1
|
Hu Y, Song Y, Cai J, Chao J, Gong Y, Jiang X, Shao K, Tang X, Gao G. Stronger biogeographical pattern of bacterioplankton communities than biofilm communities along a riverine ecosystem: A local scale study of the Kaidu river in the arid and semi-arid northwest of China. ENVIRONMENTAL RESEARCH 2025; 264:120294. [PMID: 39505133 DOI: 10.1016/j.envres.2024.120294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Although the biogeographical pattern and mechanisms underlying microbial assembly have been well-explored in lentic ecosystems, the relevant scenarios in lotic ecosystems remain poorly understood. By sequencing the bacterial communities in bacterioplankton and biofilm, our study detected their distance-decay relationship (DDR), and the balance between deterministic and stochastic processes, along the Kaidu river in an arid and semi-arid region of northwest China. Our results revealed that bacterioplankton and biofilm had significantly contrasting community structures. The bacterioplankton communities showed a gradually decreasing trend in alpha-diversity from the headwater to the river mouth, contrasting with the alpha-diversity of biofilm communities which was constant along the river length. Both bacterioplankton and biofilm showed significant DDRs along the 500-km river corridor with the slope of the bacterioplankton DDR being steeper than that of the biofilm DDR, which implies a stronger biogeography of bacterioplankton than biofilm. Relative to biofilm communities, the species interactions formed a denser and more complex network in the bacterioplankton communities than in the biofilm communities. Our results also revealed that there was a transition of community assembly from deterministic to stochastic processes upstream to downstream, although both the bacterioplankton and biofilm communities were mainly regulated by deterministic processes within the entire river. All these empirical results expand our knowledge of microbial ecology in an arid and semi-arid lotic ecosystem.
Collapse
Affiliation(s)
- Yang Hu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing 210008, China
| | - Yifu Song
- Nanjing Forestry University, Nanjing, 210008, China
| | - Jian Cai
- Xiangyang Polytechnic, Hubei Province, 441000, China
| | - Jianying Chao
- Nanjing Institute of Environmental Science, Nanjing, 210008, China
| | - Yi Gong
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing 210008, China
| | - Xingyu Jiang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing 210008, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing 210008, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
2
|
Qiao Y, Xu W, Kong L, Shen M, Wang S, Sun Y, Gao Y, Jiang Q, Xue J, Cheng D, Liu Y. Bacterial specialists playing crucial roles in maintaining system stability and governing microbial diversity in bioremediation of oil-polluted sediments under typical deep-sea condition. BIORESOURCE TECHNOLOGY 2024; 413:131498. [PMID: 39299343 DOI: 10.1016/j.biortech.2024.131498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Ecologically, interactions and contributions of microbiota generalists and specialists remain largely unexplored in remediation of deep-sea oil pollution. Herein, ecological and evolutionary characteristics of the two taxa were comprehensively investigated in restoration of oil-polluted sediment at deep-sea microcosm. Niche-specialized taxa exhibited rapid speciation rate, more complex network structure and highly interspecific mutualism. In contrast, generalists possessed higher richness but with poor local performance, as evidenced by higher extinction rate, lower stability, and more interspecific antagonism. Generalists were the primary oil degraders, while specialists acted as auxiliaries promoting degradation via production of biofilm and biosurfactant. Evolutionarily, the continuous transition from specialists to generalists insured the exclusion of generalist at a relatively constant level for ecological trade-offs. Collectively, the findings emphasize the importance of specialists in facilitating oil degradation by elucidating their vital roles in maintaining system stability and regulating microbial diversity during process, and offer valuable guidance for designing remediation plans.
Collapse
Affiliation(s)
- Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Wenhui Xu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Qingdao UPC Environmental & Safety Technology Center Company Limited, Qingdao, Shandong 266555, China
| | - Lingbing Kong
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Mingan Shen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Shuo Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yudi Sun
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yu Gao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yuyang Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
3
|
Wang H, Liu L, Luo Z, Chen J. Spatiotemporal dynamics of dinoflagellate communities in the Taiwan Strait and their correlations with micro-eukaryotic and bacterial communities. MARINE POLLUTION BULLETIN 2024; 208:117059. [PMID: 39366059 DOI: 10.1016/j.marpolbul.2024.117059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Dinoflagellate blooms have negative adverse effects on marine ecosystems. However, our knowledge about the spatiotemporal distribution of dinoflagellate communities and their correlations with micro-eukaryotic and bacterial communities is still rare. Here, the sediment micro-eukaryotic and bacterial communities were explored in the Taiwan Strait (TWS) by 16S and 18S rRNA gene high-throughput sequencing. We found that the dinoflagellates were the most abundant algal group in TWS, and their relative abundance was higher in spring and autumn than in summer. Moreover, the species richness and community composition of dinoflagellates showed strong seasonal patterns. NO3-N and NH4-N had the strongest correlations with the spatiotemporal dynamics of community composition of dinoflagellates. The dinoflagellates had a significantly wider niche breadth than other algal groups for NH4-N, NO3-N and NO2-N, and therefore potentially contributed to a wider distribution range and high abundance in TWS. In addition, the dinoflagellates had stronger impacts on microeukaryotes than on bacteria for both community composition and species richness. However, the dinoflagellates showed close coexistence with bacteria but loose coexistence with microeukaryotes in spring co-occurrence networks. This close coexistence suggests the potentially strong synergy effects between dinoflagellates and bacteria in spring dinoflagellate blooms in TWS. Overall, this study revealed the distribution mechanisms of dinoflagellates in TWS based on niche breadth and also unveiled the different effects of dinoflagellates on micro-eukaryotic and bacterial communities.
