmuir model and maximum biosorption capacity was obtained about 3.61 mg/g. The pseudo-second-order fitted the biosorption kinetics for Cd ions. The B. longum/chitosan biosorbent exhibited the high affinity to Cd ion in the presence of coexisting metal ions. It could remove 81.18% of Cd from simulated gastrointestinal tract. Thus, B. longum/chitosan can have good potential as an effective adsorbent for Cd biosorption from aqueous solutions and human body.
Collapse
Affiliation(s)
- Elham Khanniri
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | | | - Nasim Khorshidian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Koushki
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeideh Esmaeili
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Xing Y, Liu S, Tan S, Jiang Y, Luo X, Hao X, Huang Q, Chen W. Core Species Derived from Multispecies Interactions Facilitate the Immobilization of Cadmium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4905-4914. [PMID: 36917516 DOI: 10.1021/acs.est.3c00486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microbial consortia have opened new avenues for heavy-metal remediation. However, the limited understanding of the overall effect of interspecific interactions on remediation efficacy hinders its application. Here, the effects of multispecies growth and biofilm formation on Cd immobilization were explored from direct and multiple interactions through random combinations of two or three rhizosphere bacteria. In monocultures, Cd stress resulted in an average decrease in planktonic biomass of 26%, but through cooperation, the decrease was attenuated in dual (21%) and triple cultures (13%), possibly involving an increase in surface polysaccharides. More than 65% of the co-cultures exhibited induction of biofilm formation under Cd stress, which further enhanced the role of biofilms in Cd immobilization. Notably, excellent biofilm-forming ability or extensive social induction makes Pseudomonas putida and Brevundimonas diminuta stand out in multispecies biofilm formation and Cd immobilization. These two core species significantly increase the colonization of soil microorganisms on rice roots compared to the control, resulting in a 40% decrease in Cd uptake by rice. Our study enhances the understanding of bacterial interactions under Cd stress and provides a novel strategy for adjusting beneficial soil consortia for heavy-metal remediation.
Collapse
Affiliation(s)
- Yonghui Xing
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Song Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Shuxin Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yi Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
21
|
Sharma P, Bano A, Yadav S, Singh SP. Biocatalytic Degradation of Emerging Micropollutants. Top Catal 2023. [DOI: 10.1007/s11244-023-01790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
22
|
Wang Z, Tan R, Gong J, Gong B, Guan Q, Mi X, Deng D, Liu X, Liu C, Deng C, Ding C, Zeng G. Process parameters and biological mechanism of efficient removal of Cd(II) ion from wastewater by a novel Bacillus subtilis TR1. CHEMOSPHERE 2023; 318:137958. [PMID: 36708781 DOI: 10.1016/j.chemosphere.2023.137958] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The safe treatment of heavy metals in wastewater is directly related to the human health and social development. In this paper, a new biological strain has been isolated from electroplating wastewater, which can effectively remove metal ions in wastewater. The results of 16 S rDNA sequencing analysis and NCBI GenBank database comparison show that the strain belongs to a novel Bacillus genus and names Bacillus subtilis TR1 with the accession number of OL441606. The removal rate of Cd(II) reaches to 85.68% with the conditions of pH = 7, C0Cd(II) = 20 mg L-1, t = 48 h, m = 0.1 g, and T = 35 °C. The biological removal mechanism of Cd(II) is in-depth studied by FTIR and XRD combined with third-generation sequencing. The results indicate that Bacillus subtilis TR1 removes Cd(II) mainly through two synergistic pathways, namely, extracellular chemisorption and intracellular bioaccumulation: 1) The groups carried on the surface of the strain, such as -COOH, -NH, -OH and C-H, have good chemisorption properties for Cd(II) and easily form cadmium containing chelation (-COO-Cd(II), -N-Cd(II), etc.) with these groups. The appearance of TR1 strain changes from cylindrical to spherical after Cd(II) adsorption, which is due to the biotoxicity of Cd(II); 2) Cd(II) exchanges on the surface of TR1 strain with K and Na ions released from the intracellular cytoplasm and enters the cytoplasm under the transfer of biological transport medium. This part of Cd(II) is converted into its own components by anabolic enzymes and accumulates in the cytoplasm. These data provide a new biological agent for the efficient treatment of heavy metal ions in wastewater and enrich relevant theoretical knowledge.
Collapse
Affiliation(s)
- Zhongbing Wang
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Rong Tan
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Jie Gong
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Baichuan Gong
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Qian Guan
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Xue Mi
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Di Deng
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Xiangning Liu
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Chunli Liu
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Chunjian Deng
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Chunlian Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Guisheng Zeng
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China.
| |
Collapse
|
23
|
Anand S, Singh A, Kumar V. Recent advancements in cadmium-microbe interactive relations and their application for environmental remediation: a mechanistic overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17009-17038. [PMID: 36622611 DOI: 10.1007/s11356-022-25065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
The toxic and persistent nature of cadmium (Cd) in the environment has become a matter of concern with its drastic increase in the concentrations over past few decades. Among the various techniques, the microbial remediation has been accepted as an effective decontamination tool for environmental applications, which is sustainable over a period of time. The Cd decontamination potential of the microbes depends on various internal and external factors that play a crucial role in selection of the microbes for application in a particular environment. Thus, it is important to understand the role of these factors for optimal application of the microbes. This study provides an insight into the mechanisms involved between the microbes and the environmental Cd. The study also briefly reviews the mathematical models that have been used to predict the remediation potential of the microbes and the kinetics involved during the process. A critical analysis of the recent advancements in the techniques for use of bacteria, fungi, and algal cells to remove Cd has been also presented in the manuscript.
