1
|
Roy PK, Roy A, Jeon EB, DeWitt CAM, Park JW, Park SY. Comprehensive analysis of predominant pathogenic bacteria and viruses in seafood products. Compr Rev Food Sci Food Saf 2024; 23:e13410. [PMID: 39030812 DOI: 10.1111/1541-4337.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Anamika Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Eun Bi Jeon
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | | | - Jae W Park
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| |
Collapse
|
2
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Baker‐Austin C, Hervio‐Heath D, Martinez‐Urtaza J, Caro ES, Strauch E, Thébault A, Guerra B, Messens W, Simon AC, Barcia‐Cruz R, Suffredini E. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J 2024; 22:e8896. [PMID: 39045511 PMCID: PMC11263920 DOI: 10.2903/j.efsa.2024.8896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.
Collapse
|
3
|
Morgado ME, Brumfield KD, Mitchell C, Boyle MM, Colwell RR, Sapkota AR. Increased incidence of vibriosis in Maryland, U.S.A., 2006-2019. ENVIRONMENTAL RESEARCH 2024; 244:117940. [PMID: 38101724 PMCID: PMC10922380 DOI: 10.1016/j.envres.2023.117940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Vibrio spp. naturally occur in warm water with moderate salinity. Infections with non-cholera Vibrio (vibriosis) cause an estimated 80,000 illnesses and 100 fatalities each year in the United States. Climate associated changes to environmental parameters in aquatic ecosystems are largely promoting Vibrio growth, and increased incidence of vibriosis is being reported globally. However, vibriosis trends in the northeastern U.S. (e.g., Maryland) have not been evaluated since 2008. METHODS Vibriosis case data for Maryland (2006-2019; n = 611) were obtained from the COVIS database. Incidence rates were calculated using U.S. Census Bureau population estimates for Maryland. A logistic regression model, including region, age group, race, gender, occupation, and exposure type, was used to estimate the likelihood of hospitalization. RESULTS Comparing the 2006-2012 and 2013-2019 periods, there was a 39% (p = 0.01) increase in the average annual incidence rate (per 100,000 population) of vibriosis, with V. vulnificus infections seeing the greatest percentage increase (53%, p = 0.01), followed by V. parahaemolyticus (47%, p = 0.05). The number of hospitalizations increased by 58% (p = 0.01). Since 2010, there were more reported vibriosis cases with a hospital duration ≥10 days. Patients from the upper eastern shore region and those over the age of 65 were more likely (OR = 6.8 and 12.2) to be hospitalized compared to other patients. CONCLUSIONS Long-term increases in Vibrio infections, notably V. vulnificus wound infections, are occurring in Maryland. This trend, along with increased rates in hospitalizations and average hospital durations, underscore the need to improve public awareness, water monitoring, post-harvest seafood interventions, and environmental forecasting ability.
Collapse
Affiliation(s)
- Michele E Morgado
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Kyle D Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA; University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Clifford Mitchell
- Prevention and Health Promotion Administration, Maryland Department of Health, Baltimore, MD, USA
| | - Michelle M Boyle
- Prevention and Health Promotion Administration, Maryland Department of Health, Baltimore, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA; University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| |
Collapse
|
4
|
Brauge T, Mougin J, Ells T, Midelet G. Sources and contamination routes of seafood with human pathogenic Vibrio spp.: A Farm-to-Fork approach. Compr Rev Food Sci Food Saf 2024; 23:e13283. [PMID: 38284576 DOI: 10.1111/1541-4337.13283] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024]
Abstract
Vibrio spp., known human foodborne pathogens, thrive in freshwater, estuaries, and marine settings, causing vibriosis upon ingestion. The rising global vibriosis cases due to climate change necessitate a deeper understanding of Vibrio epidemiology and human transmission. This review delves into Vibrio contamination in seafood, scrutinizing its sources and pathways. We comprehensively assess the contamination of human-pathogenic Vibrio in the seafood chain, covering raw materials to processed products. A "Farm-to-Fork" approach, aligned with the One Health concept, is essential for grasping the complex nature of Vibrio contamination. Vibrio's widespread presence in natural and farmed aquatic environments establishes them as potential entry points into the seafood chain. Environmental factors, including climate, human activities, and wildlife, influence contamination sources and routes, underscoring the need to understand the origin and transmission of pathogens in raw seafood. Once within the seafood chain, the formation of protective biofilms on various surfaces in production and processing poses significant food safety risks, necessitating proper cleaning and disinfection to prevent microbial residue. In addition, inadequate seafood handling, from inappropriate processing procedures to cross-contamination via pests or seafood handlers, significantly contributes to Vibrio food contamination, thus warranting attention to reduce risks. Information presented here support the imperative for proactive measures, robust research, and interdisciplinary collaboration in order to effectively mitigate the risks posed by human pathogenic Vibrio contamination, safeguarding public health and global food security. This review serves as a crucial resource for researchers, industrials, and policymakers, equipping them with the knowledge to develop biosecurity measures associated with Vibrio-contaminated seafood.
