1
|
Wu J, Shao Y, Hua X, Wang D. Activated hedgehog and insulin ligands by decreased transcriptional factor DAF-16 mediate transgenerational nanoplastic toxicity in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135909. [PMID: 39303612 DOI: 10.1016/j.jhazmat.2024.135909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
In Caenorhabditis elegans, transcriptional factor DAF-16 in insulin signaling pathway played important role in regulating transgenerational nanoplastic toxicity. Activation of insulin signals mediated transgenerational toxicity of polystyrene nanoparticle (PS-NP) by inhibiting DAF-16. Among identified germline ligands, expression of wrt-3 encoding hedgehog ligand was increased by RNAi of daf-16 in PS-NP exposed C. elegans. In PS-NP exposed C. elegans, expressions of 4 other germline hedgehog ligand genes and 10 hedgehog receptor genes were increased by daf-16 RNAi. Among these candidate genes, expressions of hedgehog ligand genes (grl-15, grl-16, qua-1, and wrt-1) and hedgehog receptor genes (ptr-23, scp-1, ptd-2, and ncr-1) could be increased by PS-NP (1-100 μg/L), and their transgenerational expressions were observed after PS-NP exposure. RNAi of grl-15, grl-16, qua-1, wrt-1, ptr-23, scp-1, ptd-2, and ncr-1 caused resistance to transgenerational PS-NP toxicity. In nematodes exposed to PS-NPs, RNAi of wrt-3, grl-15, grl-16, qua-1, and wrt-1 at parental generation (P0-G) inhibited expressions of ptr-23, scp-1, ptd-2, and ncr-1 in their offspring. Moreover, we observed increased expressions of insulin peptides genes (ins-3, ins-39, and daf-28) in PS-NP exposed daf-16(RNAi) nematodes, suggesting formation of feedback loop. We raise the molecular basis for formation of toxicity on multiple generations after nanoplastic exposure at P0-G.
Collapse
Affiliation(s)
- Jingwei Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yuting Shao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
2
|
Chen J, Chen C, Luo Z, Jin X, Chen Y, Wu Q, Gong Z, Yang J, Jiang S, Lin S, Li J, Li F, Wu J, Guo J, Chen X, Lin L, Guo Z, Yu G, Shao W, Wu H, Wu S, Li H, Zheng F. The role of Sod-2 in different types of neuronal damage and behavioral changes induced by polystyrene nanoplastics in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117416. [PMID: 39615303 DOI: 10.1016/j.ecoenv.2024.117416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Polystyrene nanoplastics (PS-NPs) have been demonstrated to accumulate in organisms especially from soil and exhibit neurotoxicity. However, the specific mechanisms by which PS-NPs caused neurotoxic effects remain largely unexplored. In this study, we employed PS-NPs with a diameter of 50 nm as the toxicant and used estimated exposure concentrations which are similar to those found in Chinese agricultural soil (i.e., 0, 1, 5 and 10 μg/mL). We found that PS-NPs induced significant neurotoxicity and behavioral damage in nematodes. Taking advantage of neuronal-specific reporter nematodes, we unveiled the order of neuronal damage induced by PS-NPs being DAergic neurons, followed by Achergic neurons and GABAergic neurons. Additionally, PS-NPs significantly reduced the neurotransmitter levels corresponding to these three types of neurons, with the order of reduction being Ach followed by DA and GABA. Moreover, we demonstrated that PS-NPs led to an increase in ROS production, the activation of gst-4 and a decrease in Sod-2 protein content. Furthermore, we unveiled that Sod-2 could suppress the generation of ROS induced by PS-NPs. Then we proved that the pretreatment with mitochondrial ROS scavenger Mitoquinone (Mito Q) was able to alleviate PS-NPs-induced neurotoxic effects and behavioral damage by scavenging ROS and subsequently regulating Sod-2 protein expression. In summary, we have demonstrated for the first time that ROS-mediated reduction of Sod-2 protein plays a crucial role in PS-NPs-induced neurotoxicity and behavioral damage. Furthermore, Mito Q shows potential therapeutic value in alleviating the toxic effects of PS-NPs, providing new insights for the prevention and treatment of PS-NPs-induced neurotoxicity.
Collapse
Affiliation(s)
- Jingrong Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; Fujian Provincial Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Cheng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; Fujian Provincial Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Zhousong Luo
- Fujian Provincial Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Xuepeng Jin
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; Department of Clinical Medicine, School of Basic Medical Science, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Yilong Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Qingqing Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Zhaohui Gong
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiafu Yang
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shangrong Jiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shengsong Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiamei Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Fangjie Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiawei Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiayi Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xinshuai Chen
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ling Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Hong Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; Fujian Provincial Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Yu CW, Yen PL, Kuo YH, Lin TA, Liao VHC. Early-life polystyrene nanoplastics exposure impairs pathogen avoidance behavior associated with intestine-derived insulin-like neuropeptide (ins-11) and serotonin signaling in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117347. [PMID: 39557011 DOI: 10.1016/j.ecoenv.2024.117347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Nanoplastics (NPs) contamination is an emerging global concern due to the widespread use of plastic products and their potentially negative health impact on ecosystems. Despite their ubiquity, the effects of early-life NPs exposure on host-pathogen interactions remain largely unknown. In this study, we show that early-life exposure to polystyrene NPs (PS-NPs, 100-nm) at predicted environmentally relevant concentrations (10 µg/L) significantly impairs food preference and reduces avoidance of the pathogenic bacterium Bacillus thuringiensis in Caenorhabditis elegans. Exposure to PS-NPs led to a decrease in avoidance from 40.3 % in controls to 30.6 % at 10 µg/L and further to 23.1 % and 17.4 % at 50 and 100 µg/L, respectively. Mechanistic insights reveal that PS-NPs downregulate intestine-derived insulin-like neuropeptide (ins-11) via the transcription factor HLH-30 and the p38 MAPK signaling pathways, both are essential for avoidance behavior. Notably, acute serotonin treatment restored the avoidance behavior, indicating a role of serotonin signaling in this process. Our study indicates that early-life exposure to PS-NPs (100-nm) adversely affects the avoidance behavior of C. elegans, making them more vulnerable to harmful pathogens, thereby affecting their health. These findings highlight significant ecological and health hazards by early-life PS-NPs exposure.
