1
|
Dondero L, De Negri Atanasio G, Tardanico F, Lertora E, Boggia R, Capra V, Cometto A, Costamagna M, Fi L S E, Feletti M, Garibaldi F, Grasso F, Jenssen M, Lanteri L, Lian K, Monti M, Perucca M, Pinto C, Poncini I, Robino F, Rombi JV, Ahsan SS, Shirmohammadi N, Tiso M, Turrini F, Zaccone M, Zanotti-Russo M, Demori I, Ferrari PF, Grasselli E. Unlocking the Potential of Marine Sidestreams in the Blue Economy: Lessons Learned from the EcoeFISHent Project on Fish Collagen. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:63. [PMID: 40080223 PMCID: PMC11906597 DOI: 10.1007/s10126-025-10438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/20/2025] [Indexed: 03/15/2025]
Abstract
This review provides a general overview of collagen structure, biosynthesis, and biological properties, with a particular focus on marine collagen sources, especially fisheries discards and by-catches. Additionally, well-documented applications of collagen are presented, with special emphasis not only on its final use but also on the processes enabling sustainable and safe recovery from materials that would otherwise go to waste. Particular attention is given to the extraction process, highlighting key aspects essential for the industrialization of fish sidestreams, such as hygiene standards, adherence to good manufacturing practices, and ensuring minimal environmental impact. In this context, the EcoeFISHent projects have provided valuable insights, aiming to create replicable, systemic, and sustainable territorial clusters based on a multi-circular economy and industrial symbiosis. The main goal of this project is to increase the monetary income of certain categories, such as fishery and aquaculture activities, through the valorization of underutilized biomass.
Collapse
Affiliation(s)
- Lorenzo Dondero
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Giulia De Negri Atanasio
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Francesca Tardanico
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Erica Lertora
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
- Angel Consulting, Via San Senatore 14, 20122, Milan, Italy
| | - Raffaella Boggia
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Vittorio Capra
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
- MICAMO Lab - Microbiologia Ambientale E Molecolare, Via XX Settembre 33/10, 16121, Genoa, Italy
| | - Agnese Cometto
- Ticass S.C.R.L.- Tecnologie Innovative Per Il Controllo Ambientale E Lo Sviluppo Sostenibile, Via Domenico Fiasella, 3/16, 16121, Genoa, Italy
| | | | - Fi L S E
- Filse S.p.A., Piazza De Ferrari 1, 16121, Genoa, Italy
| | - Mirvana Feletti
- Regione Liguria - Direzione Generale Turismo, Agricoltura E Aree Interne Settore Politiche Agricole E Della Pesca , Viale Brigate Partigiane, 2, 16100, Genoa, Italy
| | - Fulvio Garibaldi
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Federica Grasso
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Marte Jenssen
- Department of Marine Biotechnology, Nofima AS, Muninbakken 9-13, 9291, Tromsø, Norway
| | - Luca Lanteri
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Kjersti Lian
- Department of Marine Biotechnology, Nofima AS, Muninbakken 9-13, 9291, Tromsø, Norway
| | - Marco Monti
- Proplast, Via Roberto Di Ferro 86, 15122, Alessandria, AL, Italy
| | - Massimo Perucca
- Project HUB-360, Corso Laghi 22, 10051, Avigliana, TO, Italy
| | - Cecilia Pinto
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Ilaria Poncini
- Proplast, Via Roberto Di Ferro 86, 15122, Alessandria, AL, Italy
| | | | - Junio Valerio Rombi
- MICAMO Lab - Microbiologia Ambientale E Molecolare, Via XX Settembre 33/10, 16121, Genoa, Italy
| | - Syed Saad Ahsan
- Project HUB-360, Corso Laghi 22, 10051, Avigliana, TO, Italy
| | - Nikta Shirmohammadi
- Ticass S.C.R.L.- Tecnologie Innovative Per Il Controllo Ambientale E Lo Sviluppo Sostenibile, Via Domenico Fiasella, 3/16, 16121, Genoa, Italy
| | - Micaela Tiso
- MICAMO Lab - Microbiologia Ambientale E Molecolare, Via XX Settembre 33/10, 16121, Genoa, Italy
| | - Federica Turrini
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121, Naples, Italy
| | - Marta Zaccone
- Proplast, Via Roberto Di Ferro 86, 15122, Alessandria, AL, Italy
| | | | - Ilaria Demori
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia, 15, 16145, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Elena Grasselli
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy.
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121, Naples, Italy.
| |
Collapse
|
2
|
Mattarello G, Arfelli F, Cespi D, Passarini F, Vassura I. Regional food consumption in Italy, a life cycle analysis. ENVIRONMENTAL RESEARCH 2024; 262:119867. [PMID: 39208971 DOI: 10.1016/j.envres.2024.119867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Urbanization and globalization have led to an increasing concern and focus on the sustainability of the food sector, particularly in discussing the composition of consumers' diets. This study examines Italian consumption habits, categorizing them into four macro-geographical areas (North-West, North-East, Center, South, and Islands), utilizing public data obtained from surveys including 3323 individuals, and assesses their environmental impacts through the application of the Life Cycle Assessment methodology. The findings unveil distinct dietary patterns across Italian macro-regions, indicative of cultural disparities, and present avenues for promoting environmentally sustainable dietary choices. The study identifies meat consumption as the primary environmental concern across all macro-regions, with fish emerging as a secondary contributor to particulate matter formation. Pork and poultry exhibit notable impacts within toxicity-related categories. Additionally, the research underscores challenges in data collection, notably the absence of a site-specific Italian database, and underscores the necessity for more recent consumption data to accurately capture contemporary Italian dietary habits. Finally, the study demonstrates that addressing the issue from a macro-regional perspective allows for more targeted and dedicated cultural interventions.
