1
|
Hepditch SLJ, Gutierrez-Villagomez JM, To TA, Larocque E, Xin Q, Heshka N, Vander Meulen I, Headley JV, Dettman HD, Triffault-Bouchet G, Ahad JME, Langlois VS. Aquatic toxicity and chemical fate of diluted bitumen spills in freshwater under natural weathering. ENVIRONMENT INTERNATIONAL 2024; 190:108944. [PMID: 39151269 DOI: 10.1016/j.envint.2024.108944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Increasing global demands for oils are fueling the production of diluted bitumen (DB) from Canada's oil sands region. More weathered than conventional crude (CC) oils, Alberta bitumen is often diluted with lighter petroleum oils to reduce density and viscosity to meet pipeline specifications for transportation. Being a heavy oil product that is transported in large volumes across Canada and the USA, there has been interest to compare its behavior and toxicity characteristics when spilled to those of CC. To determine the influence of environmental weathering upon DB following a freshwater spill, we conducted separate controlled spills of Cold Lake Blend DB and Mixed Sweet Blend light CC oil in a mesocosm spill-tank system at 24 °C with wave-action for 56 days. DB-contaminated waters remained acutely lethal for a period of 14 days to early life stage fathead minnows (Pimephales promelas) exposed during embryologic development, while CC was lethal for 1 day. However, concentrations of mono- and polycyclic aromatic compounds, often claimed to be principally responsible for the acute and chronic toxicity of crude oils, were consistently higher in CC water compared to DB. Elevated aromatic concentrations in CC water correlated with higher prevalences of developmental malformations, reduced heart and growth rates, and impacts on the aryl hydrocarbon receptor pathway. Organic acids were measured over the course of the studies and O2 containing naphthenic acids were present at greater relative abundances in DB- compared to CC-contaminated water, with their attenuation correlating with reduced acute and sublethal toxicity. Furthermore, organic acid degradation products accumulated with time and likely contributed to the consistently sublethal toxicity of the weathered oils throughout the experiment. Improved characterization of the fractions including organic acids and those organic compounds found within the unresolved complex mixture of fresh and weathered crude oils is necessary to adequately understand and prepare for the risks that accidental petroleum spills pose to aquatic resources.
Collapse
Affiliation(s)
- S L J Hepditch
- Institut national de la recherche scientifique (INRS), 490 rue de la Couronne, Québec City, QC G1K 9A9, Canada; Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement et de la lutte contre les changements climatiques, de la faune et des forêts (MELCCFP), Québec City, QC H7C 2M7, Canada; Geological Survey of Canada, Natural Resources Canada (NRCan), Québec City, QC G1K 9A9, Canada
| | - J M Gutierrez-Villagomez
- Institut national de la recherche scientifique (INRS), 490 rue de la Couronne, Québec City, QC G1K 9A9, Canada
| | - T A To
- Institut national de la recherche scientifique (INRS), 490 rue de la Couronne, Québec City, QC G1K 9A9, Canada
| | - E Larocque
- Institut national de la recherche scientifique (INRS), 490 rue de la Couronne, Québec City, QC G1K 9A9, Canada
| | - Q Xin
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - N Heshka
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - I Vander Meulen
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, National Hydrology Research Center, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - J V Headley
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, National Hydrology Research Center, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - H D Dettman
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - G Triffault-Bouchet
- Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement et de la lutte contre les changements climatiques, de la faune et des forêts (MELCCFP), Québec City, QC H7C 2M7, Canada
| | - J M E Ahad
- Geological Survey of Canada, Natural Resources Canada (NRCan), Québec City, QC G1K 9A9, Canada
| | - V S Langlois
- Institut national de la recherche scientifique (INRS), 490 rue de la Couronne, Québec City, QC G1K 9A9, Canada.