Collapse
Affiliation(s)
- Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan
| | - Yu-Hsuan Kuo
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan
| | - Ting-An Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan.
| |
Collapse
|
4
|
Hua X, Wang D. Transgenerational response of germline histone acetyltransferases and deacetylases to nanoplastics at predicted environmental doses in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175903. [PMID: 39218082 DOI: 10.1016/j.scitotenv.2024.175903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Nanoplastics could cause toxic effects on organism and their offsprings; however, how this transgenerational toxicity is formed remains largely unclear. We here examined potential involvement of germline histone acetylation regulation in modulating transgenerational toxicity of polyetyrene nanoparticle (PS-NP) in Caenorhabditis elegans. At parental generation (P0-G), PS-NP (1-100 μg/L) decreased expressions of germline cbp-1 and taf-1 encoding histone acetyltransferases, as well as germline expressions of sir-2.1 and hda-3 encoding histone deacetylase. Decrease in these 4 germline genes were also observed in the offspring of PS-NP (1-100 μg/L) exposed nematodes. Germline RNAi of cbp-1, taf-1, sir-2.1 and hda-3 resulted in more severe transgenerational PS-NP toxicity on locomotion and brood size. Meanwhile, in PS-NP exposed nematodes, germline RNAi of cbp-1, taf-1, sir-2.1 and hda-3 increased expression of genes encoding insulin, FGF, Wnt, and/or Notch ligands and expressions of their receptor genes in the offspring. Susceptibility to transgenerational PS-NP toxicity in cbp-1(RNAi), taf-1(RNAi), sir-2.1(RNAi), and hda-3 (RNAi) was inhibited by RNAi of these germline ligands genes. Moreover, histone deacetylase inhibition served as molecular initiating event (MIE) leading to transgenerational toxicity in epigenetic adverse outcome pathway (AOP) for nanoplastics. Our data provided evidence that germline histone acetylation regulation functioned as an important mechanism for transgenerational toxicity of nanoplastics at predicted environmental doses (PEDs) by affecting secreted ligands in organisms.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
5
|
Chen H, Chen X, Gu Y, Jiang Y, Guo H, Chen J, Yu J, Wang C, Chen C, Li H. Transgenerational reproductive toxicity induced by carboxyl and amino charged microplastics at environmental concentrations in Caenorhabditis elegans: Involvement of histone methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175132. [PMID: 39084367 DOI: 10.1016/j.scitotenv.2024.175132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microplastics, recognized as emerging contaminants, are commonly observed to be charged in the environment, potentially exerting toxic effects on various organisms. However, the transgenerational reproductive toxicity and underlying mechanisms of polystyrene (PS), particularly carboxyl-modified PS (PS-COOH) and amino-modified PS (PS-NH2), remain largely unexplored. In this study, the parental generation (P0) of Caenorhabditis elegans was subjected to environmental concentrations (0.1-100 μg/L) of PS, PS-COOH, and PS-NH2, with subsequent generations (F1-F4) cultured under normal conditions. Exposure to PS-NH2 at concentrations of 10-100 μg/L exhibited more pronounced reproductive toxicity compared to PS or PS-COOH, resulting in decreased brood size, egg ejection rate, number of fertilized eggs, and cell corpses per gonad. Similarly, maternal exposure to 100 μg/L of PS-NH2 induced more severe transgenerational reproductive effects in C. elegans. Significant increases in H3 on lysine 4 dimethylation (H3K4me2) and H3 on lysine 9 trimethylation (H3K9me3) levels were observed in the subsequent generation, concurrent with the transgenerational upregulation of set-30 and met-2 following parental exposure to PS, PS-COOH, and PS-NH2. Correlation analyses revealed significant associations between the expression of these genes with the reproductive ability. Molecular docking studies suggested that PS-NH2 exhibited higher affinity for SET-30 and MET-2. Further analysis demonstrated that transgenerational effects on reproduction were absent in set-30(gk315) and met-2(n4256) mutants, highlighting the pivotal role of set-30 and met-2 in mediating the transgenerational effect. This study provides novel insights into the environmental risks associated with negatively and positively charged microplastics.
Collapse
Affiliation(s)
- Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulun Gu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hongzhi Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jinyu Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jun Yu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Wu Z, Wang L, Chen W, Wang Y, Cui K, Chen W, Liu J, Jin H, Zhou Z. Reproductive Toxicity and Multi/Transgenerational Effects of Emerging Pollutants on C. elegans. TOXICS 2024; 12:785. [PMID: 39590964 PMCID: PMC11598590 DOI: 10.3390/toxics12110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Emerging pollutants (EPs) are receiving increasing attention due to the threats they pose to the environment and human health. As EPs continue to emerge, risk assessment requires many model animals. Caenorhabditis elegans (C. elegans) has been an outstanding toxicological model organism due to its growth and development characteristics. Particularly, in studying the transgenerational influences of EPs, C. elegans has advantages in saving time and cost due to its short generation cycle. As infertility has become a major problem in human reproductive health, reproductive toxicities of EPs on contemporary nematodes and across generations of C. elegans were introduced in this review. Moreover, the underlying mechanisms involved in germ cell apoptosis, spermatogenesis, and epigenetic alteration were discussed. Future research opportunities and challenges are also discussed to expand our understanding of the reproductive influences of EPs.
Collapse
Affiliation(s)
- Zhiling Wu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Lingqiao Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Weihua Chen
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan 430010, China;
| | - Yiqi Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Ke Cui
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Weiyan Chen
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Jijun Liu
- Chongqing Center for Disease Control and Prevention, Chongqing 400707, China;
| | - Huidong Jin
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| |
Collapse
|
7
|
Liu H, Tan X, Li X, Wu Y, Lei S, Wang Z. Amino-modified nanoplastics at predicted environmental concentrations cause transgenerational toxicity through activating germline EGF signal in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174766. [PMID: 39004367 DOI: 10.1016/j.scitotenv.2024.174766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/03/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
In the real environment, some chemical functional groups are unavoidably combined on the nanoplastic surface. Reportedly, amino-modified polystyrene nanoparticles (PS-A NPs) exposure in parents can induce severe transgenerational toxicity, but the underlying molecular mechanisms remain largely unclear. Using Caenorhabditis elegans as the animal model, this study was performed to investigate the role of germline epidermal growth factor (EGF) signal on modulating PS-A NPs' transgenerational toxicity. As a result, 1-10 μg/L PS-A NPs exposure transgenerationally enhanced germline EGF ligand/LIN-3 and NSH-1 levels. Germline RNAi of lin-3 and nsh-1 was resistant against PS-A NPs' transgenerational toxicity, implying the involvement of EGF ligand activation in inducing PS-A NPs' transgenerational toxicity. Furthermore, LIN-3 overexpression transgenerationally enhanced EGF receptor/LET-23 expression in the progeny, and let-23 RNAi in F1-generation notably suppressed PS-A NPs' transgenerational toxicity in the exposed worms overexpressing germline LIN-3 at P0 generation. Finally, LET-23 functioned in neurons and intestine for regulating PS-A NPs' transgenerational toxicity. LET-23 acted at the upstream DAF-16/FOXO within the intestine in response to PS-A NPs' transgenerational toxicity. In neurons, LET-23 functioned at the upstream of DAF-7/DBL-1, ligands of TGF-β signals, to mediate PS-A NPs' transgenerational toxicity. Briefly, this work revealed the exposure risk of PS-A NPs' transgenerational toxicity, which was regulated through activating germline EGF signal in organisms.