Collapse
Affiliation(s)
- Gaia Mattarello
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40136, Bologna, Italy
| | - Francesco Arfelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40136, Bologna, Italy
| | - Daniele Cespi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40136, Bologna, Italy; Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, via Angherà 22, 47922, Rimini, Italy.
| | - Fabrizio Passarini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40136, Bologna, Italy; Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, via Angherà 22, 47922, Rimini, Italy
| | - Ivano Vassura
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40136, Bologna, Italy; Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, via Angherà 22, 47922, Rimini, Italy
| |
Collapse
|
3
|
Høiberg MA, Stadler K, Verones F. Disentangling marine plastic impacts in Life Cycle Assessment: Spatially explicit Characterization Factors for ecosystem quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175019. [PMID: 39059661 DOI: 10.1016/j.scitotenv.2024.175019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Inputs of persistent plastic items to marine environments continue to pose a serious and long-term threat to marine fauna and ecosystem health, justifying further interventions on local and global scales. While Life Cycle Assessment (LCA) is frequently used for sustainability evaluations by industries and policymakers, plastic leakage to the environment and its subsequent impacts remains absent from the framework. Incorporating plastic pollution in the assessments requires development of both inventories and impact assessment methods. Here, we propose spatially explicit Characterization Factors (CF) for quantifying the impacts of plastic entanglement on marine megafauna (mammals, birds and reptiles) on a global scale. We utilize Lagrangian particle tracking and a Species Sensitivity Distribution (SSD) model along with species susceptibility records to estimate potential entanglement impacts stemming from lost plastic-based fishing gear. By simulating plastic losses from fishing hotspots within all Exclusive Economic Zones (EEZs) we provide country-specific impact estimates for use in LCA. The impacts were found to be similar across regions, although the median CF associated with Oceania was higher compared to Europe, Africa and Asia. Our findings underscore the presence of susceptible species across the world and the transboundary issue of plastic pollution. We discuss the application of the factors and identify areas of further refinement that can contribute towards a comprehensive assessment of macroplastic pollution in sustainability assessments. Degradation and beaching rates for different types of fishing gear remain a research gap, along with population-level effects on marine taxa beyond surface breathing megafauna. Increasing the coverage of impacts specific to the marine realm in LCA alongside other stressors can facilitate informed decision-making towards more sustainable marine resource management.
Collapse
Affiliation(s)
- Marthe A Høiberg
- Industrial Ecology Programme, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Konstantin Stadler
- Industrial Ecology Programme, Norwegian University of Science and Technology, Trondheim, Norway
| | - Francesca Verones
- Industrial Ecology Programme, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
4
|
Martínez-Ibáñez E, Laso J, Vázquez-Rowe I, Ceballos-Santos S, Fernández-Rios A, Margallo M, Aldaco R. Integrating the water-energy-food nexus and LCA + DEA methodology for sustainable fisheries management: A case study of Cantabrian fishing fleets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175223. [PMID: 39097018 DOI: 10.1016/j.scitotenv.2024.175223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
The fishing sector constitutes an important source of economic revenue in northern Spain. In this context, various research studies have focused on the application of the five-step Life Cycle Assessment (LCA) and Data Envelopment Analysis (DEA) methodology to quantify environmental impacts of fishing systems. However, some of them have used environmental indicators that focus on individual environmental issues, hindering the goal of achieving integrated resource management. Therefore, in this study, the Water-Energy-Food (WEF) Nexus is employed as an integrative perspective that considers the synergies and trade-offs between carbon footprint, energy requirements, and water demand. The main objective of this study is to evaluate the operational efficiency and environmental impacts of Cantabrian fishing fleets. To this end, the combined use of LCA and DEA, along with the WEF Nexus, was applied to the Cantabrian purse seine fleet. DEA matrices were generated using the LCA-derived WEF nexus values as inputs to calculate efficiency scores for each vessel. Subsequently, based on the efficiency projections provided by the DEA model, a new impact assessment was performed to understand the eco-efficiency and potential environmental benefits of operating at higher levels of efficiency within this fleet. The average efficiency of the fleet was above 60 %. Inefficient units demonstrated a greater potential to reduce their environmental impacts (up to 65 %) by operating according to efficiency projections. Furthermore, the results revealed a strong dependence of environmental impacts on one of the operational inputs, i.e., fuel consumption. These findings highlight the significance of embracing holistic approaches that combine technical, economic, and social factors to achieve a sustainable balance in fisheries systems. In this regard, the five-step LCA + DEA method applied in conjunction with the WEF Nexus emerged as a suitable tool for measuring operational and environmental objectives.
Collapse
Affiliation(s)
- Eva Martínez-Ibáñez
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Av. de Los Castros s/n, 39005 Santander, Spain.
| | - Jara Laso
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Av. de Los Castros s/n, 39005 Santander, Spain
| | - Ian Vázquez-Rowe
- Peruvian Life Cycle Assessment & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, San Miguel 15074, Lima, Peru
| | - Sandra Ceballos-Santos
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Av. de Los Castros s/n, 39005 Santander, Spain
| | - Ana Fernández-Rios
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Av. de Los Castros s/n, 39005 Santander, Spain
| | - María Margallo
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Av. de Los Castros s/n, 39005 Santander, Spain
| | - Rubén Aldaco
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Av. de Los Castros s/n, 39005 Santander, Spain
| |
Collapse
|
5
|
Wu H, Bekhit AEDA. Recent advances in sustainable marine food utilization: Enhancing chemical, functional, and nutritional properties. Food Chem X 2024; 23:101572. [PMID: 39036477 PMCID: PMC11260005 DOI: 10.1016/j.fochx.2024.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Affiliation(s)
- Haizhou Wu
- Hubei Technology Innovation Center for Meat Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- College of Animal Science & Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | | |
Collapse
|
6
|
Zoli M, Rossi L, Bacenetti J, Aubin J. Upscaling and environmental impact assessment of an innovative integrated multi-trophic aquaponic system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122327. [PMID: 39241592 DOI: 10.1016/j.jenvman.2024.122327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/29/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
The increasing growth of the aquaculture sector has raised significant concerns regarding its environmental footprint, including nutrient discharge, substantial feed consumption, and high energy requirements. In response, innovative approaches such as aquaponics and integrated multi-trophic aquaculture (IMTA) are being developed as potentially more sustainable alternatives. This study aims to evaluate the environmental performance of an innovative Integrated Multi-Trophic Aquaponics system (IMTAcs) using the Life Cycle Assessment (LCA) approach. Given the experimental nature of the pilot plant, two distinct scaled-up scenarios were analysed: one utilizing an alternative feed (IMTAcs AF), and the other employing a commercial feed (IMTAcs CF). The functional unit was defined as 100 kcal and 1 kg of protein produced by the system, with a cradle-to-gate perspective defining system boundaries. Results revealed that IMTAcs AF has a higher global warming impact (0.234 kg CO2 eq./100 kcal) compared to IMTAcs CF (0.207 kg CO2 eq.). In both scenarios, electricity consumption was identified as the primary driver to environmental impact, exceeding 50%, in contrast to conventional systems where feed is the main hotspot. Moreover, while trends in impact categories such as net primary production use and eutrophication is opposite between the scenarios, the latter demonstrated substantial mitigation potential, attributable to the system's inherent nutrient recycling, in comparison with traditional aquaculture systems. While the findings are promising, certain limitations in the study (e.g. utilization of scaled-up data and inherent uncertainties analysed), with the scarcity of existing research, point to the opportunity for further exploration. This includes analysing real-scale implementations whenever feasible and conducting more detailed comparisons with traditional systems.