Collapse
Affiliation(s)
- Saumya Anand
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Ankur Singh
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004.
| |
Collapse
|
24
|
Negm NA, Altalhi AA, Saleh Mohamed NE, Kana MTHA, Mohamed EA. Growth Inhibition of Sulfate-Reducing Bacteria during Gas and Oil Production Using Novel Schiff Base Diquaternary Biocides: Synthesis, Antimicrobial, and Toxicological Assessment. ACS OMEGA 2022; 7:40098-40108. [PMID: 36385895 PMCID: PMC9647739 DOI: 10.1021/acsomega.2c04836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Upstream crude oil production equipment is always exposed to destruction damagingly which is caused by sulfate-reducing bacterium (SRB) activities that produce H2S gas, which leads to increased metal corrosion (bio-fouling) rates and inflicts effective infrastructure damage. Hence, oil and gas reservoirs must be injected with biocides and inhibitors which still offer the foremost protection against harmful microbial activity. However, because of the economic and environmental risks associated with biocides, the oil and gas sectors improve better methods for their usage. This work describes the synthesis and evaluation of the biological activities as the cytotoxicity and antimicrobial properties of a series of diquaternary cationic biocides that were studied during the inhibition of microbial biofilms. The prepared diquaternary compound was synthesized by coupling vanillin and 4-aminoantipyrene to achieve the corresponding Schiff base, followed by a quaternization reaction using 1,6-bromohexane, 1,8-bromooctane, and 1,12-bromododecane. The increase of their alkyl chain length from 6 to 12 methylene groups increased the obtained antimicrobial activity and cytotoxicity. Antimicrobial efficacies of Q1-3 against various biofilm-forming microorganisms, including bacteria and fungi, were examined utilizing the diameter of inhibition zone procedures. The results revealed that cytotoxic efficacies of Q1-3 were significantly associated mainly with maximum surface excess and interfacial characteristics. The cytotoxic efficiencies of Q1-3 biocides demonstrated promising results due to their comparatively higher efficacies against SRB. Q3 exhibited the highest cytotoxic biocide against the gram +ve, gram -ve, and SRB species according to the inhibition zone diameter test. The toxicity of the studied microorganisms depended on the nature and type of the target microorganism and the hydrophobicity of the biocide molecules. Cytotoxicity assessment and antimicrobial activity displayed increased activity by the increase in their alkyl chain length.
Collapse
Affiliation(s)
- Nabel A. Negm
- Egyptian
Petroleum Research Institute, Petrochemicals, 1 Ahmed Elzommer Street, Nasr City, CairoEG 11776, Egypt
| | - Amal A. Altalhi
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Nermin E. Saleh Mohamed
- Egyptian
Petroleum Research Institute, Petrochemicals, 1 Ahmed Elzommer Street, Nasr City, CairoEG 11776, Egypt
| | - Maram T. H. A. Kana
- National
Institute of LASER Enhanced Science, Cairo
University, Giza11776, Egypt
| | - Eslam A. Mohamed
- Egyptian
Petroleum Research Institute, Petrochemicals, 1 Ahmed Elzommer Street, Nasr City, CairoEG 11776, Egypt
| |
Collapse
|
25
|
Zhou X, Zhang X, Ma C, Wu F, Jin X, Dini-Andreote F, Wei Z. Biochar amendment reduces cadmium uptake by stimulating cadmium-resistant PGPR in tomato rhizosphere. CHEMOSPHERE 2022; 307:136138. [PMID: 36002065 DOI: 10.1016/j.chemosphere.2022.136138] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Biochar amendment in the soil can exert a positive effect in reducing heavy metal toxicity in plants. However, it remains unclear the extent to which this effect is associated with the modulation of plant growth-promoting rhizobacteria (PGPR). Here, we initially conducted a pot experiment using tomato (Solanum lycopersicum L.) as a model plant grown in soil spiked with cadmium. First, we found biochar amendment to result in reduced cadmium uptake in tomato plants and trackable changes in the tomato rhizosphere microbiome. Then, a rhizosphere transplant experiment validated the importance of this microbiome modulation for cadmium-toxicity amelioration. Sequence-based analyses targeted the isolation of representative isolates of PGPR, including Bacillus and Flavisolibacter spp. that displayed in vitro cadmium tolerance and biosorption capabilities (in addition to abilities to solubilize phosphate and produce indole acetic acid). Last, we performed a soil inoculation experiment and confirmed the effectiveness of these isolates in reducing cadmium toxicity in tomato plants. Besides, we found the inoculation of these taxa as single inoculant and in combination to result in increased activities of specific antioxidant enzymes in tomato tissues. Taken together, this study revealed the ecological and physiological mechanisms by which biochar amendment indirectly alleviate cadmium toxicity in tomato plants, in this case, via the modulation and activity of specific PGPR populations. This study provides new insights into strategies able to promote beneficial PGPR in the rhizosphere with potential application to ameliorate heavy metal toxicity in plants.
