1
|
Kakouri A, Kontos T, Grivas G, Filippis G, Korras-Carraca MB, Matsoukas C, Gkikas A, Athanasopoulou E, Speyer O, Chatzidiakos C, Gerasopoulos E. Spatiotemporal modeling of long-term PM 2.5 concentrations and population exposure in Greece, using machine learning and statistical methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178113. [PMID: 39700978 DOI: 10.1016/j.scitotenv.2024.178113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
The lack of high-resolution, long-term PM2.5 observations in Greece and the Eastern Mediterranean hampers the development of spatial models that are crucial for providing representative exposure estimates to health studies. This work presents a spatial modeling approach to address this gap and assess PM2.5 spatial variability for the first time on a national level in Greece, by integrating in situ observations, meteorology, emissions and satellite AOD data among others. A high-resolution (1 km2) gridded dataset of PM2.5 concentrations across Greece from 2015 to 2022 was developed, and seven statistical, machine learning, and hybrid models were evaluated under different prediction scenarios. Random Forest (RF) models demonstrated superior performance, (R2 = 0.73, MAE = 2.2 μg m-3), validated against ground-based measurements. Winter months consistently showed the highest PM2.5 levels, averaging 16.8 μg m-3, over the domain, due to residential biomass burning (BB) and limited atmospheric dispersion. Summer months had the lowest concentrations, averaging 10.3 μg m-3, while substantial decreases nationwide were observed during the 2020 COVID-19 lockdown. Population exposure analysis indicated that the entire Greek population was exposed to long-term PM2.5 concentrations exceeding the WHO air quality guideline (AQG) of 5 μg m-3. Moreover, the dataset revealed elevated PM2.5 levels across several regions of mainland Greece. Notably, 70 % to 90 % of the population experience levels exceeding 10 μg m-3 in Central and Northern regions of continental Greece like Thessaly, Central Macedonia, and Ioannina. The Ioannina region, which is severely impacted by residential BB, recorded pollution levels up to five times the WHO AQG highlighting the urgent need for targeted interventions. The high-resolution RF model's superior performance for monthly average concentrations, compared to the Copernicus Atmosphere Monitoring Service (CAMS) dataset, renders it a reliable tool for long-term PM2.5 assessment in Greece that can support air quality management and health studies.
Collapse
Affiliation(s)
- Anastasia Kakouri
- Department of Environment, University of the Aegean, Greece; Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece.
| | | | - Georgios Grivas
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | | | - Marios-Bruno Korras-Carraca
- Laboratory of Meteorology & Climatology, Department of Physics, University of Ioannina, 45110 Ioannina, Greece; Center for the Study of Air Quality and Climate Change, Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | | | - Antonis Gkikas
- Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens, Greece
| | - Eleni Athanasopoulou
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Orestis Speyer
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Charalampos Chatzidiakos
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Evangelos Gerasopoulos
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece.
| |
Collapse
|
2
|
Xia Y, McCracken T, Liu T, Chen P, Metcalf A, Fan C. Understanding the Disparities of PM2.5 Air Pollution in Urban Areas via Deep Support Vector Regression. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8404-8416. [PMID: 38698567 DOI: 10.1021/acs.est.3c09177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
In densely populated urban areas, PM2.5 has a direct impact on the health and quality of residents' life. Thus, understanding the disparities of PM2.5 is crucial for ensuring urban sustainability and public health. Traditional prediction models often overlook the spillover effects within urban areas and the complexity of the data, leading to inaccurate spatial predictions of PM2.5. We propose Deep Support Vector Regression (DSVR) that models the urban areas as a graph, with grid center points as the nodes and the connections between grids as the edges. Nature and human activity features of each grid are initialized as the representation of each node. Based on the graph, DSVR uses random diffusion-based deep learning to quantify the spillover effects of PM2.5. It leverages random walk to uncover more extensive spillover relationships between nodes, thereby capturing both the local and nonlocal spillover effects of PM2.5. And then it engages in predictive learning using the feature vectors that encapsulate spillover effects, enhancing the understanding of PM2.5 disparities and connections across different regions. By applying our proposed model in the northern region of New York for predictive performance analysis, we found that DSVR consistently outperforms other models. During periods of PM2.5 surges, the R-square of DSVR reaches as high as 0.729, outperforming non-spillover models by 2.5 to 5.7 times and traditional spatial metric models by 2.2 to 4.6 times. Therefore, our proposed model holds significant importance for understanding disparities of PM2.5 air pollution in urban areas, taking the first steps toward a new method that considers both the spillover effects and nonlinear feature of data for prediction.