Collapse
Affiliation(s)
- Michele Zoli
- Department of Environmental Science and Policy, Università degli Studi di Milano, via G. Celoria 2, 20133, Milano, Italy
| | - Lorenzo Rossi
- Department of Veterinary Science, Università di Pisa, Viale delle Piagge 2, 56124, Pisa, Italy
| | - Jacopo Bacenetti
- Department of Environmental Science and Policy, Università degli Studi di Milano, via G. Celoria 2, 20133, Milano, Italy.
| | - Joël Aubin
- UMR SAS, INRAE, Institut Agro, Rennes, 35000, France
| |
Collapse
|
7
|
Vodopia D, Verones F, Askham C, Larsen RB. Retrieval operations of derelict fishing gears give insight on the impact on marine life. MARINE POLLUTION BULLETIN 2024; 201:116268. [PMID: 38492268 DOI: 10.1016/j.marpolbul.2024.116268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Abandoned, lost and discarded fishing gear (ALDFG), significantly impacts marine ecosystems and biodiversity by incidental capture known as ghost fishing. Such impacts were quantified during the Norwegian Directorate of Fisheries' annual ALDFG cleanup operation in September 2023 by examining the characteristics of retrieved ALDFG and recording the taxonomically sorted catch abundance and biomass. A total of 307 specimens equaling 382 kg of biomass were caught in the recovered gillnets and king crab pots. Gillnets exhibited a 27.3 % greater catch abundance and 50.3 % higher biomass per ALDFG unit mass compared to king crab pots. Margalef, Menhinick, Simpson, Shannon, and Pielou diversity indices showed a more pronounced impact on species richness and biodiversity associated with recovered gillnets. This study introduces an approach to assess the impact of ghost fishing on ecosystems and biodiversity through ALDFG retrieval operations, instrumental in developing estimates of the total ghost fishing capture by ALDFG.
Collapse
Affiliation(s)
| | - Francesca Verones
- Industrial Ecology Programme, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | |
Collapse
|
8
|
Basile M, Triunfo C, Gärtner S, Fermani S, Laurenzi D, Maoloni G, Mazzon M, Marzadori C, Adamiano A, Iafisco M, Montroni D, Gómez Morales J, Cölfen H, Falini G. Stearate-Coated Biogenic Calcium Carbonate from Waste Seashells: A Sustainable Plastic Filler. ACS OMEGA 2024; 9:11232-11242. [PMID: 38496946 PMCID: PMC10938433 DOI: 10.1021/acsomega.3c06186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 03/19/2024]
Abstract
Waste seashells from aquaculture are a massive source of biogenic calcium carbonate (bCC) that can be a potential substitute for ground calcium carbonate and precipitated calcium carbonate. These last materials find several applications in industry after a surface coating with hydrophobic molecules, with stearate as the most used. Here, we investigate for the first time the capability of aqueous stearate dispersions to coat bCC powders from seashells of market-relevant mollusc aquaculture species, namely the oyster Crassostrea gigas, the scallop Pecten jacobaeus, and the clam Chamelea gallina. The chemical-physical features of bCC were extensively characterized by different analytical techniques. The results of stearate adsorption experiments showed that the oyster shell powder, which is the bCC with a higher content of the organic matrix, showed the highest adsorption capability (about 23 wt % compared to 10 wt % of geogenic calcite). These results agree with the mechanism proposed in the literature in which stearate adsorption mainly involves the formation of calcium stearate micelles in the dispersion before the physical adsorption. The coated bCC from oyster shells was also tested as fillers in an ethylene vinyl acetate compound used for the preparation of shoe soles. The obtained compound showed better mechanical performance than the one prepared using ground calcium. In conclusion, we can state that bCC can replace ground and precipitated calcium carbonate and has a higher stearate adsorbing capability. Moreover, they represent an environmentally friendly and sustainable source of calcium carbonate that organisms produce by high biological control over composition, polymorphism, and crystal texture. These features can be exploited for applications in fields where calcium carbonate with selected features is required.
Collapse
Affiliation(s)
- Maria
Luisa Basile
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Carla Triunfo
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via F. Selmi 2, 40126 Bologna, Italy
- Fano
Marine Center, viale
Adriatico 1/N, 61032 Fano, Italy
| | - Stefanie Gärtner
- Department
of Chemistry, Physical Chemistry, University
of Konstanz, Universitätsstrasse 10, Box 714, D-78457 Konstanz, Germany
| | - Simona Fermani
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via F. Selmi 2, 40126 Bologna, Italy
- Interdepartmental
Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Davide Laurenzi
- Plant
Ascoli Piceno, Finproject S.p.A., Via Enrico Mattei, 1—Zona
Ind.le Campolungo, 3100 Ascoli Piceno, Italy
| | - Gabriele Maoloni
- Plant
Ascoli Piceno, Finproject S.p.A., Via Enrico Mattei, 1—Zona
Ind.le Campolungo, 3100 Ascoli Piceno, Italy
| | - Martina Mazzon
- DiSTA,
Department
of Science and Technology of Agriculture and Environment, University of Bologna, via Fanin 40, 40127 Bologna, Italy
| | - Claudio Marzadori
- DiSTA,
Department
of Science and Technology of Agriculture and Environment, University of Bologna, via Fanin 40, 40127 Bologna, Italy
| | - Alessio Adamiano
- Institute
of Science, Technology and Sustainability for Ceramics, Consiglio Nazionale delle Ricerche, Via Granarolo 64, 48018 Faenza, Italy
| | - Michele Iafisco
- Institute
of Science, Technology and Sustainability for Ceramics, Consiglio Nazionale delle Ricerche, Via Granarolo 64, 48018 Faenza, Italy
| | - Devis Montroni
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Jaime Gómez Morales
- Laboratorio
de Estudios Cristalográficos, Instituto
Andaluz de Ciencias de la Tierra (CSIC-UGR), Avda Las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Helmut Cölfen
- Department
of Chemistry, Physical Chemistry, University
of Konstanz, Universitätsstrasse 10, Box 714, D-78457 Konstanz, Germany
| | - Giuseppe Falini
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
9
|
Long Y, Huang L, Fujie R, He P, Chen Z, Xu X, Yoshida Y. Carbon footprint and embodied nutrition evaluation of 388 recipes. Sci Data 2023; 10:794. [PMID: 37949916 PMCID: PMC10638372 DOI: 10.1038/s41597-023-02702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Food consumption, which delivers fundamental energy and essential nutrients to human beings, is crucial for achieving a series of sustainable goals. Alongside rising population growth and living standards, there has been a significant increase in food cultivation demands, supply chain complexities, and waste management. Therefore, to protect human health and the environment, promoting sustainable food systems and the uptake of sustainable dietary habits are vital. Yet, information on the environmental and health impact of dietary choices remains inconsistent across multiple evaluation methods, which fail to deliver essential ideas to consumers. In this study, we formulate an integrated approach using Environmentally Extended Input-Output analysis, covering the food supply chain from production to the distribution phase, complemented with a hybrid Life Cycle Assessment for cooking and disposal processes, to quantify the carbon footprint of specific recipes. Our dataset also includes the distinct nutritional values of each recipe. This dataset not only informs the food industry and recipe platforms, enabling more sustainable choices, but also helps individuals balance nutritional value with environmental impact, leading to more informed and sustainable dietary decisions.