| |
Collapse
|
2
|
Chen Y, Wang Y, Headley JV, Huang R. Sample preparation, analytical characterization, monitoring, risk assessment and treatment of naphthenic acids in industrial wastewater and surrounding water impacted by unconventional petroleum production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169636. [PMID: 38157903 DOI: 10.1016/j.scitotenv.2023.169636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Industrial extraction of unconventional petroleum results in notable volumes of oil sands process water (OSPW), containing elevated concentrations of naphthenic acids (NAs). The presence of NAs represents an intricate amalgamation of dissolved organic constituents, thereby presenting a notable hurdle for the domain of environmental analytical chemistry. There is growing concern about monitoring the potential seepage of OSPW NAs into nearby groundwater and river water. This review summarizes recent studies on sample preparation, characterization, monitoring, risk assessment, and treatment of NAs in industrial wastewater and surrounding water. Sample preparation approaches, such as liquid-liquid extraction, solid phase microextraction, and solid phase extraction, are crucial in isolating chemical standards, performing molecular level analysis, assessing aquatic toxicity, monitoring, and treating OSPW. Instrument techniques for NAs analysis were reviewed to cover different injection modes, ionization sources, and mass analyzers. Recent studies of transfer and transformation of NAs provide insights to differentiate between anthropogenic and natural bitumen-derived sources of NAs. In addition, related risk assessment and treatment studies were also present for elucidation of environmental implication and reclamation strategies. The synthesis of the current state of scientific knowledge presented in this review targets government regulators, academic researchers, and industrial scientists with interests spanning analytical chemistry, toxicology, and wastewater management.
Collapse
Affiliation(s)
- Yu Chen
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yongjian Wang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - John V Headley
- Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Monaghan J, Jaeger A, Jai JK, Tomlin H, Atkinson J, Brown TM, Gill CG, Krogh ET. Automated, High-Throughput Analysis of Tire-Derived p-Phenylenediamine Quinones (PPDQs) in Water by Online Membrane Sampling Coupled to MS/MS. ACS ES&T WATER 2023; 3:3293-3304. [PMID: 38455156 PMCID: PMC10916759 DOI: 10.1021/acsestwater.3c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 03/09/2024]
Abstract
The tire-derived contaminant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) was recently identified as a potent toxin to coho salmon (Oncorhynchus kisutch). Studies investigating 6-PPDQ have employed solid-phase extraction (SPE) or liquid-liquid extraction (LLE) with liquid chromatography-mass spectrometry (LC-MS), providing excellent sensitivity and selectivity. However, cleanup and pre-enrichment steps (SPE/LLE) followed by chromatographic separation can be time- and cost-intensive, limiting sample throughput. The ubiquitous distribution of 6-PPDQ necessitates numerous measurements to identify hotspots for targeted mitigation. We recently developed condensed phase membrane introduction mass spectrometry (CP-MIMS) for rapid 6-PPDQ analysis (2.5 min/sample), with a simple workflow and low limit of detection (8 ng/L). Here, we describe improved quantitation using isotopically labeled internal standards and inclusion of a suite of PPDQ analogues. A low-cost autosampler and data processing software were developed from a three-dimensional (3D) printer and Matlab to fully realize the high-throughput capabilities of CP-MIMS. Cross-validation with a commercial LC-MS method for 10 surface waters provides excellent agreement (slope: 1.01; R2 = 0.992). We employ this analytical approach to probe fundamental questions regarding sample stability and sorption of 6-PPDQ under lab-controlled conditions. Further, the results for 192 surface water samples provide the first spatiotemporal characterization of PPDQs on Vancouver Island and the lower mainland of British Columbia.