Collapse
Affiliation(s)
- Yuling Xia
- School of Mathematics, Southwest Jiaotong University, Sichuan province Chengdu 611756, China
| | - Teague McCracken
- School of Civil and Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Tong Liu
- School of Civil and Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Pei Chen
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Andrew Metcalf
- School of Civil and Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Chao Fan
- School of Civil and Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
3
|
Quinteros ME, Blazquez C, Ayala S, Kilby D, Cárdenas-R JP, Ossa X, Rosas-Diaz F, Stone EA, Blanco E, Delgado-Saborit JM, Harrison RM, Ruiz-Rudolph P. Development of Spatio-Temporal Land Use Regression Models for Fine Particulate Matter and Wood-Burning Tracers in Temuco, Chile. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19473-19486. [PMID: 37976408 DOI: 10.1021/acs.est.3c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Biomass burning is common in much of the world, and in some areas, residential wood-burning has increased. However, air pollution resulting from biomass burning is an important public health problem. A sampling campaign was carried out between May 2017 and July 2018 in over 64 sites in four sessions, to develop a spatio-temporal land use regression (LUR) model for fine particulate matter (PM) and wood-burning tracers levoglucosan and soluble potassium (Ksol) in a city heavily impacted by wood-burning. The mean (sd) was 46.5 (37.4) μg m-3 for PM2.5, 0.607 (0.538) μg m-3 for levoglucosan, and 0.635 (0.489) μg m-3 for Ksol. LUR models for PM2.5, levoglucosan, and Ksol had a satisfactory performance (LOSOCV R2), explaining 88.8%, 87.4%, and 87.3% of the total variance, respectively. All models included sociodemographic predictors consistent with the pattern of use of wood-burning in homes. The models were applied to predict concentrations surfaces and to estimate exposures for an epidemiological study.
Collapse
Affiliation(s)
- María Elisa Quinteros
- Departamento de Salud Pública, Facultad de Ciencias de la Salud, Universidad de Talca, Avenida Lircay s/n, Talca, 3460000, Chile
- Programa Doctorado en Salud Pública, Instituto de Salud Poblacional, Facultad de Medicina, Universidad de Chile, Independencia 939, Santiago, 1025000, Chile
| | - Carola Blazquez
- Department of Engineering Sciences, Universidad Andres Bello, Quillota 980, Viña del Mar, 2531015, Chile
| | - Salvador Ayala
- Programa Doctorado en Salud Pública, Instituto de Salud Poblacional, Facultad de Medicina, Universidad de Chile, Independencia 939, Santiago, 1025000, Chile
- Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Marathon 1000, Ñuñoa, Santiago 0000000000, Chile
| | - Dylan Kilby
- School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan 48109, United States
| | - Juan Pablo Cárdenas-R
- Departamento de Ingeniería en Obras Civiles, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
- Facultad de Arquitectura, Construcción y Medio Ambiente, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Ximena Ossa
- Departamento de Salud Pública y Centro de Excelencia CIGES, Universidad de la Frontera, Caro Solar 115, Temuco, 4780000, Chile
| | - Felipe Rosas-Diaz
- Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, San Nicolás de Los Garza 66451, Nuevo León, México
| | - Elizabeth A Stone
- Department of Chemistry and Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Estela Blanco
- Programa Doctorado en Salud Pública, Instituto de Salud Poblacional, Facultad de Medicina, Universidad de Chile, Independencia 939, Santiago, 1025000, Chile
- Centro de Investigación en Sociedad y Salud and Núcleo Milenio de Sociomedicina, Universidad Mayor, Santiago, 7510041, Chile
| | - Juana-María Delgado-Saborit
- Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12071 Castelló de la Plana, Castellon Spain
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, SW7 2BX, United Kingdom
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston Birmingham B152TT, U.K
| | - Roy M Harrison
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston Birmingham B152TT, U.K
- Department of Environmental Sciences/Center of Excellence in Environmental Studies, King Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia
| | - Pablo Ruiz-Rudolph
- * Programa de Epidemiología, Instituto de Salud Poblacional, Facultad de Medicina, Universidad de Chile, Independencia 939, Santiago 1025000, Chile