Collapse
Affiliation(s)
- Huanliang Liu
- Environment and Health research division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China; Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaochao Tan
- Environment and Health research division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Wu
- Environment and Health research division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Shuhan Lei
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Lian H, Zhu L, Li M, Feng S, Gao F, Zhang X, Zhang F, Xi Y, Xiang X. Emerging threat of marine microplastics: Cigarette butt contamination on Yellow Sea beaches and the potential toxicity risks to rotifer growth and reproduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135534. [PMID: 39151359 DOI: 10.1016/j.jhazmat.2024.135534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Cigarette butts have become one of the most common and persistent forms of debris in marine coastal areas, where they pose significant toxicity risks. This study investigated cigarette butt pollution along beaches of the Yellow Sea and used laboratory experiments to assess the toxicity of their leachate and fibers on the euryhaline rotifer Brachionus plicatilis. A pollution index confirmed pollution by this debris across all eight beaches surveyed, where the density of cigarette butts averaged 0.23 butts/m2. In controlled laboratory experiments, both the fibers and leachates from cigarette butts exhibited negative impacts on the development, reproduction, and population growth of rotifers. Unique abnormalities observed under different exposure treatments indicated toxicity specific to certain chemicals and particles. Continuous exposure to cigarette butts initially reduced rotifer fecundity, but this effect diminished over successive generations. However, the exposure induced transgenerational reproductive toxicity in the rotifers. Adaptive responses in rotifers after repeated exposure led to relative reduction in reproductive inhibition in the F3 and F4 generations. Furthermore, rotifers were capable of ingesting and accumulating cigarette butts, and maternal transfer emerged as an alternative pathway for uptake of this material in the offspring. These results increase our understanding of the ecological risks posed by cigarette butts in aquatic environments.
Collapse
Affiliation(s)
- Hairong Lian
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China
| | - Lingyun Zhu
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China
| | - Meng Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China
| | - Sen Feng
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China
| | - Fan Gao
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China
| | - Xin Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China
| | - Fan Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China
| | - Yilong Xi
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Wuhu 241000, Anhui, China
| | - Xianling Xiang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Wuhu 241000, Anhui, China.
| |
Collapse
|
9
|
Richard CMC, Dejoie E, Wiegand C, Gouesbet G, Colinet H, Balzani P, Siaussat D, Renault D. Plastic pollution in terrestrial ecosystems: Current knowledge on impacts of micro and nano fragments on invertebrates. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135299. [PMID: 39067293 DOI: 10.1016/j.jhazmat.2024.135299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
The increasing accumulation of small plastic particles, in particular microplastics (>1 µm to 5 mm) and nanoplastics (< 1 µm), in the environment is a hot topic in our rapidly changing world. Recently, studies were initiated to better understand the behavior of micro- and nanoplastics (MNP) within complex matrices like soil, as well as their characterization, incorporation and potential toxicity to terrestrial biota. However, there remains significant knowledge gaps in our understanding of the wide-extent impacts of MNP on terrestrial invertebrates. We first summarized facts on global plastic pollution and the generation of MNP. Then, we focused on compiling the existing literature examining the consequences of MNP exposure in terrestrial invertebrates. The diversity of investigated biological endpoints (from molecular to individual levels) were compiled to get a better comprehension of the effects of MNP according to different factors such as the shape, the polymer type, the organism, the concentration and the exposure duration. The sublethal effects of MNP are acknowledged in the literature, yet no general conclusion was drawn as their impacts are highly dependent on their characteristic and experimental design. Finally, the synthesis highlighted some research gaps and remediation strategies, as well as a protocol to standardize ecotoxicological studies.
Collapse
Affiliation(s)
- Chloé M C Richard
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Elsa Dejoie
- Groupe de Recherche en Écologie de la MRC Abitibi, Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Amos, Québec J9T 2L8, Canada
| | - Claudia Wiegand
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Gwenola Gouesbet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic
| | - David Siaussat
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - David Renault
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France.
| |
Collapse
|
10
|
Wu J, Shao Y, Hua X, Wang Y, Wang D. Nanoplastic at environmentally relevant concentrations induces toxicity across multiple generations associated with inhibition in germline G protein-coupled receptor CED-1 in Caenorhabditis elegans. CHEMOSPHERE 2024; 364:143011. [PMID: 39098352 DOI: 10.1016/j.chemosphere.2024.143011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024]
Abstract
Nanoplastics at environmentally relevant concentrations (ERCs) could cause transgenerational toxicity on organisms. Caenorhabditis elegans is an important model for the study of transgenerational toxicology of pollutants. Nevertheless, the underlying mechanisms for the control of transgenerational nanoplastic toxicity by germline signals remain largely unclear. In C. elegans, exposure to 1-100 μg/L polystyrene nanoparticle (PS-NP) decreased expression of germline ced-1 encoding a G protein-coupled receptor at parental generation (P0-G). After PS-NP exposure at P0-G, transgenerational decrease in germline ced-1 expression could be detected. Meanwhile, the susceptibility to transgenerational PS-NP toxicity was observed in ced-1(RNAi) animals. After PS-NP exposure at P0-G, germline RNAi of ced-1 increased expressions of met-2 and set-6 encoding histone methylation transferases. The susceptibility of ced-1(RNAi) to transgenerational PS-NP toxicity could be inhibited by RNAi of met-2 and set-6. Moreover, in PS-NP exposed met-2(RNAi) and set-6(RNAi) nematodes, expressions of ins-39, wrt-3, and/or efn-3 encoding secreted ligands were decreased. Therefore, our results demonstrated that inhibition in germline CED-1 mediated the toxicity induction of nanoplastics at ERCs across multiple generations in nematodes.
Collapse
Affiliation(s)
- Jingwei Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yuting Shao
- School of Public Health, Southeast University, Nanjing, China
| | - Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yuxing Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
11
|
Lei S, Hu Z, Liu H. Treatment with quercetin mitigates polystyrene nanoparticle-induced reduction in neuron capacity by inhibiting dopaminergic neurodegeneration and facilitating dopamine metabolism in Caenorhabditis elegans. CHEMOSPHERE 2024; 364:143303. [PMID: 39251157 DOI: 10.1016/j.chemosphere.2024.143303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
In organisms, long-term nanopolystyrenes (PS-NPs) exposure can cause toxicity, including neurotoxicity. Quercetin, the flavonol with extensive distribution within plants, possesses diverse biological activities. Nevertheless, the possible effect of quercetin to suppress PS-NPs-induced neurotoxicity and its associated mechanism remains unknown. Thus, in the present work, Caenorhabditis elegans was utilized as the model animal to investigate quercetin's pharmacological effect on suppressing PS-NPs-induced neurotoxicity and the underlying mechanism. PS-NPs exposure at 1-100 μg/L remarkably reduced locomotion behavior, while only PS-NPs exposure at 100 μg/L significantly decrease sensory perception behavior. Meanwhile, the increase in the number of worms with dopaminergic neurodegeneration was detected in nematodes exposed to 100 μg/L PS-NPs and the decreased dopamine content was observed within nematodes exposed to 10-100 μg/L PS-NPs, demonstrating the function of dopaminergic neurodegeneration and disruption of dopamine metabolism in inducing PS-NPs toxicity on neuron capacity. After 100 μg/L PS-NPs exposure, the 25-100 μM quercetin treatment effectively increased the locomotion behavior and the sensory perception behavior. Developmentally, quercetin treatment (100 μM) remarkably enhanced fluorescence intensity while decreasing worm number with neurodegeneration within BZ555 transgenic strains exposed to 100 μg/L PS-NPs. Physiologically, quercetin treatment (100 μM) significantly enhanced dopamine content within nematodes exposed to 100 μg/L PS-NPs. Molecularly, quercetin treatment (100 μM) notably decreased the expressions of genes governing neurodegeneration (mec-4, deg-3, unc-68, itr-1, clp-1, and asp-3) while significantly increasing the expression of genes governing dopamine metabolism (cat-2, cat-1, dop-1, dop-2, dop-3). As revealed by molecular docking results, quercetin might bind to excitotoxic-like ion channels receptors (MEC-4 and DEG-3) and dopamine secreted protein (CAT-2). Consequently, findings in this work demonstrated that long-term PS-NPs exposure within the μg/L range (1-100 μg/L) was toxic to neuron capacity, which was associated with the enhancement in dopaminergic neurodegeneration and disruption of dopamine metabolism. Notably, PS-NPs-mediated neurotoxicity to nematodes is probably suppressed through subsequent quercetin treatment.
