1
|
Liu Y, Wu Y, Zhao Y, Niu J, Wang Q, Bamanu B, Hussain A, Liu Y, Tong Y, Li YY. Multidimensional Insights into Organics Stress on Anammox systems: From a "Molecule-Cell-Ecology" Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39468881 DOI: 10.1021/acs.est.4c02781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is efficient and cost-effective for treating high-strength ammonia wastewater, but the organics in wastewater will affect its stability. To address this challenge, it is crucial to gain a deep understanding of the inhibitory effects and mechanisms of organics stress on anammox bacteria. The review provided a comprehensive classification of organics and evaluated their specific effects on the anammox system according to their respective characteristics. Based on the micro to macro perspective, the "molecule-cell-ecology" inhibitory mechanism of organics on anammox bacteria was proposed. The molecular observation systematically summarized the binding process and action sites of organics with anammox bacteria. At the cellular observation, the mechanisms of organics effects on extracellular polymeric substances, membranes, and anammoxosome of anammox bacteria were also expounded. At the ecological observation, the dynamic changes in coexisting populations and their role in organics transformation were further discussed. Further revelations on response mechanisms and inhibition mitigation strategies were proposed to broaden the applicability of anammox systems for organic wastewater. This review offered a multidimensional understanding of the organics inhibitory mechanism of anammox bacteria and provided a theoretical foundation for anammox systems.
Collapse
Affiliation(s)
- Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Arif Hussain
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
2
|
Guo Y, Gu S, Tanentzap AJ, Wang P, Li Q, Wu K, He P, Liu X, Yu J, Qiu D, Wu J, Zhang Y, Bai G, Lee SMY, Wu Z, Zhou Q. Submerged macrophyte restoration enhanced microbial carbon utilization in shallow lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173357. [PMID: 38772483 DOI: 10.1016/j.scitotenv.2024.173357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Submerged macrophytes are integral to the functioning of shallow lakes through their interaction with microorganisms. However, we have a limited understanding of how microbial communities in shallow lakes respond when macrophytes are restored after being historically extirpated. Here, we explored the interactions between prokaryotic communities and carbon utilization in two lakes where submerged macrophytes were restored. We found restoration reduced total carbon in sediment by 8.9 %-27.9 % and total organic carbon by 16.7 %-36.9 % relative to control treatment, but had no effects on carbon content in the overlying water. Sediment microbial communities were more sensitive to restoration than planktonic microbes and showed enhanced utilization of simple carbon substrates, such as Tween 40, after restoration. The increase in carbon utilization was attributed to declines in the relative abundance of some genera, such as Saccharicenans and Desertimonas, which were found weakly associated with the utilization of different carbon substrates. These genera likely competed with microbes with high carbon utilization in restored areas, such as Lubomirskia. Our findings highlight how restoring submerged macrophytes can enhance microbial carbon utilization and provide guidance to improve the carbon sequestration capacity of restored shallow lakes.
Collapse
Affiliation(s)
- Yao Guo
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Songsong Gu
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 10085, China
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Pei Wang
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qianzheng Li
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kaixuan Wu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Peng He
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiangfen Liu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junqi Yu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dongru Qiu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junmei Wu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi Zhang
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoliang Bai
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Simon Ming-Yuen Lee
- Department of Food Science and Nutrient, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhenbin Wu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Qiaohong Zhou
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
3
|
Hu J, Qian F, Li X, Tang Y, Zhu C, Fu J, Wang J. Rapid start-up and operational characteristics of partial denitrification coupled with anammox driven by innovative strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172442. [PMID: 38614336 DOI: 10.1016/j.scitotenv.2024.172442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The Partial Denitrification-Anammox (PD/A) process established a low-consumption, efficient and sustainable pathway for complete nitrogen removal, which is of great interest to the industry. Rapid initiation and stable operation of the PD/A systems were the main issues limiting its engineering application in wastewater nitrogen removal. A PD/A system was initiated in a continuous stirred-tank reactors (CSTRs) in the presence of low concentration of organic matter, and the effects of organic matter types and COD/NO3--N ratios on the performance of the PD/A system, and microbial community characteristics were explored. The results showed that low concentrations of organic matter could promote the rapid initiation of the Anammox process and then the strategy of gradually replacing NO2--N with NO3--N could successfully initiate the PD/A system at 70 days. The type of organic matter had a significant effect on the initiation of the Anammox and the establishment of the PD/A system. Compared to glucose, sodium acetate was more favorable for rapid start-up and the synergy among microorganisms, and organic matter was lower, with an optimal COD/NO3--N ratio of 3.0. Microorganisms differed in their sensitivity to environmental factors. The relative abundance of Planctomycetota and Proteobacteria in R2 was 51 %, with the presence of three typical anammox bacteria, Candidatus_Brocadia, Candidatus_Kuenenia, and Candidatus_Jettenia in the system. This study provides a new strategy for the rapid initiation and stable operation of the PD/A process.
