1
|
Oni TM, Gamagedara S, Floyd EL. Desorption efficiency and holding capacity of acid-treated filters for nicotine sampling in vape shops. Ann Work Expo Health 2024:wxae080. [PMID: 39450758 DOI: 10.1093/annweh/wxae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Efficient sampling materials are essential for assessing nicotine levels in vape shops and other settings where nicotine exposures may exist. Two different treatments of Whatman glass fiber type A (GF/A) filters (sodium bisulfate treated and citric acid treated) were evaluated for nicotine capture, desorption efficiency, and holding capacity using Gas Chromatography-Mass Spectrometry (GC-MS). The Filters were treated with 0.8 mL of 0.1 M sodium bisulfate or citric acid solution and oven-dried (80 °C) for 30 min. Nicotine was desorbed off the filters using a modified analytical method. The average nicotine desorption efficiency for sodium bisulfate-treated GF/A filters (98.4%) was significantly higher than that of citric acid-treated GF/A filters (60.9%) over a range of 1-100 µg nicotine. Sodium bisulfate-treated and citric acid-treated GF/A filters experienced a 10% nicotine breakthrough after being dosed with about 550 and 2,750 µg of nicotine, respectively compared to 75 µg for untreated GF/A filters. Citric acid-treated GF/A filters had a much greater nicotine-holding capacity, but nicotine desorption from citric acid-treated GF/A filters was below the recommended criteria. Therefore, we recommend that sodium bisulfate-treated GF/A filters are employed for sample of nicotine with the GC-MS method.
Collapse
Affiliation(s)
- Toluwanimi M Oni
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, 801 NE 13th Street, Oklahoma City, OK 73104, United States
| | - Sanjeewa Gamagedara
- Department of Chemistry, University of Central Oklahoma, 100 N. University Dr., Edmond, OK 73034, United States
| | - Evan L Floyd
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, 801 NE 13th Street, Oklahoma City, OK 73104, United States
| |
Collapse
|
2
|
Woo W, Tian L, Lum M, Canchola A, Chen K, Lin YH. Ozonolysis of Terpene Flavor Additives in Vaping Emissions: Elevated Production of Reactive Oxygen Species and Oxidative Stress. Chem Res Toxicol 2024; 37:981-990. [PMID: 38776470 PMCID: PMC11187633 DOI: 10.1021/acs.chemrestox.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The production of e-cigarette aerosols through vaping processes is known to cause the formation of various free radicals and reactive oxygen species (ROS). Despite the well-known oxidative potential and cytotoxicity of fresh vaping emissions, the effects of chemical aging on exhaled vaping aerosols by indoor atmospheric oxidants are yet to be elucidated. Terpenes are commonly found in e-liquids as flavor additives. In the presence of indoor ozone (O3), e-cigarette aerosols that contain terpene flavorings can undergo chemical transformations, further producing ROS and reactive carbonyl species. Here, we simulated the aging process of the e-cigarette emissions in a 2 m3 FEP film chamber with 100 ppbv of O3 exposure for an hour. The aged vaping aerosols, along with fresh aerosols, were collected to detect the presence of ROS. The aged particles exhibited 2- to 11-fold greater oxidative potential, and further analysis showed that these particles formed a greater number of radicals in aqueous conditions. The aging process induced the formation of various alkyl hydroperoxides (ROOH), and through iodometric quantification, we saw that our aged vaping particles contained significantly greater amounts of these hydroperoxides than their fresh counterparts. Bronchial epithelial cells exposed to aged vaping aerosols exhibited an upregulation of the oxidative stress genes, HMOX-1 and GSTP1, indicating the potential for inhalation toxicity. This work highlights the indirect danger of vaping in environments with high ground-level O3, which can chemically transform e-cigarette aerosols into new particles that can induce greater oxidative damage than fresh e-cigarette aerosols. Given that the toxicological characteristics of e-cigarettes are mainly associated with the inhalation of fresh aerosols in current studies, our work may provide a perspective that characterizes vaping exposure under secondhand or thirdhand conditions as a significant health risk.