Collapse
Affiliation(s)
- Joseph Monaghan
- Applied
Environmental Research Laboratories, Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
- Department
of Chemistry, University of Victoria, P.O. Box 3055, 3800 Finnerty Road, Victoria, British Columbia, Canada V8P 5C2
| | - Angelina Jaeger
- Applied
Environmental Research Laboratories, Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
| | - Joshua K. Jai
- Applied
Environmental Research Laboratories, Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
| | - Haley Tomlin
- British
Columbia Conservation Foundation, 1885 Boxwood Road #105, Nanaimo, British Columbia, Canada V9S 5X9
| | - Jamieson Atkinson
- British
Columbia Conservation Foundation, 1885 Boxwood Road #105, Nanaimo, British Columbia, Canada V9S 5X9
| | - Tanya M. Brown
- Pacific
Science Enterprise Centre, Fisheries and
Oceans Canada, 4160 Marine Drive, West Vancouver, British Columbia, Canada V7V 1H2
- School
of Resources and Environmental Management, Simon Fraser University, 8888 University Drive West, Burnaby, British Columbia, Canada V5A 1S6
| | - Chris G. Gill
- Applied
Environmental Research Laboratories, Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
- Department
of Chemistry, University of Victoria, P.O. Box 3055, 3800 Finnerty Road, Victoria, British Columbia, Canada V8P 5C2
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
- Department
of Environmental and Occupational Health Sciences, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195-1618, United States
| | - Erik T. Krogh
- Applied
Environmental Research Laboratories, Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
- Department
of Chemistry, University of Victoria, P.O. Box 3055, 3800 Finnerty Road, Victoria, British Columbia, Canada V8P 5C2
| |
Collapse
|
4
|
Pinheiro KMP, Sako AVF, Rodrigues MF, Vaz BG, Medeiros Junior I, Carvalho RM, Coltro WKT. Analysis of naphthenic acids in produced water samples by capillary electrophoresis-mass spectrometry. J Sep Sci 2023; 46:e2300442. [PMID: 37582647 DOI: 10.1002/jssc.202300442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
A capillary electrophoresis-mass spectrometry method was used to analyze naphthenic acids in produced water samples. It was possible to detect cyclopentanecarboxylic, benzoic, cyclohexanebutyric, 1-naphthoic, decanoic, 3,5-dimethyladamantane-1-carboxylic, 9-anthracenecarboxylic, and pentadecanoic acids within ca. 13 min using a buffer composed of 40 mmol/L ammonium hydroxide, 32 mmol/L acetic acid and 20% v/v isopropyl alcohol, pH 8.6. The proposed method showed good repeatability, with relative standard deviation (RSD) values of 6.6% for the sum of the peak areas and less than 2% for the analysis time. In the interday analysis, the RSD values for the sum of the peak areas and migration time were 10.3% and 10%, respectively. The developed method demonstrated linear behavior in the concentration range between 5 and 50 mg/L for benzoic, decanoic, 3,5-dimethyladamantane-1-carboxylic and 9-anthracenecarboxylic acids, and between 10 and 50 mg/L for cyclopentanecarboxylic, cyclohexanebutyric, 1- naphthoic, and pentadecanoic acids. The detection limits values ranged from 0.31 to 1.64 mg/L. Six produced water samples were analyzed and it was possible to identify and quantify cyclopentanecarboxylic, benzoic, cyclohexanebutyric, and decanoic acids. The concentrations varied between 4.8 and 98.9 mg/L, proving effective in the application of complex samples.