Collapse
Affiliation(s)
- Juntong Hu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Feiyue Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215009, PR China
| | - Xingran Li
- Tianping College, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yuchao Tang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chen Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jie Fu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jianfang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215009, PR China; Tianping College, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
4
|
Chen J, Liu X, Lu T, Liu W, Zheng Z, Chen W, Yang C, Qin Y. The coupling of anammox with microalgae-bacteria symbiosis: Nitrogen removal performance and microbial community. WATER RESEARCH 2024; 252:121214. [PMID: 38301528 DOI: 10.1016/j.watres.2024.121214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
The partial nitrification-anammox process for ammonia nitrogen wastewater treatment requires mechanical aeration to provide oxygen, which is not conducive to energy saving. The microalgae-bacteria symbiotic system (MaBS) has the advantages of low carbon and energy saving in wastewater biological nitrogen removal. Therefore, this study combined the MaBS with an anammox process to provide oxygen, through the photosynthesis of microalgae instead of mechanical aeration. We investigated the nitrogen removal efficiency and long-term operation of a co-culture system comprising microalgae, nitrifying bacteria (NB), denitrifying bacteria (DnB), and anaerobic ammonium-oxidation bacteria (AnAOB) in a sequencing batch reactor without mechanical aeration. The experiment was divided into three steps: firstly, cultivating NB; then, adding three kinds of microalgae which were Chlorella sp., Anabaena sp., and Navicula sp. to the bioreactor to construct a microalgae-bacteria symbiotic system; finally, adding anammox sludge to construct the anammox and microalgae-bacteria symbiosis (Anammox-MaBS) system. The results demonstrated that nitrification, denitrification, and anammox processes were coupled successfully, and the maximum TN removal efficiency of the stable Anammox-MaBS system was 99.51 % when the concentration of the influent NH4+-N was 100 mg/L. The addition of microalgae in ammonia wastewater promoted the enrichment of DnB and AnAOB, which were Denitratisoma, Haliangium, unclassified_Rhodocyclaceae, and Candidatus_Brocadia. Furthermore, the unique biofilm structure could effectively alleviate the photoinhibition of light-sensitive bacteria, which may be the reason for the long-term adaptation of Candidatus_Brocadia to light conditions. This research can provide a low-cost solution to bacterial photoinhibition in the coexistence system of microalgae and bacteria without mechanical aeration, offering theoretical support for low-carbon and energy-efficient treatment of wastewater.
Collapse
Affiliation(s)
- Jiannv Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Xiangyin Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Tiansheng Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Wenxuan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Zhiwen Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Wenxi Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Chu Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Yujie Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Zhang Y, Zhang J, Yu D, Li J, Zhao X, Ma G, Zhi J, Dong G, Miao Y. Migration of microorganisms between nitrification-denitrification flocs, anammox biofilms and blank carriers during mainstream anammox start-up. BIORESOURCE TECHNOLOGY 2024; 393:130129. [PMID: 38040314 DOI: 10.1016/j.biortech.2023.130129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
To solve the shortage of inoculum, the feasibility of establishing simultaneous partial nitrification, anammox, and denitrification (SNAD) reactor through inoculating nitrification-denitrification sludge, anammox biofilm and blank carriers was investigated. Advanced nitrogen removal efficiency of 91.2 ± 3.6 % was achieved. Bacteria related to nitrogen removal and fermentation were enriched in anammox biofilm, blank carriers and flocs, and the abundance of dominant anaerobic ammonia oxidizing bacteria (AnAOB), Candidatus Brocadia, reached 3.4 %, 0.5 % and 0.3 %, respectively. Candidatus Competibacter and Calorithrix became the dominant denitrifying bacteria (DNB) and fermentative bacteria (FB), respectively. The SNAD system was successfully established, and new mature biofilms formed in blank carriers, which could provide inoculum for other anammox processes. Partial nitrification, partial denitrification and aerobic_chemoheterotrophy were existed and facilitated AnAOB enrichment. Microbial correlation networks revealed the cooperation between DNB, FB and AnAOB that promoted nitrogen removal. Overall, the SNAD process was started up through inoculating more accessible inoculum.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jianhua Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jiawen Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xinchao Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guocheng Ma
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jiaru Zhi
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guoqing Dong
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yuanyuan Miao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
6
|
Zhang J, Li X, Du R, Li X, Zhang Q, Peng Y. Rapid formation of denitrification granules for nitrite accumulation by increasing nitrogen loading rates and resistance to industrial wastewater. BIORESOURCE TECHNOLOGY 2024; 394:130238. [PMID: 38142908 DOI: 10.1016/j.biortech.2023.130238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The nitrite (NO2-) accumulation in partial denitrification (PD) offers the possibility of widespread application of anammox process. In this study, the rapid establishment of PD granular system was achieved by increasing nitrogen loading rates (NLR) from 0.9 to 4.8 kg N/(m3·d), with the nitrate-to-nitrite transforming ratio (NTR) increasing rapidly to 87.0 % within 18 days. Growth evidence indicated that the functional genus Thauera was significantly enriched (12.5 %→76.4 %), with nitrate (NO3-) reduction rates (SNO3) improving by 5.4 times from 13.0 to 70.7 mg N/(g VSS·h). Importantly, the rapid aggregation of PD biomass as granules ensured robustness and resistance of PD feeding with the electroplating tail wastewater (NO3--N of 103.0 ± 5.0 mg/L), obtaining stable NTR above 91.5 %. This study demonstrated the achievability of the fast development of PD granules and the adaptability and robustness of treating nitrate-containing industrial wastewater, which provided a promising method for efficient nitrogen transformation in industrial applications.