Collapse
Affiliation(s)
- Hongwei Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Lemian Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Fuzhou 350108, China.
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, China
| | - Jianfeng Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
4
|
Xiao P, Wu Y, Zuo J, Grossart HP, Sun R, Li G, Jiang H, Cheng Y, Wang Z, Geng R, Zhang H, Ma Z, Yan A, Li R. Differential microbiome features in lake-river systems of Taihu basin in response to water flow disturbance. Front Microbiol 2024; 15:1479158. [PMID: 39411429 PMCID: PMC11475019 DOI: 10.3389/fmicb.2024.1479158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction In riverine ecosystems, dynamic interplay between hydrological conditions, such as flow rate, water level, and rainfall, significantly shape the structure and function of bacterial and microeukaryotic communities, with consequences for biogeochemical cycles and ecological stability. Lake Taihu, one of China's largest freshwater lakes, frequently experiences cyanobacterial blooms primarily driven by nutrient over-enrichment and hydrological changes, posing severe threats to water quality, aquatic life, and surrounding human populations. This study explored how varying water flow disturbances influence microbial diversity and community assembly within the interconnected river-lake systems of the East and South of Lake Taihu (ET&ST). The Taipu River in the ET region accounts for nearly one-third of Lake Taihu's outflow, while the ST region includes the Changdougang and Xiaomeigang rivers, which act as inflow rivers. These two rivers not only channel water into Lake Taihu but can also cause the backflow of lake water into the rivers, creating distinct river-lake systems subjected to different intensities of water flow disturbances. Methods Utilizing high-throughput sequencing, we selected 22 sampling sites in the ET and ST interconnected river-lake systems and conducted seasonally assessments of bacterial and microeukaryotic community dynamics. We then compared differences in microbial diversity, community assembly, and co-occurrence networks between the two regions under varying hydrological regimes. Results and discussion This study demonstrated that water flow intensity and temperature disturbances significantly influenced diversity, community structure, community assembly, ecological niches, and coexistence networks of bacterial and eukaryotic microbes. In the ET region, where water flow disturbances were stronger, microbial richness significantly increased, and phylogenetic relationships were closer, yet variations in community structure were greater than in the ST region, which experienced milder water flow disturbances. Additionally, migration and dispersal rates of microbes in the ET region, along with the impact of dispersal limitations, were significantly higher than in the ST region. High flow disturbances notably reduced microbial niche width and overlap, decreasing the complexity and stability of microbial coexistence networks. Moreover, path analysis indicated that microeukaryotic communities exhibited a stronger response to water flow disturbances than bacterial communities. Our findings underscore the critical need to consider the effects of hydrological disturbance on microbial diversity, community assembly, and coexistence networks when developing strategies to manage and protect river-lake ecosystems, particularly in efforts to control cyanobacterial blooms in Lake Taihu.
Collapse
Affiliation(s)
- Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Yao Wu
- CCCC Shanghai Waterway Engineering Design and Consulting Co., Ltd, Shanghai, China
| | - Jun Zuo
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Rui Sun
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Guoyou Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Haoran Jiang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Yao Cheng
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
| | - Zeshuang Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Ruozhen Geng
- Research Center for Monitoring and Environmental Sciences, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Authority, Ministry of Ecology and Environment of the People’ s Republic of China, Shanghai, China
| | - He Zhang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Ailing Yan
- Shanghai Engineering Research Center of Water Environment Simulation and Ecological Restoration, Shanghai Academy of Environment Sciences, Shanghai, China
| | - Renhui Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| |
Collapse
|
5
|
Wang H, Feng Y, Zhang Q, Zou M, Li T, Ai L, Wang H. Urban greenspace types and climate factors jointly drive the microbial community structure and co-occurrence network. Sci Rep 2024; 14:16042. [PMID: 38992141 PMCID: PMC11239843 DOI: 10.1038/s41598-024-66588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
The benefits of urban green space are socially widely recognized as a direct link between plant-microbe interactions and the maintenance of biodiversity, community stability, and ecosystem functioning. Nevertheless, there is a lack of knowledge about the factors influencing microbial communities in urban green spaces, especially those related to phyllosphere epiphytes and stem epiphytes. In this study, we analyzed the microbial community assembly in leaf and stem bark samples collected from Square, Road, Campus, and Park. Illumina sequecing of 16S amplicons was performed to characterize microbial diversity and composition. The α-diversity was significantly higher in the bark epiphytic community, compared to the phyllosphere. Moreover, urban greenspaces'type altered the way communities gathered. The main soil and air properties factors of the urban greenhouse (e.g. soil temperature, atmospheric moisture, air temperature) were shaping the characteristics of bacterial communities on the leaf surface and bark epiphytic. In addition, in the co-occurrence network analysis, keystone taxa were not mostly observed in abundant species, which may be necessary to maintain ecosystem functions. Finally, our findings provide a deeper understanding of the ecological dynamics and microbial interactions within plant phyllosphere and stem epiphytes microbiomes.