Collapse
Affiliation(s)
| | - Alysson V F Sako
- Instituto de Química, Universidade Federal da Santa Catarina, Florianópolis, Brazil
| | | | - Boniek G Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil
| | - Iris Medeiros Junior
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello (CENPES), Rio de Janeiro, Brazil
| | - Rogerio M Carvalho
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello (CENPES), Rio de Janeiro, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, Brazil
| |
Collapse
|
5
|
Zarkovic TM, Borden SA, Krogh ET, Gill CG. A passive membrane system for on-line mass spectrometry reagent addition. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9487. [PMID: 36739105 DOI: 10.1002/rcm.9487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
RATIONALE Post-separation addition of chemical modifiers in liquid chromatography-mass spectrometry is widely used for improving ionization sensitivity and selectivity. This is typically accomplished using a post-column T-junction, which can result in sample dilution and imperfect mixing. We present a passive semi-permeable hollow fiber membrane approach for the addition of chemical modifiers that avoids these issues. METHODS Model compounds were directly infused by flow injection to an electrospray ionization triple quadrupole mass spectrometer after passing through a polydimethylsiloxane hollow fiber membrane. Ionization enhancement reagents were introduced into the flowing stream by membrane permeation from aqueous solutions. Ionization enhancement from volatile acids and bases in positive and negative electrospray ionization was evaluated to assess the feasibility of this approach. RESULTS The membrane-based apparatus resulted in relative ionization enhancement factors of up to 14×, depending upon the analyte, reagent, and ionization mode used. Ionization enhancement signal stability is reasonable (relative standard deviation of 5-7%) for extended periods from the same reagent solution, and minimal analyte dilution is observed. A proof-of-concept demonstration of the chromatographic "trifluoroacetic acid fix" strategy is presented. CONCLUSIONS An on-line mass spectrometry ionization reagent addition method with potential post-chromatography reagent addition applications was developed using a hollow fiber polydimethylsiloxane membrane. This approach offers a promising alternative to traditional methods requiring additional hardware such as pumps and T-junctions that can result in sample dilution and imperfect reagent mixing.
Collapse
Affiliation(s)
- Taelor M Zarkovic
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, Nanaimo, BC, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Scott A Borden
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, Nanaimo, BC, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Erik T Krogh
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, Nanaimo, BC, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Chris G Gill
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, Nanaimo, BC, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Monaghan J, Steenis D, Vander Meulen IJ, Peru KM, Headley JV, Gill CG, Krogh ET. Online Membrane Sampling for the Mass Spectrometric Analysis of Oil Sands Process Affected Water-Derived Naphthenic Acids in Real-World Samples. SEPARATIONS 2023. [DOI: 10.3390/separations10040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Large volumes of oil sands process-affected waters (OSPW) result from heavy oil extraction in Alberta, Canada. Currently, a toxic legacy of ca. 500 Mm3 is stored in tailings ponds under a zero-discharge policy. OSPW is a complex mixture of suspended and dissolved materials including a wide range of inorganic and organic contaminants. Classically defined naphthenic acids (NAs; CnH2n+ZO2) are one of the primary toxic fractions in OSPW and have therefore been the subject of considerable research interest. Most studies employ considerable sample cleanup followed by liquid chromatography and/or high-resolution mass spectrometry (HRMS) for the characterization of these complex mixtures. However, these strategies can be time- and cost-intensive, limiting the scope of research and adoption for regulatory purposes. Condensed phase membrane introduction mass spectrometry (CP-MIMS) is emerging as a “fit-for-purpose” approach for the analysis of NAs. This technique directly interfaces the mass spectrometer with an aqueous sample using a hydrophobic semi-permeable membrane, requiring only pH adjustment to convert NAs to a membrane-permeable form. Here, we examine the perm-selectivity of classical NAs (O2) relative to their more oxidized counterparts (O3–O7) and heteroatomic (N, S) species collectively termed naphthenic acid fraction compounds (NAFCs). The investigation of 14 model compounds revealed that classically defined NAs are greater than 50-fold more membrane permeable than their oxidized/heteroatomic analogs. HRMS analysis of real OSPW extracts with and without membrane clean-up further supported selectivity towards the toxic O2 class of NAs, with >85% of the overall signal intensity attributable to O2 NAs in the membrane permeate despite as little as 34.7 ± 0.6% O2 NAs observed in the directly infused mixture. The information collected with HRMS is leveraged to refine our method for analysis of NAs at unit mass resolution. This new method is applied to 28 archived real-world samples containing NAs/NAFCs from constructed wetlands, OSPW, and environmental monitoring campaigns. Concentrations ranged from 0–25 mg/L O2 NAs and the results measured by CP-MIMS (unit mass) and SPE-HRMS (Orbitrap) showed good agreement (slope = 0.80; R2 = 0.76).