Collapse
Affiliation(s)
- Wonsik Woo
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
| | - Linhui Tian
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Michael Lum
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Alexa Canchola
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
| | - Kunpeng Chen
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Ying-Hsuan Lin
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Cui T, Lu R, Liu C, Wu Z, Jiang X, Liu Y, Pan S, Li Y. Characteristics of second-hand exposure to aerosols from e-cigarettes: A literature review since 2010. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171829. [PMID: 38537812 DOI: 10.1016/j.scitotenv.2024.171829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
In recent years, the use of electronic vaping products (also named e-cigarettes) has increased due to their appealing flavors and nicotine delivery without the combustion of tobacco. Although the hazardous substances emitted by e-cigarettes are largely found to be much lower than combustible cigarettes, second-hand exposure to e-cigarette aerosols is not completely benign for bystanders. This work reviewed and synthesized findings on the second-hand exposure of aerosols from e-cigarettes and compared the results with those of the combustible cigarettes. In this review, different results were integrated based upon sampling locations such as residences, vehicles, offices, public places, and experimental exposure chambers. In addition, the factors that influence the second-hand exposure levels were identified by objectively reviewing and integrating the impacts of combustible cigarettes and e-cigarettes on the environment. It is a challenge to compare the literature data directly to assess the effect of smoking/vaping on the indoor environment. The room volume, indoor air exchange rate, puffing duration, and puffing numbers should be considered, which are important factors in determining the degree of pollution. Therefore, it is necessary to calculate the "emission rate" to normalize the concentration of pollutants emitted under various experimental conditions and make the results comparable. This review aims to increase the awareness regarding the harmful effects of the second-hand exposure to aerosols coming from the use of cigarettes and e-cigarettes, identify knowledge gaps, and provide a scientific basis for future policy interventions with regard to the regulation of smoking and vaping.
Collapse
Affiliation(s)
- Tong Cui
- School of Civil Engineering, Chang'an University, Xi'an 710054, China; School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology Effects in Arid Region, Ministry of Education, Xi'an 710054, China
| | - Rui Lu
- RELX Science Center, Shenzhen RELX Tech. Co., Ltd., Shenzhen, China.
| | - Chuan Liu
- RELX Science Center, Shenzhen RELX Tech. Co., Ltd., Shenzhen, China
| | - Zehong Wu
- RELX Science Center, Shenzhen RELX Tech. Co., Ltd., Shenzhen, China
| | - Xingtao Jiang
- RELX Science Center, Shenzhen RELX Tech. Co., Ltd., Shenzhen, China
| | - Yiqiao Liu
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Song Pan
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing 100124, China
| | - Yanpeng Li
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology Effects in Arid Region, Ministry of Education, Xi'an 710054, China.
| |
Collapse
|
4
|
Cui T, Lu R, Liu Q, Jiang X, Li Y, Pan S. PM 1 exposure and spatial transmission of nicotine from the simulated second-hand vapor of pod-based electronic cigarettes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165355. [PMID: 37419341 DOI: 10.1016/j.scitotenv.2023.165355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Electronic cigarettes (E-cigarettes) have gained significant popularity in recent years as a substitute for combustible cigarettes. However, there is growing concern regarding the safety of E-cigarette products for both the users and those exposed passively to second-hand emissions, which contain nicotine and other toxic substances. In particular, the characteristics of second-hand PM1 exposure and the transmission of nicotine from E-cigarettes remain unclear. In this study, the untrapped mainstream aerosols from the E-cigarette and smoke from cigarettes were exhausted by the smoking machines which were operated under standardized puffing regimes to simulate second-hand vapor or smoke exposure. The concentrations and components of PM1 released from cigarettes and E-cigarettes were compared under varying environmental conditions and regulated using a heating, ventilation, and air conditioning (HVAC) system. Additionally, the ambient nicotine concentrations and the size distribution of the generated aerosols were determined at different distances from the release source. Results showed that PM1 accounted for the highest proportion (98 %) of the released particulate matter (PM1, PM2.5, and PM10). The mass median aerodynamic diameter (MMAD) of cigarette smoke (0.5 ± 0.01 μm, geometric standard deviation (GSD) 1.97 ± 0.1) was smaller than that of E-cigarette aerosols (1.06 ± 0.14 μm, GSD 1.79 ± 0.19). The PM1 concentrations and chemical components were effectively reduced when the HVAC system was utilized. Nicotine concentrations in E-cigarette aerosols were comparable to those of combustible cigarette emissions when close to the exposure source (0 m), while they declined more rapidly than cigarette smoke emissions with increasing distance from the source. Furthermore, the maximum nicotine concentrations occurred in 1 μm and 0.5 μm particles in E-cigarette and cigarette emissions, respectively. These results provide a scientific basis for the assessment of E-cigarette and cigarette aerosol passive exposure risks, guiding the development of environmental and human health control measures for these products.