Collapse
Affiliation(s)
- Jingwen Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
7
|
Huang J, Wang X, Qi Z, Zhang M, Kang R, Liu C, Li D. Quantitative effect of adding percentages of anammox granules on the start-up process and microbial community analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119361. [PMID: 37913619 DOI: 10.1016/j.jenvman.2023.119361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process is challenging due to its long start-up duration and high demand for mature anammox seed sludge. However, adding a small amount of anammox sludge to the inoculum can be a reasonable solution. This study investigated the effect of adding percentage of anammox granules (0, 1, 2, 4, and 8%) in the seed sludge on the anammox start-up process. The anammox process was achieved in all five reactors after 55, 6, 5, 3 and 0 days. Increasing the adding percentage effectively shortened the duration of lag phase and cell lysis, but had little effect on the final nitrogen removal performance, except for 4% adding percentage. Families of Brocadiaceae, Burkholderiaceae, Ignavibacteriaceae, SJA-28, and Rhodocyclaceae were dominant, with a core microbiota of eight operational taxonomic unites (OTUs), and Candidatus Brocadia fulgida became the dominant anammox species. Seven synergistic members with anammox bacteria were identified by correlation network analysis. Major potential functional groups involved in C and N cycle were also observed by FAPROTAX. Together with the qPCR and sequencing results, it was suggested that more than 2% of adding percentages would result in a short lag phase, rapid growth rate in elevation stage, high final performances, and anammox bacteria abundance comparable to that in the anammox seed sludge. This crucial finding indicated the feasibility of economical and rapid start-up of the anammox process with a minimum amount of anammox seed sludge.
Collapse
Affiliation(s)
- Jialu Huang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Xiaolong Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Zhiqiang Qi
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Mengqian Zhang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Ruiqin Kang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
8
|
Sun Y, Cao J, Xu R, Zhang T, Luo J, Xue Z, Chen S, Wang S, Zhou H. Influence of C/N ratio and ammonia on nitrogen removal and N 2O emissions from one-stage partial denitrification coupled with anammox. CHEMOSPHERE 2023; 341:140035. [PMID: 37660784 DOI: 10.1016/j.chemosphere.2023.140035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
The development of low carbon treatment processes is an important issue worldwide. Partial denitrification coupled with anammox (PD/A) is a novel strategy to remove nitrogen and reduce N2O emissions. The influence of C/N ratio and NH4+ concentration on nitrogen removal and N2O emissions was investigated in batch reactors filled with PD/A coupled sludge. A C/N ratio of 2.1 was effective for nitrogen removal and N2O reduction; higher ammonia concentration might make anammox more active and indirectly reduce N2O emissions. Long-term operation further confirmed that a C/N ratio of 2.1 resulted in a minimum effluent N2O concentration (mean value of 0.94 μmol L-1); as the influent NH4+ concentration decreased to 50 mg L-1 (NH4+-N/NO3--N: 1), the nitrogen removal rate increased to 82.41%. Microbial analysis showed that anammox bacteria (Candidatus Jettenia and Ca. Brocadia) were enriched in the PD/A system and Ca. Brocadia gradually dominated the anammox community, with the relative abundance increasing from 1.69% to 18.44% between days 97 and 141. Finally, functional gene analysis indicated that the abundance of nirS/K and hao involved in partial denitrification and anammox, respectively, increased during long-term operation of the reactor; this change benefitted nitrogen metabolism in anammox, which could indirectly reduce N2O emissions.
Collapse
Affiliation(s)
- Yiwen Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Guohe Environmental Research Institute (Nanjing) Co, Ltd, Nanjing, 211599, China.
| | - Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Teng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Guohe Environmental Research Institute (Nanjing) Co, Ltd, Nanjing, 211599, China
| | - Zhaoxia Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Guohe Environmental Research Institute (Nanjing) Co, Ltd, Nanjing, 211599, China
| | - Shaofeng Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Shilong Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Hailun Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
9
|
Zhang J, Ma G, Bi X, Zhao X, Li J, Zhang Y, Gao Z, Li Y, Miao Y. Achieving advanced nitrogen removal and excess sludge treatment via single nitritation/anammox-fermentation combined system. BIORESOURCE TECHNOLOGY 2023; 387:129550. [PMID: 37495158 DOI: 10.1016/j.biortech.2023.129550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
The feasibility of treating wastewater and excess sludge via simultaneous nitritation, anammox, denitrification and fermentation (SNADF) was investigated in three parallel sequencing batch reactors (SBRs). SBR2 and SBR3 received exogenous nitrification-denitrification sludge and thermal hydrolysis sludge, respectively. Nitrogen removal efficiencies of 92.8 ± 5.9%, 94.6 ± 4.1%, 93.4 ± 4.8% were achieved in SBR1, SBR2, and SBR3, respectively (influent ammonium: 56.0-74.0 mg N/L), with low observed sludge yield of 0.02-0.15, -0.06-0.11, -0.17-0.05 kg mixed liquor suspended solids (MLSS)/kg chemical oxygen demand (COD). Anammox bacterial abundances increased from 3.6 × 109 ± 2.8 × 108 to 8.1 × 109 ± 2.3 × 108, 1.5 × 1010 ± 1.1 × 108, and 1.4 × 1010 ± 2.9 × 108 copies/L in SBR1-SBR3, respectively. The abundances of Nitrosomonas, genes (amo, hao) for partial nitrification, and narGHI genes (nitrate → nitrite) in dominant partial denitrifying bacteria (Candidatus Competibacter) were higher in SBR2 and SBR3 than that in SBR1. These results suggested that adding excess sludge promoted sludge reduction, nitrite production and anammox bacterial enrichment. The SNADF system could treat excess sludge, meanwhile, achieve advanced nitrogen removal.
Collapse
Affiliation(s)
- Jianhua Zhang
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, Qingdao University of Technology, Qingdao 266520, PR China
| | - Guocheng Ma
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xuejun Bi
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, Qingdao University of Technology, Qingdao 266520, PR China
| | - Xinchao Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jiawen Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yu Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zhongxiu Gao
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, Qingdao University of Technology, Qingdao 266520, PR China
| | - Yitong Li
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, Qingdao University of Technology, Qingdao 266520, PR China
| | - Yuanyuan Miao
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, Qingdao University of Technology, Qingdao 266520, PR China; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
10
|
Kim J, Hwangbo M, Shih CH, Chu KH. Advances and perspectives of using stable isotope probing (SIP)-based technologies in contaminant biodegradation. WATER RESEARCH X 2023; 20:100187. [PMID: 37671037 PMCID: PMC10477051 DOI: 10.1016/j.wroa.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 09/07/2023]
Abstract
Stable isotope probing (SIP) is a powerful tool to study microbial community structure and function in both nature and engineered environments. Coupling with advanced genomics and other techniques, SIP studies have generated substantial information to allow researchers to draw a clearer picture of what is occurring in complex microbial ecosystems. This review provides an overview of the advances of SIP-based technologies over time, summarizes the status of SIP applications to contaminant biodegradation, provides critical perspectives on ecological interactions within the community, and important factors (controllable and non-controllable) to be considered in SIP experimental designs and data interpretation. Current trend and perspectives of adapting SIP techniques for environmental applications are also discussed.
Collapse
Affiliation(s)
- Jinha Kim
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
- School of Earth, Environmental and Marine Sciences, The University of Texas – Rio Grande Valley, Brownsville, TX, USA
| | - Chih-Hsuan Shih
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| |
Collapse
|
11
|
Hong X, Niu B, Sun H, Zhou X. Insight into response characteristics and inhibition mechanisms of anammox granular sludge to polyethylene terephthalate microplastics exposure. BIORESOURCE TECHNOLOGY 2023; 385:129355. [PMID: 37385559 DOI: 10.1016/j.biortech.2023.129355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
Currently, in-depth understanding of response characteristics and mechanisms of anammox process under microplastics (MPs) stress remains quite limited. This study investigated the influence of 0.1-1.0 g/L polyethylene terephthalate (PET) on anammox granular sludge (AnGS). Compared with the control, 0.1-0.2 g/L PET did not significantly affect the anammox efficiency, while the anammox activity decreased by 16.2% at 1.0 g/L PET. Integrity coefficient and transmission electron microscopy analysis demonstrated that the strength and structural stability of the AnGS became weaken following exposure to 1.0 g/L PET. With the PET increasing, the abundance of anammox genera and genes related to energy metabolism and cofactors and vitamins metabolism decreased. The reactive oxygen species generated in the interaction between microbial cells and PET resulting in cellular oxidative stress was responsible for inhibiting anammox. These findings give novel insights into the anammox behavior in biological nitrogen removal systems treating PET-loaded nitrogenous wastewater.