Collapse
Affiliation(s)
- Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne sur Mer, France
| | - Julia Mougin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Timothy Ells
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, Nova Scotia, Canada
| | - Graziella Midelet
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne sur Mer, France
| |
Collapse
|
5
|
Liu Z, Liao C, Wang L. Fitness and transcriptomic analysis of pathogenic Vibrio parahaemolyticus in seawater at different shellfish harvesting temperatures. Microbiol Spectr 2023; 11:e0278323. [PMID: 37962397 PMCID: PMC10715093 DOI: 10.1128/spectrum.02783-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Given the involvement of Vibrio parahaemolyticus (Vp) in a wide range of seafood outbreaks, a systematical characterization of Vp fitness and transcriptomic changes at temperatures of critical importance for seafood production and storage is needed. In this study, one of each virulent Vp strain (tdh+ and trh+) was tested. While no difference in survival behavior of the two virulent strains was observed at 10°C, the tdh+ strain had a faster growth rate than the trh+ strain at 30°C. Transcriptomic analysis showed that a significantly higher number of genes were upregulated at 30°C than at 10°C. The majority of differentially expressed genes of Vp at 30°C were annotated to functional categories supporting cellular growth. At 10°C, the downregulation of the biofilm formation and histidine metabolism indicates that the current practice of storing seafood at low temperatures not only protects seafood quality but also ensures seafood safety.
Collapse
Affiliation(s)
- Zhuosheng Liu
- Department of Food Science and Technology, University of California, Davis, California, USA
| | - Chao Liao
- Department of Food Science and Technology, University of California, Davis, California, USA
| | - Luxin Wang
- Department of Food Science and Technology, University of California, Davis, California, USA
| |
Collapse
|
6
|
Odeyemi OA, Amin M, Dewi FR, Kasan NA, Onyeaka H, Stratev D, Odeyemi OA. Prevalence of Antibiotic-Resistant Seafood-Borne Pathogens in Retail Seafood Sold in Malaysia: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2023; 12:antibiotics12050829. [PMID: 37237733 DOI: 10.3390/antibiotics12050829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The objective of this study was to examine the frequency and extent of antibiotic-resistant pathogens in seafood sold in Malaysia, using a systematic review and meta-analysis approach to analyze primary research studies. Four bibliographic databases were systematically searched for primary studies on occurrence. Meta-analysis using a random-effect model was used to understand the prevalence of antibiotic-resistant bacteria in retail seafood sold in Malaysia. A total of 1938 primary studies were initially identified, among which 13 met the inclusion criteria. In the included primary studies, a total of 2281 seafoods were analyzed for the presence of antibiotic-resistant seafood-borne pathogens. It was observed that 51% (1168/2281) of the seafood was contaminated with pathogens. Overall, the prevalence of antibiotic-resistant seafood-borne pathogens in retail seafood was 55.7% (95% CI: 0.46-0.65). Antibiotic-resistant Salmonella species had an overall prevalence of 59.9% (95% CI: 0.32-0.82) in fish, Vibrio species had an overall prevalence of 67.2% (95% CI: 0.22-0.94) in cephalopods, and MRSA had an overall prevalence of 70.9% (95% CI: 0.36-0.92) in mollusks. It could be concluded that there is a high prevalence of antibiotic-resistant seafood-borne pathogens in the retail seafood sold in Malaysia, which could be of public health importance. Therefore, there is a need for proactive steps to be taken by all stakeholders to reduce the widespread transmission of antibiotic-resistant pathogens from seafood to humans.