Collapse
Affiliation(s)
- Yin Long
- Graduate School of Engineering, University of Tokyo, Tokyo, Japan.
| | - Liqiao Huang
- Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Rinakira Fujie
- Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Pan He
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
| | - Zhiheng Chen
- Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Xiaoyan Xu
- Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
10
|
Entrena-Barbero E, Ceballos-Santos SS, Cortés A, Esteve-Llorens X, Moreira MT, Villanueva-Rey P, Quiñoy D, Almeida C, Marques A, Quinteiro P, Dias AC, Laso J, Margallo M, Aldaco R, Feijoo G. Methodological guidelines for the calculation of a Water-Energy-Food nexus index for seafood products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162845. [PMID: 36933707 DOI: 10.1016/j.scitotenv.2023.162845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
Indicators from life cycle assessment methodologies (i.e., footprints) have emerged as useful tools for identifying and communicating the environmental impacts of a system thanks to they are accessible and intuitive and easy to understand to non-expert public. However, the focus on a single environmental problem is one of their main drawbacks. From this idea arises the concept of Water-Energy-Food (WEF) nexus, with the aim of raising awareness of the connections between the universal rights to water supply, energy security and food provision. Regarding the latter, the fisheries sector stands out as a fundamental pillar in the fight against malnutrition. In this sense, the European project "blue growth" aims to ensure that the development of the marine sector is not linked to the degradation of its ecosystems. However, although producers and authorities are willing to communicate the sustainability of products, there is still no standard methodology for reporting it. With the purpose of remedying this current situation, this paper aims to provide technical guidance to calculate a single WEF nexus index for ecolabelling seafood products in the European framework (Atlantic area). Therefore, through this, it is expected to create a useful communication channel between producers and consumers through an easy-to-read ecolabel. Nonetheless, certain aspects, such as the footprints selected or the calculation procedures selected have to be reconsidered to refine the methodology proposed, apart from broadening the approach to other food sectors with the aim that the proposed eco-certification can be present in major supply and retail chains.
Collapse
Affiliation(s)
- Eduardo Entrena-Barbero
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Sandra Surname Ceballos-Santos
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. de Los Castros, s/n, 39005 Santander, Spain
| | - Antonio Cortés
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Xavier Esteve-Llorens
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - María Teresa Moreira
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Pedro Villanueva-Rey
- Energylab, Fonte das Abelleiras s/n, Campus Universidad de Vigo, 36310 Vigo, Spain
| | - Diego Quiñoy
- Energylab, Fonte das Abelleiras s/n, Campus Universidad de Vigo, 36310 Vigo, Spain
| | - Cheila Almeida
- IPMA, Instituto Portugês do Mar e da Atmosfera, Divisão de Aquacultura, Valorização e Bioprospeão, Avenida Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - António Marques
- IPMA, Instituto Portugês do Mar e da Atmosfera, Divisão de Aquacultura, Valorização e Bioprospeão, Avenida Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Paula Quinteiro
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Cláudia Dias
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jara Laso
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. de Los Castros, s/n, 39005 Santander, Spain
| | - María Margallo
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. de Los Castros, s/n, 39005 Santander, Spain
| | - Rubén Aldaco
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. de Los Castros, s/n, 39005 Santander, Spain.
| | - Gumersindo Feijoo
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| |
Collapse
|
11
|
Rowan NJ. Current decontamination challenges and potentially complementary solutions to safeguard the vulnerable seafood industry from recalcitrant human norovirus in live shellfish: Quo Vadis? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162380. [PMID: 36841407 DOI: 10.1016/j.scitotenv.2023.162380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Safeguarding the seafood industry is important given its contribution to supporting our growing global population. However, shellfish are filter feeders that bioaccumulate microbial contaminants in their tissue from wastewater discharged into the same coastal growing environments leading to significant human disease outbreaks unless appropriately mitigated. Removal or inactivation of enteric viruses is very challenging particularly as human norovirus (hNoV) binds to specific histo-blood ligands in live oyster tissue that are consumed raw or lightly cooked. The regulatory framework that sets out use of clean seawater and UV disinfection is appropriate for bacterial decontamination at the post-harvest land-based depuration (cleaning) stage. However, additional non-thermal technologies are required to eliminate hNoV in live shellfish (particularly oysters) where published genomic studies report that low-pressure UV has limited effectiveness in inactivating hNoV. The use of the standard genomic detection method (ISO 15, 216-1:2017) is not appropriate for assessing the loss of infectious hNoV in treated live shellfish. The use of surrogate viral infectivity methods appear to offer some insight into the loss of hNoV infectiousness in live shellfish during decontamination. This paper reviews the use of existing and potentially other combinational treatment approaches to enhance the removal or inactivation of enteric viruses in live shellfish. The use of alternative and complementary novel diagnostic approaches to discern viable hNoV are discussed. The effectiveness and virological safety of new affordable hNoV intervention(s) require testing and validating at commercial shellfish production in conjunction with laboratory-based research. Appropriate risk management planning should encompass key stakeholders including local government and the wastewater industry. Gaining a mechanistic understanding of the relationship between hNoV response at molecular and structural levels in individually treated oysters as a unit will inform predictive modeling and appropriate treatment technologies. Global warming of coastal growing environments may introduce additional contaminant challenges (such as invasive species); thus, underscoring need to develop real-time ecosystem monitoring of growing environments to alert shellfish producers to appropriately mitigate these threats.