Collapse
Affiliation(s)
- Xiantao Hong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| | - Binxin Niu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| | - Hongwei Sun
- School of Environmental and Material Engineering, Yantai University, Yantan 264005, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China.
| |
Collapse
|
12
|
Chen X, Liu L, Bi Y, Meng F, Wang D, Qiu C, Yu J, Wang S. A review of anammox metabolic response to environmental factors: Characteristics and mechanisms. ENVIRONMENTAL RESEARCH 2023; 223:115464. [PMID: 36773633 DOI: 10.1016/j.envres.2023.115464] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a promising low carbon and economic biological nitrogen removal technology. Considering the anammox technology has been easily restricted by environmental factors in practical engineering applications, therefore, it is necessary to understand the metabolic response characteristics of anammox bacteria to different environmental factors, and then guide the application of the anammox process. This review presented the latest advances of the research progress of the effects of different environmental factors on the metabolic pathway of anammox bacteria. The effects as well as mechanisms of conventional environmental factors and emerging pollutants on the anammox metabolic processes were summarized. Also, the role of quorum sensing (QS) mediating the bacteria growth, gene expression and other metabolic process in the anammox system were also reviewed. Finally, interaction and cross-feeding mechanisms of microbial communities in the anammox system were discussed. This review systematically summarized the variations of metabolic mechanism response to the external environment and cross-feeding interactions in the anammox process, which would provide an in-depth understanding for the anammox metabolic process and a comprehensive guidance for future anammox-related metabolic studies and engineering applications.
Collapse
Affiliation(s)
- Xiaoying Chen
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China.
| |
Collapse
|
13
|
Zhang Z, Sun J, Gong X, Wang C, Wang H. Novel synergistic metabolic processes for phenanthrene biodegradation by a nitrate-reducing phenanthrene-degrading culture and an anammox culture. WATER RESEARCH 2023; 230:119593. [PMID: 36642028 DOI: 10.1016/j.watres.2023.119593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The synergistic metabolism by anammox cultures and nitrate-reducers for anaerobic PAH biodegradation is largely unknown, including whether anammox culture and which kind of anammox bacterium can perform nitrogen metabolism in the anaerobic PAH biodegradation processes, the inhibitory effect of PAH on anammox activity and nitrite on PAH-degrading nitrate-reducers activity, and the synergistic metabolic processes. Herein, an anammox culture that can eliminate nitrite accumulation and decrease inorganic carbon emission during anaerobic phenanthrene (a model of PAH in this study) biodegradation, the synergistic mechanism for phenanthrene biodegradation by a nitrate-reducer and such anammox culture, and the inhibition effect of phenanthrene on such anammox culture and nitrite on a phenanthrene-degrading nitrate-reducer were newly discussed. The results showed that nitrite largely accumulated during anaerobic phenanthrene biodegradation (nitrate accumulation is a common phenomenon for the biodegradation of refractory matter, including PAHs, by nitrate-reducers) by a nitrate-reducer, PheN2, which mineralizes phenanthrene to inorganic carbon, and nitrite was verified as an inhibiting factor for further biodegradation. Anaerobic phenanthrene biodegradation rates and nitrite concentrations (0-7 mM) appeared to have a negative linear correlation. The anammox culture that mainly contained Candidatus Kuenenia was newly found to efficiently reduce nitrite accumulation and inorganic carbon emissions and significantly promote biodegradation efficiency by ∼1.94-fold. Our results showed that phenanthrene absorbed in and on anammox cells had a more direct relationship with the inhibitory effect on anammox activity than phenanthrene in the environment, and 15.2 mg/gVSS phenanthrene absorbed in and on the cells (4 mM concentration in the culture) showed nearly complete inhibition of anammox culture in this study. In addition, few (less than 2% abundance) anammox bacteria were found to be enough for the removal of nitrite produced from anaerobic phenanthrene biodegradation. In an ideal world, co-pollutants of ammonia, nitrate, phenanthrene, and nitrite could be converted to nitrogen gas and biomass by the synergistic metabolism of anammox cultures and nitrate reducers. Our study reveals a new synergistic process that may exist in our environments for PAH elimination by an anammox culture and a nitrate-reducer, which provides a new strategy for the bioremediation of PAH-polluted anoxic zones.
Collapse
Affiliation(s)
- Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiao Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chongyang Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Zhang Q, Zhang J, Zhao L, Liu W, Chen L, Cai T, Ji XM. Microbial dynamics reveal the adaptation strategies of ecological niche in distinct anammox consortia under mainstream conditions. ENVIRONMENTAL RESEARCH 2022; 215:114318. [PMID: 36116498 DOI: 10.1016/j.envres.2022.114318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The feasibility of anammox-based processes for nitrogen-contained wastewater treatment has been verified with different anammox bacteria, however, the ecological niche of anammox bacteria under mainstream conditions is still elusive. In this study, six sludge samples collected from different habitats were utilized to culture anammox bacteria under mainstream conditions, and two distinct anammox genera (Ca. Kuenenia and Ca. Brocadia) with a relative abundance of 6.31% (C1) and 3.09% (C3), respectively, were identified. Notably, the microbial dynamics revealed that anammox bacteria (AMX), ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), Chloroflexi bacteria (CFX), and heterotrophic denitrification bacteria (HDB) were the core members in anammox consortia. However, Ca. Kuenenia and Ca. Brocadia occupied different ecological niches in anammox consortia. The dissolved oxygen and microbial structures of the anammox-continuous stirred tank reactor systems were the main factors to affect their niche differentiation. Meanwhile, comammox might exist in the systems and occupy the ecological niche of AOB in nitrogen cycling. The network analysis suggested that Ignavibacterium could be the associated bacteria in Ca. Kuenenia-dominated consortia, while Ca. Nitrotoga was that in the Ca. Brocadia-dominated consortia. Our findings reveal a valuable reference for the observation of distinct anammox genera under mainstream conditions, which provides theoretical guidance for the engineering application of mainstream anammox-based processes.
