1
|
Fang R, Wang X, Han Z, Pang R, Wu D, Tai J, Ouyang C, Zhan M, Kim H, Xie B, Su Y. Dynamic responses of the inter-microbial synergism and thermodynamic conditions attribute to the inhibition-and-relief effects of chitosan towards anaerobic digestion. WATER RESEARCH 2024; 267:122569. [PMID: 39369510 DOI: 10.1016/j.watres.2024.122569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Wide commercial applications of chitosan in food preservation and green packaging fields inevitably lead to the universal existence in food, as well as the food waste (FW) processing system. However, whether and how the chitosan, a class of biomacromolecule substances, lead to dysfunction of anaerobic digestion (AD) process of FW remains less understood. Herein, chitosan exhibited an inhibition-and-relief effect with the AD process proceeding, and 80 mg/g-FW of chitosan decreased the net methane yield of FW by 24.7 %. The dynamic effect was ascribed to the varied fates of chitosan and the coupling biotic/abiotic influencing on multi-steps. Chitosan enhanced substrate flocs agglomeration, restraining the release of organics to liquid phase and reducing the binding affinity to enzymes. Among the various microorganisms involved in different steps, chitosan severely inhibited aceticlastic and hydrogenotrophic methanogen at the levels of microbial abundance, activity and function. Genome-centric metagenomics analyses revealed that transient chitosan decreased the coenzyme-based synergism of various microbial taxa involved in acetic acid generation/consumption metabolisms, including syntrophic propionate-oxidizing bacteria, syntrophic butyrate-oxidizing bacteria and methanogen. With the elimination of chitosan, these inhibitions were relieved, and the accumulated acetic acid and the more favorable thermodynamic conditions finally attributed to the recovery of AD performance.
Collapse
Affiliation(s)
- Ru Fang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueting Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhibang Han
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jun Tai
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Chuang Ouyang
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Min Zhan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; School of Civil, Environmental & Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyunook Kim
- Department of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Derakhshesh S, Abdollahzadeh Sharghi E, Bonakdarpour B. Enhancing the anaerobic sludge characteristics and inorganic impurities removal from synthesis wastewater through integration of electrocoagulation process with up-flow anaerobic sludge blanket reactor. Bioprocess Biosyst Eng 2024:10.1007/s00449-024-03104-2. [PMID: 39585372 DOI: 10.1007/s00449-024-03104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
The present study investigated effects of coupling electrocoagulation (EC) process with an anaerobic digestion bioreactor, namely up-flow anaerobic sludge blanket (UASB), for the synthetic wastewater treatment. The EC-UASB mode of operation consisted of one anode and two cathodes subjected to an intermittent electrical current (10 min ON/30 min OFF) with current density of 1.5 mA/cm2. In light of this integration, the concentration of mixed liquor suspended solids and mixed liquor volatile suspended solids within anaerobic granular sludge (AGS) increased by 20.0 ± 1.4% and 12.8 ± 0.8%, respectively. The results of sludge volume index, loosely and tightly bound extracellular polymeric substances and their constituents (protein and carbohydrate) revealed that through this integration the quality of AGS has been improved. Furthermore, results of scanning electron microscopy and Fourier-transform infrared spectroscopy showed alteration in the morphology and functional groups of AGS, respectively. Additionally, this combination has demonstrated promising results in terms of performance improvement by increasing the removal efficiency of total dissolved solids by 12.1 ± 0.3% and reducing the ionic pollution in treated wastewater. However, the integration of the EC system within the UASB resulted in energy consumption and operating cost of 1.33 kWh/m3 and 0.099 USD/m3, respectively.