| |
Collapse
|
4
|
Li K, Li C, Hu Y, Xiong Z, Wang Y. Quantitative estimation of the PM 2.5 removal capacity and influencing factors of urban green infrastructure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161476. [PMID: 36634767 DOI: 10.1016/j.scitotenv.2023.161476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Long-term exposure to PM2.5 (fine particulate matter with an aerodynamic diameter <2.5 μm) could cause great harm to human health and sustainable development. It remains a challenge to estimate the long-term PM2.5 removal capacity of nature-based green infrastructure in urban areas. In this paper, the annual PM2.5 removal capacity of urban green infrastructure (UGI) from 2000 to 2019 in Shenyang was estimated based on the PM2.5 dry deposition model. The spatial heterogeneity of annual PM2.5 removal capacity were detected Sen-MK test and local spatial autocorrelations analysis. Then the effects of landscape patterns and socioeconomic variables on PM2.5 removal capacity were explored based on linear regression model. The results illustrated that the PM2.5 removal capacity of UGI increased significantly from 2000 to 2019 in Shenyang, with the amount of PM2.5 removal, PM2.5 removal flux and removal rate increasing by 20.64 Mg/a, 0.0258 g/m2/a, and 0.377 %/a, respectively. The PM2.5 removal capacity of UGI exhibited spatial heterogeneity in the study area. Specifically, the regions experiencing the increase in PM2.5 removal capacity of UGI accounted for majority of the old urban area of Shenyang City during the study period; the lower PM2.5 removal capacity clustered in the center urban area, in which high density impervious surfaces distributed, while the higher PM2.5 removal capacity mainly gathered in the area with large scale green space; PM2.5 removal capacity were significantly higher in urban functional zones with a high proportion of green spaces. The landscape metrics representing fragmentation and shape complexity positively affected the annual PM2.5 removal flux and removal rate, while the aggregation metrics had significantly negative correlations with the PM2.5 removal flux and removal rate. Moreover, it was also found that population density and GDP negatively affected the PM2.5 removal capacity of UGI. This study provides a methodological reference and some new insights for future urban landscape planning and air pollution purification.
Collapse
Affiliation(s)
- Kongming Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Chunlin Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Yuanman Hu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Zaiping Xiong
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Yongheng Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
5
|
Gong J, Ding L, Lu Y, Qiong Zhang, Yun Li, Beidi Diao. Scientometric and multidimensional contents analysis of PM 2.5 concentration prediction. Heliyon 2023; 9:e14526. [PMID: 36950620 PMCID: PMC10025157 DOI: 10.1016/j.heliyon.2023.e14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023] Open
Abstract
The foundation for the environmental department to take suitable measures and make a significant contribution towards improving air quality is the precise and dependable prediction of PM2.5 concentration. It is essential to review the development process and hotspots of PM2.5 concentration prediction studies over the past 20 years (2000-2021) comprehensively and quantitatively. This study used detailed bibliometric methods and CiteSpace software to visually analyze the PM2.5 pollution level. The outcomes found that the prediction research phases of PM2.5 can be broadly divided into three phases and enter the rapid growth phase after 2017. Five categories of keywords are clustered, and the forecasting data and forecasting methods are typical cluster representatives. Then, the construction and processing of PM2.5 concentration prediction datasets, the prediction methods and technical processes, and the determination of the prediction spatial-temporal scales are the main content of the analysis. In the future, it is necessary to concentrate on multi-source data fusion for PM2.5 concentration prediction at multiple spatial-temporal scales and focus on technology integration and innovative applications in forecasting models, especially the optimal use of deep machine learning methods to improve prediction accuracy and practical application conversion.