Collapse
Affiliation(s)
- Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xianhong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Changli Ma
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fengzhi Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue Jin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
26
|
Guzmán-Moreno J, García-Ortega LF, Torres-Saucedo L, Rivas-Noriega P, Ramírez-Santoyo RM, Sánchez-Calderón L, Quiroz-Serrano IN, Vidales-Rodríguez LE. Bacillus megaterium HgT21: a Promising Metal Multiresistant Plant Growth-Promoting Bacteria for Soil Biorestoration. Microbiol Spectr 2022; 10:e0065622. [PMID: 35980185 PMCID: PMC9604106 DOI: 10.1128/spectrum.00656-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022] Open
Abstract
The environmental deterioration produced by heavy metals derived from anthropogenic activities has gradually increased. The worldwide dissemination of toxic metals in crop soils represents a threat for sustainability and biosafety in agriculture and requires strategies for the recovery of metal-polluted crop soils. The biorestoration of metal-polluted soils using technologies that combine plants and microorganisms has gained attention in recent decades due to the beneficial and synergistic effects produced by its biotic interactions. In this context, native and heavy metal-resistant plant growth-promoting bacteria (PGPB) play a crucial role in the development of strategies for sustainable biorestoration of metal-contaminated soils. In this study, we present a genomic analysis and characterization of the rhizospheric bacterium Bacillus megaterium HgT21 isolated from metal-polluted soil from Zacatecas, Mexico. The results reveal that this autochthonous bacterium contains an important set of genes related to a variety of operons associated with mercury, arsenic, copper, cobalt, cadmium, zinc and aluminum resistance. Additionally, halotolerance-, beta-lactam resistance-, phosphate solubilization-, and plant growth-promotion-related genes were identified. The analysis of resistance to metal ions revealed resistance to mercury (HgII+), arsenate [AsO4]³-, cobalt (Co2+), zinc (Zn2+), and copper (Cu2+). Moreover, the ability of the HgT21 strain to produce indole acetic acid (a phytohormone) and promote the growth of Arabidopsis thaliana seedlings in vitro was also demonstrated. The genotype and phenotype of Bacillus megaterium HgT21 reveal its potential to be used as a model of both plant growth-promoting and metal multiresistant bacteria. IMPORTANCE Metal-polluted environments are natural sources of a wide variety of PGPB adapted to cope with toxic metal concentrations. In this work, the bacterial strain Bacillus megaterium HgT21 was isolated from metal-contaminated soil and is proposed as a model for the study of metal multiresistance in spore-forming Gram-positive bacteria due to the presence of a variety of metal resistance-associated genes similar to those encountered in the metal multiresistant Gram-negative Cupriavidus metallidurans CH34. The ability of B. megaterium HgT21 to promote the growth of plants also makes it suitable for the study of plant-bacteria interactions in metal-polluted environments, which is key for the development of techniques for the biorestoration of metal-contaminated soils used for agriculture.
Collapse
Affiliation(s)
- Jesús Guzmán-Moreno
- Laboratorio de Biología de Bacterias y Hongos Filamentosos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Luis Fernando García-Ortega
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Irapuato, Guanajuato, Mexico
| | - Lilia Torres-Saucedo
- Laboratorio de Biología de Bacterias y Hongos Filamentosos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Paulina Rivas-Noriega
- Laboratorio de Biología de Bacterias y Hongos Filamentosos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Rosa María Ramírez-Santoyo
- Laboratorio de Biología de Bacterias y Hongos Filamentosos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Lenin Sánchez-Calderón
- Laboratorio de Genómica Evolutiva, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Iliana Noemi Quiroz-Serrano
- Laboratorio de Biología de Bacterias y Hongos Filamentosos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Luz Elena Vidales-Rodríguez
- Laboratorio de Biología de Bacterias y Hongos Filamentosos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| |
Collapse
|
27
|
Chi Y, You Y, Wang J, Chen X, Chu S, Wang R, Zhang X, Yin S, Zhang D, Zhou P. Two plant growth-promoting bacterial Bacillus strains possess different mechanisms in affecting cadmium uptake and detoxification of Solanum nigrum L. CHEMOSPHERE 2022; 305:135488. [PMID: 35764116 DOI: 10.1016/j.chemosphere.2022.135488] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 05/22/2023]
Abstract
Microorganisms affect cadmium (Cd) extraction by hyperaccumulators to varying degrees, but the potential mechanism has not been completely studied. Here, two plant growth-promoting bacteria (PGPB, Bacillus paranthracis NT1 and Bacillus megaterium NCT-2) were assessed for their influence on Cd uptake by Solanum nigrum L. and their influence mechanisms. The results showed that both two strains could regulate phytohormones secretion, alleviate oxidative stress and promote S. nigrum growth when exposed to Cd (dry weight was significantly increased by 21.51% (strain NCT-2) and 21.23% (strain NT1) compared with the control, respectively). Additionally, strain NCT-2 significantly elevated the translocation factor (TF) and bioconcentration factor (BCF), and thus significantly facilitated total Cd uptake by 41.80% of S. nigrum, whereas strain NT1 significantly reduced the BCF and TF, resulting in insignificant effect on total Cd uptake of S. nigrum compared with the control. Results of qPCR illustrated that the two strains influenced the detoxification of Cd in S. nigrum by affecting the expression of antioxidant enzyme genes and gene PDR2. Moreover, the differential expression of heavy metal transport genes IRT1 and HMA may lead to the difference of Cd accumulation in S. nigrum. Principal component analysis and Pearson correlation coefficient analysis further verified the positive roles of salicylic acid and indole-3-acetic acid on Cd detoxification of S. nigrum, and the positive correlation relationship between transportation of Cd from underground to shoot, plant biomass and Cd uptake. Altogether, our results demonstrated that these two PGPB have great potential in helping plants detoxify Cd and could provide insights into the mechanism of PGPB-assisted phytoremediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yimin You
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China.