Collapse
|
7
|
Condensed Phase Membrane Introduction Mass Spectrometry: A Direct Alternative to Fully Exploit the Mass Spectrometry Potential in Environmental Sample Analysis. SEPARATIONS 2023. [DOI: 10.3390/separations10020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Membrane introduction mass spectrometry (MIMS) is a direct mass spectrometry technique used to monitor online chemical systems or quickly quantify trace levels of different groups of compounds in complex matrices without extensive sample preparation steps and chromatographic separation. MIMS utilizes a thin, semi-permeable, and selective membrane that directly connects the sample and the mass spectrometer. The analytes in the sample are pre-concentrated by the membrane depending on their physicochemical properties and directly transferred, using different acceptor phases (gas, liquid or vacuum) to the mass spectrometer. Condensed phase (CP) MIMS use a liquid as a medium, extending the range to new applications to less-volatile compounds that are challenging or unsuitable to gas-phase MIMS. It directly allows the rapid quantification of selected compounds in complex matrices, the online monitoring of chemical reactions (in real-time), as well as in situ measurements. CP-MIMS has expanded beyond the measurement of several organic compounds because of the use of different types of liquid acceptor phases, geometries, dimensions, and mass spectrometers. This review surveys advancements of CP-MIMS and its applications to several molecules and matrices over the past 15 years.
Collapse
|
8
|
Xin Q, Saborimanesh N, Greer CW, Farooqi H, Dettman HD. The effect of temperature on hydrocarbon profiles and the microbial community composition in North Saskatchewan River water during mesoscale tank tests of diluted bitumen spills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160161. [PMID: 36379338 DOI: 10.1016/j.scitotenv.2022.160161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Despite many studies of diluted bitumen (DB) behavior during spills in saltwater, limited information is available on DB behavior in fresh water. This study examined the collective weathering processes on changes of fresh DB spilled in the North Saskatchewan River water and sediment mixture in a mesoscale spill tank under average air/water temperatures of 14 °C/15 °C and 6 °C/2 °C. Temporal changes of the hydrocarbon and microbial community compositions in the water column were assessed during the two 35-day tests under intermittent wave action. The contents of total organic carbon (TOC), benzene/toluene/ethylbenzene/xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs) in water decreased with time during both tests. The final contents remained at higher values in warm water (15 °C) than in cold water (2 °C) after the collective weathering processes. A quick response of the main phyla, Proteobacteria and Actinobacteria, was observed, where the members of Proteobacteria enriched during both DB spills. In contrast, the members of Actinobacteria reduced with time. The microbial shifts coincided with the changes of PAHs in the waters at both temperatures. A comparison of the physical properties and chemical compositions of fresh and weathered DBs at both temperatures showed that the oil had undergone weathering that increased oil density and viscosity due to losing the light oil fraction with boiling points < 204 °C and emulsifying with water. This corresponded to losses of 19.0 wt% and 17.2 wt% of the fresh DB at 15 °C and 2 °C tests, respectively. For organic compounds in the DB with boiling points > 204 °C, there were small losses of saturates and 2- & 3-ring PAH aromatics (more during the 15 °C test than the 2 °C test), and negligible losses in the subfractions of resins and asphaltenes by the ends of the tests. <1.0 wt% of the DB was recovered from the bottom sediment, regardless of the temperature.