Collapse
Affiliation(s)
- Jintao Gong
- The Library, Ningbo Polytechnic, Ningbo 315800, China
| | - Lei Ding
- Research Center of Industrial Economy Around Hangzhou Bay, Ningbo Polytechnic, Ningbo 315800, China
- Corresponding author. Industrial Economic Research Center Around Hangzhou Bay, Ningbo Polytechnic; 1069 Xinda Road, 315800, Ningbo, China. ;
| | - Yingyu Lu
- Research Center of Industrial Economy Around Hangzhou Bay, Ningbo Polytechnic, Ningbo 315800, China
| | - Qiong Zhang
- Research Center of Industrial Economy Around Hangzhou Bay, Ningbo Polytechnic, Ningbo 315800, China
| | - Yun Li
- Research Center of Industrial Economy Around Hangzhou Bay, Ningbo Polytechnic, Ningbo 315800, China
| | - Beidi Diao
- School of Economics and Management, China University of Mining and Technology, No.1 Daxue Road, 221116, Xuzhou, China
| |
Collapse
|
6
|
Islam ARMT, Al Awadh M, Mallick J, Pal SC, Chakraborty R, Fattah MA, Ghose B, Kakoli MKA, Islam MA, Naqvi HR, Bilal M, Elbeltagi A. Estimating ground-level PM 2.5 using subset regression model and machine learning algorithms in Asian megacity, Dhaka, Bangladesh. AIR QUALITY, ATMOSPHERE, & HEALTH 2023; 16:1117-1139. [PMID: 37303964 PMCID: PMC9961308 DOI: 10.1007/s11869-023-01329-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/16/2023] [Indexed: 06/13/2023]
Abstract
Fine particulate matter (PM2.5) has become a prominent pollutant due to rapid economic development, urbanization, industrialization, and transport activities, which has serious adverse effects on human health and the environment. Many studies have employed traditional statistical models and remote-sensing technologies to estimate PM2.5 concentrations. However, statistical models have shown inconsistency in PM2.5 concentration predictions, while machine learning algorithms have excellent predictive capacity, but little research has been done on the complementary advantages of diverse approaches. The present study proposed the best subset regression model and machine learning approaches, including random tree, additive regression, reduced error pruning tree, and random subspace, to estimate the ground-level PM2.5 concentrations over Dhaka. This study used advanced machine learning algorithms to measure the effects of meteorological factors and air pollutants (NOX, SO2, CO, and O3) on the dynamics of PM2.5 in Dhaka from 2012 to 2020. Results showed that the best subset regression model was well-performed for forecasting PM2.5 concentrations for all sites based on the integration of precipitation, relative humidity, temperature, wind speed, SO2, NOX, and O3. Precipitation, relative humidity, and temperature have negative correlations with PM2.5. The concentration levels of pollutants are much higher at the beginning and end of the year. Random subspace is the optimal model for estimating PM2.5 because it has the least statistical error metrics compared to other models. This study suggests ensemble learning models to estimate PM2.5 concentrations. This study will help quantify ground-level PM2.5 concentration exposure and recommend regional government actions to prevent and regulate PM2.5 air pollution. Supplementary Information The online version contains supplementary material available at 10.1007/s11869-023-01329-w.