Collapse
Affiliation(s)
- Shuhan Lei
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhiyong Hu
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, China
| | - Huanliang Liu
- Environment and Health research division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
12
|
Wan X, Liang G, Wang D. Neurotoxicity and accumulation of CPPD quinone at environmentally relevant concentrations in Caenorhabditis elegans. CHEMOSPHERE 2024; 361:142499. [PMID: 38824792 DOI: 10.1016/j.chemosphere.2024.142499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
CPPD quinone (CPPDQ) is a member of PPDQs, which was widely distributed in different environments. Using Caenorhabditis elegans as an animal model, we here examined neurotoxicity and accumulation of CPPDQ and the underlying mechanism. After exposure to 0.01-10 μg/L CPPDQ, obvious body accumulation of CPDDQ was detected. Meanwhile, exposure to CPPDQ (0.01-10 μg/L) decreased head thrash, body bend, and forward turn, and increased backward turn. Nevertheless, only exposure to 10 μg/L CPPDQ induced neurodegeneration in GABAergic system. Exposure to CPPDQ (0.01-10 μg/L) further decreased expressions of daf-7 encoding TGF-β ligand, jnk-1 encoding JNK MAPK, and mpk-1 encoding ERK MAPK. Additionally, among examined G protein-coupled receptor (GPCR) genes, exposure to CPPDQ (0.01-10 μg/L) decreased dcar-1 expression and increased npr-8 expression. RNAi of daf-7, jnk-1, mpk-1, and dcar-1 resulted in susceptibility, and nhr-8 RNAi caused resistance to CPPDQ neurotoxicity and accumulation. Moreover, in CPPDQ exposed nematodes, RNAi of dcar-1 decreased jnk-1 and mpk-1 expressions, and RNAi of npr-8 increased mpk-1 expression. Therefore, exposure to CPPDQ potentially resulted in neurotoxicity by inhibiting TGF-β, JNK MAPK, and ERK MAPK signals. The inhibition in JNK MAPK and ERK MAPKs signals in CPPDQ exposed nematodes was further related to alteration in GPCRs of DCAR-1 and NHR-8 in nematodes.
Collapse
Affiliation(s)
- Xin Wan
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
13
|
Rajendran D, Kamalakannan M, Doss GP, Chandrasekaran N. Surface functionalization, particle size and pharmaceutical co-contaminant dependent impact of nanoplastics on marine crustacean - Artemia salina. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1130-1146. [PMID: 38655700 DOI: 10.1039/d4em00010b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Despite a significant amount of research on micronanoplastics (MNPs), there is still a gap in our understanding of their function as transporters of other environmental pollutants (known as the Trojan horse effect) and the combined effects of ingestion, bioaccumulation, and toxicity to organisms. This study examined the individual effects of polystyrene nanoplastics (PSNPs) with various surface functionalizations (plain (PS), carboxylated (PS-COOH), and aminated (PS-NH2)), particle sizes (100 nm and 500 nm), and a pharmaceutical co-contaminant (metformin hydrochloride (MH), an anti-diabetic drug) on the marine crustacean - Artemia salina. The study specifically aimed to determine if MH alters the detrimental effects of PSNPs on A. salina. The potential toxicity of these emerging pollutants was assessed by examining mortality, hatching rate, morphological changes, and biochemical changes. Smaller nanoparticles had a more significant impact than larger ones, and PS-NH2 was more harmful than PS and PS-COOH. Exposure to the nanoparticle complex with MH resulted in a decrease in hatching rate, an increase in mortality, developmental abnormalities, an increase in reactive oxygen species, catalase, and lipid peroxidase, and a decrease in total protein and superoxide dismutase, indicating a synergistic effect. There were no significant differences between the complex and the individual nanoparticles. However, accumulating these particles in organisms could contaminate the food chain. These results highlight the potential environmental risks associated with the simultaneous exposure of aquatic species to plastics, particularly smaller PS, aminated PS, and pharmaceutical complex PS.
Collapse
Affiliation(s)
- Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| | | | - George Priya Doss
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | |
Collapse
|
14
|
Liu Z, Wang Y, Bian Q, Wang D. Transgenerational Response of Germline Nuclear Hormone Receptor Genes to Nanoplastics at Predicted Environmental Doses in Caenorhabditis elegans. TOXICS 2024; 12:420. [PMID: 38922100 PMCID: PMC11209457 DOI: 10.3390/toxics12060420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Transgenerational nanoplastic toxicity could be detected in Caenorhabditis elegans after exposure at the parental generation (P0-G); however, the underlying mechanisms remain largely unclear. We aimed to examine the role of germline nuclear hormone receptors (NHRs) in controlling the transgenerational toxicity of polystyrene nanoparticles (PS-NPs) based on gene expression screening and functional analysis. Among germline NHR genes, daf-12, nhr-14, and nhr-47 expressions were increased and nhr-12 expression was decreased by PS-NPs (1 and 10 μg/L). Transgenerational alterations in expressions of these four NHR genes were also induced by PS-NPs (1 and 10 μg/L). RNAi of daf-12, nhr-14, and nhr-47 caused resistance, whereas RNAi of nhr-12 conferred susceptibility to transgenerational PS-NP toxicity. After PS-NP exposure, expressions of ins-3, daf-28, and ins-39 encoding insulin ligands, efn-3 encoding Ephrin ligand, and lin-44 encoding Wnt ligand, as well as expressions of their receptor genes (daf-2, vab-1, and/or mig-1), were dysregulated by the RNAi of daf-12, nhr-14, nhr-47, and nhr-12. Therefore, alteration in certain germline NHRs could mediate the induction of transgenerational nanoplastic toxicity by affecting secreted ligands and their receptors in the offspring of exposed organisms.
Collapse
Affiliation(s)
- Zhengying Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; (Z.L.); (Y.W.)
| | - Yuxing Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; (Z.L.); (Y.W.)
| | - Qian Bian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China;
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; (Z.L.); (Y.W.)