Collapse
Affiliation(s)
- Huan Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400718, China
- Chongqing Landscape and Gardening Research Institute, Chongqing, 401329, China
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing, 401329, China
| | - Yilong Feng
- Chongqing Landscape and Gardening Research Institute, Chongqing, 401329, China
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing, 401329, China
| | - Qiaoyong Zhang
- Chongqing Landscape and Gardening Research Institute, Chongqing, 401329, China
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing, 401329, China
| | - Min Zou
- Chongqing Landscape and Gardening Research Institute, Chongqing, 401329, China
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing, 401329, China
| | - Ting Li
- Chongqing Landscape and Gardening Research Institute, Chongqing, 401329, China
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing, 401329, China
| | - Lijiao Ai
- Chongqing Landscape and Gardening Research Institute, Chongqing, 401329, China.
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing, 401329, China.
| | - Haiyang Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400718, China.
| |
Collapse
|
6
|
Loos D, Filho APDC, Dutilh BE, Barber AE, Panagiotou G. A global survey of host, aquatic, and soil microbiomes reveals shared abundance and genomic features between bacterial and fungal generalists. Cell Rep 2024; 43:114046. [PMID: 38581683 DOI: 10.1016/j.celrep.2024.114046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 04/08/2024] Open
Abstract
Environmental change, coupled with alteration in human lifestyles, is profoundly impacting the microbial communities critical to the health of the Earth and its inhabitants. To identify bacteria and fungi that are resistant and susceptible to habitat change, we analyze thousands of genera detected in 1,580 host, soil, and aquatic samples. This large-scale analysis identifies 48 bacterial and 4 fungal genera that are abundant across the three biomes, demonstrating fitness in diverse environmental conditions. Samples containing these generalists have significantly higher alpha diversity. These generalists play a significant role in shaping cross-kingdom community structure, boasting larger genomes with more secondary metabolism and antimicrobial resistance genes. Conversely, 30 bacterial and 19 fungal genera are only found in a single habitat, suggesting a limited ability to adapt to different and changing environments. These findings contribute to our understanding of microbial niche breadth and its consequences for global biodiversity loss.
Collapse
Affiliation(s)
- Daniel Loos
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Ailton Pereira da Costa Filho
- Junior Research Group Fungal Informatics, Institute of Microbiology, Friedrich Schiller University, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Bas E Dutilh
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany; Institute of Biodiversity, Friedrich Schiller University, Jena, Germany; Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, the Netherlands
| | - Amelia E Barber
- Junior Research Group Fungal Informatics, Institute of Microbiology, Friedrich Schiller University, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany.
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
7
|
Nesporova K, Ruzickova M, Tarabai H, Krejci S, Masarikova M, Lausova J, Literak I, Dolejska M. Changing dynamics of antibiotic resistant Escherichia in Caspian gulls shows the importance of longitudinal environmental studies. ENVIRONMENT INTERNATIONAL 2024; 186:108606. [PMID: 38554502 DOI: 10.1016/j.envint.2024.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
This study is focused on Escherichia spp. isolates resistant to critically important antibiotics (cefotaxime, ciprofloxacin and colistin) among Caspian gull's (Larus cachinnans) chicks nesting in the Nove Mlyny Water Reservoir, Czech Republic. The prevalence of antimicrobial resistance (AMR) in bacteria within wild birds is commonly evaluated using a single sampling event, capturing only a brief and momentary snapshot at a particular location. Therefore, the Caspian gulls in our study were sampled in May 2018 (n = 72) and May 2019 (n = 45), and a water sample was taken from the reservoir (2019). We obtained 197 isolates identified as E. coli by MALDI-TOF MS. A total of 158 representative isolates were whole-genome sequenced, 17 isolates were then reclassified to Escherichia albertii. We observed a higher (86 %; 62/72) occurrence of ESBL/AmpC-producing Escherichia spp. among gulls in 2018 compared to 38 % (17/45) in 2019 (p < 0.00001). The decrease in prevalence was linked to clonal lineage of E. coli ST11893 predominating in 2018 which carried blaCMY-2 and which was not recovered from the gulls in 2019. Oppositely, several Escherichia STs were found in gulls from both years as well as in the water sample including STs commonly recognized as internationally high-risk lineages such as ST10, ST58, ST88, ST117, ST648 or ST744. Phylogenetic analysis of E. coli from EnteroBase from countries where these particular gulls wander revealed that some STs are commonly found in various sources including humans and a portion of them is even closely related (up to 100 SNPs) to our isolates. We demonstrated that the occurrence of AMR in Escherichia can vary greatly in time in synanthropic birds and we detected both, a temporary prevalent lineage and several persistent STs. The close relatedness of isolates from gulls and isolates from EnteroBase highlights the need to further evaluate the risk connected to wandering birds.