Collapse
Affiliation(s)
- Saeed Derakhshesh
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | | - Babak Bonakdarpour
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
3
|
Liu J, Ding Y, Qiu W, Cheng Q, Xu C, Fan G, Song G, Xiao B. Enhancing anaerobic digestion of sulphate wastewater by adding nano-zero valent iron. ENVIRONMENTAL TECHNOLOGY 2023; 44:3988-3996. [PMID: 35546259 DOI: 10.1080/09593330.2022.2077137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
In this paper, the effects of nano-zero valent iron (nZVI) on anaerobic digestion of sulphate wastewater with different SO 4 2 - /COD ratios, including the COD removal rate, methane yield, intermediate products and the change of microbial community structure, were investigated. The results showed that nZVI could effectively enhance the treatment efficiency and methane yield. Compared with the control group without nZVI, the methane yield increased from 348.6833 to 1007.05 mL CH4/gCODremoval with 4 g nZVI loading at SO 4 2 - /COD = 0.1. nZVI could make electron flow from sulphate reduction to methane production, which increased methane yield even at high sulphate concentration. The microbial community analysis showed that adding nZVI could increase the abundance of acetoclastic methanogens, which accelerated hydrolysis acidification.
Collapse
Affiliation(s)
- Jiacheng Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Yongyu Ding
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Wen Qiu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Qunpeng Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Chenxi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Guangsen Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Bo Xiao
- School of Environmental Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
4
|
Farooq A, Ko CH, Park YK. Sewage sludge steam gasification over bimetallic mesoporous Al-MCM48 catalysts for efficient hydrogen generation. ENVIRONMENTAL RESEARCH 2023; 224:115553. [PMID: 36822530 DOI: 10.1016/j.envres.2023.115553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
This study explored the potential of steam gasification of sewage sludge over different temperatures (non-catalytic) and bimetallic (Ni-Fe and Ni-Co) mesoporous Al-MCM48 (3-5% Al basis). The higher temperature (800 °C) resulted in higher gas yield (36.74 wt%) and syngas (H2 and CO) selectivity (35.30 vol% and 11.66 vol%). Moreover, catalytic approach displayed that the Al-MCM48 was effective support because the incorporation of nickel increased the efficiency of gasification reactions compared to HZSM-5 (30). It mainly comes from the presence of mesopores and higher surface area (710.05 m2/g) providing more reaction sites and higher stability (less coke formation). Furthermore, the addition of promoters such as Co and Fe allowed the formation of Ni-Fe and Ni-Co alloys, resulting in even higher gas yield and overall H2 and CO selectivity due to the promotion of related reactions such as tar cracking, Boudouard, water gas shift and reforming and so on. Ni-Co alloy catalyst (10% Ni-5% Co/Al-MCM48) resulted in the highest H2 (∼52 vol%) selectivity due to the enhanced Ni dispersion and synergy effect between Ni and Co. Moreover, the application of bi-metal alloy on Al-MCM48 showed no coke formation and significantly reduced CO2 and hydrocarbon selectivity in the product gas. Overall, this study presented a promising solution for sewage sludge disposal in terms of clean H2 generation, reduction in CO2 and higher stability of metal based catalysts at the same time.
Collapse
Affiliation(s)
- Abid Farooq
- School of Environmental Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Chang Hyun Ko
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Y-K Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, South Korea.
| |
Collapse
|
5
|
Leca E, Zennaro B, Hamelin J, Carrère H, Sambusiti C. Use of additives to improve collective biogas plant performances: A comprehensive review. Biotechnol Adv 2023; 65:108129. [PMID: 36933869 DOI: 10.1016/j.biotechadv.2023.108129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Nowadays, anaerobic digestion (AD) is being increasingly encouraged to increase the production of biogas and thus of biomethane. Due to the high diversity among feedstocks used, the variability of operating parameters and the size of collective biogas plants, different incidents and limitations may occur (e.g., inhibitions, foaming, complex rheology). To improve performance and overcome these limitations, several additives can be used. This literature review aims to summarize the effects of the addition of various additives in co-digestion continuous or semi-continuous reactors to fit as much as possible with collective biogas plant challenges. The addition of (i) microbial strains or consortia, (ii) enzymes and (iii) inorganic additives (trace elements, carbon-based materials) in digester is analyzed and discussed. Several challenges associated with the use of additives for AD process at collective biogas plant scale requiring further research work are highlighted: elucidation of mechanisms, dosage and combination of additives, environmental assessment, economic feasibility, etc.