| |
Collapse
|
28
|
Ali Q, Ayaz M, Yu C, Wang Y, Gu Q, Wu H, Gao X. Cadmium tolerant microbial strains possess different mechanisms for cadmium biosorption and immobilization in rice seedlings. CHEMOSPHERE 2022; 303:135206. [PMID: 35660052 DOI: 10.1016/j.chemosphere.2022.135206] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 05/06/2023]
Abstract
Heavy metal remediation, such as cadmium (Cd2+) by microbial strains is efficient and environment-friendly. In this current study, we exploited the potential of Bacillus strains (Cd2+-tolerant; NMTD17, GBSW22, and LLTC96) to regulate Cd2+ biosorption mechanisms and improve rice seedling growth. The results showed that initial concentration and contact time affected Cd2+ biosorption, and the kinetic models of pseudo orders were effective in the elaborate biosorption process. Mainly, the bacterial cell wall had the potential for Cd2+ biosorption, and we found non-significant biosorption alterations among bacterial strains' inner and outer surfaces of cell membranes. Furthermore, the Fourier transform infrared (FTIR) spectroscopy analysis identified the differences in functional groups, such as C-N, PO2, -SO3, CO, COOH, C-O, C-N, -OH, and -NH that interact in biosorption by Bacillus strains. The scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) examination revealed that the binding of Cd2+ to microbes was mostly based on ion exchange pathways. Moreover, the Bacillus strains responded to Cd2+ stress in rice under pot experiment at various concentrations (0, 0.25, and 0.50 mg kg-1), and they also influenced the chlorophyll contents and antioxidants activities were studied. The analysis of physio-morphological parameters was observed to be increased, which indicated that all Bacillus strains showed significant effects on rice growth under Cd2+ stress. These results revealed that the selected strains had the capability for additional use in the development of Cd2+ bioremediation methods. These strains also provided plant growth-promoting (PGP) traits that can alleviate the harmful effects of Cd2+ in rice plants.
Collapse
Affiliation(s)
- Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Muhammad Ayaz
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenjie Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujie Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
29
|
Tolerance and Cadmium (Cd) Immobilization by Native Bacteria Isolated in Cocoa Soils with Increased Metal Content. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Twelve cadmium native bacteria previously isolated in soils of cocoa farms located in the western Colombian Andes (Santander), and tolerant to 2500 µM CdCl2 (120 mg Cd/L), were chosen in order to test their tolerance and Cd immobilization using liquid culture medium (Nutritive broth) at different concentrations of heavy metals. Furthermore, in the greenhouse experiments, the strains Exiguobacterium sp. (11-4A), Klebsiella variicola sp. (18-4B), and Enterobacter sp. (29-4B) were applied in combined treatments using CCN51 cacao genotype seeds grown in soil with different concentrations of Cd. All bacterial strains’ cell morphologies were deformed in TEM pictures, which also identified six strain interactions with biosorption and four strain capacities for bioaccumulation; FT-IR suggested that the amide, carbonyl, hydroxyl, ethyl, and phosphate groups on the bacteria biomass were the main Cd binding sites. In the pot experiments, the concentration of Cd was distributed throughout the cacao plant, but certain degrees of immobilization of Cd can occur in soil to prevent an increase in this level in roots with the presence of Klebsiella sp.
