1
|
Hamdi S, Mosbahi M, Issaoui M, Barreiro A, Cela-Dablanca R, Brahmi J, Tlili A, Jamoussi F, J Fernández-Sanjurjo M, Núñez-Delgado A, Álvarez-Rodríguez E, Gharbi-Khelifi H. Experimental data and modeling of sulfadiazine adsorption onto raw and modified clays from Tunisia. ENVIRONMENTAL RESEARCH 2024; 248:118309. [PMID: 38301763 DOI: 10.1016/j.envres.2024.118309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
In recent years, the increasing detection of emerging pollutants (particularly antibiotics, such as sulfonamides) in agricultural soils and water bodies has raised growing concern about related environmental and health problems. In the current research, sulfadiazine (SDZ) adsorption was studied for three raw and chemically modified clays. The experiments were carried out for increasing doses of the antibiotic (0, 1, 5, 10, 20, and 40 μmol L-1) at ambient temperature and natural pH with a contact time of 24 h. The eventual fitting to Freundlich, Langmuir and Linear adsorption models, as well as residual concentrations of antibiotics after adsorption, was assessed. The results obtained showed that one of the clays (HJ1) adsorbed more SDZ (reaching 99.9 % when 40 μmol L-1 of SDZ were added) than the other clay materials, followed by the acid-activated AM clay (which reached 99.4 % for the same SDZ concentration added). The adsorption of SDZ followed a linear adsorption isotherm, suggesting that hydrophobic interactions, rather than cation exchange, played a significant role in SDZ retention. Concerning the adsorption data, the best adjustment corresponded to the Freundlich model. The highest Freundlich KF scores were obtained for the AM acid-treated and raw HJ1 clays (606.051 and 312.969 Ln μmol1-n kg-1, respectively). The Freundlich n parameter ranged between 0.047 and 1.506. Regarding desorption, the highest value corresponded to the AM clay, being generally <10 % for raw clays, <8 % for base-activated clays, and <6 % for acid-activated clays. Chemical modifications contributed to improve the adsorption capacity of the AM clay, especially when the highest concentrations of the antibiotic were added. The results of this research can be considered relevant as regard environmental and public health assessment since they estimate the feasibility of three Tunisian clays in SDZ removal from aqueous solutions.
Collapse
Affiliation(s)
- Samiha Hamdi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; Laboratory of Nutrition - Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia; Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27 Faculty of Pharmacy of Monastir, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia.
| | - Mohamed Mosbahi
- Dpartment of Geology, GEOGLOB Research Unit, Faculty of Science and Technology of Sfax, Sokra Street 3038 Sfax, Tunisia
| | - Manel Issaoui
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Laboratory of Nutrition - Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia
| | - Ana Barreiro
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Raquel Cela-Dablanca
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Jihen Brahmi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia
| | - Ali Tlili
- Dpartment of Geology, GEOGLOB Research Unit, Faculty of Science and Technology of Sfax, Sokra Street 3038 Sfax, Tunisia
| | - Faker Jamoussi
- Georesources Laboratory, CERTE, Borj Cedria, Bp 273, 8020, Solimen, Tunisia
| | - María J Fernández-Sanjurjo
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Avelino Núñez-Delgado
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Hakima Gharbi-Khelifi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27 Faculty of Pharmacy of Monastir, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia
| |
Collapse
|
2
|
Hu X, Qu Y, Yao L, Zhang Z, Tan G, Bai C. Boosted simultaneous removal of chlortetracycline and Cu (II) by Litchi Leaves Biochar: Influence of pH, ionic strength, and background electrolyte ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10430-10442. [PMID: 38196041 DOI: 10.1007/s11356-023-31770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/25/2023] [Indexed: 01/11/2024]
Abstract
The coexistence of heavy metals and antibiotics in the environment always results in greater toxicity compared to the individual precursors. Therefore, efficient and economic technology for the simultaneous removal of antibiotics and heavy metals is essential. Herein, litchi leaves biochar carbonized at 550 °C (L550) demonstrated high efficiency in co-removal of CTC (1838.1 mmol/kg) and Cu (II) (1212.9 mmol/kg) within wide range of pH (pH 4-7). Ionic strength obviously enhanced the Cu (II) removal but showed no significant effect on CTC removal. Although Al3+ and HPO42- decreased the adsorption capacities of CTC and Cu (II) on L550, the coexistence of Na+, K+, Mg2+, Cl-, NO3-, CO32- and SO42- showed a negligible effect on the simultaneous removal of CTC and Cu (II). Moreover, the adsorption capacities of CTC and Cu (II) on L550 were excellent in the river water, tap water, and lake water. In addition to electrostatic interactions, ion exchange governed Cu (II) adsorption, while surface complexation played a key role in CTC adsorption on L550. Our results demonstrated that litchi leaves biochar could be a promising adsorbent for remediating multi-contaminated environments.