Collapse
Affiliation(s)
- Omowale A Odeyemi
- Centre for Child & Adolescent Mental Health (CCAMH), University of Ibadan, Ibadan North, Nigeria
- School of Nursing, Obafemi Awolowo University Teaching Hospital Complex, Ile Ife, Nigeria
| | - Muhamad Amin
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Jl. Mulyosari, Surabaya 60113, Indonesia
| | - Fera R Dewi
- Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Nor Azman Kasan
- Higher Institution Centre of Excellence (HiCoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Helen Onyeaka
- HeTA Centre of Excellence for Food Safety, School of Chemical Engineering, University of Birmingham, Birmingham B15 2SQ, UK
| | - Deyan Stratev
- Department of Food Quality and Safety and Veterinary Legislation, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Olumide A Odeyemi
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Jl. Mulyosari, Surabaya 60113, Indonesia
- HeTA Centre of Excellence for Food Safety, School of Chemical Engineering, University of Birmingham, Birmingham B15 2SQ, UK
- Office of Research Services, Research Division, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
7
|
Hines IS, Markov Madanick J, Smith SA, Kuhn DD, Stevens AM. Analysis of the core bacterial community associated with consumer-ready Eastern oysters (Crassostrea virginica). PLoS One 2023; 18:e0281747. [PMID: 36812164 PMCID: PMC9946220 DOI: 10.1371/journal.pone.0281747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Shellfish, such as the Eastern oyster (Crassostrea virginica), are an important agricultural commodity. Previous research has demonstrated the importance of the native microbiome of oysters against exogenous challenges by non-native pathogens. However, the taxonomic makeup of the oyster microbiome and the impact of environmental factors on it are understudied. Research was conducted quarterly over a calendar year (February 2020 through February 2021) to analyze the taxonomic diversity of bacteria present within the microbiome of consumer-ready-to-eat live Eastern oysters. It was hypothesized that a core group of bacterial species would be present in the microbiome regardless of external factors such as the water temperature at the time of harvest or post-harvesting processing. At each time point, 18 Chesapeake Bay (eastern United States) watershed aquacultured oysters were acquired from a local grocery store, genomic DNA was extracted from the homogenized whole oyster tissues, and the bacterial 16S rRNA gene hypervariable V4 region was PCR-amplified using barcoded primers prior to sequencing via Illumina MiSeq and bioinformatic analysis of the data. A core group of bacteria were identified to be consistently associated with the Eastern oyster, including members of the phyla Firmicutes and Spirochaetota, represented by the families Mycoplasmataceae and Spirochaetaceae, respectively. The phyla Cyanobacterota and Campliobacterota became more predominant in relation to warmer or colder water column temperature, respectively, at the time of oyster harvest.
Collapse
Affiliation(s)
- Ian S. Hines
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Justin Markov Madanick
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stephen A. Smith
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - David D. Kuhn
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ann M. Stevens
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Ndraha N, Huang L, Wu VC, Hsiao HI. Vibrio parahaemolyticus in seafood: Recent progress in understanding influential factors at harvest and food safety intervention approaches. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Sheahan M, Gould CA, Neumann JE, Kinney PL, Hoffmann S, Fant C, Wang X, Kolian M. Examining the Relationship between Climate Change and Vibriosis in the United States: Projected Health and Economic Impacts for the 21st Century. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:87007. [PMID: 35983960 PMCID: PMC9422303 DOI: 10.1289/ehp9999a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND This paper represents, to our knowledge, the first national-level (United States) estimate of the economic impacts of vibriosis cases as exacerbated by climate change. Vibriosis is an illness contracted through food- and waterborne exposures to various Vibrio species (e.g., nonV. cholerae O1 and O139 serotypes) found in estuarine and marine environments, including within aquatic life, such as shellfish and finfish. OBJECTIVES The objective of this study was to project climate-induced changes in vibriosis and associated economic impacts in the United States related to changes in sea surface temperatures (SSTs). METHODS For our analysis to identify climate links to vibriosis incidence, we constructed three logistic regression models by Vibrio species, using vibriosis data sourced from the Cholera and Other Vibrio Illness Surveillance system and historical SSTs. We relied on previous estimates of the cost-per-case of vibriosis to estimate future total annual medical costs, lost income from productivity loss, and mortality-related indirect costs throughout the United States. We separately reported results for V. parahaemolyticus, V. vulnificus, V. alginolyticus, and "V. spp.," given the different associated health burden of each. RESULTS By 2090, increases in SST are estimated to result in a 51% increase in cases annually relative to the baseline era (centered on 1995) under Representative Concentration Pathway (RCP) 4.5, and a 108% increase under RCP8.5. The cost of these illnesses is projected to reach $5.2 billion annually under RCP4.5, and $7.3 billion annually under RCP8.5, relative to $2.2 billion in the baseline (2018 U.S. dollars), equivalent to 140% and 234% increases respectively. DISCUSSION Vibriosis incidence is likely to increase in the United States under moderate and unmitigated climate change scenarios through increases in SST, resulting in a substantial burden of morbidity and mortality, and costing billions of dollars. These costs are mostly attributable to deaths, primarily from exposure to V. vulnificus. Evidence suggests that other factors, including sea surface salinity, may contribute to further increases in vibriosis cases in some regions of the United States and should also be investigated. https://doi.org/10.1289/EHP9999a.