Collapse
Affiliation(s)
| | - Mohammed Al Awadh
- Department of Industrial Engineering, College of Engineering, King Khalid University, Abha, 61421 Saudi Arabia
| | - Javed Mallick
- Department of Civil Engineering, King Khalid University, Abha, Saudi Arabia
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal 713104 India
| | - Rabin Chakraborty
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal 713104 India
| | - Md. Abdul Fattah
- Department of Urban and Regional Planning, Khulna University of Engineering and Technology, Khulna, Bangladesh
| | - Bonosri Ghose
- Department of Disaster Management, Begum Rokeya University, Rangpur, Rangpur, 5400 Bangladesh
| | | | - Md. Aminul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, Rangpur, 5400 Bangladesh
| | - Hasan Raja Naqvi
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Muhammad Bilal
- School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 45003 China
| | - Ahmed Elbeltagi
- Agricultural Engineering Dept., Faculty of Agriculture, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
7
|
Dong X, Yang S, Zhang C. Air Pollution Increased the Demand for Gym Sports under COVID-19: Evidence from Beijing, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12614. [PMID: 36231914 PMCID: PMC9566646 DOI: 10.3390/ijerph191912614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Air pollution may change people's gym sports behavior. To test this claim, first, we used big data crawler technology and ordinary least square (OLS) models to investigate the effect of air pollution on people' gym visits in Beijing, China, especially under the COVID-19 pandemic of 2019-2020, and the results showed that a one-standard-deviation increase in PM2.5 concentration (fine particulate matter with diameters equal to or smaller than 2.5 μm) derived from the land use regression model (LUR) was positively associated with a 0.119 and a 0.171 standard-deviation increase in gym visits without or with consideration of the COVID-19 variable, respectively. Second, using spatial autocorrelation analysis and a series of spatial econometric models, we provided consistent evidence that the gym industry of Beijing had a strong spatial dependence, and PM2.5 and its spatial spillover effect had a positive impact on the demand for gym sports. Such a phenomenon offers us a new perspective that gym sports can be developed into an essential activity for the public due to this avoidance behavior regarding COVID-19 virus contact and pollution exposure.
Collapse
Affiliation(s)
- Xin Dong
- School of Information Engineering, China University of Geosciences, Beijing 100083, China
| | - Shili Yang
- Beijing Meteorological Observation Centre, Beijing Meteorological Bureau, Beijing 100089, China
| | - Chunxiao Zhang
- School of Information Engineering, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
8
|
Influence of Spatial Resolution on Satellite-Based PM2.5 Estimation: Implications for Health Assessment. REMOTE SENSING 2022. [DOI: 10.3390/rs14122933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Satellite-based PM2.5 estimation has been widely used to assess health impact associated with PM2.5 exposure and might be affected by spatial resolutions of satellite input data, e.g., aerosol optical depth (AOD). Here, based on Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD in 2020 over the Yangtze River Delta (YRD) and three PM2.5 retrieval models, i.e., the mixed effects model (ME), the land-use regression model (LUR) and the Random Forest model (RF), we compare these model performances at different spatial resolutions (1, 3, 5 and 10 km). The PM2.5 estimations are further used to investigate the impact of spatial resolution on health assessment. Our cross-validated results show that the model performance is not sensitive to spatial resolution change for the ME and LUR models. By contrast, the RF model can create a more accurate PM2.5 prediction with a finer AOD spatial resolution. Additionally, we find that annual population-weighted mean (PWM) PM2.5 concentration and attributable mortality strongly depend on spatial resolution, with larger values estimated from coarser resolution. Specifically, compared to PWM PM2.5 at 1 km resolution, the estimation at 10 km resolution increases by 7.8%, 22.9%, and 9.7% for ME, LUR, and RF models, respectively. The corresponding increases in mortality are 7.3%, 18.3%, and 8.4%. Our results also show that PWM PM2.5 at 10 km resolution from the three models fails to meet the national air quality standard, whereas the estimations at 1, 3 and 5 km resolutions generally meet the standard. These findings suggest that satellite-based health assessment should consider the spatial resolution effect.