Collapse
Affiliation(s)
- Estelle Leca
- TotalEnergies, CSTJF, Centre Scientifique et Technique Jean Féger, Av. Larribau, 64000 Pau, France
| | - Bastien Zennaro
- INRAE Transfert, 60 Rue Nicolas Leblanc, 11100 Narbonne, France
| | - Jérôme Hamelin
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Hélène Carrère
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Cecilia Sambusiti
- TotalEnergies, CSTJF, Centre Scientifique et Technique Jean Féger, Av. Larribau, 64000 Pau, France.
| |
Collapse
|
6
|
Effect of Addition of Zero-Valent Iron (Fe) and Magnetite (Fe3O4) on Methane Yield and Microbial Consortium in Anaerobic Digestion of Food Wastewater. Processes (Basel) 2023. [DOI: 10.3390/pr11030759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Direct interspecies electron transfer (DIET), which does not involve mediation by electron carriers, is realized by the addition of conductive materials to an anaerobic digester, which then activates syntrophism between acetogenic and methanogenic microorganisms. This study aimed to investigate the effect of the addition of two conductive materials, zero-valent iron (ZVI) and magnetite, on the methane production and microbial consortium via DIET in the anaerobic digestion of food wastewater. The operation of a batch reactor for food wastewater without the addition of the conductive materials yielded a biochemical methane potential (Bu), maximum methane production rate (Rm), and lag phase time (λ) of 0.380 Nm3 kg−1-VSadded, 15.73 mL day−1, and 0.541 days, respectively. Upon the addition of 1.5% ZVI, Bu and Rm increased significantly to 0.434 Nm3 kg−1-VSadded and 19.63 mL day−1, respectively, and λ was shortened to 0.065 days. Simultaneously, Methanomicrobiales increased from 26.60% to 46.90% and Methanosarcinales decreased from 14.20% to 1.50% as the ZVI input increased from 0% to 1.50%. Magnetite, at an input concentration of 1.00%, significantly increased the Bu and Rm to 0.431 Nm3 kg−1-VSadded and 18.44 mL day−1, respectively. However, although magnetite improves the efficiency of methanogenesis via DIET, the effect thereof on the methanogen community remains unclear.
Collapse
|
7
|
Barrena R, Vargas-García MDC, Catacora-Padilla P, Gea T, Abo Markeb A, Moral-Vico J, Sánchez A, Font X, Aspray TJ. Magnetite-based nanoparticles and nanocomposites for recovery of overloaded anaerobic digesters. BIORESOURCE TECHNOLOGY 2023; 372:128632. [PMID: 36657586 DOI: 10.1016/j.biortech.2023.128632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The effect of magnetite nanoparticles and nanocomposites (magnetite nanoparticles impregnated into graphene oxide) supplement on the recovery of overloaded laboratory batch anaerobic reactors was assessed using two types of starting inoculum: anaerobic granular sludge (GS) and flocculent sludge (FS). Both nanomaterials recovered methane production at a dose of 0.27 g/L within 40 days in GS. Four doses of magnetite nanoparticles from 0.075 to 1 g/L recovered the process in FS systems between 30 and 50 days relaying on the dose. The presence of nanomaterials helped to reverse the effect of volatile fatty acids inhibition and enabled microbial communities to recover but also favoured the development of certain microorganisms over others. In GS reactors, the methanogenic population changed from being mostly acetoclastic (Methanothrix soehngenii) to being dominated by hydrogenotrophic species (Methanobacterium beijingense). Nanomaterial amendment may serve as a preventative measure or provide an effective remedial solution for system recovery following overloading.