Collapse
Affiliation(s)
- Kristina Nesporova
- CEITEC VETUNI Brno, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Michaela Ruzickova
- CEITEC VETUNI Brno, University of Veterinary Sciences Brno, Brno, Czech Republic; Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Hassan Tarabai
- CEITEC VETUNI Brno, University of Veterinary Sciences Brno, Brno, Czech Republic; Department of Parasitology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Simon Krejci
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Martina Masarikova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jarmila Lausova
- CEITEC VETUNI Brno, University of Veterinary Sciences Brno, Brno, Czech Republic; Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Ivan Literak
- CEITEC VETUNI Brno, University of Veterinary Sciences Brno, Brno, Czech Republic; Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Monika Dolejska
- CEITEC VETUNI Brno, University of Veterinary Sciences Brno, Brno, Czech Republic; Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic; Biomedical Centre, Charles University, Pilsen, Czech Republic; Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Czech Republic.
| |
Collapse
|
8
|
Zheng S, Liu M, Han Q, Pang L, Cao H. Seasonal variation and human impacts of the river biofilm bacterial communities in the Shiting River in southeastern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:341. [PMID: 38436747 DOI: 10.1007/s10661-024-12490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Bacterial communities in epilithic biofilm plays an important role in biogeochemistry processes in freshwater ecosystems. Nevertheless, our understanding of the geographical and seasonal variations of the composition of bacterial communities in the biofilm of gravels on river bed is still limited. Various anthropogenic activities also influence the biofilm bacteria in gravel rivers. By taking the Shiting River in the upper Yangtze River basin in Sichuan Province as an example, we studied the geographical and seasonal variations of epilithic bacteria and the impacts of weirs and other human activities (e.g., sewage pollution). The river has experienced severe degradation since the Ms 8.0 Wenchuan Earthquake, and weirs were constructed to prevent bed erosion. We collected epilithic biofilms samples at 17 sites along ~ 30 km river reach of the Shiting River in the autumn of 2021 and the summer of 2022, respectively. We applied 16S rRNA gene high-throughput sequencing technology and Functional Annotation of Prokaryotic Taxa (FAPROTAX) to analyze the seasonal and biogeographic patterns and potential functions of the biofilm bacterial communities. The results showed that epilithic bacteria from the two surveys exhibited variation in community composition, bacterial diversity and potential functions. The bacteria samples collected in the autumn have much higher alpha diversity and richness than those collected in the summer. Bacterial richness and diversity were lower downstream of the weirs than upstream. Low diversity was observed at a sampling site influenced by sewage inflow, which contains high level of nitrogen-related chemicals.
Collapse
Affiliation(s)
- Shan Zheng
- Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China, Earthquake Administration (Tianjin University), Tianjin, 300350, China.
- School of Civil Engineering, Tianjin University, Tianjin, 300350, China.
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China.
| | - Min Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
| | - Qinghua Han
- Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China, Earthquake Administration (Tianjin University), Tianjin, 300350, China
- School of Civil Engineering, Tianjin University, Tianjin, 300350, China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Huiqun Cao
- Changjiang River Scientific Research Institute, Wuhan, 430010, China
| |
Collapse
|
9
|
He R, Hu S, Li Q, Zhao D, Wu QL, Zeng J. Greater transmission capacities and small-world characteristics of bacterial communities in the above- than those in the below- ground niches of a typical submerged macrophyte, Vallisneria natans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166229. [PMID: 37586539 DOI: 10.1016/j.scitotenv.2023.166229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Leaves and roots of submerged macrophytes provide extended surfaces and stable internal tissues for distinct microorganisms to rest, but how these microorganisms interact with each other across different niches and ultimately drive the distribution through horizontal and vertical transmissions remains largely undetermined. Knowledge of the mechanisms of assemblage and transmission in aquatic macrophytes-associated microbial communities will help to better understanding their important roles in plant fitness and benefit ecological functions. Here, we conducted a microcosmic experiment based on in situ lake samples to investigate the bacterial community assemblage, transmission, and co-occurrence patterns in different niches of a typical submerged macrophyte, Vallisneria natans (V. natans), including seed endosphere, as well as environmental (water and bulk sediment), epiphytic (phyllosphere and rhizosphere), and endophytic (leaf and root endosphere) microhabitats of both leaves and roots representatives of the above- and below- ground niches (AGNs and BGNs), respectively. We found the bacterial communities colonized in epiphytic niches not only exhibited the highest diversity compared to adjacent environmental and endophytic niches, but also dominated the interactions between those bacterial members of neighboring niches in both AGNs and BGNs. The host plants promoted niche specificity at bacterial community-level, as confirmed by the proportion of bacterial specialists increased with plant proximity, especially in the BGNs. Furthermore, the bacterial taxa colonized in the AGNs exhibited higher horizontal and vertical transmission capacities than those in the BGNs, especially in the vertical transmission from seeds to leaves (41.38 %) than roots (0.42 %). Meanwhile, the bacterial co-occurrence network in AGNs was shown to have stronger small-world characteristics but weaker stability than those in the BGNs. Overall, this study cast new light on the plant microbiome in the aquatic environment, thus better promoting the potential development of strategies for breeding aquatic macrophyte holobiont with enhanced water purification and pollutant removal capabilities in the future.