Collapse
Affiliation(s)
- Qin Xin
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada.
| | - Nayereh Saborimanesh
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada; McGill University, Natural Resource Sciences, 21111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Hena Farooqi
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Heather D Dettman
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| |
Collapse
|
9
|
Monaghan J, Xin Q, Aplin R, Jaeger A, Heshka NE, Hounjet LJ, Gill CG, Krogh ET. Aqueous naphthenic acids and polycyclic aromatic hydrocarbons in a meso-scale spill tank affected by diluted bitumen analyzed directly by membrane introduction mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129798. [PMID: 36027751 DOI: 10.1016/j.jhazmat.2022.129798] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
With the increasing use of unconventional, heavy crude oils there is growing interest in potential impacts of a diluted bitumen (DB) spill in marine and freshwater environments. DB has the potential to release several toxic, trace organic contaminants to the water column. Here, the aqueous concentrations and compositions of two classes of organic contaminants, naphthenic acids (NAs) and polycyclic aromatic hydrocarbons (PAHs), are followed over 8 weeks after a simulated spill of DB (10 L) into a freshwater mesocosm (1200 L) with river sediment (2.4 kg). These complex samples contain biogenic dissolved organic matter, inorganic ions, petroleum contaminants, suspended sediments, and oil droplets. We report the first use of condensed phase membrane introduction mass spectrometry (CP-MIMS) as a direct sampling platform in a complex multi-phase mesocosm spill tank study to measure trace aqueous phase contaminants with little to no sample preparation (dilution and/or pH adjustment). CP-MIMS provides complementary strengths to conventional analytical approaches (e.g., gas- or liquid chromatography mass spectrometry) by allowing the entire sample series to be screened quickly. Trace NAs are measured as carboxylates ([M-H]-) using electrospray ionization and PAHs are detected as radical cations (M+•) using liquid electron ionization coupled to a triple quadrupole mass spectrometer. The DB-affected mesocosm exhibits NA concentrations from 0.3 to 1.2 mg/L, which rise quickly over the first 2 - 5 days , then decrease slowly over the remainder of the study period. The NA profile (measured as the full scan in negative-electrospray ionization at nominal mass resolution) shifts to lower m/z with weathering, a process followed by principal component analysis of the normalized mass spectra. We couple CP-MIMS with high-resolution mass spectrometry to follow changes in molecular speciation over time, which reveals a concomitant shift from classical 'O2' naphthenic acids to more oxidized analogues. Concentrations of PAHs and alkylated analogues (C1 - C4) in the DB-affected water range from 0 to 5 μg/L. Changes in PAH concentrations depend on ring number and degree of alkylation, with small and/or lightly alkylated (C0 - C2) PAH concentrations rising to a maximum in the first 4 - 8 days (100 - 200 h) before slowly decaying over the remainder of the study period. Larger and heavily alkylated (C3 - C4) PAH concentrations generally rise slower, with some species remaining below the detection limit throughout the study period (e.g., C20H12 class including benzo[a]pyrene). In contrast, a control mesocosm (without oil) exhibited NA concentrations below 0.05 mg/L and PAHs were below detection limit. Capitalizing on the rapid analytical workflow of CP-MIMS, we also investigate the impacts of sample filtration at the time of sampling (on NA and PAH data) and sample storage time (on NA data only).
Collapse
Affiliation(s)
- Joseph Monaghan
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 3055, Victoria, BC V8P 5C2, Canada
| | - Qin Xin
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada.