Collapse
Affiliation(s)
- Raquel Barrena
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| | - María Del Carmen Vargas-García
- Department of Biology and Geology, CITE II-B Universidad de Almería CEIMAR Marine Campus of International Excellence, 04120 Almería, Spain
| | - Paula Catacora-Padilla
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Teresa Gea
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Ahmad Abo Markeb
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Javier Moral-Vico
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Antoni Sánchez
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Xavier Font
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Thomas J Aspray
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK; Solidsense Ltd, Bearsden, East Dunbartonshire G61 3BA, Scotland, UK
| |
Collapse
|
8
|
Xu H, Zhang L, Yao C, Yang B, Zhou Y. Synergistic effect of extracellular polymeric substances and carbon layer on electron utilization of Fe@C during anaerobic treatment of refractory wastewater. WATER RESEARCH 2023; 231:119609. [PMID: 36669307 DOI: 10.1016/j.watres.2023.119609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Nano zero-valent iron (NZVI) has been widely used to improve refractory wastewater treatment. However, the rapid dissolution of NZVI causes a waste of resources and an unstable bioaugmentation. Herein, to verify the essential role of slow release of NZVI on biological systems, a core-shell structured Fe@C composite was developed to demonstrate the long-term feasibility of Fe@C for enhancing azo dye biodegradation in comparison to a mixture of NZVI and carbon powder (Fe+C). The 150 days of long-term reactor operation showed that, although both Fe@C and Fe+C enhanced azo dye degradation, the former achieved a better performance than the latter. The strengthening effect of Fe@C was also more durable and stable than Fe+C. It may be due to the fact that the carbon layer of Fe@C could interact with extracellular polymeric substances (EPS) through physical adsorption and chemical bonding to form a stable buffer to regulate NZVI dissolution. The buffer layer could not only regulate the attack of H+ on NZVI to reduce its dissolution rate but also complex released Fe2+ and neutralize OH- to alleviate the passivation layer formed on the NZVI surface. Moreover, microbial community analysis indicated that both Fe@C and Fe+C increased the abundance of fermentative bacteria (e.g., Bacteroidetes_vadinHA17, Propionicicella) and methanogens (e.g., Methanobacterium), but only Fe@C promoted the growth of azo dye degraders (e.g., Clostridium, Geobacter). Metatranscriptomic analysis further revealed that only Fe@C could substantially stimulate the expression of azoreductase and redox mediator (e.g., riboflavin, ubiquinone) biosynthesis involved in the extracellular degradation of azo dye. This work provides novel insights into the bioaugmentation of Fe@C for refractory wastewater treatment.
Collapse
Affiliation(s)
- Hui Xu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Liang Zhang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Chunhong Yao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Bo Yang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
9
|
Hoffmann N, Fincheira P, Tortella G, Rubilar O. The role of iron nanoparticles on anaerobic digestion: mechanisms, limitations, and perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82619-82631. [PMID: 36219292 DOI: 10.1007/s11356-022-23302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion (AD) is the most widely used technology for organic matter treatment. However, multiple types of research have reported on improving the process because different operation inhibition factors and limitations affect the performance of AD process. Owing to the increasing use of iron-nanoparticles (Fe-NP) on AD, this review addresses the knowledge gaps and summarizes the finding from academic articles based on (i) the AD upgrading operations: limitations and upgrade techniques, (ii) Fe-NPs mechanisms on AD, (iii) Fe-NP effect on microbial communities associated to AD systems, and (iv) perspectives. The selected topics give the Fe-NP positive effects on the AD methane-production process in terms of gas production, effluent quality, and process optimization. The main results of this work indicate that (i) Fe-NP addition can be adapted among different feedstocks and complement other pretreatments, (ii) Fe-NP physicochemical characteristics enhance biogas production via direct interspecies electron transfer (DIET) mechanisms, and Fe-ion release due to their structure and their conductivity capability, and (iii) syntrophic bacteria and acetoclastic methanogens have been reported as the communities that better uptake Fe-NPs on their metabolisms. Finally, our research perspectives and gaps will be discussed to contribute to our knowledge of using Fe-NPs on AD systems.
Collapse
Affiliation(s)
- Nicolás Hoffmann
- Biotechnological Research Center Applied to the Environment (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Paola Fincheira
- Biotechnological Research Center Applied to the Environment (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile
| | - Gonzalo Tortella
- Biotechnological Research Center Applied to the Environment (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile
| | - Olga Rubilar
- Biotechnological Research Center Applied to the Environment (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile.