Collapse
Affiliation(s)
- Qi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaqi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Leizhen Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Liwei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Yin Y, Zhang Z, Yang K, Gu P, Liu S, Jia Y, Zhang Z, Wang T, Yin J, Miao H. Deeper insight into the effect of salinity on the relationship of enzymatic activity, microbial community and key metabolic pathway during the anaerobic digestion of high strength organic wastewater. BIORESOURCE TECHNOLOGY 2022; 363:127978. [PMID: 36126846 DOI: 10.1016/j.biortech.2022.127978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The threshold salt concentration to inhibit the anaerobic digestion (AD) has been intensively investigated, but its insight mechanism is not fully revealed. Therefore, this study systematically investigated the effect of salinity on acidogenesis and methanogenesis and its mechanism. Results showed that low salinity level (i.e. 0.6%) had stimulatory effect on volatile fatty acids (VFA) and methane production, while significant inhibition was observed with further increased salinity. Moreover, high salinity limited the butyric acid degradation at acidogenesis process. The decreases of enzymes (AK and PTA) activity and functional genes (ackA, pta and ACOX) expression that related to β-oxidation explained the butyric acid accumulation at high salinity levels. Microbial community analysis revealed high salinity levels significantly inhibited the proliferation of Syntrophomonas sp., which are known to be associated with butyric acid degradation. Similarly, the relative abundance of acetoclastic methanogen (Methanothrix sp.) and methylotrophic methanogen (Methanolinea sp.) significantly decreased at salinity condition.
Collapse
Affiliation(s)
- Yijang Yin
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zengshuai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Kunlun Yang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Shiguang Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yifan Jia
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zhaochang Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Tao Wang
- School of Environment Engineering, Wuxi University, Wuxi 214105, PR China
| | - Jianqi Yin
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Hengfeng Miao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China; Water Treatment Technology and Material Innovation Center, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
16
|
Venturin B, Rodrigues HC, Bonassa G, Hollas CE, Bolsan AC, Antes FG, De Prá MC, Fongaro G, Treichel H, Kunz A. Key enzymes involved in anammox-based processes for wastewater treatment: An applied overview. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10780. [PMID: 36058650 DOI: 10.1002/wer.10780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has attracted significant attention as an economic, robustness, and sustainable method for the treatment of nitrogen (N)-rich wastewater. Anammox bacteria (AnAOB) coexist with other microorganisms, and particularly with ammonia-oxidizing bacteria (AOB) and/or heterotrophic bacteria (HB), in symbiosis in favor of the substrate requirement (ammonium and nitrite) of the AnAOB being supplied by these other organisms. The dynamics of these microbial communities have a significant effect on the N-removal performance, but the corresponding metabolic pathways are still not fully understood. These processes involve many common metabolites that may act as key factors to control the symbiotic interactions between these organisms, to maximize N-removal efficiency from wastewater. Therefore, this work overviews the current state of knowledge about the metabolism of these microorganisms including key enzymes and intermediate metabolites and summarizes already reported experiences based on the employment of certain metabolites for the improvement of N-removal using anammox-based processes. PRACTITIONER POINTS: Approaches knowledge about the biochemistry and metabolic pathways involved in anammox-based processes. Some molecular tools can be used to determine enzymatic activity, serving as an optimization in nitrogen removal processes. Enzymatic evaluation allied to the physical-chemical and biomolecular analysis of the nitrogen removal processes expands the application in different effluents.
Collapse
Affiliation(s)
- Bruno Venturin
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | | | - Gabriela Bonassa
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | | | | | | | | | - Gislaine Fongaro
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Helen Treichel
- Universidade Federal da Fronteira Sul, Erechim, Rio Grande do Sul, Brazil
| | - Airton Kunz
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
- Universidade Federal da Fronteira Sul, Erechim, Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Recent Advances in Autotrophic Biological Nitrogen Removal for Low Carbon Wastewater: A Review. WATER 2022. [DOI: 10.3390/w14071101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Due to carbon source dependence, conventional biological nitrogen removal (BNR) processes based on heterotrophic denitrification are suffering from great bottlenecks. The autotrophic BNR process represented by sulfur-driven autotrophic denitrification (SDAD) and anaerobic ammonium oxidation (anammox) provides a viable alternative for addressing low carbon wastewater. Whether for low carbon municipal wastewater or industrial wastewater with high nitrogen, the SDAD and anammox process can be suitably positioned accordingly. Herein, the recent advances and challenges to autotrophic BNR process guided by SDAD and anammox are systematically reviewed. Specifically, the present applications and crucial operation factors were discussed in detail. Besides, the microscopic interpretation of the process was deepened in the viewpoint of functional microbial species and their physiological characteristics. Furthermore, the current limitations and some future research priorities over the applications were identified and discussed from multiple perspectives. The obtained knowledge would provide insights into the application and optimization of the autotrophic BNR process, which will contribute to the establishment of a new generation of efficient and energy-saving wastewater nitrogen removal systems.