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China
| |
Collapse
|
15
|
Renault D, Wiegand C, Balzani P, Richard CMC, Haubrock PJ, Colinet H, Davranche M, Pierson-Wickmann AC, Derocles SAP. The Plasticene era: Current uncertainties in estimates of the hazards posed by tiny plastic particles on soils and terrestrial invertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172252. [PMID: 38599414 DOI: 10.1016/j.scitotenv.2024.172252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Plastics are ubiquitous in our daily life. Large quantities of plastics leak in the environment where they weather and fragment into micro- and nanoparticles. This potentially releases additives, but rarely leads to a complete mineralization, thus constitutes an environmental hazard. Plastic pollution in agricultural soils currently represents a major challenge: quantitative data of nanoplastics in soils as well as their effects on biodiversity and ecosystem functions need more attention. Plastic accumulation interferes with soil functions, including water dynamics, aeration, microbial activities, and nutrient cycling processes, thus impairing agricultural crop yield. Plastic debris directly affects living organisms but also acts as contaminant vectors in the soils, increasing the effects and the threats on biodiversity. Finally, the effects of plastics on terrestrial invertebrates, representing major taxa in abundance and diversity in the soil compartment, need urgently more investigation from the infra-individual to the ecosystem scales.
Collapse
Affiliation(s)
- David Renault
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France.
| | - Claudia Wiegand
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
| | - Paride Balzani
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Chloé M C Richard
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
| | - Phillip J Haubrock
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571 Gelnhausen, Germany; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| | - Hervé Colinet
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
| | - Mélanie Davranche
- UMR CNRS 6118 GEOSCIENCES Rennes, Université Rennes, Avenue Général Leclerc, 35042 Rennes cedex, France
| | | | - Stéphane A P Derocles
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
| |
Collapse
|
16
|
Chen H, Gu Y, Tan S, Chen X, Jiang Y, Guo H, Chen J, Wang C, Chen C, Li H, Yu Y. Photoaged Nanopolystyrene Affects Neurotransmission to Induce Transgenerational Neurotoxicity in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8665-8674. [PMID: 38712532 DOI: 10.1021/acs.est.4c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Nanopolystyrene (NPS), a frequently employed nanoplastic, is an emerging environmental contaminant known to cause neurotoxicity in various organisms. However, the potential for transgenerational neurotoxic effects, especially from photoaged NPS (P-NPS), remains underexplored. This study investigated the aging of virgin NPS (V-NPS) under a xenon lamp to simulate natural sunlight exposure, which altered the physicochemical characteristics of the NPS. The parental generation (P0) of Caenorhabditis elegans was exposed to environmental concentrations (0.1-100 μg/L) of V-NPS and P-NPS, with subsequent offspring (F1-F4 generations) cultured under NPS-free conditions. Exposure to 100 μg/L P-NPS resulted in more pronounced deterioration in locomotion behavior in the P0 generation compared to V-NPS; this deterioration persisted into the F1-F2 generations but returned to normal in the F3-F4 generations. Additionally, maternal exposure to P-NPS damaged dopaminergic, glutamatergic, and serotonergic neurons in subsequent generations. Correspondingly, there was a significant decrease in the levels of dopamine, glutamate, and serotonin, associated with reduced expression of neurotransmission-related genes dat-1, eat-4, and tph-1 in the P0 and F1-F2 generations. Further analysis showed that the effects of P-NPS on locomotion behavior were absent in subsequent generations of eat-4(ad572), tph-1(mg280), and dat-1(ok157) mutants, highlighting the pivotal roles of these genes in mediating P-NPS-induced transgenerational neurotoxicity. These findings emphasize the crucial role of neurotransmission in the transgenerational effects of P-NPS on locomotion behavior, providing new insights into the environmental risks associated with exposure to photoaged nanoplastics.
Collapse
Affiliation(s)
- Haibo Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulun Gu
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shihui Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiaoxia Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hongzhi Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jinyu Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chen Wang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
17
|
Kaur M, Sharma A, Bhatnagar P. Vertebrate response to microplastics, nanoplastics and co-exposed contaminants: Assessing accumulation, toxicity, behaviour, physiology, and molecular changes. Toxicol Lett 2024; 396:48-69. [PMID: 38677566 DOI: 10.1016/j.toxlet.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Pollution from microplastics (MPs) and nanoplastics (NPs) has gained significant public attention and has become a serious environmental problem worldwide. This review critically investigates MPs/NPs' ability to pass through biological barriers in vertebrate models and accumulate in various organs, including the brain. After accumulation, these particles can alter individuals' behaviour and exhibit toxic effects by inducing oxidative stress or eliciting an inflammatory response. One major concern is the possibility of transgenerational harm, in which toxic consequences are displayed in offspring who are not directly exposed to MPs/NPs. Due to their large and marked surface hydrophobicity, these particles can easily absorb and concentrate various environmental pollutants, which may increase their toxicity to individuals and subsequent generations. This review systematically provides an analysis of recent studies related to the toxic effects of MPs/NPs, highlighting the intricate interplay between co-contaminants in vitro and in vivo. We further delve into mechanisms of MPs/NPs-induced toxicity and provide an overview of potential therapeutic approaches to lessen the negative effects of these MPs/NPs. The review also emphasizes the urgency of future studies to examine the long-term effects of chronic exposure to MPs/NPs and their size- and type-specific hazardous dynamics, and devising approaches to safeguard the affected organisms.
Collapse
Affiliation(s)
- Manjyot Kaur
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| | - Anju Sharma
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India.
| | - Pradeep Bhatnagar
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| |
Collapse
|
18
|
Errázuriz León R, Araya Salcedo VA, Novoa San Miguel FJ, Llanquinao Tardio CRA, Tobar Briceño AA, Cherubini Fouilloux SF, de Matos Barbosa M, Saldías Barros CA, Waldman WR, Espinosa-Bustos C, Hornos Carneiro MF. Photoaged polystyrene nanoplastics exposure results in reproductive toxicity due to oxidative damage in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123816. [PMID: 38508369 DOI: 10.1016/j.envpol.2024.123816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The increase of plastic production together with the incipient reuse/recycling system has resulted in massive discards into the environment. This has facilitated the formation of micro- and nanoplastics (MNPs) which poses major risk for environmental health. Although some studies have investigated the effects of pristine MNPs on reproductive health, the effects of weathered MNPs have been poorly investigated. Here we show in Caenorhabditis elegans that exposure to photoaged polystyrene nanoplastics (PSNP-UV) results in worse reproductive performance than pristine PSNP (i.e., embryonic/larval lethality plus a decrease in the brood size, accompanied by a high number of unfertilized eggs), besides it affects size and locomotion behavior. Those effects were potentially generated by reactive products formed during UV-irradiation, since we found higher levels of reactive oxygen species and increased expression of GST-4 in worms exposed to PSNP-UV. Those results are supported by physical-chemical characterization analyses which indicate significant formation of oxidative degradation products from PSNP under UV-C irradiation. Our study also demonstrates that PSNP accumulate predominantly in the gastrointestinal tract of C. elegans (with no accumulation in the gonads), being completely eliminated at 96 h post-exposure. We complemented the toxicological analysis of PSNP/PSNP-UV by showing that the activation of the stress response via DAF-16 is dependent of the nanoplastics accumulation. Our data suggest that exposure to the wild PSNP, i.e., polystyrene nanoplastics more similar to those actually found in the environment, results in more important reprotoxic effects. This is associated with the presence of degradation products formed during UV-C irradiation and their interaction with biological targets.