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile.
| |
Collapse
|
10
|
Li Y, Li X, Wang P, Su Y, Xie B. Size-dependent effects of polystyrene microplastics on anaerobic digestion performance of food waste: Focusing on oxidative stress, microbial community, key metabolic functions. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129493. [PMID: 35803187 DOI: 10.1016/j.jhazmat.2022.129493] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Polystyrene (PS) microplastics (MPs) are widely existed in food waste (FW) due to the usage of plastic food-packaging. However, the effects and mechanisms of PS MPs with different sizes on anaerobic digestion (AD) performance of FW have not been comprehensively studied yet. Herein, the impacts of different PS MPs sizes (1 mm, 100 µm and 1 µm) with 20, 200 particles/g-TS were investigated. Results showed that 20 particles/g-TS PS MPs decreased cumulative methane production by 1.46-18.11 %, while the higher levels (200 particles/g-TS) significantly inhibited by 9.14-33.08 % (p < 0.05) compared with control group. The inhibiting effects were enhanced as particle size smaller. Physicochemical analysis indicated that MPs prolonged organic matter hydrolysis, weakened the volatile fatty acids metabolism and inhibited methanogenesis-related microorganisms (Synergistetes, Proteiniphilum and Methanosarcina). Small-sized MPs could induce more reactive oxygen species causing cell toxicity and suppressed key enzymes (α-glucoside, protease, acetate kinases and F420) activities, thereby restraining methane production. The analyses of acetyl-CoA synthase and methyl-coenzyme M reductase functional genes illustrated that small-sized MPs negatively affected acetoclastic methanogenesis pathways. Overall, these results provide new insights into the size-dependent effects on AD performance induced by PS MPs.
Collapse
Affiliation(s)
- Ye Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
11
|
Derakhshesh S, Abdollahzadeh Sharghi E, Bonakdarpour B, Khoshnevisan B. Integrating electrocoagulation process with up-flow anaerobic sludge blanket for in-situ biomethanation and performance improvement. BIORESOURCE TECHNOLOGY 2022; 360:127536. [PMID: 35772719 DOI: 10.1016/j.biortech.2022.127536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
In this study, the integration of the electrocoagulation (EC) process with anaerobic digestion as a novel in-situ biomethanation approach was considered for the first time. As a result of this integration (iron electrodes, current density of 1.5 mA/cm2 and an exposure mode of 10-min-ON/ 30-min-OFF), the carbon dioxide content of biogas reached below 2%. Also, the methane production rate improved by 18.0 ± 0.4%, whereas the removal efficiencies of chemical oxygen demand, turbidity, phosphate, and sulfate increased by 12.0 ± 1.5%, 30.7 ± 1.7%, > 99%, and 75.7%, respectively. Anaerobic granular sludge characteristics were also improved. Moreover, the EC process stimulated growth and quantity of functional microorganisms, especially Acinetobacter in bacterial and Methanobacterium in archaeal community. Methane concentration, however decreased due to possible excess hydrogen production. The application of the biogas as bio-hythane, and the optimization of the hybrid bioreactor to decrease hydrogen production, are possible avenues for further research.
Collapse
Affiliation(s)
- Saeed Derakhshesh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Babak Bonakdarpour
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Benyamin Khoshnevisan
- Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
12
|
Abstract
In recent years, the number of articles reporting the addition of nanomaterials to enhance the process of anaerobic digestion has exponentially increased. The benefits of this addition can be observed from different aspects: an increase in biogas production, enrichment of methane in biogas, elimination of foaming problems, a more stable and robust operation, absence of inhibition problems, etc. In the literature, one of the current focuses of research on this topic is the mechanism responsible for this enhancement. In this sense, several hypotheses have been formulated, with the effect on the redox potential caused by nanoparticles probably being the most accepted, although supplementation with trace materials coming from nanomaterials and the changes in microbial populations have been also highlighted. The types of nanomaterials tested for the improvement of anaerobic digestion is today very diverse, although metallic and, especially, iron-based nanoparticles, are the most frequently used. In this paper, the abovementioned aspects are systematically reviewed. Another challenge that is treated is the lack of works reported in the continuous mode of operation, which hampers the commercial use of nanoparticles in full-scale anaerobic digesters.
