1
|
Chang W, Ke X, Wang W, Liu P. Identifying sources of acid mine drainage and major hydrogeochemical processes in abandoned mine adits (Southeast Shaanxi, China). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:60. [PMID: 38280088 DOI: 10.1007/s10653-024-01858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/03/2024] [Indexed: 01/29/2024]
Abstract
Acid mine drainage (AMD) has resulted in significant risks to both human health and the environment of the Han River watershed. In this study, water and sediment samples from typical mine adits were selected to investigate the hydrogeochemical characteristics and assess the environmental impacts of AMD. The interactions between coexisting chemical factors, geochemical processes in the mine adit, and the causes of AMD formation are discussed based on statistical analysis, mineralogical analysis, and geochemical modeling. The results showed that the hydrochemical types of AMD consisted of SO4-Ca-Mg, SO4-Ca, and SO4-Mg, with low pH and extremely high concentrations of Fe and SO42-. The release behaviors of most heavy metals are controlled by the oxidation of sulfide minerals (mainly pyrite) and the dissolution/precipitation of secondary minerals. Along the AMD pathway in the adit, the species of Fe-hydroxy secondary minerals tend to initially increase and later decrease. The inverse model results indicated that (1) oxidative dissolution of sulfide minerals, (2) interconversion of Fe-hydroxy secondary minerals, (3) precipitation of gypsum, and (4) neutralization by calcite are the main geochemical reactions in the adit, and chlorite might be the major neutralizing mineral of AMD with calcite. Furthermore, there were two sources of AMD in abandoned mine adits: oxidation of pyrite within the adits and infiltration of AMD from the overlying waste rock dumps. The findings can provide deeper insight into hydrogeochemical processes and the formation of AMD contamination produced in abandoned mine adits under similar mining and hydrogeological conditions.
Collapse
Affiliation(s)
- Wentong Chang
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China
| | - Xianmin Ke
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China
| | - Wei Wang
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China.
| | - Peng Liu
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China
| |
Collapse
|
2
|
Kraus JM, Skrabis K, Ciparis S, Isanhart J, Kenney A, Hinck JE. Ecological Harm and Economic Damages of Chemical Contamination to Linked Aquatic-Terrestrial Food Webs: A Study-Design Tool for Practitioners. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2029-2039. [PMID: 36920000 DOI: 10.1002/etc.5609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Contamination of aquatic ecosystems can have cascading effects on terrestrial consumers by altering the availability and quality of aquatic insect prey. Comprehensive assessment of these indirect food-web effects of contaminants on natural resources and their associated services necessitates using both ecological and economic tools. In the present study we present an aquatic-terrestrial assessment tool (AT2), including ecological and economic decision trees, to aid practitioners and researchers in designing contaminant effect studies for linked aquatic-terrestrial insect-based food webs. The tool is tailored to address the development of legal claims by the US Department of the Interior's Natural Resource Damage Assessment and Restoration Program, which aims to restore natural resources injured by oil spills and hazardous substance releases into the environment. Such cases require establishing, through scientific inquiry, the existence of natural resource injury as well as the determination of the monetary or in-kind project-based damages required to restore this injury. However, this tool is also useful to researchers interested in questions involving the effects of contaminants on linked aquatic-terrestrial food webs. Stylized cases exemplify how application of AT2 can help practitioners and researchers design studies when the contaminants present at a site are likely to lead to injury of terrestrial aerial insectivores through loss of aquatic insect prey and/or dietary contaminant exposure. Designing such studies with ecological endpoints and economic modeling inputs in mind will increase the relevance and cost-effectiveness of studies, which can in turn improve the outcomes of cases and studies involving the ecological effects of contaminants on food webs. Environ Toxicol Chem 2023;42:2029-2039. Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Johanna M Kraus
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Kristin Skrabis
- Office of Policy Analysis, US Department of the Interior, Washington, District of Columbia, USA
| | - Serena Ciparis
- Virginia Field Office, US Fish and Wildlife Service, Gloucester, Virginia, USA
| | - John Isanhart
- Office of Restoration and Damage Assessment, US Department of the Interior, Denver, Colorado, USA
| | - Aleshia Kenney
- Illinois-Iowa Field Office, US Fish and Wildlife Service, Moline, Illinois, USA
| | - Jo Ellen Hinck