Collapse
|
9
|
Zhang P, Yang L, Ma W, Wang N, Wen F, Liu Q. Spatiotemporal estimation of the PM 2.5 concentration and human health risks combining the three-dimensional landscape pattern index and machine learning methods to optimize land use regression modeling in Shaanxi, China. ENVIRONMENTAL RESEARCH 2022; 208:112759. [PMID: 35077716 DOI: 10.1016/j.envres.2022.112759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/05/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
PM2.5 pollution endangers human health and urban sustainable development. Land use regression (LUR) is one of the most important methods to reveal the temporal and spatial heterogeneity of PM2.5, and the introduction of characteristic variables of geographical factors and the improvement of model construction methods are important research directions for its optimization. However, the complex non-linear correlation between PM2.5 and influencing indicators is always unrecognized by the traditional regression model. The two-dimensional landscape pattern index is difficult to reflect the real information of the surface, and the research accuracy cannot meet the requirements. As such, a novel integrated three-dimensional landscape pattern index (TDLPI) and machine learning extreme gradient boosting (XGBOOST) improved LUR model (LTX) are developed to estimate the spatiotemporal heterogeneity in the fine particle concentration in Shaanxi, China, and health risks of exposure and inhalation of PM2.5 were explored. The LTX model performed well with R2 = 0.88, RMSE of 8.73 μg/m3 and MAE of 5.85 μg/m3. Our findings suggest that integrated three-dimensional landscape pattern information and XGBOOST approaches can accurately estimate annual and seasonal variations of PM2.5 pollution The Guanzhong Plain and northern Shaanxi always feature high PM2.5 values, which exhibit similar distribution trends to those of the observed PM2.5 pollution. This study demonstrated the outstanding performance of the LTX model, which outperforms most models in past researches. On the whole, LTX approach is reliable and can improve the accuracy of pollutant concentration prediction. The health risks of human exposure to fine particles are relatively high in winter. Central part is a high health risk area, while northern area is low. Our study provides a new method for atmospheric pollutants assessing, which is important for LUR model optimization, high-precision PM2.5 pollution prediction and landscape pattern planning. These results can also contribute to human health exposure risks and future epidemiological studies of air pollution.
Collapse
Affiliation(s)
- Ping Zhang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an, 710075, China.
| | - Lianwei Yang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Wenjie Ma
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Ning Wang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Feng Wen
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China.
| | - Qi Liu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China; The First Institute of Photogrammetry and Remote Sensing, MNR, Xi'an, 710054, China.
| |
Collapse
|
10
|
Influence of Land Use and Meteorological Factors on PM2.5 and PM10 Concentrations in Bangkok, Thailand. SUSTAINABILITY 2022. [DOI: 10.3390/su14095367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Particulate matter (PM) is regarded a major problem worldwide because of the harm it causes to human health. Concentrations of PM with particle diameter less than 2.5 µm (PM2.5) and with particle diameter less than 10 µm (PM10) are based on various emission sources as well as meteorological factors. In Bangkok, where the PM2.5 and PM10 monitoring stations are few, the ability to estimate concentrations at any location based on its environment will benefit healthcare policymakers. This research aimed to study the influence of land use, traffic load, and meteorological factors on the PM2.5 and PM10 concentrations in Bangkok using a land-use regression (LUR) approach. The backward stepwise selection method was applied to select the significant variables to be included in the resultant models. Results showed that the adjusted coefficient of determination of the PM2.5 and PM10 LUR models were 0.58 and 0.57, respectively, which are in the same range as reported in the previous studies. The meteorological variables included in both models were rainfall and air pressure; wind speed contributed to only the PM2.5 LUR model. Further, the land-use types selected in the PM2.5 LUR model were industrial and transportation areas. The PM10 LUR model included residential, commercial, industrial, and agricultural areas. Traffic load was excluded from both models. The root mean squared error obtained by 10-fold cross validation was 9.77 and 16.95 for the PM2.5 and PM10 LUR models, respectively.