Collapse
|
30
|
Zhang F, Peng D, Liu L, Jiang H, Bai L. Cultivar-dependent rhizobacteria community and cadmium accumulation in rice: Effects on cadmium availability in soils and iron-plaque formation. J Environ Sci (China) 2022; 116:90-102. [PMID: 35219428 DOI: 10.1016/j.jes.2021.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 06/14/2023]
Abstract
The association between the rhizospheric microbial community and Cd accumulation in rice is poorly understood. A field trial was conducted to investigate the different rhizobacterial communities of two rice cultivars with high Cd accumulation (HA) and low Cd accumulation (LA) at four growth stages. Results showed that the Cd content in the roots of the HA cultivar was 1.23 - 27.53 higher than that of the LA cultivar (0.08 - 10.5 µg/plant) at four stages. The LA cultivar had a significantly lower Cd availability in rhizosphere and a higher quantity of iron plaque (IP) on the root surface than the HA cultivar at four stages. This resulted in the reduction of Cd concentration in IPs and Cd translocation from IP-to-root. Microbial analysis indicated that the LA cultivar formed a distinct rhizobacterial community from the HA cultivar and had less α-diversity. The rhizosphere of the LA cultivar was enriched in specific bacterial taxa (e.g., Massilia and Bacillus) involved in Cd immobilization by phosphate precipitation and IP formation by iron oxidization. However, the rhizosphere in the HA cultivar assembled abundant sulfur-oxidizing bacteria (e.g., Sulfuricurvum) and iron reduction bacteria (Geobacter). They promoted Cd mobilization and reduced IP formation via the metal redox process. This study reveals a potential approach in which specific rhizobacteria decrease or increase Cd accumulation in rice on contaminated soil and provides a new perspective for secure rice production.
Collapse
Affiliation(s)
- Feng Zhang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Di Peng
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lu Liu
- Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Huidan Jiang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Lianyang Bai
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
31
|
Salaskar DA, Padwal MK, Gupta A, Basu B, Kale SP. Proteomic Perspective of Cadmium Tolerance in Providencia rettgeri Strain KDM3 and Its In-situ Bioremediation Potential in Rice Ecosystem. Front Microbiol 2022; 13:852697. [PMID: 35558133 PMCID: PMC9086847 DOI: 10.3389/fmicb.2022.852697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a multi-metal-tolerant natural bacterial isolate Providencia rettgeri strain KDM3 from an industrial effluent in Mumbai, India, showed high cadmium (Cd) tolerance. Providencia rettgeri grew in the presence of more than 100 ppm (880 μM) Cd (LD50 = 100 ppm) and accumulated Cd intracellularly. Following Cd exposure, a comparative proteome analysis revealed molecular mechanisms underlying Cd tolerance. Among a total of 69 differentially expressed proteins (DEPs) in Cd-exposed cells, de novo induction of ahpCF operon proteins and L-cysteine/L-cystine shuttle protein FliY was observed, while Dps and superoxide dismutase proteins were overexpressed, indicating upregulation of a robust oxidative stress defense. ENTRA1, a membrane transporter showing homology to heavy metal transporter, was also induced de novo. In addition, the protein disaggregation chaperone ClpB, trigger factor, and protease HslU were also overexpressed. Notably, 46 proteins from the major functional category of energy metabolism were found to be downregulated. Furthermore, the addition of P. rettgeri to Cd-spiked soil resulted in a significant reduction in the Cd content [roots (11%), shoot (50%), and grains (46%)] of the rice plants. Cd bioaccumulation of P. rettgeri improved plant growth and grain yield. We conclude that P. rettgeri, a highly Cd-tolerant bacterium, is an ideal candidate for in-situ bioremediation of Cd-contaminated agricultural soils.
Collapse
Affiliation(s)
- Darshana A Salaskar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Mahesh K Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Alka Gupta
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sharad P Kale
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
32
|
Xing Y, Tan S, Liu S, Xu S, Wan W, Huang Q, Chen W. Effective immobilization of heavy metals via reactive barrier by rhizosphere bacteria and their biofilms. ENVIRONMENTAL RESEARCH 2022; 207:112080. [PMID: 34563529 DOI: 10.1016/j.envres.2021.112080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/21/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
As the portal of plants, rhizosphere microorganisms play an essential role in controlling the species, transformation, and bioavailability of heavy metals, yet the potential passivation mechanism is still unclear. In this study, two heavy metal resistant and growth-promoting rhizosphere bacteria were screened, and their mechanisms in dealing with external stress and immobilizing heavy metal were explored. The results showed that heavy metals inhibited the ability of Pseudomonas sp. H13 and Brevundomonas sp. H16 to promote plant growth, but stimulated the production of extracellular polysaccharides and inorganic labile sulfide, and enhanced biofilm formation, thereby significantly improved the removal efficiency of Cu2+, Zn2+, Cd2+, and Pb2+. Compared with H16, the biofilm of H13 disintegrated rapidly in the later stage, so more metal ions were adsorbed on the planktonic cells. The C-OH and PO groups related to polysaccharides play a crucial role in heavy metal adsorption, and the immobilization mechanism of the planktonic cell is mainly ion exchange and group complex, but for H16, intracellular enrichment cannot be ignored. Functional group complexes played a dominant role in biofilm, and the immobilized heavy metals were more difficult to release into the environment. This study highlighted the potential application prospects of biofilm bacteria in heavy metal remediation and explained the reactive barrier of rhizosphere bacteria to heavy metals.