Collapse
Affiliation(s)
- Rujia He
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Siwen Hu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qisheng Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing 210098, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
10
|
Sieber G, Drees F, Shah M, Stach TL, Hohrenk-Danzouma L, Bock C, Vosough M, Schumann M, Sures B, Probst AJ, Schmidt TC, Beisser D, Boenigk J. Exploring the efficacy of metabarcoding and non-target screening for detecting treated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:167457. [PMID: 37777125 DOI: 10.1016/j.scitotenv.2023.167457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Wastewater treatment processes can eliminate many pollutants, yet remainder pollutants contain organic compounds and microorganisms released into ecosystems. These remainder pollutants have the potential to adversely impact downstream ecosystem processes, but their presence is currently not being monitored. This study was set out with the aim of investigating the effectiveness and sensitivity of non-target screening of chemical compounds, 18S V9 rRNA gene, and full-length 16S rRNA gene metabarcoding techniques for detecting treated wastewater in receiving waters. We aimed at assessing the impact of introducing 33 % treated wastewater into a triplicated large-scale mesocosm setup during a 10-day exposure period. Discharge of treated wastewater significantly altered the chemical signature as well as the microeukaryotic and prokaryotic diversity of the mesocosms. Non-target screening, 18S V9 rRNA gene, and full-length 16S rRNA gene metabarcoding detected these changes with significant covariation of the detected pattern between methods. The 18S V9 rRNA gene metabarcoding exhibited superior sensitivity immediately following the introduction of treated wastewater and remained one of the top-performing methods throughout the study. Full-length 16S rRNA gene metabarcoding demonstrated sensitivity only in the initial hour, but became insignificant thereafter. The non-target screening approach was effective throughout the experiment and in contrast to the metabarcoding methods the signal to noise ratio remained similar during the experiment resulting in an increasing relative strength of this method. Based on our findings, we conclude that all methods employed for monitoring environmental disturbances from various sources are suitable. The distinguishing factor of these methods is their ability to detect unknown pollutants and organisms, which sets them apart from previously utilized approaches and allows for a more comprehensive perspective. Given their diverse strengths, particularly in terms of temporal resolution, these methods are best suited as complementary approaches.
Collapse
Affiliation(s)
- Guido Sieber
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany.
| | - Felix Drees
- Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Manan Shah
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Tom L Stach
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Lotta Hohrenk-Danzouma
- Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Christina Bock
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany
| | - Maryam Vosough
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Mark Schumann
- Aquatic Ecology, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany
| | - Bernd Sures
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Aquatic Ecology, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Alexander J Probst
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Torsten C Schmidt
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Daniela Beisser
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany
| | - Jens Boenigk
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany
| |
Collapse
|
11
|
Yu H, Ko D, Lee C. Continuous cultivation of mixed-culture microalgae using anaerobic digestion effluent in photobioreactors with different strategies for adjusting nitrogen loading rate. BIORESOURCE TECHNOLOGY 2023; 387:129650. [PMID: 37558101 DOI: 10.1016/j.biortech.2023.129650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
This study examined continuous mixed-culture microalgae cultivation for nutrient removal from anaerobic digestion (AD) effluents in photobioreactors, while altering the NH4+-N loading rate (NLR) by adjusting either the hydraulic retention time (HRT) (reactor set RH) or the influent NH4+-N concentration (reactor set RS). Both RH and RS demonstrated efficient nutrient removal and microalgae cultivation at NLRs of 4-10 mg NH4+-N/L∙d, reaching peak performance at 10 mg NH4+-N/L∙d. Within this range, RH obtained greater biomass yield and productivity, while RS maintained higher microalgal concentrations. The cultivated biomasses obtained from RH and RS had good settleability and suitable fatty acid compositions as a biodiesel feedstock, although their organic composition varied considerably with NLR and HRT. Parachlorella overwhelmingly dominated the reactors' microalgal communities throughout the experiment, co-existing with various microalgae-associated bacteria. Changes in NLR significantly influenced the bacterial community structures, underscoring its critical role in determining reactor performance and microalgal-bacterial community behavior.
Collapse
Affiliation(s)
- Hyeonjung Yu
- Department of Urban & Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Dayoung Ko
- Department of Urban & Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Changsoo Lee
- Department of Urban & Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea.
| |
Collapse
|
12
|
Huang XR, Neilson R, Yang LY, Deng JJ, Zhou SYD, Li H, Zhu YG, Yang XR. Urban greenspace types influence the microbial community assembly and antibiotic resistome more in the phyllosphere than in the soil. CHEMOSPHERE 2023; 338:139533. [PMID: 37459932 DOI: 10.1016/j.chemosphere.2023.139533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Urban greenspace (UGS) is recognized to confer significant societal benefits, but few studies explored the microbial communities and antibiotic resistance genes (ARGs) from different urban greenspace types. Here, we collected leaf and soil samples from forest, greenbelt, and parkland to analyze microbial community assembly and ARG profile. For phyllosphere fungal community, the α-diversity was higher in forest, compared to those in greenbelt and parkland. Moreover, urban greenspace types altered the community assembly. Stochastic processes had a greater effect on phyllosphere fungal community in greenbelt and parkland, while in forest they were dominated by deterministic processes. In contrast, no significant differences in bacterial community diversity, community assembly were observed between the samples collected from different urban greenspace types. A total of 153 ARGs and mobile genetic elements (MGEs) were detected in phyllosphere and soil with resistance to the majority classes of antibiotics commonly applied to humans and animals. Structural equation model further revealed that a direct association between greenspace type and ARGs in the phyllosphere even after considering the effects of all other factors simultaneously. Our findings provide new insights into the microbial communities and antibiotic resistome of urban greenspaces and the potential risk linked with human health.