Collapse
Affiliation(s)
- Tong Cui
- School of Civil Engineering, Chang'an University, Xi'an 710054, China; School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology Effects in Arid Region, Ministry of Education, Xi'an 710054, China
| | - Rui Lu
- RELX Technical Science Center, Shenzhen RELX Tech. Co., Ltd., Shenzhen, China
| | - Qianyun Liu
- RELX Technical Science Center, Shenzhen RELX Tech. Co., Ltd., Shenzhen, China
| | - Xingtao Jiang
- RELX Technical Science Center, Shenzhen RELX Tech. Co., Ltd., Shenzhen, China
| | - Yanpeng Li
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology Effects in Arid Region, Ministry of Education, Xi'an 710054, China.
| | - Song Pan
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Cheng KC, Huang G, Hildemann LM. PM2.5 exposure to marijuana smoke on golf courses and other public outdoor locations: A pilot observational study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165236. [PMID: 37392887 DOI: 10.1016/j.scitotenv.2023.165236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Secondhand exposure to cannabis smoke occurs in public outdoor locations due to outdoor smoking or leakage of indoor smoking. Very little is known regarding the actual levels of exposure. This study examined PM2.5 exposure to marijuana smoke, focusing on one type of public outdoor location - golf courses where illegal marijuana consumption is increasingly common. Based on 24 visits to 10 courses over a 6-month period, >20 % visits encountered marijuana smoke, with peak PM2.5 exposures up to 149 μg/m3. The levels of exposure depended upon the source type (smoking versus vaping) and the proximity to the smoker/vaper. Ten additional investigations were performed to measure marijuana secondhand exposure in other public outdoor locations (near a smoker in a public park, near a parked car with in-car smoking/vaping, and near a residential garage with indoor smoking/vaping). 23 encounters of marijuana exposure events were documented in total. Average outdoor exposures to PM2.5 close to public outdoor smoking and vaping (on golf courses and a public park) were >3 times as high as those near a car or a building with indoor marijuana emissions. The average outdoor exposure caused by the leakage of in-car secondhand smoke was higher than that caused by in-building emissions.
Collapse
Affiliation(s)
- Kai-Chung Cheng
- San Diego State University, San Diego, CA, United States of America.
| | - Gan Huang
- Stanford University, Stanford, CA, United States of America
| | | |
Collapse
|
6
|
Commodore S, Sharma S, Ekpruke CD, Pepin R, Hansen AM, Rousselle D, Babayev M, Ndeke JM, Alford R, Parker E, Dickinson S, Sharma S, Silveyra P. Thirdhand vaping exposures are associated with pulmonary and systemic inflammation in a mouse model. JOURNAL OF ENVIRONMENTAL EXPOSURE ASSESSMENT 2023; 2:22. [PMID: 38741701 PMCID: PMC11090496 DOI: 10.20517/jeea.2023.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Thirdhand smoke (THS) is the accumulation of secondhand smoke on surfaces that ages with time. THS exposure is a potential health threat to children, partners of smokers, and workers in environments with current or past smoking, and needs further investigation. In this study, we hypothesized that thirdhand Electronic Nicotine Delivery Systems (ENDS) exposures elicit lung and systemic inflammation due to resuspended particulate matter (PM) and inorganic compounds that remain after active vaping has ceased. To test our hypothesis, we exposed C57BL/6J mice to cotton towels contaminated with ENDS aerosols from unflavored vape fluid (6 mg nicotine in 50/50 propylene glycol/vegetable glycerin) for 1h/day, five days/week, for three weeks. We assessed protein levels in serum and bronchoalveolar lavage fluid (BALF) using a multiplex protein assay. The mean ± sd for PM10 and PM2.5 measurements in exposed mouse cages were 8.3 ± 14.0 and 4.6 ± 7.5 μg/m3, compared to 6.1 ± 11.2 and 3.7 ± 6.6 μg/m3 in control cages respectively. Two compounds, 4-methyl-1, 2-dioxolane and 4-methyl-cyclohexanol, were detected in vape fluid and on ENDS-contaminated towels, but not on control towels. Mice exposed to ENDS-contaminated towels had lower levels of serum Il-7 (P = 0.022, n = 7), and higher levels of Il-13 in the BALF (P = 0.006, n = 7) than those exposed to control towels (n = 6). After adjusting for sex and age, Il-7 and Il-13 levels were still associated with thirdhand vaping exposure (P = 0.010 and P = 0.017, respectively). This study provides further evidence that thirdhand ENDS aerosols can contaminate surfaces, and subsequently influence lung and systemic health upon exposure.