Collapse
Affiliation(s)
- Megan Sheahan
- Industrial Economics, Inc., Cambridge, Massachusetts, USA
| | - Caitlin A. Gould
- U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | | | - Patrick L. Kinney
- Department of Environmental Health, School of Public Health, Boston University, Boston, Massachusetts, USA
| | - Sandra Hoffmann
- U.S. Department of Agriculture, Economic Research Service, Washington, District of Columbia, USA
| | - Charles Fant
- Industrial Economics, Inc., Cambridge, Massachusetts, USA
| | - Xinyue Wang
- Industrial Economics, Inc., Cambridge, Massachusetts, USA
| | - Michael Kolian
- U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| |
Collapse
|
10
|
Hines IS, Smith SA, Kuhn DD, Stevens AM. Development of a Controlled Laboratory-scale Inoculation System to Study Vibrio parahaemolyticus-oyster Interactions. FEMS Microbiol Lett 2022; 369:fnac055. [PMID: 35687396 PMCID: PMC11506194 DOI: 10.1093/femsle/fnac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/14/2022] Open
Abstract
Prevalence of seafood-borne gastroenteritis caused by the human pathogen Vibrio parahaemolyticus is increasing globally despite current preventative measures. The United States Centers for Disease Control have designated V. parahaemolyticus as a reportable emerging human pathogen. The Eastern oyster (Crassostrea virginica) is a natural reservoir of the bacterium in marine environments, but little is actually known regarding interactions between oysters and V. parahaemolyticus. Therefore, a laboratory-scale Biosafety Level-2 (BSL2) inoculation system was developed wherein Chesapeake Bay region oysters harvested during summer or winter months, were exposed to the clinical RIMD2210633 strain carrying a chloramphenicol-selective marker (VP RIMDmC). Homogenized whole oyster tissues were spread on selective and differential agar medium to measure viable VP RIMDmC levels. Endogenous Vibrio spp. cell numbers were significantly reduced followed chloramphenicol treatment and this likely contributed to higher VP RIMDmC oyster-associated levels, especially using winter-harvested animals. Summer-harvested oysters had significantly higher existing Vibrio levels and a lower level of artificial oyster-associated VP RIMDmC. Thus, the pre-existing microbiome appears to afford some protection from an external V. parahaemolyticus challenge. Overall, this system successfully enabled controlled manipulation of parameters influencing V. parahaemolyticus-oyster interactions and will be useful in safely testing additional pertinent environmental variables and potential mitigation strategies.