Collapse
Affiliation(s)
- Neil J Rowan
- Centre for Sustainable Disinfection and Sterilization, Bioscience Research Institute, Technological University of the Shannon Midlands Midwest, Athlone Campus, Ireland.
| |
Collapse
|
12
|
Carreiro AR, Ramos JA, Mata V, Almeida NM, Paiva VH, Lopes RJ. DNA sequencing shows that tropical tuna species misidentification can be an underestimated issue in fish landings. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Thanigaivel S, Vickram S, Dey N, Jeyanthi P, Subbaiya R, Kim W, Govarthanan M, Karmegam N. Ecological disturbances and abundance of anthropogenic pollutants in the aquatic ecosystem: Critical review of impact assessment on the aquatic animals. CHEMOSPHERE 2023; 313:137475. [PMID: 36528154 DOI: 10.1016/j.chemosphere.2022.137475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic toxins are discharged into the environment and distributed through a variety of environmental matrices. Trace contaminant detection and analysis has advanced dramatically in recent decades, necessitating further specialized technique development. These pollutants can be mobile and persistent in small amounts in the environment, and ecological receptors will interact with it. Despite the fact that few researches have been undertaken on invertebrate exposure, accumulation, and biological implications, it is apparent that a wide range of pollutants can accumulate in the tissues of aquatic insects, earthworms, amphipod crustaceans, and mollusks. Due to long-term stability during long-distance transit, a number of chemical and microbiological agents that were not previously deemed pollutants have been found in various environmental compartments. The uptake of such pollutants by the aquatic organism is done through the process of bioaccumulation when dangerous compounds accumulate in living beings while biomagnification is the process of a pollutant becoming more hazardous as it moves up the trophic chain. Organic and metal pollution harms animals of every species studied so far, from bacteria to phyla in between. The environmental protection agency says these poisons harm humans as well as a variety of aquatic organisms when the water quality is sacrificed in typical wastewater treatment systems. Contrary to popular belief, treated effluents discharged into aquatic bodies contain considerable levels of Anthropogenic contaminants. This evolution necessitates a more robust and recent advancement in the field of remediation and their techniques to completely discharge the various organic and inorganic contaminants.
Collapse
Affiliation(s)
- Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Nibedita Dey
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Palanivelu Jeyanthi
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600 062, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
14
|
Perraud E, Wang J, Salomé M, Mariotti F, Kesse-Guyot E. Dietary protein consumption profiles show contrasting impacts on environmental and health indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159052. [PMID: 36179832 DOI: 10.1016/j.scitotenv.2022.159052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Patterns of protein intake are strong characteristics of diets, and protein sources have been linked to the environmental and nutrition/health impacts of diets. However, few studies have worked on protein profiles, and most of them have focused on specific diets like vegetarian or vegan diets. Furthermore, the description of the environmental impact of diets has often been limited to greenhouse gas emissions (GHGe) and land use. This paper analyzes the alignment of environmental pressures and nutritional impacts in a diversity of representative protein profiles of a western population. Using data from a representative survey in France (INCA3, n = 1125), we identified protein profiles using hierarchical ascendant classification on protein intake (g) from main protein sources (refined grains, whole grains, dairy, eggs, ruminant meat, poultry, pork, processed meat, fish, fruits & vegetables, pulses). We assessed their diet quality using 6 dietary scores, including assessment of long-term risk for health, and associated 14 environmental pressure indicators using the Agribalyse database completed by the SHARP database for GHGe. Five protein profiles were identified according to the high contributions of ruminant meat, pork, poultry, fish, or, conversely, as low contribution from meat. The profile including the lowest protein from meat had the lowest impact on almost all environmental indicators and had the lowest long-term risk. Conversely, the profile with high protein from ruminant-based foods had the highest pressures on most environmental indicators, including GHGe. We found that the protein profile with low contribution from meat has great potential for human health and environment preservation. Shifting a large part of the population toward this profile could be an easy first step toward building a more sustainable diet.
Collapse
Affiliation(s)
- Elie Perraud
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - Juhui Wang
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - Marion Salomé
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - François Mariotti
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France.
| | - Emmanuelle Kesse-Guyot
- Sorbonne Paris Nord University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Conservatoire National des Arts et Métiers (CNAM), Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France
| |
Collapse
|
15
|
Ceballos-Santos S, Laso J, Ulloa L, Ruiz Salmón I, Margallo M, Aldaco R. Environmental performance of Cantabrian (Northern Spain) pelagic fisheries: Assessment of purse seine and minor art fleets under a life cycle approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158884. [PMID: 36411605 DOI: 10.1016/j.scitotenv.2022.158884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The perpetuation of fishing activity from an environmentally, socially and economically sustainable approach is essential to guarantee not only the future of coastal populations, but also the supply of high-value seafood for society and the safeguarding of cultural heritage. This article aims to assess the environmental performance associated with fishing fleet operations in Cantabria (northern Spain) under a life cycle thinking from a holistic approach. Thus, the Life Cycle Assessment (LCA) methodology was applied under a 'cradle-to-port' approach, setting the functional unit as 1 kg of fresh fish landed. Inventory data on the main inputs and outputs were collected from a sample of 57 vessels covering for the first time the main techniques, purse seine and minor art fisheries. The results identified that the vessel use stage was the responsible of most of the impacts. In line with the literature, diesel consumption stood as the chief hotspot in six of the seven impact categories analysed. Purse seiners got a value of 0.25 kg of fuel per kg of fish landed, while the performance of the minor art fleet showed significantly lower consumption (0.07). Regarding impacts on climate change, this study found a quantity of 1.00 and 0.34 kg CO2 eq. per FU, for purse seine and minor arts, respectively. These figures were consistent with the expected results for pelagic fisheries. For the remaining indicators, purse seiners generally performed worse. The LCA methodology provided outcomes that allow the proposal of potential improvements and measures to foster the transition towards a more sustainable smart-fishing sector. Further research efforts should focus on the development and implementation of renewable energy and low-carbon vessel propulsion technologies.
Collapse
Affiliation(s)
- Sandra Ceballos-Santos
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. de los Castros s/n, 39005 Santander, Spain
| | - Jara Laso
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. de los Castros s/n, 39005 Santander, Spain
| | - Laura Ulloa
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. de los Castros s/n, 39005 Santander, Spain
| | - Israel Ruiz Salmón
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. de los Castros s/n, 39005 Santander, Spain
| | - María Margallo
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. de los Castros s/n, 39005 Santander, Spain
| | - Rubén Aldaco
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. de los Castros s/n, 39005 Santander, Spain.
| |
Collapse
|
16
|
Langdal A, Eilertsen KE, Kjellevold M, Heimstad ES, Jensen IJ, Elvevoll EO. Climate Performance, Environmental Toxins and Nutrient Density of the Underutilized Norwegian Orange-Footed Sea Cucumber ( Cucumaria frondosa). Foods 2022; 12:114. [PMID: 36613330 PMCID: PMC9818526 DOI: 10.3390/foods12010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Low trophic species are often mentioned as additional food sources to achieve broader and more sustainable utilisation of the ocean. The aim of this study was to map the food potential of Norwegian orange-footed sea cucumber (Cucumaria frondosa). C. frondosa contained 7% protein, 1% lipids with a high proportion of polyunsaturated fatty acids, and a variety of micronutrients. The nutrient density scores (NDS) of C. frondosa were above average compared towards daily recommended intakes (DRI) for men and women (age 31-60) but below when capped at 100% of DRI. The concentrations of persistent organic pollutants and trace elements were in general low, except for inorganic arsenic (iAs) (0.73 mg per kg) which exceeded the limits deemed safe by food authorities. However, the small number of samples analysed for iAs lowers the ability to draw a firm conclusion. The carbon footprint from a value chain with a dredge fishery, processing in Norway and retail in Asia was assessed to 8 kg carbon dioxide equivalent (CO2eq.) per kg C. frondosa, the fishery causing 90%. Although, C. frondosa has some nutritional benefits, the carbon footprint or possible content of iAs may restrict the consumption.