Collapse
|
18
|
Zhao Q, Peng Y, Li J, Gao R, Jia T, Deng L, Du R. Sustainable upgrading of biological municipal wastewater treatment based on anammox: From microbial understanding to engineering application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152468. [PMID: 34952066 DOI: 10.1016/j.scitotenv.2021.152468] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has drawn increasing attention as a promising option to energy-neutral wastewater treatment. While anammox process still faces challenges in the low-strength and organics-contained municipal wastewater due to its susceptibility and the technical gaps in substrate supply. Effective strategies for extensive implementation of anammox in municipal wastewater treatment plants (WWTPs) remain poorly summarized. In view of the significance and necessity of introducing anammox into mainstream treatment, the growing understanding not only at level of microbial interactions but also on view of upgrading municipal WWTPs with anammox-based processes need to be considered urgently. In this review, the critical view and comprehensive analysis were offered from the perspective of microbial interactions within partial nitrification- and partial denitrification-based anammox processes. To minimize the microbial competition and enhance the cooperation among anammox bacteria and other functional bacteria, targeted control strategies were systematically evaluated. Based on the comprehensive overview of recent advances, the combination of flexible regulation of input organic carbon with anaerobic/oxic/anoxic process and the integration of sludge fermentation with anoxic biofilms in anaerobic/anoxic/oxic process were proposed as promising solutions to upgrade municipal WWTPs with anammox technology. Furthermore, a new perspective of coupling anammox with denitrifying dephosphatation was proposed as a promising method for in-depth nutrients removal from carbon-limit municipal wastewater in this study. This review provides the critical and comprehensive viewpoints on anammox engineering in municipal wastewater and paves the way for the anammox-based upgrading of municipal WWTPs.
Collapse
Affiliation(s)
- Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
19
|
Kallistova A, Nikolaev Y, Grachev V, Beletsky A, Gruzdev E, Kadnikov V, Dorofeev A, Berestovskaya J, Pelevina A, Zekker I, Ravin N, Pimenov N, Mardanov A. New Insight Into the Interspecies Shift of Anammox Bacteria Ca. "Brocadia" and Ca. "Jettenia" in Reactors Fed With Formate and Folate. Front Microbiol 2022; 12:802201. [PMID: 35185828 PMCID: PMC8851195 DOI: 10.3389/fmicb.2021.802201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
The sensitivity of anaerobic ammonium-oxidizing (anammox) bacteria to environmental fluctuations is a frequent cause of reactor malfunctions. It was hypothesized that the addition of formate and folate would have a stimulating effect on anammox bacteria, which in turn would lead to the stability of the anammox process under conditions of a sharp increase in ammonium load, i.e., it helps overcome a stress factor. The effect of formate and folate was investigated using a setup consisting of three parallel sequencing batch reactors equipped with a carrier. Two runs of the reactors were performed. The composition of the microbial community was studied by the 16S rRNA gene profiling and metagenomic analysis. Among anammox bacteria, Ca. "Brocadia" spp. dominated during the first run. A stimulatory effect of folate on the daily nitrogen removal rate (dN) was identified. The addition of formate led to progress in dissimilatory nitrate reduction and stimulated the growth of Ca. "Jettenia" spp. The spatial separation of two anammox species was observed in the formate reactor: Ca. "Brocadia" occupied the carrier and Ca. "Jettenia"-the walls of the reactors. Biomass storage at low temperature without feeding led to an interspecies shift in anammox bacteria in favor of Ca. "Jettenia." During the second run, a domination of Ca. "Jettenia" spp. was recorded along with a stimulating effect of formate, and there was no effect of folate on dN. A comparative genome analysis revealed the patterns suggesting different strategies used by Ca. "Brocadia" and Ca. "Jettenia" spp. to cope with environmental changes.