Collapse
|
11
|
Zhang P, Ma W, Wen F, Liu L, Yang L, Song J, Wang N, Liu Q. Estimating PM 2.5 concentration using the machine learning GA-SVM method to improve the land use regression model in Shaanxi, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112772. [PMID: 34530262 DOI: 10.1016/j.ecoenv.2021.112772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
With rapid economic growth, urbanization and industrialization, fine particulate matter with aerodynamic diameters ≤ 2.5 µm (PM2.5) has become a major pollutant and shows adverse effects on both human health and the atmospheric environment. Many studies on estimating PM2.5 concentrations have been performed using statistical regression models and satellite remote sensing. However, the accuracy of PM2.5 concentration estimates is limited by traditional regression models; machine learning methods have high predictive power, but fewer studies have been performed on the complementary advantages of different approaches. This study estimates PM2.5 concentrations from satellite remote sensing-derived aerosol optical depth (AOD) products, meteorological data, terrain data and other predictors in 2015 in Shaanxi, China, using a combined genetic algorithm-support vector machine (GA-SVM) method, after which the spatial clustering pattern was explored at the season and year levels. The results indicated that temperature (r = -0.684), precipitation (r = -0.602) and normalized difference vegetation index (NDVI) (r = -0.523) were significantly negatively correlated with the PM2.5 concentration, while AOD (r = 0.337) was significantly positively correlated with the PM2.5 concentration. Compared to conventional land use regression (LUR) and SVM models and previous related studies, the GA-SVM method demonstrated a significantly better prediction accuracy of PM2.5 concentration, with a higher 10-fold cross-validation coefficient of determination (R2) of 0.84 and lower root mean square error (RMSE) and mean absolute error (MAE) of 12.1 μg/m3 and 10.07 μg/m3, respectively. Y-scrambling test shows that the models have no chance correlation. The central and southern parts of Shaanxi have high PM2.5 concentrations, which are mainly due to the pollutant emissions and meteorological and topographical conditions in those areas. There was a positive spatial agglomeration characteristic of regional PM2.5 pollution, and the spatial spillover effect of PM2.5 pollution for seasonal and annual variations does exist. In general, the GA-SVM method is robust and accurately estimates PM2.5 concentrations via a novel modeling framework application and high-quality spatiotemporal information. It also has great significance for the exploration of PM2.5 pollution estimation and high-precision mapping methods, especially early warning in high-risk areas. Finally, the prevention and control of atmospheric pollution should take pollution control measures from major cities and surrounding cities, and focus on the joint pollution control measures for plain cities.
Collapse
Affiliation(s)
- Ping Zhang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710075, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wenjie Ma
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Feng Wen
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Lei Liu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Lianwei Yang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Jia Song
- School of Information Science and Technology, Yunnan Normal University, Kunming 650000, China
| | - Ning Wang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China.
| | - Qi Liu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| |
Collapse
|
12
|
Study on Coupled Relationship between Urban Air Quality and Land Use in Lanzhou, China. SUSTAINABILITY 2021. [DOI: 10.3390/su13147724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The intensification of global urbanization has exacerbated the negative impact of atmospheric environmental factors in urban areas, thus threatening the sustainability of future urban development. In order to ensure the sustainability of urban atmospheric environments, exploring the changing laws of urban air quality, identifying highly polluted areas in cities, and studying the relationship between air quality and land use have become issues of great concern. Based on AQI data from 340 air quality monitoring stations and urban land use data, this paper uses inverse distance weight (IDW), Getis-Ord Gi*, and a negative binomial regression model to discuss the spatiotemporal variation of air quality in the main urban area of Lanzhou and its relationship with urban land use. The results show that urban air quality has characteristics of temporal and spatial differentiation and spatially has characteristics of agglomeration of cold and hot spots. There is a close relationship between urban land use and air quality. Industrial activities, traffic pollution, and urban construction activities are the most important factors affecting urban air quality. Green spaces can reduce urban pollution. The impact of land use on air quality has a seasonal effect.