Collapse
Affiliation(s)
- Andreas Langdal
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Karl-Erik Eilertsen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Marian Kjellevold
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
| | - Eldbjørg S. Heimstad
- NILU—Norwegian Institute for Air Research, The Fram Centre, N-9296 Tromsø, Norway
| | - Ida-Johanne Jensen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| | - Edel O. Elvevoll
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
17
|
Garvey M, Meade E, Rowan NJ. Effectiveness of front line and emerging fungal disease prevention and control interventions and opportunities to address appropriate eco-sustainable solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158284. [PMID: 36029815 DOI: 10.1016/j.scitotenv.2022.158284] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Fungal pathogens contribute to significant disease burden globally; however, the fact that fungi are eukaryotes has greatly complicated their role in fungal-mediated infections and alleviation. Antifungal drugs are often toxic to host cells and there is increasing evidence of adaptive resistance in animals and humans. Existing fungal diagnostic and treatment regimens have limitations that has contributed to the alarming high mortality rates and prolonged morbidity seen in immunocompromised cohorts caused by opportunistic invasive infections as evidenced during HIV and COVID-19 pandemics. There is a need to develop real-time monitoring and diagnostic methods for fungal pathogens and to create a greater awareness as to the contribution of fungal pathogens in disease causation. Greater information is required on the appropriate selection and dose of antifungal drugs including factors governing resistance where there is commensurate need to discover more appropriate and effective solutions. Popular azole fungal drugs are widely detected in surface water and sediment due to incomplete removal in wastewater treatment plants where they are resistant to microbial degradation and may cause toxic effects on aquatic organisms such as algae and fish. UV has limited effectiveness in destruction of anti-fungal drugs where there is increased interest in the combination approaches such as novel use of pulsed-plasma gas-discharge technologies for environmental waste management. There is growing interest in developing alternative and complementary green eco-biocides and disinfection innovation. Fungi present challenges for cleaning, disinfection and sterilization of reusable medical devices such as endoscopes where they (example, Aspergillus and Candida species) can be protected when harboured in build-up biofilm from lethal processing. Information on the efficacy of established disinfection and sterilization technologies to address fungal pathogens including bottleneck areas that present high risk to patients is lacking. There is a need to address risk mitigation and modelling to inform efficacy of appropriate intervention technologies that must consider all contributing factors where there is potential to adopt digital technologies to enable real-time analysis of big data, such as use of artificial intelligence and machine learning. International consensus on standardised protocols for developing and reporting on appropriate alternative eco-solutions must be reached, particularly in order to address fungi with increasing drug resistance where research and innovation can be enabled using a One Health approach.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo, Ireland
| | - Elaine Meade
- Department of Life Science, Atlantic Technological University, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo, Ireland
| | - Neil J Rowan
- Bioscience Research Institute, Technological University of the Shannon Midlands Midwest, Athlone, Ireland; Centre for Decontamination, Sterilization and Biosecurity, Technological University of the Shannon Midlands Midwest, Athlone, Ireland; Empower Eco Sustainability Hub, Technological University of the Shannon Midlands Midwest, Athlone, Ireland.
| |
Collapse
|
18
|
Garofalo SF, Cavallini N, Demichelis F, Savorani F, Mancini G, Fino D, Tommasi T. From tuna viscera to added-value products: A circular approach for fish-waste recovery by green enzymatic hydrolysis. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Environmental and Economic Life Cycle evaluation of potential Energy Efficiency Measures on Latvian fish supply chain. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
20
|
Jiang B, Zeng Q, Li J, Shi S, Chen Z, Cui Y, Hu D, Sui Y, Ge H, Che S, Qi Y. Performance enhancement, membrane fouling mitigation and eco-friendly strategy by electric field coupled membrane bioreactor for treating mariculture wastewater. BIORESOURCE TECHNOLOGY 2022; 361:127725. [PMID: 35926557 DOI: 10.1016/j.biortech.2022.127725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
An eco-friendly strategy for mariculture wastewater treatment using an electric field attached membrane bioreactor (E-MBR) was evaluated and compared with a conventional membrane bioreactor (C-MBR). The removal efficiencies of total nitrogen (TN) and chemical oxygen demand (COD) increased significantly and the membrane fouling rate reduced by 44.8% in the E-MBR. The underlying mechanisms included the enriched nitrifiers and denitrifiers, the enhanced salinity-resistance, the increased activities and upregulated genes of key enzymes involved in nitrification and denitrification for improving the performance of mariculture wastewater treatment, and the enriched extracellular polymeric substance (EPS)-degrading genera, the downregulated EPS biosynthesis genes, the repressed biofilm-forming bacteria, the enhanced zeta potential absolute value and the generated H2O2 for membrane fouling mitigation by electrical stimulation. Compared with the C-MBR, the energy consumption, carbon emissions, and nitrogen footprint were reduced. These findings provide novel insights into mariculture wastewater treatment using an applied electric field.
Collapse
Affiliation(s)
- Bei Jiang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Qianzhi Zeng
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Jinming Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Zhaobo Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian 116600, China.