Collapse
|
13
|
Comparative Toxicity Assessment of Eco-Friendly Synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in Plants and Aquatic Model Organisms. MINERALS 2022. [DOI: 10.3390/min12040451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aimed to evaluate the toxicity of superparamagnetic iron oxide nanoparticles (SPIONs) synthesized by biogenic (BS) and chemical (CH) routes. The nanoparticles were characterized by X-ray diffraction (XRD), X-ray spectroscopy (XPS), atomic force microscopy (AFM), vibrating-sample magnetometry (VSM-SQUID), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The toxicity of SPIONs was evaluated using Artemia salina as model aquatic organisms and Raphanus sativus and Lactuca sativa as model plants to evaluate their phytotoxicity. The results obtained from XRD, XPS, and AFM confirmed the formation of spherical nanoparticles of 41.9 ± 1.00 nm (BS route) and 19.8 ± 0.47 nm (CH route). VSM-SQUID demonstrated the superparamagnetic behavior of both nanoparticles, and FT-IR provided evidence of the differences in the surface of SPIONs, suggesting the presence of phenolic compounds on the surface of BS-SPIONs. For the assays with Artemia salina, the results demonstrated (i) nonsignificant differences of BS-SPIONs in mortality rates, and (ii) significant toxicity (p < 0.05) was observed for CH-SPIONs at 300 and 400 mg L−1. The Raphanus sativa plant assay tests showed (i) BS-SPIONs and CH-SPIONs improved the root elongation of seedlings. However, BS-SPIONs demonstrated significant activity on root seedling elongation (p < 0.05) in the range of 300 mg L−1 to 600 mg L−1. To the best of our knowledge, this is the first report to compare the toxicity of chemically and biogenically synthesized SPIONs. In conclusion, although BS-SPIONs and CH-SPIONs present similar structures, their characteristics of magnetic saturation and surface structure are nonidentical, providing differences in their biological activity.
Collapse
|
14
|
Kumar A, Verma LM, Sharma S, Singh N. Overview on agricultural potentials of biogas slurry (BGS): applications, challenges, and solutions. BIOMASS CONVERSION AND BIOREFINERY 2022; 13:1-41. [PMID: 35004124 PMCID: PMC8725965 DOI: 10.1007/s13399-021-02215-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 06/01/2023]
Abstract
The residual slurry obtained from the anaerobic digestion (AD) of biogas feed substrates such as livestock dung is known as BGS. BGS is a rich source of nutrients and bioactive compounds having an important role in establishing diverse microbial communities, accelerating nutrient use efficiency, and promoting overall soil and plant health management. However, challenges such as lower C/N transformation rates, ammonia volatilization, high pH, and bulkiness limit their extensive applications. Here we review the strategies of BGS valorization through microbial and organomineral amendments. Such cohesive approaches can serve dual purposes viz. green organic inputs for sustainable agriculture practices and value addition of biomass waste. The literature survey has been conducted to identify the knowledge gaps and critically analyze the latest technological interventions to upgrade the BGS for potential applications in agriculture fields. The major points are as follows: (1) Bio/nanotechnology-inspired approaches could serve as a constructive platform for integrating BGS with other organic materials to exploit microbial diversity dynamics through multi-substrate interactions. (2) Advancements in next-generation sequencing (NGS) pave an ideal pathway to study the complex microflora and translate the potential information into bioprospecting of BGS to ameliorate existing bio-fertilizer formulations. (3) Nanoparticles (NPs) have the potential to establish a link between syntrophic bacteria and methanogens through direct interspecies electron transfer and thereby contribute towards improved efficiency of AD. (4) Developments in techniques of nutrient recovery from the BGS facilities' negative GHGs emissions and energy-efficient models for nitrogen removal. (5) Possibilities of formulating low-cost substrates for mass-multiplication of beneficial microbes, bioprospecting of such microbes to produce bioactive compounds of anti-phytopathogenic activities, and developing BGS-inspired biofertilizer formulations integrating NPs, microbial inoculants, and deoiled seed cakes have been examined.