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| |
Collapse
|
3
|
Kotalik CJ, Meyer JS, Cadmus P, Ranville JF, Clements WH. Integrated Assessment of Chemical and Biological Recovery After Diversion and Treatment of Acid Mine Drainage in a Rocky Mountain Stream. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:512-524. [PMID: 36345954 PMCID: PMC10108297 DOI: 10.1002/etc.5515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Responses of stream ecosystems to gradual reductions in metal loading following remediation or restoration activities have been well documented in the literature. However, much less is known about how these systems respond to the immediate or more rapid elimination of metal inputs. Construction of a water treatment plant on the North Fork of Clear Creek (NFCC; CO, USA), a US Environmental Protection Agency Superfund site, captured, diverted, and treated the two major point-source inputs of acid mine drainage (AMD) and provided an opportunity to investigate immediate improvements in water quality. We conducted a 9-year study that included intensive within- and among-year monitoring of receiving-stream chemistry and benthic communities before and after construction of the treatment plant. Results showed a 64%-86% decrease in metal concentrations within months at the most contaminated sites. Benthic communities responded with increased abundance and diversity, but downstream stations remained impaired relative to reference conditions, with significantly lower taxonomic richness represented by a few dominant taxa (i.e., Baetis sp., Hydropsyche sp., Simulium sp., Orthocladiinae). Elevated metal concentrations from apparent residual sources, and relatively high conductivity from contributing major ions not removed during the treatment process, are likely limiting downstream recovery. Our study demonstrates that direct AMD treatment can rapidly improve water quality and benefit aquatic life, but effectiveness is limited, in part, to the extent that inputs of metals are captured and treated. Consideration should also be given to the effects of elevated major ion concentrations from the treated effluent not removed during the lime treatment process. Continued chemical and biological monitoring will be needed to quantify the NFCC recovery trajectory and to inform future remediation strategies. Environ Toxicol Chem 2023;42:512-524. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Christopher J. Kotalik
- Columbia Environmental Research LaboratoryUS Geological SurveyColumbiaMissouriUSA
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Joseph S. Meyer
- Department of ChemistryColorado School of MinesGoldenColoradoUSA
- Applied Limnology ProfessionalsGoldenColoradoUSA
| | - Pete Cadmus
- Colorado and WildlifeFort CollinsColoradoUSA
| | | | - William H. Clements
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
4
|
Meyer JS, Lloyd EH, Bevers S, Ranville JF. Physical-Chemical Recovery of a Montane Stream After Remediation of Acid Mine Drainage: Timing and Extent After Turning off the Tap. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:495-511. [PMID: 36349955 DOI: 10.1002/etc.5519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
We monitored physical-chemical conditions in the North Fork of Clear Creek in Colorado (USA) before, during, and after the start of remediation (lime treatment) to remove metals from two major inputs of acid mine drainage (AMD) water. In addition, we analyzed historical monitoring data that extended back more than two decades. Concentration-discharge (C-D) and load-discharge (L-D) plots accounted for discharge dependence in concentrations and loads of metals, major ions, and other water chemistry parameters. Total and dissolved concentrations, and loads of the metals decreased after remediation began, with the largest decreases usually during low stream flow. However, postremediation concentrations and loads remained slightly to considerably higher than reference, probably because of unidentified groundwater seeps and/or small surface flows. Dissolved Cu concentrations decreased much less than total Cu concentrations, because the percentage of total Cu in the dissolved phase increased considerably as particulate Fe (PFe) concentration decreased. We conclude that 1) water chemistry can change to a new steady state or pseudo-steady state relatively quickly after major AMD inputs to a stream are remediated; 2) elevated flows during snowmelt and rainfall periods can mobilize additional amounts of major ions and metals, resulting in in-stream concentrations that are manifestations of both dilution and mobilization; 3) although lime treatment of AMD-related waters can decrease metal concentrations, it does not decrease elevated concentrations of major ions that might impair sensitive stream invertebrates; 4) although Fe is toxic to aquatic organisms, PFe adsorbs other metals and thereby provides protection against their toxicity; and 5) use of C-D and L-D plots and element ratios can indicate the presence of unidentified AMD inputs to a stream. Environ Toxicol Chem 2023;42:495-511. © 2022 SETAC.