Collapse
Affiliation(s)
- Sarah Commodore
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, IN 47408, USA
| | - Shikha Sharma
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, IN 47408, USA
| | - Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, IN 47408, USA
| | - Robert Pepin
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Angela M. Hansen
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Dustin Rousselle
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, IN 47408, USA
| | - Maksat Babayev
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, IN 47408, USA
| | - Jonas M. Ndeke
- Department of Epidemiology and Biostatistics, School of Public Health Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Rachel Alford
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, IN 47408, USA
| | - Erik Parker
- Biostatistics Consulting Center, Department of Epidemiology and Biostatistics, School of Public Health Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Stephanie Dickinson
- Biostatistics Consulting Center, Department of Epidemiology and Biostatistics, School of Public Health Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Sunita Sharma
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, IN 47408, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Shearston JA, Eazor J, Lee L, Vilcassim MJR, Reed TA, Ort D, Weitzman M, Gordon T. Effects of electronic cigarettes and hookah (waterpipe) use on home air quality. Tob Control 2023; 32:36-41. [PMID: 34021062 PMCID: PMC10787574 DOI: 10.1136/tobaccocontrol-2020-056437] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/04/2022]
Abstract
INTRODUCTION A major site of secondhand smoke exposure for children and adults is the home. Few studies have evaluated the impact of e-cigarette or hookah use on home air quality, despite evidence finding toxic chemicals in secondhand e-cigarette aerosols and hookah smoke. We assessed the effect of e-cigarette and hookah use on home air quality and compared it with air quality in homes where cigarettes were smoked and where no smoking or e-cigarette use occurred. METHODS Non-smoking homes and homes where e-cigarettes, hookah or cigarettes were used were recruited in the New York City area (n=57) from 2015 to 2019. Particulate matter with diameter less than 2.5 µm (PM2.5), black carbon and carbon monoxide (CO) were measured during a smoking or vaping session, both in a 'primary' smoking room and in an adjacent 'secondary' room where no smoking or vaping occurred. Log transformed data were compared with postanalysis of variance Tukey simultaneous tests. RESULTS Use of hookah significantly increased PM2.5 levels compared with non-smoking homes, in both the primary and secondary rooms, while use of e-cigarettes increased PM2.5 levels only in primary rooms. Additionally, in-home use of hookah resulted in greater CO concentrations than the use of cigarettes in primary rooms. CONCLUSIONS Use of e-cigarettes or hookah increases air pollution in homes. For hookah, increases in PM2.5 penetrated even into rooms adjacent to where smoking occurs. Extending smoke-free rules inside homes to include e-cigarette and hookah products is needed to protect household members and visitors from passive exposure to harmful aerosols and gases.