Collapse
Affiliation(s)
- Yonghui Xing
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shuxin Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Song Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shaozu Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wenjie Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
33
|
Guo J, Ye D, Zhang X, Huang H, Wang Y, Zheng Z, Li T, Yu H. Characterization of cadmium accumulation in the cell walls of leaves in a low-cadmium rice line and strengthening by foliar silicon application. CHEMOSPHERE 2022; 287:132374. [PMID: 34592211 DOI: 10.1016/j.chemosphere.2021.132374] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) remobilization in leaves is affected by whether Cd is stored in nonlabile subcellular compartments, which might be regulated by silicon (Si) application. However, the underlying mechanism is still far from being completely understood. In this research, the Cd distribution pattern in leaves and a Cd-binding characterization in the cell wall of the low-Cd rice line YaHui2816 were investigated through one hydroponic experiment with 10 μM Cd in solutions. Foliar Si application was further adopted to explore its influence on the Cd accumulation in the cell walls of leaves in YaHui2816. Most of the Cd (69.4%) was distributed in the cell walls of YaHui2816 leaves, whereas the isolated cell walls of leaves from YaHui2816 exhibited a lower capacity for Cd chemisorption than the contrasting line C268A, which was resulted from its fewer relative peak areas of functional groups in the cell wall, such as carboxyl CO and OH stretching. Foliar Si application significantly increased the Cd concentration in leaves and various cell wall fractions (pectin, hemicellulose 1 and residue) by 191% and 137-160%, respectively. RNA-seq analysis revealed that foliar Si application depressed the expression of the metal transporters OsZIP7 and OsZIP8, up-regulated the expression of genes participating in the glutathione metabolism and the cellulose synthesis. Overall, the influence of foliar Si application on Cd-accumulation in the cell wall of leaves in a low-Cd rice line was demonstrated in this research, which inspires further avenues to ensure the food safety of rice grains.
Collapse
Affiliation(s)
- Jingyi Guo
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China.
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
34
|
Phytoremediation of Cadmium Contaminated Soil Using Sesbania sesban L. in Association with Bacillus anthracis PM21: A Biochemical Analysis. SUSTAINABILITY 2021. [DOI: 10.3390/su132413529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sustainable food production to feed nine to 10 billion people by 2050 is one of the greatest challenges we face in the 21st century. Due to anthropogenic activities, cadmium (Cd) contamination is ubiquitous with deleterious effects on plant and soil microbiota. In the current study, the phytoremediation potential of Sesbania sesban L. was investigated in Cd-spiked soil inoculated with Bacillus anthracis PM21. The Cd-spiked soil drastically reduced important plant attributes; however, inoculation of B. anthracis PM21 significantly (p ≤ 0.05) enhanced root length (17.21%), shoot length (15.35%), fresh weight (37.02%), dry weight (28.37%), chlorophyll a (52.79%), chlorophyll b (48.38%), and total chlorophyll contents (17.65%) at the Cd stress level of 200 mg/kg as compared to the respective control. In addition, bacterial inoculation improved superoxide dismutase (11.98%), peroxidase (12.16%), catalase (25.26%), and relative water content (16.66%) whereas it reduced proline content (16.37%), malondialdehyde content (12.67%), and electrolyte leakage (12.5%). Inoculated plants showed significantly (p ≤ 0.05) higher Cd concentration in the S. sesban root (118.6 mg/kg) and shoot (73.4 mg/kg) with a translocation (0.61) and bioconcentration factor (0.36), at 200 mg/kg Cd. Surface characterization of bacteria through Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) predicted the involvement of various functional groups and cell surface morphology in the adsorption of Cd ions. Amplification of the CzcD gene in strain PM21, improved antioxidant activities, and the membrane stability of inoculated S. sesban plants conferred Cd tolerance of strain PM21. In addition, the evaluated bacterial strain B. anthracis PM21 revealed significant plant growth-promoting potential in S. sesban; thus, it can be an effective candidate for phyto-remediation of Cd-polluted soil.