Collapse
Affiliation(s)
- Rocío Errázuriz León
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | | | | | | | | | | | - Marcela de Matos Barbosa
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto/SP, 14040-901, Brazil
| | | | | | - Christian Espinosa-Bustos
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | | |
Collapse
|
19
|
Liu H, Tan X, Wu Y, Li X, Hu Z, Lei S, Fan W, Wang Z. Long-term exposure to 6-PPD quinone at environmentally relevant concentrations causes neurotoxicity by affecting dopaminergic, serotonergic, glutamatergic, and GABAergic neuronal systems in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171291. [PMID: 38423311 DOI: 10.1016/j.scitotenv.2024.171291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
6-PPD quinone (6-PPDQ), an emerging environmental pollutant, is converted based on 6-PPD via ozonation. However, a systematic evaluation on possible neurotoxicity of long-term and low-dose 6-PPDQ exposure and the underlying mechanism remain unknown. In the present work, 0.1-10 μg/L 6-PPDQ was added to treat Caenorhabditis elegans for 4.5 days, with locomotion behavior, neuronal development, sensory perception behavior, neurotransmitter content, and levels of neurotransmission-related genes being the endpoints. 6-PPDQ exposure at 0.1-10 μg/L significantly reduced locomotion behavior, and that at 1-10 μg/L decreased sensory perception behavior in nematodes. Moreover, 6-PPDQ exposure at 10 μg/L notably induced damage to the development of dopaminergic, glutamatergic, serotonergic, and GABAergic neurons. Importantly, nematodes with chronic 6-PPDQ exposure at 10 μg/L were confirmed to suffer obviously decreased dopamine, serotonin, glutamate, dopamine, and GABA contents and altered neurotransmission-related gene expression. Meanwhile, the potential binding sites of 6-PPDQ and neurotransmitter synthesis-related proteins were further shown by molecular docking method. Lastly, Pearson's correlation analysis showed that locomotion behavior and sensory perception behavior were positively correlated with the dopaminergic, serotonergic, glutamatergic, and GABAergic neurotransmission. Consequently, 6-PPDQ exposure disturbed neurotransmitter transmission, while such changed molecular foundation for neurotransmitter transmission was related to 6-PPDQ toxicity induction. The present work sheds new lights on the mechanisms of 6-PPDQ and its possible neurotoxicity to organisms at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Huanliang Liu
- Environment and Health research division, Public Health Research Center,Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China; Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaochao Tan
- Environment and Health research division, Public Health Research Center,Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yu Wu
- Environment and Health research division, Public Health Research Center,Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong Hu
- School of Public Health and Management, Binzhou Medical University, Yantai 264003, China
| | - Shuhan Lei
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wendong Fan
- Environment and Health research division, Public Health Research Center,Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
20
|
Fan J, Liu L, Lu Y, Chen Q, Fan S, Yang Y, Long Y, Liu X. Acute exposure to polystyrene nanoparticles promotes liver injury by inducing mitochondrial ROS-dependent necroptosis and augmenting macrophage-hepatocyte crosstalk. Part Fibre Toxicol 2024; 21:20. [PMID: 38610056 PMCID: PMC11010371 DOI: 10.1186/s12989-024-00578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The global use of plastic materials has undergone rapid expansion, resulting in the substantial generation of degraded and synthetic microplastics and nanoplastics (MNPs), which have the potential to impose significant environmental burdens and cause harmful effects on living organisms. Despite this, the detrimental impacts of MNPs exposure towards host cells and tissues have not been thoroughly characterized. RESULTS In the present study, we have elucidated a previously unidentified hepatotoxic effect of 20 nm synthetic polystyrene nanoparticles (PSNPs), rather than larger PS beads, by selectively inducing necroptosis in macrophages. Mechanistically, 20 nm PSNPs were rapidly internalized by macrophages and accumulated in the mitochondria, where they disrupted mitochondrial integrity, leading to heightened production of mitochondrial reactive oxygen species (mtROS). This elevated mtROS generation essentially triggered necroptosis in macrophages, resulting in enhanced crosstalk with hepatocytes, ultimately leading to hepatocyte damage. Additionally, it was demonstrated that PSNPs induced necroptosis and promoted acute liver injury in mice. This harmful effect was significantly mitigated by the administration of a necroptosis inhibitor or systemic depletion of macrophages prior to PSNPs injection. CONCLUSION Collectively, our study suggests a profound toxicity of environmental PSNP exposure by triggering macrophage necroptosis, which in turn induces hepatotoxicity via intercellular crosstalk between macrophages and hepatocytes in the hepatic microenvironment.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Li Liu
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yupeng Long
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China.
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China.
| |
Collapse
|
21
|
Hua X, Wang D. Polyethylene nanoparticles at environmentally relevant concentrations enhances neurotoxicity and accumulation of 6-PPD quinone in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170760. [PMID: 38331287 DOI: 10.1016/j.scitotenv.2024.170760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
The exposure risk of 6-PPD quinone (6-PPDQ) has aroused increasing concern. In the natural environment, 6-PPDQ could interact with other pollutants, posing more severe environmental problems and toxicity to organisms. We here examined the effect of polyethylene nanoplastic (PE-NP) on 6-PPDQ neurotoxicity and the underling mechanisms in Caenorhabditis elegans. In nematodes, PE-NP (1 and 10 μg/L) decreased locomotion behavior, but did not affect development of D-type neurons. Exposure to PE-NP (1 and 10 μg/L) strengthened neurotoxicity of 6-PPDQ (10 μg/L) on the aspect of locomotion and neurodegeneration induction of D-type motor neurons. Exposure to PE-NPs (10 μg/L) caused increase in expressions of mec-4, asp-3, and asp-4 governing neurodegeneration in 10 μg/L 6-PPDQ exposed nematodes. Moreover, exposure to PE-NP (10 μg/L) increased expression of some neuronal genes (daf-7, dbl-1, jnk-1, and mpk-1) in 6-PPDQ exposed nematodes, and RNAi of these genes resulted in susceptibility to neurotoxicity of PE-NP and 6-PPDQ. 6-PPDQ could be adsorbed by PE-NPs, and resuspension of PE-NP and 6-PPDQ after adsorption equilibrium exhibited similar neurotoxicity to co-exposure of PE-NP and 6-PPDQ. In addition, exposure to PE-NP (1 and 10 μg/L) increased 6-PPDQ accumulation in body of nematodes and increased defecation cycle length in 6-PPDQ exposed nematodes. Therefore, 6-PPDQ could be adsorbed on nanoplastics (such as PE-NPs) and enhance both neurotoxicity and accumulation of 6-PPDQ in organisms.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
22
|
Zhuang Z, Liu T, Liu Z, Wang D. Polystyrene nanoparticles strengthen high glucose toxicity associated with alteration in insulin signaling pathway in C. elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116056. [PMID: 38301579 DOI: 10.1016/j.ecoenv.2024.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
Using Caenorhabditis elegans as animal model, we investigated the effect of exposure to polystyrene nanoparticles (PS-NPs) in the range of μg/L on high glucose toxicity induction. With lifespan and locomotion behavior as endpoints, we observed that PS-NP (10 and 100 μg/L) enhanced toxicity in 50 mM glucose treated animals. In insulin signaling pathway, expressions of genes encoding insulin receptor (daf-2), kinases (age-1 and akt-1/2), and insulin peptides (ins-9, ins-6, and daf-28) were increased, and expressions of daf-16 and its target of sod-3 were decreased in high glucose treated nematodes followed by PS-NP exposure. Toxicity enhancement in high glucose treated nematodes by PS-NP exposure was inhibited by RNAi of daf-2, age-1, akt-2, akt-1, and 3 insulin peptides genes, but increased by RNAi of daf-16 and sod-3. The resistance of animals with RNAi of daf-2 to toxicity in high glucose treated nematodes followed by PS-NP exposure could be suppressed by RNAi of daf-16. Moreover, in high glucose treated animals followed by PS-NP exposure, daf-2 expression was inhibited by RNAi of ins-6, ins-9, and daf-28. Our data demonstrated the risk of PS-NP exposure in enhancing the high glucose toxicity. More importantly, alteration in expression of genes in insulin signaling pathway was associated with the toxicity enhancement in high glucose treated nematodes followed by PS-NP exposure.