Collapse
Affiliation(s)
- Xin-Rong Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences Haixi Industrial Technology Innovation Centerin, Beilun, Ningbo, 315830, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Le-Yang Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Jing-Jun Deng
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences Haixi Industrial Technology Innovation Centerin, Beilun, Ningbo, 315830, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences Haixi Industrial Technology Innovation Centerin, Beilun, Ningbo, 315830, China.
| |
Collapse
|
13
|
Yang Y, Zhang W, Liu W, He D, Wan W. Irreversible community difference between bacterioplankton generalists and specialists in response to lake dredging. WATER RESEARCH 2023; 243:120344. [PMID: 37482008 DOI: 10.1016/j.watres.2023.120344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Understanding response of bacterioplankton community responsible for maintaining ecological functions of aquatic ecosystems to environmental disturbance is an important subject. However, it remains largely unclear how bacterioplankton generalists and specialists respond to dredging disturbance. Illumina MiSeq sequencing and statistical analyses were used to evaluate landscape patterns, evolutionary potentials, environmental adaptability, and community assembly processes of generalists and specialists in response to dredging in eutrophic Lake Nanhu. The Proteobacteria and Actinobacteria dominated bacterioplankton communities of generalists and specialists, and abundances of Proteobacteria decreased and Actinobacteria increased after dredging. The generalists displayed higher phylogenetic distance, richness difference, speciation rate, extinction rate, and diversification rate as well as stronger environmental adaptation than that of specialists. In contrast, the specialists rather than generalists showed higher community diversity, taxonomic distance, and species replacement as well as closer phylogenetic clustering. Stochastic processes dominated community assemblies of generalists and specialists, and stochasticity exhibited a larger effect on community assembly of generalists rather than specialists. Our results emphasized that lake dredging could change landscape patterns of bacterioplankton generalists and specialists, whereas the short-term dredging conducted within one year was unable to reverse community difference between generalists and specialists. Our findings extend our understanding of how bacterioplankton generalists and specialists responding to dredging disturbance, and these findings might in turn call on long-term dredging for better ecological restoration of eutrophic lakes.
Collapse
Affiliation(s)
- Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China
| | - Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China
| | - Donglan He
- College of Life Science, South-Central Minzu University, Wuhan 430070, China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China.
| |
Collapse
|
14
|
Márton Z, Csitári B, Felföldi T, Hidas A, Jordán F, Szabó A, Székely AJ. Contrasting response of microeukaryotic and bacterial communities to the interplay of seasonality and local stressors in shallow soda lakes. FEMS Microbiol Ecol 2023; 99:fiad095. [PMID: 37586889 PMCID: PMC10449373 DOI: 10.1093/femsec/fiad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
Seasonal environmental variation is a leading driver of microbial planktonic community assembly and interactions. However, departures from usual seasonal trends are often reported. To understand the role of local stressors in modifying seasonal succession, we sampled fortnightly, throughout three seasons, five nearby shallow soda lakes exposed to identical seasonal and meteorological changes. We characterised their microeukaryotic and bacterial communities by amplicon sequencing of the 16S and 18S rRNA gene, respectively. Biological interactions were inferred by analyses of synchronous and time-shifted interaction networks, and the keystone taxa of the communities were topologically identified. The lakes showed similar succession patterns during the study period with spring being characterised by the relevance of trophic interactions and a certain level of community stability followed by a more dynamic and variable summer-autumn period. Adaptation to general seasonal changes happened through shared core microbiome of the lakes. Stochastic events such as desiccation disrupted common network attributes and introduced shifts from the prevalent seasonal trajectory. Our results demonstrated that, despite being extreme and highly variable habitats, shallow soda lakes exhibit certain similarities in the seasonality of their planktonic communities, yet local stressors such as droughts instigate deviations from prevalent trends to a greater extent for microeukaryotic than for bacterial communities.
Collapse
Affiliation(s)
- Zsuzsanna Márton
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, H-1113 Budapest, Hungary
- Doctoral School of Environmental Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Bianka Csitári
- Doctoral School of Environmental Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
- Karolinska Institutet, 171 65 Stockholm, Sweden
- Uppsala University, 752 36 Uppsala, Sweden
| | - Tamás Felföldi
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- Department of Microbiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - András Hidas
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- Doctoral School of Environmental Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Ferenc Jordán
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Attila Szabó
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Anna J Székely
- Uppsala University, 752 36 Uppsala, Sweden
- Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
15
|
Gao H, Chen J, Wang C, Wang P, Wang R, Hu Y, Pan Y. Diversity and interaction of bacterial and microeukaryotic communities in sediments planted with different submerged macrophytes: Responses to decabromodiphenyl ether. CHEMOSPHERE 2023; 322:138186. [PMID: 36806803 DOI: 10.1016/j.chemosphere.2023.138186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Although various persistent organic pollutants (POPs) can affect microbial communities and functions in aquatic ecosystems, little is known about how bacteria and microeukaryotes respond to the POPs in sediments planted with different submerged macrophytes. Here, a 60-day microcosm experiment was carried out to investigate the changes in the diversity and interaction of bacterial and microeukaryotic communities in sediments collected from Taihu lake, either with decabromodiphenyl ether (BDE-209) own or combined with two common submerged macrophyte species (Vallisneria natans and Hydrilla verticillate). The results showed that BDE-209 significantly decreased the bacterial α-diversity but increased the microeukaryotic one. In sediments planted with submerged macrophytes, the negative effect of BDE-209 on bacterial diversity was weakened, and its positive effect on microeukaryotic one was strengthened. Co-occurrence network analysis revealed that the negative relationship was dominant in bacterial and microeukaryotic communities, while the cooperative relationship between microbial species was increased in planted sediments. Among nine keystone species, one belonging to bacterial family Thermoanaerobaculaceae was enriched by BDE-209, and others were inhibited. Notably, such inhibition was weakened, and the stimulation was enhanced in planted sediments. Together, these observations indicate that the responses of bacteria and microeukaryotes to BDE-209 are different, and their communities under BDE-209 contamination are more stable in sediments planted with submerged macrophytes. Moreover, the effects of plant species on the microbial responses to BDE-209 need to be explored by more specific field studies in the future.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Ying Pan