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Dongxue Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Yanan Sui
- Yingkou Port Group CORP, Yingkou 115007, China
| | - Hui Ge
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Shun Che
- Yingkou Port Group CORP, Yingkou 115007, China
| | - Yu Qi
- Yingkou Port Group CORP, Yingkou 115007, China
| |
Collapse
|
21
|
Rowan NJ, Murray N, Qiao Y, O'Neill E, Clifford E, Barceló D, Power DM. Digital transformation of peatland eco-innovations ('Paludiculture'): Enabling a paradigm shift towards the real-time sustainable production of 'green-friendly' products and services. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156328. [PMID: 35649452 DOI: 10.1016/j.scitotenv.2022.156328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The world is heading in the wrong direction on carbon emissions where we are not on track to limit global warming to 1.5 °C; Ireland is among the countries where overall emissions have continued to rise. The development of wettable peatland products and services (termed 'Paludiculture') present significant opportunities for enabling a transition away from peat-harvesting (fossil fuels) to developing 'green' eco-innovations. However, this must be balanced with sustainable carbon sequestration and environmental protection. This complex transition from 'brown to green' must be met in real time by enabling digital technologies across the full value chain. This will potentially necessitate creation of new green-business models with the potential to support disruptive innovation. This timely paper describes digital transformation of paludiculture-based eco-innovation that will potentially lead to a paradigm shift towards using smart digital technologies to address efficiency of products and services along with future-proofing for climate change. Digital transform of paludiculture also aligns with the 'Industry 5.0 - a human-centric solution'. However, companies supporting peatland innovation may lack necessary standards, data-sharing or capabilities that can also affect viable business model propositions that can jeopardize economic, political and social sustainability. Digital solutions may reduce costs, increase productivity, improve produce develop, and achieve faster time to market for paludiculture. Digitisation also enables information systems to be open, interoperable, and user-friendly. This constitutes the first study to describe the digital transformation of paludiculture, both vertically and horizontally, in order to inform sustainability that includes process automation via AI, machine learning, IoT-Cloud informed sensors and robotics, virtual and augmented reality, and blockchain for cyber-physical systems. Thus, the aim of this paper is to describe the applicability of digital transformation to actualize the benefits and opportunities of paludiculture activities and enterprises in the Irish midlands with a global orientation.
Collapse
Affiliation(s)
- Neil J Rowan
- Bioscience Research Institute, Technological University of the Shannon Midlands Midwest (TUS), Dublin Road, Athlone, Ireland; Empower Eco™ Sustainable Hub, Technological University of the Shannon Midlands Midwest (TUS), Dublin Road, Athlone, Ireland.
| | - Niall Murray
- Software Research Institute, TUS, Athlone, Ireland
| | | | - E O'Neill
- Bioscience Research Institute, Technological University of the Shannon Midlands Midwest (TUS), Dublin Road, Athlone, Ireland; Empower Eco™ Sustainable Hub, Technological University of the Shannon Midlands Midwest (TUS), Dublin Road, Athlone, Ireland
| | | | - Damià Barceló
- Catalan Institute for Water Research, Faculty of Chemistry, University of Bacrelona, (ICRA), Spain
| | - Deborah M Power
- Bioscience Research Institute, Technological University of the Shannon Midlands Midwest (TUS), Dublin Road, Athlone, Ireland; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas 8005-139, Faro, Portugal
| |
Collapse
|
22
|
Rowan NJ. The role of digital technologies in supporting and improving fishery and aquaculture across the supply chain – Quo Vadis? AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Choudhury A, Lepine C, Witarsa F, Good C. Anaerobic digestion challenges and resource recovery opportunities from land-based aquaculture waste and seafood processing byproducts: A review. BIORESOURCE TECHNOLOGY 2022; 354:127144. [PMID: 35413421 DOI: 10.1016/j.biortech.2022.127144] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The unprecedented demand for seafood has resulted in land-based recirculating aquaculture systems (RAS), a highly intensive but sustainable fish farming method. However, intensification also results in concentrated waste streams of fecal matter and uneaten feed. Harvesting and processing vast quantities of fish also leads to the production of byproducts, further creating disposal challenges for fish farms. Recent research indicates that anaerobic digestion (AD), often used for waste treatment in agricultural and wastewater industries, may provide a viable solution. Limited research on AD of freshwater, brackish, and saline wastewater from RAS facilities and co-digestion of seafood byproducts has shown promising results but with considerable operational and process stability issues. This review discusses challenges to AD due to low solid concentrations, salinity, low carbon/nitrogen ratio, and high lipid content in the waste streams. Opportunities for recovering valuable biomolecules and nutrients through microbial treatment, aquaponics, microalgae, and polyhydroxyalkanoate production are also discussed.
Collapse
Affiliation(s)
- Abhinav Choudhury
- The Conservation Fund Freshwater Institute, Shepherdstown, WV 25443, USA.
| | - Christine Lepine
- The Conservation Fund Freshwater Institute, Shepherdstown, WV 25443, USA
| | - Freddy Witarsa
- Colorado Mesa University, Department of Environmental Science and Technology, Wubben Hall and Science Center, Grand Junction, CO 81501, USA
| | - Christopher Good
- The Conservation Fund Freshwater Institute, Shepherdstown, WV 25443, USA
| |
Collapse
|
24
|
Pounds A, Kaminski AM, Budhathoki M, Gudbrandsen O, Kok B, Horn S, Malcorps W, Mamun AA, McGoohan A, Newton R, Ozretich R, Little DC. More Than Fish-Framing Aquatic Animals within Sustainable Food Systems. Foods 2022; 11:1413. [PMID: 35626983 PMCID: PMC9141230 DOI: 10.3390/foods11101413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Aquatic animals are diverse in terms of species, but also in terms of production systems, the people involved, and the benefits achieved. In this concept piece, we draw on literature to outline how the diversity of aquatic animals, their production, and their consumption all influence their impact within the food system. Built on evidence from an array of reductionist and non-reductionist literature, we suggest that food systems researchers and policymakers adapt current methods and theoretical frameworks to appropriately contextualise aquatic animals in broader food systems. We do this through combining current understandings of food systems theory, value chain, livelihoods, nutritional outcomes, and planetary boundaries thinking. We make several claims around understanding the role of aquatic animals in terms of nutritional output and environmental impacts. We suggest a need to consider: (1) the diversity of species and production methods; (2) variable definitions of an "edible yield"; (3) circular economy principles and the impacts of co-products, and effects beyond nutrient provision; (4) role of aquatic animals in the overall diet; (5) contextual effects of preservation, preparation, cooking, and consumer choices; (6) globalised nature of aquatic animal trade across the value chain; and (7) that aquatic animals are produced from a continuum, rather than a dichotomy, of aquaculture or fisheries. We conclude by proposing a new framework that involves cohesive interdisciplinary discussions around aquatic animal foods and their role in the broader food system.