Collapse
Affiliation(s)
| | | | - Zhengying Liu
- Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
23
|
Liang J, Ji F, Wang H, Zhu T, Rubinstein J, Worthington R, Abdullah ALB, Tay YJ, Zhu C, George A, Li Y, Han M. Unraveling the threat: Microplastics and nano-plastics' impact on reproductive viability across ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169525. [PMID: 38141979 DOI: 10.1016/j.scitotenv.2023.169525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Plastic pollution pervades both marine and terrestrial ecosystems, fragmenting over time into microplastics (MPs) and nano-plastics (NPs). These particles infiltrate organisms via ingestion, inhalation, and dermal absorption, predominantly through the trophic interactions. This review elucidated the impacts of MPs/NPs on the reproductive viability of various species. MPs/NPs lead to reduced reproduction rates, abnormal larval development and increased mortality in aquatic invertebrates. Microplastics cause hormone secretion disorders and gonadal tissue damage in fish. In addition, the fertilization rate of eggs is reduced, and the larval deformity rate and mortality rate are increased. Male mammals exposed to MPs/NPs exhibit testicular anomalies, compromised sperm health, endocrine disturbances, oxidative stress, inflammation, and granulocyte apoptosis. In female mammals, including humans, exposure culminates in ovarian and uterine deformities, endocrine imbalances, oxidative stress, inflammation, granulosa cell apoptosis, and tissue fibrogenesis. Rodent offspring exposed to MPs experience increased mortality rates, while survivors display metabolic perturbations, reproductive anomalies, and weakened immunity. These challenges are intrinsically linked to the transgenerational conveyance of MPs. The ubiquity of MPs/NPs threatens biodiversity and, crucially, jeopardizes human reproductive health. The current findings underscore the exigency for comprehensive research and proactive interventions to ameliorate the implications of these pollutants.
Collapse
Affiliation(s)
- Ji Liang
- Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Feng Ji
- Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Hong Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tian Zhu
- Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - James Rubinstein
- College of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Richard Worthington
- School of Humanities and Sciences, Stanford university, Stanford, CA 94305, USA
| | | | - Yi Juin Tay
- Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Chenxin Zhu
- Universiti Sains Malaysia, Minden, Penang 11800, Malaysia.
| | - Andrew George
- Department of Biology, University of Oxford, 11a Mansfield Road, OX12JD, UK
| | - Yiming Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Mingming Han
- Universiti Sains Malaysia, Minden, Penang 11800, Malaysia.
| |
Collapse
|
24
|
Chen Z, Li Y, Xia H, Wang Y, Pang S, Ma C, Bi L, Wang F, Song M, Jiang G. Chronic exposure to polystyrene microplastics increased the chemosensitivity of normal human liver cells via ABC transporter inhibition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169050. [PMID: 38065500 DOI: 10.1016/j.scitotenv.2023.169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Microplastics (MPs) are ubiquitous in environmental compartments and consumer products. Although liver is frequently reported to be a target organ of MP accumulation in mammals, few studies have focused on MP hepatoxicity in humans. In this study, we used normal human liver cells, THLE-2, to assess the acute and chronic toxicity of polystyrene (PS) MPs with sizes of 0.1 and 1 μm. The results showed that after 48 h of exposure, both kinds of PS MPs could enter THLE-2 cells and cause no obviously acute cytotoxicity at <20 μg/mL. In contrast, metabolomic analysis revealed that 90 days of PS MPs exposure at environmentally relevant dose (0.2 μg/mL) could significantly alter the metabolic profiles of the cells, especially the nanosized MPs. KEGG pathway analysis showed that the ATP-binding cassette (ABC) transporter pathway was the most significantly changed pathway. Cell functional tests confirmed that chronic PS MP treatment could inhibit the activity of the ABC efflux transporter and further increase the cytotoxicity of arsenic, indicating that the PS MPs had a chemosensitizing effect. These findings underline the chronic risk of MPs to human liver.
Collapse
Affiliation(s)
- Zihan Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghuan Xia
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shaochen Pang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Ding R, Chen Y, Shi X, Li Y, Yu Y, Sun Z, Duan J. Size-dependent toxicity of polystyrene microplastics on the gastrointestinal tract: Oxidative stress related-DNA damage and potential carcinogenicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169514. [PMID: 38135073 DOI: 10.1016/j.scitotenv.2023.169514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have been generally regarded as emerging pollutants and received worldwide attention in recent years. Water and food consumption are the primary pathways for human exposure to MPs/NPs, thus gastrointestinal tracts may be susceptible to their toxicity. Although the recent report has indicated the presence of MPs/NPs in multiple human organs, little is known about their gastric effects. Therefore, this study focused on the adverse effects of polystyrene microplastics (PS-MPs) on gastric epithelium in vivo and in vitro. Surface-enhanced Raman spectroscopy (SERS) revealed the distribution of PS-MPs was associated with their particle sizes, and predominantly concentrated in gastric tissues. Gastric barrier injury and mitochondrial damage were observed in rats after exposure to PS-MPs. Compared with the larger ones, polystyrene nanoplastics (PS-NPs) more significantly reduced the activity of antioxidant enzymes while enhancing the level of MDA, 8-OhdG and γ-H2AX. Meanwhile, PS-MPs caused upregulation of β-catenin/YAP through redox-dependent regulation of nucleoredoxin (NXN) and dishevelled (Dvl). These findings supported the size-dependent effects of PS-MPs on oxidative stress and DNA damage. Moreover, the redox-dependent activation of the β-catenin/YAP cascade suggested a novel toxic mechanism for PS-MPs and implied the potential carcinogenic effects.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xuemin Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
26
|
Liu Z, Hua X, Zhao Y, Bian Q, Wang D. Polyethylene nanoplastics cause reproductive toxicity associated with activation of both estrogenic hormone receptor NHR-14 and DNA damage checkpoints in C. elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167471. [PMID: 37778542 DOI: 10.1016/j.scitotenv.2023.167471] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
As the most commercial polymer, the polyethylene nanoparticle (PE-NP) has been discharged into the environment and poses potential risks to organisms. However, the possible reproductive toxicity of PE-NP and underlying mechanisms remain largely unknown. In this study, Caenorhabditis elegans was employed as the animal model to effects of PE-NP (100 nm) and their leachates on reproduction and underlying mechanisms. Nematodes were exposed to PE-NP at 0.1-100 μg/L from L1-larvae to adult day 1 (approximately 4.5 days). Both brood size and number of fertilized eggs in uterus were decreased by 10 and 100 μg/L PE-NP, but could not be affected by their leachates. In addition, number of mitotic cells, length, and area of gonad were reduced by 10 and 100 μg/L PE-NP, but were not altered by their leachates. Accompanied with alteration in expressions of genes (egl-1, ced-9, ced-4, and ced-3) governing cell apoptosis, germline apoptosis was enhanced by PE-NP. Meanwhile, DNA damage was involved in the enhancement germline apoptosis after PE-NP exposure. PE-NP further increased expression of nhr-14 encoding estrogenic hormone receptor, and RNAi of nhr-14 suppressed PE-NP reproductive toxicity. Moreover, RNAi of nhr-14 decreased expression of egl-1, ced-4, ced-3, and mrt-2 in PE-NP exposed nematodes. Therefore, exposure to PE-NPs rather than in their leachates potentially caused reproductive toxicity by activating both estrogenic hormone receptor NHR-14 and DNA damage checkpoints (CLK-2, HUS-1, and MRT-2) in nematodes. These findings provide important insights into the exposure risk of PE-NPs on reproduction of environmental organisms.