Collapse
Affiliation(s)
- Jenni A Shearston
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - James Eazor
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Lily Lee
- State University of New York Downstate Medical Center, New York, New York, USA
| | - M J Ruzmyn Vilcassim
- Department of Environmental Health Sciences, The University of Alabama at Birmingham School of Public Health, Birmingham, Alabama, USA
| | - Taylor A Reed
- Department of Social Welfare, University of California Los Angeles, Los Angeles, California, USA
| | - Deborah Ort
- Nemours Children's Urgent Care, Orlando, Florida, USA
| | - Michael Weitzman
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
- New York University College of Global Public Health, New York, New York, USA
| | - Terry Gordon
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
- New York University College of Global Public Health, New York, New York, USA
| |
Collapse
|
8
|
Amalia B, Fu M, Tigova O, Ballbè M, Paniello-Castillo B, Castellano Y, Vyzikidou VK, O'Donnell R, Dobson R, Lugo A, Veronese C, Pérez-Ortuño R, Pascual JA, Cortés N, Gil F, Olmedo P, Soriano JB, Boffi R, Ruprecht A, Ancochea J, López MJ, Gallus S, Vardavas C, Semple S, Fernández E. Exposure to secondhand aerosol from electronic cigarettes at homes: A real-life study in four European countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158668. [PMID: 36099951 DOI: 10.1016/j.scitotenv.2022.158668] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Electronic cigarette (e-cigarette) use emits potentially hazardous compounds and deteriorates indoor air quality. Home is a place where e-cigarettes may frequently be used amid its increasing prohibition in public places. This study assessed the real-life scenario of bystanders' exposure to secondhand e-cigarette aerosol (SHA) at home. A one-week observational study was conducted within the TackSHS project in four countries (Greece, Italy, Spain, and the United Kingdom) in 2019 including: 1) homes of e-cigarette users living together with a non-user/non-smoker; and 2) control homes with no smokers nor e-cigarette users. Indoor airborne nicotine, PM2.5, and PM1.0 concentrations were measured as environmental markers of SHA. Biomarkers, including nicotine and its metabolites, tobacco-specific nitrosamines, propanediol, glycerol, and metals were measured in participants' saliva and urine samples. E-cigarette use characteristics, such as e-cigarette refill liquid's nicotine concentration, e-cigarette type, place of e-cigarette use at home, and frequency of ventilation, were also collected. A total of 29 e-cigarette users' homes and 21 control homes were included. The results showed that the seven-day concentrations of airborne nicotine were quantifiable in 21 (72.4 %) out of 29 e-cigarette users' homes; overall, they were quite low (geometric mean: 0.01 μg/m3; 95 % CI: 0.01-0.02 μg/m3) and were all below the limit of quantification in control homes. Seven-day concentrations of PM2.5 and PM1.0 in e-cigarette and control homes were similar. Airborne nicotine and PM concentrations did not differ according to different e-cigarette use characteristics. Non-users residing with e-cigarette users had low but significantly higher levels of cotinine, 3'-OH-cotinine and 1,2-propanediol in saliva, and cobalt in urine than non-users living in control homes. In conclusion, e-cigarette use at home created bystanders' exposure to SHA regardless of the e-cigarette use characteristics. Further studies are warranted to assess the implications of SHA exposure for smoke-free policy.
Collapse
Affiliation(s)
- Beladenta Amalia
- Tobacco Control Unit, Catalan Institute of Oncology - ICO, WHO Collaborating Centre for Tobacco Control, L'Hospitalet de Llobregat, Barcelona, Spain; Tobacco Control Research Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; School of Medicine and Health Sciences, University of Barcelona - UB, Barcelona, Spain; CIBER Respiratory Diseases - CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Marcela Fu
- Tobacco Control Unit, Catalan Institute of Oncology - ICO, WHO Collaborating Centre for Tobacco Control, L'Hospitalet de Llobregat, Barcelona, Spain; Tobacco Control Research Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; School of Medicine and Health Sciences, University of Barcelona - UB, Barcelona, Spain; CIBER Respiratory Diseases - CIBERES, Instituto de Salud Carlos III, Madrid, Spain.