Collapse
|
35
|
Ahmad A, Yasin NA, Khan WU, Akram W, Wang R, Shah AA, Akbar M, Ali A, Wu T. Silicon assisted ameliorative effects of iron nanoparticles against cadmium stress: Attaining new equilibrium among physiochemical parameters, antioxidative machinery, and osmoregulators of Phaseolus lunatus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:874-886. [PMID: 34237605 DOI: 10.1016/j.plaphy.2021.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/10/2021] [Indexed: 05/28/2023]
Abstract
Currently, producing safe agricultural commodities from the crop plants cultivated in the soil with increasing heavy metal toxicity is a gigantic challenge in front of researchers. Heavy metals are absorbed and translocated in the crop plants and then transferred to every downstream consumer of the food chain, including humans, causing serious disorders and ailments. The current research presents a combined schematic application of iron nanoparticles (Fe-NPs) and/or silicon (Si), to mitigate cadmium (Cd) stress in Lima bean (Phaseolus lunatus). It was noted that Cd-induced toxicity curtailed growth, antioxidative machinery, glyoxalase system and nutrient uptake of the plants. Furthermore, the physiochemical features of Cd stressed plants, including carotenoids, chlorophyll, photochemical quenching, photosynthetic efficiency, and leaf relative water contents, were improved by the combined application of Si and Fe-NPs. Moreover, higher levels of malondialdehyde (MDA), methylglyoxal (MG), hydrogen peroxide (H2O2), and electrolyte leakage (EL) were observed in Cd stressed plants. Nevertheless, the independent treatment or combined application of Si and/or Fe-NPs attenuated the adversative effects of Cd on the aforementioned growth attributes. Furthermore, Si and Fe-NPs defended plants from the injurious effects of MG by improving the activities of the glyoxalase enzyme. The Si and Fe-NPs reduced Cd contents but at the same time improved uptake and accumulation of nutrients in treated plants exposed to the Cd regime. This study highlights that Si and Fe-NPs have enormous potential to mitigate Cd-induced phytotoxicity by declining Cd uptake and improving the growth attributes of plants if applied in combination.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | | | - Waheed Ullah Khan
- Department of Environmental Science, The Islamia University of Bahawalpur, Pakistan
| | - Waheed Akram
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Rui Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Narowal, Pakistan
| | - Muhammad Akbar
- Department of Botany, University of Gujrat, Gujrat, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Tingquan Wu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China.
| |
Collapse
|
36
|
de Sousa LP. Genomic and pathogenicity of a Bacillus paranthracis isolated from book page surface. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 92:104867. [PMID: 33872786 DOI: 10.1016/j.meegid.2021.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
I report here the genome sequences of a Bacillus paranthracis strain isolated from book page surface. The presented data show a new study field for this species, which is frequently encountered in several environment, including soil, rhizosphere and notably human samples. I provide some insights about genomic content of Bacillus paranthracis, for example the presence of multiple antibiotic resistance genes, genes for polyhydroxybutyrate metabolism, 120 genes related to stress resistance and pathogenicity-related genes such as phospholipase C, metalloprotease and a cluster for non-hemolytic enterotoxin. In vitro tests showed that this isolate has motility, ability to produce biofilm, cytotoxic and enterotoxic ability, which makes this isolate a potential pathogen.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Department of Genetic, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Brazil.
| |
Collapse
|
37
|
Hongyan X, Zhanling X, Hongchen J, Jing G, Qing M, Yuan Z, Xiaofang W. Transcriptome Analysis and Expression Profiling of Molecular Responses to Cd Toxicity in Morchella spongiola. MYCOBIOLOGY 2021; 49:421-433. [PMID: 34512085 PMCID: PMC8409932 DOI: 10.1080/12298093.2021.1937882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 05/25/2023]
Abstract
Morchella is a genus of fungi with the ability to concentrate Cd both in the fruit-body and mycelium. However, the molecular mechanisms conferring resistance to Cd stress in Morchella are unknown. Here, RNA-based transcriptomic sequencing was used to identify the genes and pathways involved in Cd tolerance in Morchella spongiola. 7444 differentially expressed genes (DEGs) were identified by cultivating M. spongiola in media containing 0.15, 0.90, or 1.50 mg/L Cd2+. The DEGs were divided into six sub-clusters based on their global expression profiles. GO enrichment analysis indicated that numerous DEGs were associated with catalytic activity, cell cycle control, and the ribosome. KEGG enrichment analysis showed that the main pathways under Cd stress were MAPK signaling, oxidative phosphorylation, pyruvate metabolism, and propanoate metabolism. In addition, several DEGs encoding ion transporters, enzymatic/non-enzymatic antioxidants, and transcription factors were identified. Based on these results, a preliminary gene regulatory network was firstly proposed to illustrate the molecular mechanisms of Cd detoxification in M. spongiola. These results provide valuable insights into the Cd tolerance mechanism of M. spongiola and constitute a robust foundation for further studies on detoxification mechanisms in macrofungi that could potentially lead to the development of new and improved fungal bioremediation strategies.