Collapse
Affiliation(s)
- Anna Kallistova
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Yury Nikolaev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Grachev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Beletsky
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny Gruzdev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly Kadnikov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Dorofeev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Julia Berestovskaya
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Pelevina
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ivar Zekker
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Nikolai Ravin
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Pimenov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Mardanov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
20
|
Li Y, Xiang T, Liang H, Wang P, Gao D. Achieving rapid mainstream deammonification through inoculating long-term refrigerated sidestream sludge in plug-flow fixed-bed biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151415. [PMID: 34742959 DOI: 10.1016/j.scitotenv.2021.151415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The start-up of a stable mainstream deammonification requires sufficient anaerobic ammonia-oxidizing bacteria (AnAOB). This study used a plug-flow fixed-bed reactor (PFBR) to verify the feasibility of establishing the mainstream deammonification system by inoculating the sidestream sludge after long-term refrigeration. A rapid resuscitation of the mainstream deammonification system was accomplished by controlling the front-end aeration rate of the PFBR. Results showed that the system was rapidly resuscitated in 44 days eventually with the nitrogen removal rate and nitrogen removal efficiency of 0.1 kg N·(m3·d)-1 and 79.1%, respectively. Also, the efficient performance was secured by the proportionate approaching equilibrium of AnAOB and ammonia-oxidizing bacteria (AOB) activity of 2.35 ± 0.40 and 2.60 ± 0.29 mg N·(g VSS·h)-1, respectively. In addition, Pearson correlation analysis revealed that AnAOB abundance (detected Candidatus Kuenenia) negatively correlated with the AOB (mainly Nitrosomonas)/AnAOB abundance ratio, while correlated positively with the residual ammonium concentration of a region. Furthermore, long-term refrigeration probably reduced the cross-feed relationship between AnAOB and other symbiotic organisms (Armatimonadetes and Chloroflexi) to maintain the basic metabolism. Meanwhile, extracellular polymeric substances produced by other genera (order Xanthomonadales and Pseudomonadales) decreased the mass transfer, protecting AnAOB from unfavorable conditions, thereby facilitating high AnAOB abundance during refrigeration. Thus, this study provides a promising perspective towards the practical applications of mainstream process.
Collapse
Affiliation(s)
- Yuqi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Tao Xiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Hong Liang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Peng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
21
|
Zhang Z, Zhong M, Sun Y, Liang Y, Liu M, Li J, Cui H, Meng F, Huang Z, Cui L. Efficient treatment of digested piggery wastewater via an improved anoxic/aerobic process with Myriophyllum spicatum and bionic aquatic weed. BIORESOURCE TECHNOLOGY 2021; 341:125825. [PMID: 34481299 DOI: 10.1016/j.biortech.2021.125825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The traditional anoxic/aerobic process (A/O) process is widely used for treating digested piggery wastewater, but the lack of carbon sources leads to poor efficiency. Therefore, the process needs optimization to achieve high-efficiency and low-cost operation mode. In this study, an improved A/O system with bionic aquatic weed and Myriophyllum sp. was established to decontaminate digested piggery wastewater. The average removal efficiencies of chemical oxygen demand (COD), NH4+-N, and total nitrogen (TN) by the improved A/O system was satisfactory. The average removal efficiencies of COD, NH4+-N, and TN were 62.1%, 87.5%, and 61.9%, respectively. High-throughput sequencing identified a number of dominant microorganisms. The relative abundance of Nitrosomonas (ammonia-oxidizing bacteria) and Nitrospira (nitrite-oxidizing bacteria) was 0.07%-3.52% and 0.32%-1.30%, respectively. Combining bionic aquatic weed and Myriophyllum sp. altered the microbial community structure and metabolic pathways. The results demonstrate a cost-effective method for treating digested piggery wastewater.
Collapse
Affiliation(s)
- Ze Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mingjun Zhong
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yaping Sun
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yuhai Liang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mengxue Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hongcan Cui
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhujian Huang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Lihua Cui
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China.
| |
Collapse
|
22
|
Zhou S, Zhang Z, Sun Z, Song Z, Bai Y, Hu J. Responses of simultaneous anammox and denitrification (SAD) process to nitrogen loading variation: Start-up, performance, sludge morphology and microbial community dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148911. [PMID: 34328926 DOI: 10.1016/j.scitotenv.2021.148911] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The effects of loading variation on the efficiency, EPS, sludge morphology and microbial population of simultaneous anammox and denitrification (SAD) were thoroughly investigated with the low-abundance SAD sludge. Results indicated that the first stage lasted the longest (33d), and the average removal rate of TN can be maintained above 95%. The specific anammox activity (SAA), specific denitrification activity and PN/PS continued to increase, but the excessive loading caused the effluent to deteriorate rapidly, and SAA and PN/PS also decreased slightly, but it could be recovered quickly. The contribution rate of anammox and denitrification to N removal reached 87.6% and 12.4% eventually, respectively. The abundance of AnAOB was 10.68%-18.01%, 9.01%-15.54%, 5.74%-12.88% in the upper, middle and lower layers, respectively. Candidatus Kuenenia was always the dominant AnAOB, especially after high loading inhibition. The abundance of denitrifying bacteria (mainly Bacillus, Comamonas and Denitratisoma) gradually became the highest.
Collapse
Affiliation(s)
- Shun Zhou
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Zhulong Sun
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhuangzhuang Song
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yun Bai
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiawei Hu
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|