Collapse
Affiliation(s)
- Ajay Kumar
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
- Department of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, UP 201012 India
| | - Lahur Mani Verma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
| | - Satyawati Sharma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
| | - Neetu Singh
- Department of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, UP 201012 India
| |
Collapse
|
15
|
Yan H, Li J, Meng J, Li J, Jha AK, Zhang Y, Wang X, Fan Y. Insight into the effect of N-acyl-homoserine lactones-mediated quorum sensing on the microbial social behaviors in a UASB with the regulation of alkalinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149413. [PMID: 34384968 DOI: 10.1016/j.scitotenv.2021.149413] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
N-acyl-homoserine lactones (AHLs)-mediated quorum sensing (QS) has been reported as the inducers of microbial social behaviors in anaerobic digestion (AD) processes. However, it is not well understood that how to intentionally change the secretion of AHLs by conventional engineering control such as the regulation of alkalinity. The present research investigated the effect of endogenous AHLs-mediated QS on the microbial social behaviors in an upflow anaerobic sludge bed (UASB) reactor with the influent alkalinity decreased from 2800 mg/L to 700 mg/L by stages. The results showed that the alkalinity of 1800-2200 mg/L was more favorable for the AD in the UASB, with an excellent specific methanogenic activity (SMA) and better microbial aggregation statuses. The alkalinity out of the favorable alkalinity range would decrease the SMA with the accumulation of VFAs in the reactor. It was found that signal molecule C4-HSL was always the dominant AHL in the UASB along with the decrease of influent alkalinity, while 3-oxo-C6-HSL, 3-oxo-C12-HSL and C14-HSL were remarkably improved only within the favorable range of alkalinity. Pearson correlation concluded that the dominant signal molecule C4-HSL was the specific AHL in enhancing the synthesis of extracellular polysaccharide and the metabolism of acidogens. The co-occurrence network revealed that Mesotoga, Sulfurospirillum and Methanoregula were the key hubs in the microbial interaction network, and the AHLs-mediated QS indirectly facilitated the methanogenic metabolism. The present work provided a revealing insight into the effect of AHLs-mediated QS on the microbial social behaviors in AD process with the regulation of alkalinity.
Collapse
Affiliation(s)
- Han Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiuling Li
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Avinash Kumar Jha
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yafei Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yiyang Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
16
|
Hassanein A, Naresh Kumar A, Lansing S. Impact of electro-conductive nanoparticles additives on anaerobic digestion performance - A review. BIORESOURCE TECHNOLOGY 2021; 342:126023. [PMID: 34852449 DOI: 10.1016/j.biortech.2021.126023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) is a biochemical process that converts waste organic matter into energy-rich biogas with methane as the main component. Addition of electric electro-conductive, such as that nanoparticles (NP), has been shown to improve biogas generation. Interspecies electron transfer and direct interspecies electron transfer (DIET) using conductive materials is one of the mechanisms responsible for observed increases in CH4. This article discusses the effect of the type and size of electro-conductive NPs on improving microbial degradation within AD systems, as well as the effect of electro-conductive NPs on microbial community shifts and syntrophic metabolism. Limitations and future perspectives of using NPs in an AD system is also discussed.
Collapse
Affiliation(s)
- Amro Hassanein
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Stephanie Lansing
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
17
|
Casals E, Barrena R, Gonzalez E, Font X, Sánchez A, Puntes V. Historical Perspective of the Addition of Magnetic Nanoparticles Into Anaerobic Digesters (2014-2021). FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.745610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The addition of magnetic nanoparticles to batch anaerobic digestion was first reported in 2014. Afterwards, the number of works dealing with this subject has been increasing year by year. The discovery of the enhancement of anaerobic digestion by adding iron-based nanoparticles has created a multidisciplinary emerging research field. As a consequence, in the last years, great efforts have been made to understand the enhancement mechanisms by which magnetic nanoparticles (NPs) addition enhances the anaerobic digestion process of numerous organic wastes. Some hypotheses point to the dissolution of iron as essential iron for anaerobic digestion development, and the state of oxidation of iron NPs that can reduce organic matter to methane. The evolution and trends of this novel topic are discussed in this manuscript. Perspectives on the needed works on this topic are also presented.
Collapse
|