Collapse
Affiliation(s)
- Xu Hongyan
- College of Eco-Environmental Engineering, Qinghai University, Qinghai, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Qinghai, China
| | - Xie Zhanling
- College of Eco-Environmental Engineering, Qinghai University, Qinghai, China
| | - Jiang Hongchen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Guo Jing
- College of Eco-Environmental Engineering, Qinghai University, Qinghai, China
| | - Meng Qing
- College of Eco-Environmental Engineering, Qinghai University, Qinghai, China
| | - Zhao Yuan
- College of Eco-Environmental Engineering, Qinghai University, Qinghai, China
| | - Wang Xiaofang
- College of Eco-Environmental Engineering, Qinghai University, Qinghai, China
| |
Collapse
|
38
|
Farahani A, Rahbar-Kelishami A, Shayesteh H. Microfluidic solvent extraction of Cd(II) in parallel flow pattern: Optimization, ion exchange, and mass transfer study. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Qi X, Gou J, Chen X, Xiao S, Ali I, Shang R, Wang D, Wu Y, Han M, Luo X. Application of mixed bacteria-loaded biochar to enhance uranium and cadmium immobilization in a co-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123823. [PMID: 33113745 DOI: 10.1016/j.jhazmat.2020.123823] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
This research explored the effect of biochar pyrolyzed from five different materials on U and Cd immobilization in soil. The results showed that all biochars improved the soil properties and microbial metabolic activities, and effectively immobilized U and Cd, especially corn stalk biochar. Subsequently, three strains Bacillus subtilis, Bacillus cereus, and Citrobacter sp. were mixed in a 3:3:2 proportion as a kind of mixed bacteria (MB9) that could adsorb U and Cd effectively. Two types of MB9-loaded biochar were synthesized by physical adsorption and sodium alginate embed method and referred to as AIB and EIB, respectively. MB9-loaded biochar showed superior U and Cd immobilization performance. At 75 d, the highest reduction in the DTPA- extractable U and Cd (69 % and 56 %) was achieved with the 3% AIB amendment. Additionally, compared to the addition of biochar or MB9 alone, AIB was more effective in promoting celery growth and reducing U and Cd accumulation. Finally, the microbial community structure analysis suggested that the relative abundance of Citrobacter genus and Bacillus genus was significantly increased, suggesting that the mixed bacteria MB9 was successfully colonized. These findings may provide a feasible technology for green and cost-effective remediation of heavy metal contamination in farmland soil.
Collapse
Affiliation(s)
- Xin Qi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jialei Gou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; National Co- Innovation Center for Nuclear Waste Disposal and Environmental Safety, Mianyang, Sichuan 621010, China
| | - Xiaoming Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; National Co- Innovation Center for Nuclear Waste Disposal and Environmental Safety, Mianyang, Sichuan 621010, China.
| | - Shiqi Xiao
- Analytical Testing Center, Sichuan University, Chengdu 610064, China
| | - Imran Ali
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; National Co- Innovation Center for Nuclear Waste Disposal and Environmental Safety, Mianyang, Sichuan 621010, China
| | - Ran Shang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Dan Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yuewen Wu
- Xinjiang Uighur Autonomous Region Center for Disease Control and Prevention, Urumqi 830002, China
| | - Mengwei Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xuegang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| |
Collapse
|
40
|
Shen L, Chen R, Wang J, Fan L, Cui L, Zhang Y, Cheng J, Wu X, Li J, Zeng W. Biosorption behavior and mechanism of cadmium from aqueous solutions by Synechocystis sp. PCC6803. RSC Adv 2021; 11:18637-18650. [PMID: 35480929 PMCID: PMC9033491 DOI: 10.1039/d1ra02366g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/16/2021] [Indexed: 02/03/2023] Open
Abstract
Cyanobacteria are promising adsorbents that are widely used for heavy metal removal in aqueous solutions. However, the underlying adsorption mechanism of Synechocystis sp. PCC6803 is currently unclear. In this study, the adsorption behavior and mechanism of cadmium (Cd2+) were investigated. Batch biosorption experiments showed that the optimal adsorption conditions were pH 7.0, 30 °C, 15 min, and an initial ion concentration of 4.0 mg L−1. The adsorption process fitted well with the pseudo-second order kinetic model, mainly based on chemisorption. Complexation of Cd2+ with carboxyl, hydroxyl, carbonyl, and amido groups was demonstrated by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectrometry (EDX) analyses confirmed the presence of Cd2+ on the cyanobacterial cell surface and intracellularly. Cd2+ could lead to reactive oxygen species (ROS) accumulation and photosynthesis inhibition in cyanobacterial cells, and glutathione (GSH) played an important role in alleviating Cd2+ toxicity. Analyses of three-dimensional fluorescence spectroscopy (3D-EEM) and high performance anion exchange chromatography-pulsed amperometric detection (HPAEC-PAD) revealed the changes of the composition and content of EPS after Cd2+ adsorption, respectively. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed the potential molecular regulatory mechanisms involved in Cd2+ biosorption. These results revealed the adsorption mechanism of Cd2+ by Synechocystis sp. PCC6803 and provided theoretical guidance for insight into the biosorption mechanisms of heavy metals by other strains. The results of extracellular polymeric substances (EPS) extraction, physiological and biochemical determination and gene expression revealed the adsorption mechanism of Synechocystis sp. PCC6803 under cadmium stress.![]()
Collapse
Affiliation(s)
- Li Shen
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Biometallurgy
| | - Ran Chen
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Junjun Wang
- School of Metallurgy and Environment
- Central South University
- Changsha 410083
- China
| | - Ling Fan
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Linlin Cui
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Yejuan Zhang
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Jinju Cheng
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Biometallurgy
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Biometallurgy
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Biometallurgy
| |
Collapse
|