Collapse
Affiliation(s)
- Joseph S Meyer
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, USA
- Applied Limnology Professionals, Golden, Colorado, USA
| | | | - Shaun Bevers
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, USA
| | - James F Ranville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
5
|
Takeshita KM, Hayashi TI, Yokomizo H. What do we want to estimate from observational datasets? Choosing appropriate statistical analysis methods based on the chemical management phase. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1414-1422. [PMID: 34878734 PMCID: PMC9539851 DOI: 10.1002/ieam.4564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
The goals of observational dataset analysis vary with the management phase of environments threatened by anthropogenic chemicals. For example, identifying severely compromised sites is necessary to determine candidate sites in which to implement measures during early management phases. Among the most effective approaches is developing regression models with high predictive power for dependent variable values using the Akaike information criterion. However, this analytical approach may be theoretically inappropriate to obtain the necessary information in various chemical management phases, such as the intervention effect size of a chemical required in the late chemical management phase to evaluate the necessity of an effluent standard and its specific value. However, choosing appropriate statistical methods based on the data analysis objective in each chemical management phase has rarely been performed. This study provides an overview of the primary data analysis objectives in the early and late chemical management phases. For each objective, several suitable statistical analysis methods for observational datasets are detailed. In addition, the study presents examples of linear regression analysis procedures using an available dataset derived from field surveys conducted in Japanese rivers. Integr Environ Assess Manag 2022;18:1414-1422. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Kazutaka M. Takeshita
- Health and Environmental Risk DivisionNational Institute for Environmental StudiesIbarakiTsukubaJapan
- Japan Society for the Promotion of ScienceTokyoJapan
| | - Takehiko I. Hayashi
- Social Systems DivisionNational Institute for Environmental StudiesIbarakiTsukubaJapan
| | - Hiroyuki Yokomizo
- Health and Environmental Risk DivisionNational Institute for Environmental StudiesIbarakiTsukubaJapan
| |
Collapse
|
6
|
The Impacts of Different Anthropogenic Disturbances on Macroinvertebrate Community Structure and Functional Traits of Glacier-Fed Streams in the Tianshan Mountains. WATER 2022. [DOI: 10.3390/w14081298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Macroinvertebrates are sensitive to environmental disturbances, however, the effects of human activities on macroinvertebrate community structures and functional traits in glacier-fed streams are concerning. To elucidate the effects of horse, cattle and sheep grazing, hot spring scenic development, and historic iron ore mine development on macroinvertebrate communities, we conducted a study in three glacier-fed streams of the Tianshan Mountains in northwest China in April 2021. Our results showed that the species richness and density significantly decreased due to grazing (p < 0.05). There were more taxa with resilience traits such as “small size at maturity” in the grazing stream. The EPT richness and density affected by hot spring scenic development significantly decreased compared to the undisturbed point (p < 0.05). There was a significant increase in taxa with resistance traits such as “bi-or-multivoltine” in the hot spring stream. The stream affected by historic mine development is currently in the self-recovery stage following the closure of the mine ten years ago. Additionally, the species richness, EPT richness, and density at the mining site were significantly higher than the source site (p < 0.05), reflecting that the habitat fragmentation caused by previous mining activities prevented the upward dispersal of macroinvertebrates. The taxa in the mining stream were also characterized by higher resistance traits such as “abundant occurrence in drift”. These results were attributed to the impacts of human disturbance on habitat stability, habitat heterogeneity, water quality, and material cycling of stream ecosystems, indicating human disturbance on the efficiency of resource utilization and functional diversification. In addition, our results showed that functional indicators of macroinvertebrate communities are helpful for monitoring and evaluating habitat conditions.
Collapse
|