| | - Rebekah Aplin
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada
| | - Angelina Jaeger
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada
| | - Nicole E Heshka
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Lindsay J Hounjet
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Chris G Gill
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 3055, Victoria, BC V8P 5C2, Canada; Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195-1618, USA
| | - Erik T Krogh
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 3055, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
10
|
Duncan KD, Hawkes JA, Berg M, Clarijs B, Gill CG, Bergquist J, Lanekoff I, Krogh ET. Membrane Sampling Separates Naphthenic Acids from Biogenic Dissolved Organic Matter for Direct Analysis by Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3096-3105. [PMID: 35175743 PMCID: PMC8892831 DOI: 10.1021/acs.est.1c07359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Oil sands process waters can release toxic naphthenic acids (NAs) into aquatic environments. Analytical techniques for NAs are challenged by sample complexity and interference from naturally occurring dissolved organic matter (DOM). Herein, we report the use of a poly(dimethylsiloxane) (PDMS) polymer membrane for the on-line separation of NAs from DOM and use direct infusion electrospray ionization mass spectrometry to yield meaningful qualitative and quantitative information with minimal sample cleanup. We compare the composition of membrane-permeable species from natural waters fortified with a commercial NA mixture to those derived from weak anion exchange solid-phase extraction (SPE) using high-resolution mass spectrometry. The results show that SPE retains a wide range of carboxylic acids, including biogenic DOM, while permeation through PDMS was selective for petrogenic classically defined NAs (CnH2n+zO2). A series of model compounds (log Kow ∼1-7) were used to characterize the perm-selectivity and reveal the separation is based on hydrophobicity. This convenient sample cleanup method is selective for the O2 class of NAs and can be used prior to conventional analysis or as an on-line analytical strategy when coupled directly to mass spectrometry.
Collapse
Affiliation(s)
- Kyle D. Duncan
- Analytical
Chemistry, Department of Chemistry − BMC, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Department
of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
| | - Jeffrey A. Hawkes
- Analytical
Chemistry, Department of Chemistry − BMC, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Mykelti Berg
- Applied
Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
| | - Bas Clarijs
- Analytical
Chemistry, Department of Chemistry − BMC, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Chris G. Gill
- Applied
Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
- Department
of Chemistry, University of Victoria, P.O. Box 1700, Stn CSC, Victoria, British Columbia, Canada V8W 2Y2
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Jonas Bergquist
- Analytical
Chemistry, Department of Chemistry − BMC, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Ingela Lanekoff
- Analytical
Chemistry, Department of Chemistry − BMC, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Erik T. Krogh
- Applied
Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
- Department
of Chemistry, University of Victoria, P.O. Box 1700, Stn CSC, Victoria, British Columbia, Canada V8W 2Y2
| |
Collapse
|
11
|
Monaghan J, Jaeger A, Agua AR, Stanton RS, Pirrung M, Gill CG, Krogh ET. A Direct Mass Spectrometry Method for the Rapid Analysis of Ubiquitous Tire-Derived Toxin N-(1,3-Dimethylbutyl)- N'-phenyl- p-phenylenediamine Quinone (6-PPDQ). ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:1051-1056. [PMID: 38433861 PMCID: PMC10906944 DOI: 10.1021/acs.estlett.1c00794] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The oxidative transformation product of a common tire preservative, identified as N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ), has recently been found to contribute to "urban runoff mortality syndrome" in Coho salmon at nanogram per liter levels. Given the number of fish-bearing streams with multiple stormwater inputs, large-scale campaigns to identify 6-PPDQ sources and evaluate mitigation strategies will require sensitive, high-throughput analytical methods. We report the development and optimization of a direct sampling tandem mass spectrometry method for semiquantitative 6-PPDQ determinations using a thin polydimethylsiloxane membrane immersion probe. The method requires no sample cleanup steps or chromatographic separations, even in complex, heterogeneous samples. Quantitation is achieved by the method of standard additions, with a detection limit of 8 ng/L and a duty cycle of 15 min/sample. High-throughput screening provides semiquantitative concentrations with similar sensitivity and a full analytical duty cycle of 2.5 min/sample. Preliminary data and performance metrics are reported for 6-PPDQ present in representative environmental and stormwater samples. The method is readily adapted for real-time process monitoring, demonstrated by following the dissolution of 6-PPDQ from tire fragments and subsequent removal in response to added sorbents.