- School of Ecology, Sun Yat-sen University, Shenzhen, 518000, China
| |
Collapse
|
16
|
AminiTabrizi R, Graf-Grachet N, Chu RK, Toyoda JG, Hoyt DW, Hamdan R, Wilson RM, Tfaily MM. Microbial sensitivity to temperature and sulfate deposition modulates greenhouse gas emissions from peat soils. GLOBAL CHANGE BIOLOGY 2023; 29:1951-1970. [PMID: 36740729 DOI: 10.1111/gcb.16614] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/22/2022] [Accepted: 12/22/2022] [Indexed: 05/28/2023]
Abstract
Peatlands are among the largest natural sources of atmospheric methane (CH4 ) worldwide. Microbial processes play a key role in regulating CH4 emissions from peatland ecosystems, yet the complex interplay between soil substrates and microbial communities in controlling CH4 emissions as a function of global change remains unclear. Herein, we performed an integrated analysis of multi-omics data sets to provide a comprehensive understanding of the molecular processes driving changes in greenhouse gas (GHG) emissions in peatland ecosystems with increasing temperature and sulfate deposition in a laboratory incubation study. We sought to first investigate how increasing temperatures (4, 21, and 35°C) impact soil microbiome-metabolome interactions; then explore the competition between methanogens and sulfate-reducing bacteria (SRBs) with increasing sulfate concentrations at the optimum temperature for methanogenesis. Our results revealed that peat soil organic matter degradation, mediated by biotic and potentially abiotic processes, is the main driver of the increase in CO2 production with temperature. In contrast, the decrease in CH4 production at 35°C was linked to the absence of syntrophic communities and the potential inhibitory effect of phenols on methanogens. Elevated temperatures further induced the microbial communities to develop high growth yield and stress tolerator trait-based strategies leading to a shift in their composition and function. On the other hand, SRBs were able to outcompete methanogens in the presence of non-limiting sulfate concentrations at 21°C, thereby reducing CH4 emissions. At higher sulfate concentrations, however, the prevalence of communities capable of producing sufficient low-molecular-weight carbon substrates for the coexistence of SRBs and methanogens was translated into elevated CH4 emissions. The use of omics in this study enhanced our understanding of the structure and interactions among microbes with the abiotic components of the system that can be useful for mitigating GHG emissions from peatland ecosystems in the face of global change.
Collapse
Affiliation(s)
- Roya AminiTabrizi
- Department of Environmental Science, The University of Arizona, Tucson, Arizona, USA
| | - Nathalia Graf-Grachet
- Department of Environmental Science, The University of Arizona, Tucson, Arizona, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason G Toyoda
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - David W Hoyt
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Rasha Hamdan
- Department of Chemistry and Biochemistry, Lebanese University, Beirut, Lebanon
| | - Rachel M Wilson
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - Malak M Tfaily
- Department of Environmental Science, The University of Arizona, Tucson, Arizona, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
17
|
Bai S, Zhang J, Qi X, Zeng J, Wu S, Peng X. Changes of In Situ Prokaryotic and Eukaryotic Communities in the Upper Sanya River to the Sea over a Nine-Hour Period. Microorganisms 2023; 11:microorganisms11020536. [PMID: 36838501 PMCID: PMC9964997 DOI: 10.3390/microorganisms11020536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The transition areas of riverine, estuarine, and marine environments are particularly valuable for the research of microbial ecology, biogeochemical processes, and other physical-chemical studies. Although a large number of microbial-related studies have been conducted within such systems, the vast majority of sampling have been conducted over a large span of time and distance, which may lead to separate batches of samples receiving interference from different factors, thus increasing or decreasing the variability between samples to some extent. In this study, a new in situ filtration system was used to collect membrane samples from six different sampling sites along the Sanya River, from upstream freshwater to the sea, over a nine-hour period. We used high-throughput sequencing of 16S and 18S rRNA genes to analyze the diversity and composition of prokaryotic and eukaryotic communities. The results showed that the structures of these communities varied according to the different sampling sites. The α-diversity of the prokaryotic and eukaryotic communities both decreased gradually along the downstream course. The structural composition of prokaryotic and eukaryotic communities changed continuously with the direction of river flow; for example, the relative abundances of Rhodobacteraceae and Flavobacteriaceae increased with distance downstream, while Sporichthyaceae and Comamonadaceae decreased. Some prokaryotic taxa, such as Phycisphaeraceae and Chromobacteriaceae, were present nearly exclusively in pure freshwater environments, while some additional prokaryotic taxa, including the SAR86 clade, Clade I, AEGEAN-169 marine group, and Actinomarinaceae, were barely present in pure freshwater environments. The eukaryotic communities were mainly composed of the Chlorellales X, Chlamydomonadales X, Sphaeropleales X, Trebouxiophyceae XX, Annelida XX, and Heteroconchia. The prokaryotic and eukaryotic communities were split into abundant, common, and rare communities for NCM analysis, respectively, and the results showed that assembly of the rare community assembly was more impacted by stochastic processes and less restricted by species dispersal than that of abundant and common microbial communities for both prokaryotes and eukaryotes. Overall, this study provides a valuable reference and new perspectives on microbial ecology during the transition from freshwater rivers to estuaries and the sea.