Collapse
|
13
|
Zhang Y, Cheng H, Huang D, Fu C. High Temporal Resolution Land Use Regression Models with POI Characteristics of the PM 2.5 Distribution in Beijing, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6143. [PMID: 34200158 PMCID: PMC8201188 DOI: 10.3390/ijerph18116143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/03/2022]
Abstract
PM2.5 is one of the primary components of air pollutants, and it has wide impacts on human health. Land use regression models have the typical disadvantage of low temporal resolution. In this study, various point of interests (POIs) variables are added to the usual predictive variables of the general land use regression (LUR) model to improve the temporal resolution. Hourly PM2.5 concentration data from 35 monitoring stations in Beijing, China, were used. Twelve LUR models were developed for working days and non-working days of the heating season and non-heating season, respectively. The results showed that these models achieved good fitness in winter and summer, and the highest R2 of the winter and summer models were 0.951 and 0.628, respectively. Meteorological factors, POIs, and roads factors were the most critical predictive variables in the models. This study also showed that POIs had time characteristics, and different types of POIs showed different explanations ranging from 5.5% to 41.2% of the models on working days or non-working days, respectively. Therefore, this study confirmed that POIs can greatly improve the temporal resolution of LUR models, which is significant for high precision exposure studies.
Collapse
Affiliation(s)
| | - Hongguang Cheng
- School of Environment, Beijing Normal University, Beijing 100875, China; (Y.Z.); (D.H.); (C.F.)
| | | | | |
Collapse
|
14
|
Xu X, Qin N, Yang Z, Liu Y, Cao S, Zou B, Jin L, Zhang Y, Duan X. Potential for developing independent daytime/nighttime LUR models based on short-term mobile monitoring to improve model performance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115951. [PMID: 33162219 DOI: 10.1016/j.envpol.2020.115951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/10/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Land use regression model (LUR) is a widespread method for predicting air pollution exposure. Few studies have explored the performance of independently developed daytime/nighttime LUR models. In this study, fine particulate matter (PM2.5), inhalable particulate matter (PM10), and nitrogen dioxide (NO2) concentrations were measured by mobile monitoring during non-heating and heating seasons in Taiyuan. Pollutant concentrations were higher in the nighttime than the daytime, and higher in the heating season than the non-heating season. Daytime/nighttime and full-day LUR models were developed and validated for each pollutant to examine variations in model performance. Adjusted coefficients of determination (adjusted R2) for the LUR models ranged from 0.53-0.87 (PM2.5), 0.53-0.85 (PM10), and 0.33-0.67 (NO2). The performance of the daytime/nighttime LUR models for PM2.5 and PM10 was better than that of the full-day models according to the results of model adjusted R2 and validation R2. Consistent results were confirmed in the non-heating and heating seasons. Effectiveness of developing independent daytime/nighttime models for NO2 to improve performance was limited. Surfaces based on the daytime/nighttime models revealed variations in concentrations and spatial distribution. In conclusion, the independent development of daytime/nighttime LUR models for PM2.5/PM10 has the potential to replace full-day models for better model performance. The modeling strategy is consistent with the residential activity patterns and contributes to achieving reliable exposure predictions for PM2.5 and PM10. Nighttime could be a critical exposure period, due to high pollutant concentrations.
Collapse
Affiliation(s)
- Xiangyu Xu
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing, 100083, China
| | - Ning Qin
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing, 100083, China
| | - Zhenchun Yang
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Yunwei Liu
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing, 100083, China
| | - Suzhen Cao
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing, 100083, China
| | - Bin Zou
- School of Geosciences and Info-Physics, Central South University, Changsha, Hunan, 410083, China
| | - Lan Jin
- Department of Surgery, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yawei Zhang
- Department of Surgery, Yale School of Medicine, New Haven, CT, 06520, USA; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing, 100083, China.
| |
Collapse
|