Collapse
Affiliation(s)
- Joseph Monaghan
- Applied
Environmental Research Laboratories, Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
- Department
of Chemistry, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada V8P 5C2
| | - Angelina Jaeger
- Applied
Environmental Research Laboratories, Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
| | - Alon R. Agua
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan S. Stanton
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Michael Pirrung
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Chris G. Gill
- Applied
Environmental Research Laboratories, Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
- Department
of Chemistry, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada V8P 5C2
- Department
of Chemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195-1618, United States
| | - Erik T. Krogh
- Applied
Environmental Research Laboratories, Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
- Department
of Chemistry, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada V8P 5C2
| |
Collapse
|
12
|
Zhang H, Zhou Y, Kong Q, Dong W, Lin Z. Toxicity of Naphthenic Acids on the Chlorophyll Fluorescence Parameters and Antioxidant Enzyme Activity of Heterosigma akashiwo. Antioxidants (Basel) 2021; 10:antiox10101582. [PMID: 34679717 PMCID: PMC8533473 DOI: 10.3390/antiox10101582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 01/14/2023] Open
Abstract
Petroleum hydrocarbons can serve as a carbon source for marine phytoplankton; so, marine high-acid crude oil pollution events are likely to result in algal outbreaks or harmful algal blooms (HABs) in surface waters. Naphthenic acids (NAs) are the primary acidic component of crude oil, and red tide is of great concern due to its high diffusivity and strong destructive properties. It is important to study the mechanism of the toxic effect of NAs on the typical red tide algae, Heterosigma akashiwo, for the balance and stability of marine algae. The mechanism of NAs’ damage effect was investigated in terms of the antioxidant enzyme activity, cell number, the chlorophyll positive fluorescence parameters, and the cell morphology of microalgae. Experiments confirmed the hormesis of low-concentration (0.5, 2, and 4 mg/L) NAs on Heterosigma akashiwo, and the indicators of high-concentration (8 and 16 mg/L) NA exposures showed inhibition. In this study, the toxic effect of NAs on the target organism showed a clear concentration–dose relationship. The 16 mg/L NAs stress caused severe damage to the morphology and structure of the target biological cells in a short time (96 h), and the population growth decreased. The target organisms showed a staged oxidative stress response to NAs. The behavior in the low-concentration treatment groups showed toxicant excitatory effects on the photosynthetic efficiency and antioxidant enzyme activity of the target organisms. This study provides theoretical and practical data for the development of an important toxicological model of the toxicant’s excitement effects and antioxidant defense mechanisms. In addition, it provides prospective research data for the prediction and avoidance of ecological risk from NA pollution in marine environments.
Collapse
Affiliation(s)
- Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China; (Y.Z.); (Q.K.)
- Correspondence: ; Tel.: +86-157-6225-6586
| | - Yumiao Zhou
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China; (Y.Z.); (Q.K.)
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China; (Y.Z.); (Q.K.)
| | - Wenlong Dong
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao 266104, China;
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China;
| |
Collapse
|
13
|
Abstract
Oil sands surface mining in Alberta has generated over a billion cubic metres of waste, known as tailings, consisting of sands, silts, clays, and process-affected water that contains toxic organic compounds and chemical constituents. All of these tailings will eventually be reclaimed and integrated into one of two types of mine closure landforms: end pit lakes (EPLs) or terrestrial landforms with a wetland feature. In EPLs, tailings deposits are capped with several metres of water while in terrestrial landforms, tailings are capped with solid materials, such as sand or overburden. Because tailings landforms are relatively new, past research has heavily focused on the geotechnical and biogeochemical characteristics of tailings in temporary storage ponds, referred to as tailings ponds. As such, the geochemical stability of tailings landforms remains largely unknown. This review discusses five mechanisms of geochemical change expected in tailings landforms: consolidation, chemical mass loading via pore water fluxes, biogeochemical cycling, polymer degradation, and surface water and groundwater interactions. Key considerations and knowledge gaps with regard to the long-term geochemical stability of tailings landforms are identified, including salt fluxes and subsequent water quality, bioremediation and biogenic greenhouse gas emissions, and the biogeochemical implications of various tailings treatment methods meant to improve geotechnical properties of tailings, such as flocculant (polyacrylamide) and coagulant (gypsum) addition.
Collapse
|