| | - Olena Tigova
- Tobacco Control Unit, Catalan Institute of Oncology - ICO, WHO Collaborating Centre for Tobacco Control, L'Hospitalet de Llobregat, Barcelona, Spain; Tobacco Control Research Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; School of Medicine and Health Sciences, University of Barcelona - UB, Barcelona, Spain; CIBER Respiratory Diseases - CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Montse Ballbè
- Tobacco Control Unit, Catalan Institute of Oncology - ICO, WHO Collaborating Centre for Tobacco Control, L'Hospitalet de Llobregat, Barcelona, Spain; Tobacco Control Research Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; CIBER Respiratory Diseases - CIBERES, Instituto de Salud Carlos III, Madrid, Spain; Addictions Unit, Institute of Neurosciences, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Blanca Paniello-Castillo
- Tobacco Control Unit, Catalan Institute of Oncology - ICO, WHO Collaborating Centre for Tobacco Control, L'Hospitalet de Llobregat, Barcelona, Spain; Tobacco Control Research Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Yolanda Castellano
- Tobacco Control Unit, Catalan Institute of Oncology - ICO, WHO Collaborating Centre for Tobacco Control, L'Hospitalet de Llobregat, Barcelona, Spain; Tobacco Control Research Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; School of Medicine and Health Sciences, University of Barcelona - UB, Barcelona, Spain; CIBER Respiratory Diseases - CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Vergina K Vyzikidou
- Hellenic Cancer Society - George D. Behrakis Research Lab - HCS, Athens, Greece
| | - Rachel O'Donnell
- Institute for Social Marketing and Health, University of Stirling, Stirling, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Ruaraidh Dobson
- Institute for Social Marketing and Health, University of Stirling, Stirling, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Alessandra Lugo
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Milan, Italy
| | - Chiara Veronese
- IRCCS Istituto Nazionale dei Tumori - INT Foundation, Milan, Italy
| | - Raúl Pérez-Ortuño
- Hospital del Mar Medical Research Institute - IMIM, Barcelona, Spain
| | - José A Pascual
- Hospital del Mar Medical Research Institute - IMIM, Barcelona, Spain; Department of Experimental and Health Sciences, University Pompeu Fabra - UPF, Barcelona, Spain
| | - Nuria Cortés
- Agència de Salut Pública de Barcelona - ASPB, Barcelona, Spain
| | - Fernando Gil
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada - UG, Granada, Spain
| | - Pablo Olmedo
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada - UG, Granada, Spain
| | - Joan B Soriano
- CIBER Respiratory Diseases - CIBERES, Instituto de Salud Carlos III, Madrid, Spain; Respiratory Department, Hospital Universitario La Princesa, Madrid, Spain
| | - Roberto Boffi
- IRCCS Istituto Nazionale dei Tumori - INT Foundation, Milan, Italy
| | - Ario Ruprecht
- IRCCS Istituto Nazionale dei Tumori - INT Foundation, Milan, Italy
| | - Julio Ancochea
- CIBER Respiratory Diseases - CIBERES, Instituto de Salud Carlos III, Madrid, Spain; Respiratory Department, Hospital Universitario La Princesa, Madrid, Spain
| | - Maria J López
- Agència de Salut Pública de Barcelona - ASPB, Barcelona, Spain; CIBER de Epidemiología y Salud Pública - CIBERESP, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau - IIB St. Pau, Barcelona, Spain
| | - Silvano Gallus
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Milan, Italy
| | - Constantine Vardavas
- School of Medicine, University of Crete, Heraklion, Greece; Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Sean Semple
- Institute for Social Marketing and Health, University of Stirling, Stirling, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Esteve Fernández
- Tobacco Control Unit, Catalan Institute of Oncology - ICO, WHO Collaborating Centre for Tobacco Control, L'Hospitalet de Llobregat, Barcelona, Spain; Tobacco Control Research Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; School of Medicine and Health Sciences, University of Barcelona - UB, Barcelona, Spain; CIBER Respiratory Diseases - CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Attfield KR, Zalay M, Zwack LM, Glassford EK, LeBouf RF, Materna BL. Assessment of worker chemical exposures in California vape shops. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:197-209. [PMID: 35156905 PMCID: PMC8989644 DOI: 10.1080/15459624.2022.2036341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
E-cigarettes are battery-operated devices that heat a liquid mixture to make an aerosol that is inhaled, or vaped, by the user. Vape shops are retail environments designed to fulfill customer demand for diverse e-liquid flavors and hardware options, which create unique worker exposure concerns. To characterize exposures to vape shop workers, especially to flavoring chemicals associated with known respiratory toxicity, this study recruited vape shops from the San Francisco Bay Area. In six shops, we measured air concentrations for volatile organic compounds, formaldehyde, flavoring chemicals, and nicotine in personal and/or area samples; analyzed components of e-liquids vaped during field visits; and assessed metals on surface wipe samples. Interviews and observations were conducted over the course of a workday in the same six shops and interviews were performed in an additional six where sampling was not conducted. Detections of the alpha-diketone butter flavoring chemicals diacetyl and/or 2,3-pentanedione were common: in the headspace of purchased e-liquids (18 of 26 samples), in personal air samples (5 of 16), and in area air samples (2 of 6 shops). Two exceedances of recommended exposure limits for 2,3-pentanedione (a short-term exposure limit and an 8-hr time-weighted average) were measured in personal air samples. Other compounds detected in the area and personal air samples included substitutes for diacetyl and 2,3-pentanedione (acetoin and 2,3-hexanedione) and compounds that may be contaminants or impurities. Furthermore, a large variety (82) of other flavoring chemicals were detected in area air samples. None of the 12 shops interviewed had a health and safety program. Six shops reported no use of any personal protective equipment (PPE) (e.g., gloves, chemical resistant aprons, eye protection) and the others stated occasional use; however, no PPE use was observed during any field investigation day. Recommendations were provided to shops that included making improvements to ventilation, hygiene, use of personal protective equipment, and, if possible, avoidance of products containing the alpha-diketone flavoring chemicals. Future research is needed to evaluate the long-term health risks among workers in the vape shop retail industry and for e-cigarette use generally. Specific areas include further characterizing e-liquid constituents and emissions, evaluating ingredient health risks, evaluating the contributions of different routes of exposure (dermal, inhalation, and ingestion), and determining effective exposure mitigation measures.