Collapse
Affiliation(s)
- Ian S Hines
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, United States
| | - Stephen A Smith
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, United States
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, United States
| | - David D Kuhn
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, United States
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ann M Stevens
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
11
|
Campbell VM, Chouljenko A, Hall SG. Depuration of live oysters to reduce Vibrio parahaemolyticus and Vibrio vulnificus: A review of ecology and processing parameters. Compr Rev Food Sci Food Saf 2022; 21:3480-3506. [PMID: 35638353 DOI: 10.1111/1541-4337.12969] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/01/2022]
Abstract
Consumption of raw oysters, whether wild-caught or aquacultured, may increase health risks for humans. Vibrio vulnificus and Vibrio parahaemolyticus are two potentially pathogenic bacteria that can be concentrated in oysters during filter feeding. As Vibrio abundance increases in coastal waters worldwide, ingesting raw oysters contaminated with V. vulnificus and V. parahaemolyticus can possibly result in human illness and death in susceptible individuals. Depuration is a postharvest processing method that maintains oyster viability while they filter clean salt water that either continuously flows through a holding tank or is recirculated and replenished periodically. This process can reduce endogenous bacteria, including coliforms, thus providing a safer, live oyster product for human consumption; however, depuration of Vibrios has presented challenges. When considering the difficulty of removing endogenous Vibrios in oysters, a more standardized framework of effective depuration parameters is needed. Understanding Vibrio ecology and its relation to certain depuration parameters could help optimize the process for the reduction of Vibrio. In the past, researchers have manipulated key depuration parameters like depuration processing time, water salinity, water temperature, and water flow rate and explored the use of processing additives to enhance disinfection in oysters. In summation, depuration processing from 4 to 6 days, low temperature, high salinity, and flowing water effectively reduced V. vulnificus and V. parahaemolyticus in live oysters. This review aims to emphasize trends among the results of these past works and provide suggestions for future oyster depuration studies.
Collapse
Affiliation(s)
- Vashti M Campbell
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Alexander Chouljenko
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Steven G Hall
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
12
|
Bueris V, Sellera FP, Fuga B, Sano E, Carvalho MPN, Couto SCF, Moura Q, Lincopan N. Convergence of virulence and resistance in international clones of WHO critical priority enterobacterales isolated from Marine Bivalves. Sci Rep 2022; 12:5707. [PMID: 35383231 PMCID: PMC8983722 DOI: 10.1038/s41598-022-09598-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
The global spread of critical-priority antimicrobial-resistant Enterobacterales by food is a public health problem. Wild-caught seafood are broadly consumed worldwide, but exposure to land-based pollution can favor their contamination by clinically relevant antimicrobial-resistant bacteria. As part of the Grand Challenges Explorations: New Approaches to Characterize the Global Burden of Antimicrobial Resistance Program, we performed genomic surveillance and cell culture-based virulence investigation of WHO critical priority Enterobacterales isolated from marine bivalves collected in the Atlantic Coast of South America. Broad-spectrum cephalosporin-resistant Klebsiella pneumoniae and Escherichia coli isolates were recovered from eight distinct geographical locations. These strains harbored blaCTX-M-type or blaCMY-type genes. Most of the surveyed genomes confirmed the convergence of wide virulome and resistome (i.e., antimicrobials, heavy metals, biocides, and pesticides resistance). We identified strains belonging to the international high-risk clones K. pneumoniae ST307 and E. coli ST131 carrying important virulence genes, whereas in vitro experiments confirmed the high virulence potential of these strains. Thermolabile and thermostable toxins were identified in some strains, and all of them were biofilm producers. These data point to an alarming presence of resistance and virulence genes in marine environments, which may favor horizontal gene transfer and the spread of these traits to other bacterial species.
Collapse
Affiliation(s)
- Vanessa Bueris
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil. .,Laboratory of Genetics, Butantan Institute, São Paulo, Brazil.
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil.,One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Bruna Fuga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elder Sano
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Marcelo P N Carvalho
- Department of Veterinary Clinic and Surgery, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Quézia Moura
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Characterization of the Novel Phage vB_VpaP_FE11 and Its Potential Role in Controlling Vibrio parahaemolyticus Biofilms. Viruses 2022; 14:v14020264. [PMID: 35215857 PMCID: PMC8879856 DOI: 10.3390/v14020264] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Vibrio parahaemolyticus causes aquatic vibriosis. Its biofilm protects it from antibiotics; therefore, a new different method is needed to control V. parahaemolyticus for food safety. Phage therapy represents an alternative strategy to control biofilms. In this study, the lytic Vibrio phage vB_VpaP_FE11 (FE11) was isolated from the sewers of Guangzhou Huangsha Aquatic Market. Electron microscopy analysis revealed that FE11 has a typical podovirus morphology. Its optimal stability temperature and pH range were found to be 20–50 °C and 5–10 °C, respectively. It was completely inactivated following ultraviolet irradiation for 20 min. Its latent period is 10 min and burst size is 37 plaque forming units/cell. Its double-stranded DNA genome is 43,397 bp long, with a G + C content of 49.24% and 50 predicted protein-coding genes. As a lytic phage, FE11 not only prevented the formation of biofilms but also could destroy the formed biofilms effectively. Overall, phage vB_VpaP_FE11 is a potential biological control agent against V. parahaemolyticus and the biofilm it produces.