Collapse
Affiliation(s)
- Shijie Bai
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- Correspondence: (S.B.); (X.P.)
| | - Jian Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- The State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Xiaoxue Qi
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Juntao Zeng
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijun Wu
- The State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Xiaotong Peng
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- Correspondence: (S.B.); (X.P.)
| |
Collapse
|
18
|
Liu L, Wang S, Yang J, Chen J. Nutrient Removal in Eutrophic Water Promotes Stability of Planktonic Bacterial and Protist Communities. MICROBIAL ECOLOGY 2022; 84:759-768. [PMID: 34671825 DOI: 10.1007/s00248-021-01898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Nutrient (nitrogen and phosphorus) removal by using bioremediation technologies in eutrophic water alters bacterial and protist community structure and function, but how it changes the stability of community remains unclear. To fill this gap, in this study, bacterial and protist communities were investigated using 16S and 18S rRNA gene high-throughput sequencing during the nutrient removal by using ecological floating beds of Canna indica L. Our results showed that both bacterial and protist community compositions in the treatment group were similar to those in the control group at the beginning of the experiment (day 1 to day 11), but then bacterial and protist community compositions became more stable with the removal of nutrients in the treatment group than those in the control group (day 12 to day 18). We further explored the mechanisms for this increased stability and found that the contribution of the stochastic process to bacterial and protist community variations was higher in the control group than that in the treatment group. This suggests that the high nutrient concentration in the control group might increase the random colonization or extinction, and therefore resulted in the high temporal variability (i.e., unstable) of bacterial and protist communities. Our findings suggest that bioremediation for eutrophication can promote the stability of aquatic communities, and therefore potentially maintain aquatic ecosystem functions and services to humanity.
Collapse
Affiliation(s)
- Lemian Liu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China.
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China.
| | - Shanshan Wang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jianfeng Chen
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
19
|
Rodriguez V, Moskwa LM, Oses R, Kühn P, Riveras-Muñoz N, Seguel O, Scholten T, Wagner D. Impact of Climate and Slope Aspects on the Composition of Soil Bacterial Communities Involved in Pedogenetic Processes along the Chilean Coastal Cordillera. Microorganisms 2022; 10:847. [PMID: 35630293 PMCID: PMC9143490 DOI: 10.3390/microorganisms10050847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Soil bacteria play a fundamental role in pedogenesis. However, knowledge about both the impact of climate and slope aspects on microbial communities and the consequences of these items in pedogenesis is lacking. Therefore, soil-bacterial communities from four sites and two different aspects along the climate gradient of the Chilean Coastal Cordillera were investigated. Using a combination of microbiological and physicochemical methods, soils that developed in arid, semi-arid, mediterranean, and humid climates were analyzed. Proteobacteria, Acidobacteria, Chloroflexi, Verrucomicrobia, and Planctomycetes were found to increase in abundance from arid to humid climates, while Actinobacteria and Gemmatimonadetes decreased along the transect. Bacterial-community structure varied with climate and aspect and was influenced by pH, bulk density, plant-available phosphorus, clay, and total organic-matter content. Higher bacterial specialization was found in arid and humid climates and on the south-facing slope and was likely promoted by stable microclimatic conditions. The presence of specialists was associated with ecosystem-functional traits, which shifted from pioneers that accumulated organic matter in arid climates to organic decomposers in humid climates. These findings provide new perspectives on how climate and slope aspects influence the composition and functional capabilities of bacteria, with most of these capabilities being involved in pedogenetic processes.
Collapse
Affiliation(s)
- Victoria Rodriguez
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; (V.R.); (L.-M.M.)
| | - Lisa-Marie Moskwa
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; (V.R.); (L.-M.M.)
| | - Rómulo Oses
- Centro Regional de Investigación y Desarrollo Sustentable de Atacama, Universidad de Atacama (CRIDESAT UDA), Copayapu 484, Copiapó 1530000, Chile;
| | - Peter Kühn
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, 72070 Tübingen, Germany; (P.K.); (N.R.-M.); (T.S.)
| | - Nicolás Riveras-Muñoz
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, 72070 Tübingen, Germany; (P.K.); (N.R.-M.); (T.S.)
| | - Oscar Seguel
- Facultad de Ciencias Agronómicas, Universidad de Chile, Av. Santa Rosa #11315, La Pintana, Santiago 8820808, Chile;
| | - Thomas Scholten
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, 72070 Tübingen, Germany; (P.K.); (N.R.-M.); (T.S.)
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; (V.R.); (L.-M.M.)
- Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
20
|
Shen Z, Xie G, Tian W, Shao K, Yang G, Tang X. Effects of wind-wave disturbance and nutrient addition on aquatic bacterial diversity, community composition, and co-occurrence patterns: A mesocosm study. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100168. [DOI: 10.1016/j.crmicr.2022.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|