Collapse
Affiliation(s)
- Alexandra Pounds
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Alexander M. Kaminski
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Mausam Budhathoki
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Oddrun Gudbrandsen
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway;
| | - Björn Kok
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Stephanie Horn
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Wesley Malcorps
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Abdullah-Al Mamun
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Amy McGoohan
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Richard Newton
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Reed Ozretich
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - David C. Little
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| |
Collapse
|
25
|
Zhang Z, Kobata K, Pham H, Kos D, Tan Y, Lu J, McClements DJ. Production of Plant-Based Seafood: Scallop Analogs Formed by Enzymatic Gelation of Pea Protein-Pectin Mixtures. Foods 2022; 11:851. [PMID: 35327273 PMCID: PMC8955361 DOI: 10.3390/foods11060851] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 12/25/2022] Open
Abstract
This study investigated the possibility of using a phase separation, mixing, and enzymatic gelation approach to construct seafood analogs from plant protein-polysaccharide mixtures with properties mimicking real seafood. Heat-denatured pea protein (10%, w/w) and pectin (0-1%, w/w) were mixed to produce phase separated biopolymer blends. These blends were then subjected to mild shearing (350 rpm) to obtain fiber-like structures, which were then placed in molds and set by gelling the pea proteins using transglutaminase (2%, w/w). The appearance, texture, and cooking properties of the resulting scallop analogs were characterized and compared to those of real scallop. The presence of the pectin promoted the formation of a honeycomb structure in the scallop analogs, and microscopic orientation of the proteins was observed in the plane parallel to the applied shear flow. Lower pectin concentrations (0.5%, w/w) led to stronger gels with better water holding capacity than higher ones (1.0%, w/w). The appearance and texture of the plant-based scallop analogs were like those of real scallop after grilling, indicating the potential of using this soft matter physics approach to create plant-based seafood analogs. One of the main advantages of this method is that it does not require any expensive dedicated equipment, such as an extruder or shear cell technology, which may increase its commercial viability.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Kanon Kobata
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Hung Pham
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Dorian Kos
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yunbing Tan
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Jiakai Lu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- 240 Chenoweth Laboratory, 102 Holdsworth Way, Amherst, MA 01003, USA
| |
Collapse
|
26
|
Hoe BC, Arumugam P, M. L. IC, Tan J, Ooi CW. Extraction of palm carotene from crude palm oil by solvolytic micellization: economic evaluation and life cycle assessment. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2047664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Boon Chin Hoe
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Priyangaa Arumugam
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Irene Chew M. L.
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Jully Tan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
27
|
Achieving Sustainability of the Seafood Sector in the European Atlantic Area by Addressing Eco-Social Challenges: The NEPTUNUS Project. SUSTAINABILITY 2022. [DOI: 10.3390/su14053054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fisheries and aquaculture are becoming a focus of societal concern driven by globalization and increasing environmental degradation, mainly caused by climate change and marine litter. In response to this problem, the European Atlantic Area NEPTUNUS project aims to support and inform about the sustainability of the seafood sector, boosting the transition towards a circular economy through defining eco-innovation approaches and a steady methodology for eco-labelling products. This timely trans-regional European project proposes key corrective actions for positively influencing resource efficiency by addressing a life cycle thinking and involving all stakeholders in decision-making processes, harnessing the water-energy-seafood nexus. This paper presents inter-related objectives, methodologies and cues to action that will potentially meet these challenges that are aligned with many of the United Nations Sustainable Development Goals and European policy frameworks (e.g., Farm to Fork, European Green Deal).
Collapse
|
28
|
Loubet P, Couturier J, Horta Arduin R, Sonnemann G. Life cycle inventory of plastics losses from seafood supply chains: Methodology and application to French fish products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150117. [PMID: 34508938 DOI: 10.1016/j.scitotenv.2021.150117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Plastic debris into the environment is a growing threat for the ecosystems and human health. The seafood sector is particularly concerned because it generates plastic losses and can be endangered by plastic contamination. Life cycle assessment (LCA) does not properly consider plastic losses and related impacts, which is a problem in order to find relevant mitigation strategies without burden shifting. This work proposes a methodology for quantifying flows of plastics from the life cycle of the seafood products to the environment. It is based on loss rate and final release rate considering a pre-fate approach as proposed by the Plastic Leak Project. They are defined for 5 types of micro and macro plastic losses: lost fishing gears, marine coatings, plastic pellets, tire abrasion and plastic mismanaged at the end-of-life. The methodology is validated with a case study applied to French fish products for which relevant data are available in the Agribalyse 3.0 database. Results show that average plastic losses are from 75 mg to 4345 mg per kg of fish at the consumer, depending on the species and the related fishing method. The main plastic losses come from lost fishing gears (macroplastics) and tire abrasion (microplastics). Results show high variability: when mismanaged, plastic packaging at the end-of-life (macroplastics) is the main loss to the environment. As a next step the methodology is to be applied to other fish or shellfish products, or directly implemented in a life cycle inventory database. Further research should characterize the related impacts to the environment when life cycle impact assessment methodologies will be available, and identify eco-design solutions to decrease the major flows to the environment identified.
Collapse
Affiliation(s)
- Philippe Loubet
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| | - Julien Couturier
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Rachel Horta Arduin
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Guido Sonnemann
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| |
Collapse
|
29
|
Cortés A, Esteve-Llorens X, González-García S, Moreira MT, Feijoo G. Multi-product strategy to enhance the environmental profile of the canning industry towards circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148249. [PMID: 34118679 DOI: 10.1016/j.scitotenv.2021.148249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
The sustainable and continued production of enough food to feed the entire world's population is one of the main concerns in the food industry. Spain, and in particular Galicia, which is an eminently fishing region characterised by the consumption of large quantities of fish, both fresh and processed, must face the challenge of shifting its seafood productive fabric towards a circular economy. To achieve this objective, the first task is to demonstrate that circular economy principles allow to reduce the environmental impacts associated with seafood production. In this sense, this study proposes the environmental evaluation of the skipjack tuna (Katsuwonus pelamis) value chain within a canning industry located in Galicia through the LCA methodology from an attributional perspective, including the valorisation processes for biowaste (edible and inedible by-products). Results indicate that the main crucial subsystems of the value chain are tuna fishing and the canning process, as it was expected considering other similar studies on seafood products. Moreover, this specific case study demonstrates that the multi-product strategy applied to the canning sector is environmentally viable. Thus, although the environmental impacts of the entire system are increased by including further valorisation operations, the environmental loads assigned to the main product (canned tuna) decrease compared to the one-product system by assigning environmental burdens to other value-added products (tuna pâté, fishmeal, and fish oil).
Collapse
Affiliation(s)
- Antonio Cortés
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| | - Xavier Esteve-Llorens
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Sara González-García
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Maria Teresa Moreira
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Gumersindo Feijoo
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| |
Collapse
|
30
|
Wan-Mohtar WAAQI, Taufek NM, Thiran JP, Rahman JFP, Yerima G, Subramaniam K, Rowan N. Investigations on the use of exopolysaccharide derived from mycelial extract of Ganoderma lucidum as functional feed ingredient for aquaculture-farmed red hybrid Tilapia (Oreochromis sp.). FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|