Collapse
Affiliation(s)
- Kathleen R Attfield
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, California
| | | | - Leonard M Zwack
- Hazard Evaluations and Technical Assistance Branch, National Institute for Occupational Safety and Health, Cincinnati, Ohio
| | - Eric K Glassford
- Hazard Evaluations and Technical Assistance Branch, National Institute for Occupational Safety and Health, Cincinnati, Ohio
| | - Ryan F LeBouf
- Field Studies Branch, Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Barbara L Materna
- Occupational Health Branch, California Department of Public Health, Richmond, California
| |
Collapse
|
10
|
Stefaniak AB, Ranpara AC, Virji MA, LeBouf RF. Influence of E-Liquid Humectants, Nicotine, and Flavorings on Aerosol Particle Size Distribution and Implications for Modeling Respiratory Deposition. Front Public Health 2022; 10:782068. [PMID: 35372219 PMCID: PMC8968757 DOI: 10.3389/fpubh.2022.782068] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/15/2022] [Indexed: 01/10/2023] Open
Abstract
Electronic cigarette, or vaping, products are used to heat an e-liquid to form an aerosol (liquid droplets suspended in gas) that the user inhales; a portion of this aerosol deposits in their respiratory tract and the remainder is exhaled, thereby potentially creating opportunity for secondhand exposure to bystanders (e.g., in homes, automobiles, and workplaces). Particle size, a critical factor in respiratory deposition (and therefore potential for secondhand exposure), could be influenced by e-liquid composition. Hence, the purposes of this study were to (1) test the influence of laboratory-prepared e-liquid composition [ratio of propylene glycol (PG) to vegetable glycerin (VG) humectants, nicotine, and flavorings] on particle size distribution and (2) model respiratory dosimetry. All e-liquids were aerosolized using a second-generation reference e-cigarette. We measured particle size distribution based on mass using a low-flow cascade impactor (LFCI) and size distribution based on number using real-time mobility sizers. Mass median aerodynamic diameters (MMADs) of aerosol from e-liquids that contained only humectants were significantly larger compared with e-liquids that contained flavorings or nicotine (p = 0.005). Humectant ratio significantly influenced MMADs; all aerosols from e-liquids prepared with 70:30 PG:VG were significantly larger compared with e-liquids prepared with 30:70 PG:VG (p = 0.017). In contrast to the LFCI approach, the high dilution and sampling flow rate of a fast mobility particle sizer strongly influenced particle size measurements (i.e., all calculated MMAD values were < 75 nm). Dosimetry modeling using LFCI data indicated that a portion of inhaled particles will deposit throughout the respiratory tract, though statistical differences in aerosol MMADs among e-liquid formulations did not translate into large differences in deposition estimates. A portion of inhaled aerosol will be exhaled and could be a source for secondhand exposure. Use of laboratory-prepared e-liquids and a reference e-cigarette to standardize aerosol generation and a LFCI to measure particle size distribution without dilution represents an improved method to characterize physical properties of volatile aerosol particles and permitted determination of MMAD values more representative of e-cigarette aerosol in situ, which in turn, can help to improve dose modeling for users and bystanders.