Collapse
|
14
|
Ma Y, Wang R, Zhang T, Xu Y, Jiang S, Zhao Y. High Hydrostatic Pressure Treatment of Oysters ( Crassostrea gigas)-Impact on Physicochemical Properties, Texture Parameters, and Volatile Flavor Compounds. Molecules 2021; 26:molecules26195731. [PMID: 34641272 PMCID: PMC8510164 DOI: 10.3390/molecules26195731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
High hydrostatic pressure (HHP) treatment is a non-thermal processing technology, which is widely used in the food processing field at present. In this study, the effects of HHP treatment (100~500 MPa for 5 min) on the physicochemical properties, texture parameters, and volatile flavor compounds of oysters were investigated. The results showed that HHP treatment increased the water content while reducing the crude protein and ash content of the oyster. Texture parameters showed that HHP treatment improved the hardness, springiness, chewiness, and cohesiveness of oysters, compared with the control group. In addition, the saturated fatty acid (SFA) content was slightly increased after HHP treatment, while the difference in monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) content was not significant. Furthermore, HHP increased hexenoic aldehyde, 2,4-heptadienal, 1-octene-3-ol, and 2-octen-1-ol and decreased the contents of 3. 6-nadien-1-ol, 3-octanone, and 2-undecanone, suggesting that HHP might inhibit the fishiness of oyster and showed a positive effect on its flavor. Based on the above results, HHP improved the edible qualities such as texture properties and volatile flavor of oysters. This meets the requirements of consumers on the edible quality of seafood and provides new ideas for the development of seafood.
Collapse
Affiliation(s)
- Yuyang Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.M.); (R.W.); (S.J.)
| | - Runfang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.M.); (R.W.); (S.J.)
| | - Tietao Zhang
- College of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China; (T.Z.); (Y.X.)
| | - Yunsheng Xu
- College of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China; (T.Z.); (Y.X.)
| | - Suisui Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.M.); (R.W.); (S.J.)
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.M.); (R.W.); (S.J.)
- Correspondence: ; Tel./Fax: +86-532-82032783
| |
Collapse
|
15
|
Yu M, Wang X, Yan A. Microbial Profiles of Retail Pacific Oysters ( Crassostrea gigas) From Guangdong Province, China. Front Microbiol 2021; 12:689520. [PMID: 34305851 PMCID: PMC8292972 DOI: 10.3389/fmicb.2021.689520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022] Open
Abstract
Oysters are one of the main aquatic products sold in coastal areas worldwide and are popular among consumers because of their delicious taste and nutritional value. However, the microorganisms present in oysters may pose health risks to consumers. In this study, the microbial communities of Pacific oysters (Crassostrea gigas) collected from aquatic product markets in three cities (Guangzhou, Zhuhai, and Jiangmen) of Guangdong Province, China, where raw oysters are popular, were investigated. The plate counts of viable bacteria in oysters collected in the three cities were all approximately 2 log colony-forming units/g. High-throughput sequencing analysis of the V3–V4 region of the 16Sribosomal DNA gene showed a high level of microbial diversity in oysters, as evidenced by both alpha and beta diversity analysis. Proteobacteria, Bacteroidetes, and Firmicutes were the dominant phyla of the microorganisms present in these samples. A variety of pathogenic bacteria, including the fatal foodborne pathogen Vibrio vulnificus, were found, and Vibrio was the dominant genus. Additionally, the relationship between other microbial species and pathogenic microorganisms may be mostly symbiotic in oysters. These data provide insights into the microbial communities of retail oysters in the Guangdong region and indicate a considerable risk related to the consumption of raw oysters.
Collapse
Affiliation(s)
- Mingjia Yu
- Department of Food Science, Foshan Polytechnic, Foshan, China
| | - Xiaobo Wang
- Department of Food Science, Foshan Polytechnic, Foshan, China
| | - Aixian Yan
- Department of Food Science, Foshan Polytechnic, Foshan, China
| |
Collapse
|