Collapse
Affiliation(s)
- Xian Hu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China
| | - Yifan Qu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China
| | - Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China
| | - Zhilin Zhang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Guangcai Tan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Nguyen TKT, Nguyen TB, Chen WH, Chen CW, Kumar Patel A, Bui XT, Chen L, Singhania RR, Dong CD. Phosphoric acid-activated biochar derived from sunflower seed husk: Selective antibiotic adsorption behavior and mechanism. BIORESOURCE TECHNOLOGY 2023; 371:128593. [PMID: 36634881 DOI: 10.1016/j.biortech.2023.128593] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
In recent years, the unnecessary overuse of antibiotics has increased globally, resulting in antibiotic contamination of water, which has become a significant environmental concern. This study aims to examine the adsorption behavior of antibiotics (Tetracycline TC, Ciprofloxacin CIP, Ibuprofen IBP, and Sulfamethoxazole SMX) onto H3PO4-activated sunflower seed husk biochar (PSF). The results demonstrated that H3PO4 could enhance the specific surface area (378.8 m2/g) and create a mesoporous structure of biochar. The adsorption mechanism was investigated using kinetic models, isotherms, and thermodynamics. The maximum adsorption capacities (qmax) of TC, CIP, SMX, and IBP are 429.3, 361.6, 251.3, and 251.1 mg g-1, respectively. The adsorption mechanism of antibiotics on PSF was governed by complex mechanisms, including chemisorption, external diffusion, and intraparticle diffusion. This research provides an environmentally friendly method for utilizing one of the agricultural wastes for the removal of a variety of antibiotics from the aquatic environment.
Collapse
Affiliation(s)
- Thi-Kim-Tuyen Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Linjer Chen
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Ho Chi Minh City 700000, Viet Nam
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
4
|
Burachevskaya M, Minkina T, Bauer T, Lobzenko I, Fedorenko A, Mazarji M, Sushkova S, Mandzhieva S, Nazarenko A, Butova V, Wong MH, Rajput VD. Fabrication of biochar derived from different types of feedstocks as an efficient adsorbent for soil heavy metal removal. Sci Rep 2023; 13:2020. [PMID: 36737633 PMCID: PMC9898244 DOI: 10.1038/s41598-023-27638-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
For effective soil remediation, it is vital to apply environmentally friendly and cost-effective technologies following the notion of green sustainable development. In the context of recycling waste and preserving nutrients in the soil, biochar production and utilization have become widespread. There is an urgent need to develop high-efficiency biochar-based sorbents for pollution removal from soil. This research examined the efficacy of soil remediation using biochar made from three distinct sources: wood, and agricultural residues (sunflower and rice husks). The generated biochars were characterized by SEM/SCEM, XRF, XRD, FTIR, BET Specific Surface Area, and elemental compositions. The presence of hydroxyl and phenolic functional groups and esters in wood, sunflower and rice husk biochar were noted. The total volume of pores was in the following descending order: rice husk > wood > sunflower husk. However, wood biochar had more thermally stable, heterogeneous, irregular-shaped pores than other samples. Adsorption of soil-heavy metals into biochars differed depending on the type of adsorbent, according to data derived from distribution coefficients, sorption degree, Freundlich, and Langmuir adsorption models. The input of biochars to Calcaric Fluvic Arenosol increased its adsorption ability under contamination by Cu(II), Zn(II), and Pb(II) in the following order: wood > rice husk > sunflower husk. The addition of sunflower husk, wood, and rice husk biochar to the soil led to an increase in the removal efficiency of metals in all cases (more than 77%). The increase in the percentage adsorption of Cu and Pb was 9-19%, of Zn was 11-21%. The present results indicated that all biochars functioned well as an absorbent for removing heavy metals from soils. The tailor-made surface chemistry properties and the high sorption efficiency of the biochar from sunflower and rice husks could potentially be used for soil remediation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alexander Nazarenko
- The Southern Scientific Centre, Russian Academy of Sciences, Rostov-on-Don, Russia
| | - Vera Butova
- Southern Federal University, Rostov-on-Don, Russia
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | | |
Collapse
|
5
|
Ultrasonic Functionalized Egg Shell Powder for the Adsorption of Cationic Dye: Equilibrium and Kinetic Studies. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/9177880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The present research focuses on synthesizing surface-modified egg shell powders using ultrasonic modification method for the effective adsorption of malachite green dye (MG). The presence of functional groups and surface morphology of ultrasonic-assisted egg shell powder (UAESP) was characterized using Fourier transform infrared spectrophotometer (FTIR) and scanning electron microscopy (SEM) analysis, respectively. A batch adsorption study was performed to predict the optimum conditions, and the results showed that maximum adsorption rate at the solution pH of 8.0 within the interaction time of 90 min, dosage of 1.5 g/L for MG dye concentration of 25 mg/L, and temperature 30°C. The isotherm and kinetics modeling of the present adsorption system can be well described by Freundlich and pseudosecond-order kinetics, respectively. The monolayer adsorption capacity of UAESP for MG dye was originated to be 64.58 mg/g. The results of the thermodynamic study reported that adsorption removal of MG dye onto UAESP was exothermic and spontaneous. This study accredited that UAESP has higher efficiency, cost-effective, and sustainable adsorbent for the removal of hazardous dyes on an industrial level.
Collapse
|
6
|
Promising adsorptive materials derived from agricultural and industrial wastes for antibiotic removal: A comprehensive review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|