Collapse
|
11
|
Çetintaş E, Luo Y, Nguyen C, Guo Y, Li L, Zhu Y, Ozcan A. Characterization of exhaled e-cigarette aerosols in a vape shop using a field-portable holographic on-chip microscope. Sci Rep 2022; 12:3175. [PMID: 35210524 PMCID: PMC8873257 DOI: 10.1038/s41598-022-07150-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
The past decade marked a drastic increase in the usage of electronic cigarettes. The adverse health impact of secondhand exposure due to exhaled e-cig particles has raised significant concerns, demanding further research on the characteristics of these particles. In this work, we report direct volatility measurements on exhaled e-cig aerosols using a field-portable device (termed c-Air) enabled by deep learning and lens-free holographic microscopy; for this analysis, we performed a series of field experiments in a vape shop where customers used/vaped their e-cig products. During four days of experiments, we periodically sampled the indoor air with intervals of ~ 16 min and collected the exhaled particles with c-Air. Time-lapse inline holograms of the collected particles were recorded by c-Air and reconstructed using a convolutional neural network yielding phase-recovered microscopic images of the particles. Volumetric decay of individual particles due to evaporation was used as an indicator of the volatility of each aerosol. Volatility dynamics quantified through c-Air experiments showed that indoor vaping increased the percentage of volatile and semi-volatile particles in air. The reported methodology and findings can guide further studies on volatility characterization of indoor e-cig emissions.
Collapse
Affiliation(s)
- Ege Çetintaş
- Electrical and Computer Engineering Department, University of California, Los Angeles (UCLA), 420 Westwood Plaza, Engr. IV 68-119, Los Angeles, CA, 90095, USA.,Bioengineering Department, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,California Nano Systems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yi Luo
- Electrical and Computer Engineering Department, University of California, Los Angeles (UCLA), 420 Westwood Plaza, Engr. IV 68-119, Los Angeles, CA, 90095, USA.,Bioengineering Department, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,California Nano Systems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Charlene Nguyen
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuening Guo
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Liqiao Li
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yifang Zhu
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles (UCLA), 420 Westwood Plaza, Engr. IV 68-119, Los Angeles, CA, 90095, USA. .,Bioengineering Department, University of California, Los Angeles, Los Angeles, CA, 90095, USA. .,California Nano Systems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA. .,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
12
|
Luo Y, Wu Y, Li L, Guo Y, Çetintaş E, Zhu Y, Ozcan A. Dynamic Imaging and Characterization of Volatile Aerosols in E-Cigarette Emissions Using Deep Learning-Based Holographic Microscopy. ACS Sens 2021; 6:2403-2410. [PMID: 34081429 DOI: 10.1021/acssensors.1c00628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Various volatile aerosols have been associated with adverse health effects; however, characterization of these aerosols is challenging due to their dynamic nature. Here, we present a method that directly measures the volatility of particulate matter (PM) using computational microscopy and deep learning. This method was applied to aerosols generated by electronic cigarettes (e-cigs), which vaporize a liquid mixture (e-liquid) that mainly consists of propylene glycol (PG), vegetable glycerin (VG), nicotine, and flavoring compounds. E-cig-generated aerosols were recorded by a field-portable computational microscope, using an impaction-based air sampler. A lensless digital holographic microscope inside this mobile device continuously records the inline holograms of the collected particles. A deep learning-based algorithm is used to automatically reconstruct the microscopic images of e-cig-generated particles from their holograms and rapidly quantify their volatility. To evaluate the effects of e-liquid composition on aerosol dynamics, we measured the volatility of the particles generated by flavorless, nicotine-free e-liquids with various PG/VG volumetric ratios, revealing a negative correlation between the particles' volatility and the volumetric ratio of VG in the e-liquid. For a given PG/VG composition, the addition of nicotine dominated the evaporation dynamics of the e-cig aerosol and the aforementioned negative correlation was no longer observed. We also revealed that flavoring additives in e-liquids significantly decrease the volatility of e-cig aerosol. The presented holographic volatility measurement technique and the associated mobile device might provide new insights on the volatility of e-cig-generated particles and can be applied to characterize various volatile PM.
Collapse
Affiliation(s)
- Yi Luo
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, United States
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Yichen Wu
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, United States
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Liqiao Li
- Department of Environmental Health Sciences, University of California, Los Angeles, California 90095, United States
| | - Yuening Guo
- Department of Environmental Health Sciences, University of California, Los Angeles, California 90095, United States
| | - Ege Çetintaş
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, United States
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Yifang Zhu
- Department of Environmental Health Sciences, University of California, Los Angeles, California 90095, United States
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, United States
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|