Collapse
Affiliation(s)
- Zhengying Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yue Zhao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Qian Bian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
27
|
Chen H, Gu Y, Jiang Y, Yu J, Chen C, Shi C, Li H. Photoaged Polystyrene Nanoplastics Result in Transgenerational Reproductive Toxicity Associated with the Methylation of Histone H3K4 and H3K9 in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19341-19351. [PMID: 37934861 DOI: 10.1021/acs.est.3c05861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Polystyrene nanoplastics (PS-NPs) are emerging environmental contaminants that are ubiquitously detected in various environments and have toxic effects on various organisms. Nevertheless, the transgenerational reproductive toxicity and underlying mechanisms of PS-NPs remain largely unknown, especially for photoaged PS-NPs under ultraviolet irradiation. In this study, only the parental generation (P0) was exposed to virgin and aged PS-NPs at environmentally relevant concentrations (0.1-100 μg/L), and subsequent generations (F1-F4) were cultured under normal conditions. Ultraviolet irradiation induced the generation of environmentally persistent free radicals and reactive oxygen species, which altered the physical and chemical characteristics of PS-NPs. The results of toxicity testing suggested that exposure to aged PS-NPs caused a more severe decrease in brood size, egg ejection rate, number of fertilized eggs, and hatchability than did the virgin PS-NPs in the P0, F1, and F2 generations. Additionally, a single maternal exposure to aged PS-NPs resulted in transgenerational effects on fertility in the F1 and F2 generations. Increased levels of H3K4 and H3K9 methylation were observed in the F1 and F2 generations, which were concomitant with the transgenerational downregulation of the expression of associated genes, such as spr-5, set-17, and met-2. On the basis of correlation analyses, the levels of histone methylation and the expression of these genes were significantly correlated to transgenerational reproductive effects. Further research showed that transgenerational effects on fertility were not observed in spr-5(by134), met-2(n4256), and set-17(n5017) mutants. Overall, maternal exposure to aged PS-NPs induced transgenerational reproductive effects via H3K4 and H3K9 methylation, and the spr-5, met-2, and set-17 genes were involved in the regulation of transgenerational toxicity. This study provides new insights into the potential risks of photoaging PS-NPs in the environment.
Collapse
Affiliation(s)
- Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulun Gu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jun Yu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
28
|
Panizzolo M, Martins VH, Ghelli F, Squillacioti G, Bellisario V, Garzaro G, Bosio D, Colombi N, Bono R, Bergamaschi E. Biomarkers of oxidative stress, inflammation, and genotoxicity to assess exposure to micro- and nanoplastics. A literature review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115645. [PMID: 37922781 DOI: 10.1016/j.ecoenv.2023.115645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The increased awareness about possible health effects arising from micro- and nanoplastics (MNPs) pollution is driving a huge amount of studies. Many international efforts are in place to better understand and characterize the hazard of MNPs present in the environment. The literature search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology in two different databases (PubMed and Embase). The selection of articles was carried out blind, screening titles and abstracts according to inclusion and exclusion criteria. In general, these studies rely on the methodology already in use for assessing hazard from nanomaterials and particles of concern. However, only a limited number of studies have so far directly measured human exposure to MNPs and examined the relationship between such exposure and its impact on human health. This review aims to provide an overview of the current state of research on biomarkers of oxidative stress, inflammation, and genotoxicity that have been explored in relation to MNPs exposure, using human, cellular, animal, and plant models. Both in-vitro and in-vivo models suggest an increased level of oxidative stress and inflammation as the main mechanism of action (MOA) leading to adverse effects such as chronic inflammation, immunotoxicity and genotoxicity. With the identification of such biological endpoints, representing critical key initiating events (KIEs) towards adaptive or adverse outcomes, it is possible to identify a panel of surrogate biomarkers to be applied and validated especially in occupational settings, where higher levels of exposure may occur.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Vitor Hugo Martins
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Federica Ghelli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Valeria Bellisario
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Giacomo Garzaro
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Davide Bosio
- Unit of Occupational Medicine, A.O.U Città della Salute e della Scienza di Torino, Turin, Italy
| | - Nicoletta Colombi
- Federated Library of Medicine "F. Rossi", University of Turin, 10126 Turin, Italy
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy.
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| |
Collapse
|
29
|
Liu H, Wu Y, Wang Z. Long-term exposure to polystyrene nanoparticles at environmentally relevant concentration causes suppression in heme homeostasis signal associated with transgenerational toxicity induction in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132124. [PMID: 37499489 DOI: 10.1016/j.jhazmat.2023.132124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Heme homeostasis related signaling participates in inducing a protective response when controlling nanopolystyrene toxic effects in parental generation. However, whether the heme homeostasis signal is involved in regulation of transgenerational toxicity of nanopolystyrene toxicity is still unclear. Herein, with the model organism of Caenorhabditis elegans, 0.1-10 μg/L nanopolystyrene particles (PS-NPs) at 20-nm treatment downregulated glb-18, and the decrease was also discovered in the offspring following PS-NPs exposure. Germline glb-18 RNAi induced susceptive property to transgenerational PS-NPs toxicity, suggesting that a decreased GLB-18 level mediated induction of transgenerational toxicity. Importantly, germline GLB-18 transgenerationally activated the function of intestinal HRG-4 in controlling transgenerational PS-NPs toxicity. In transgenerational toxicity control, HRG-1/ATFS-1/HSP-6 was recognized to be the downstream pathway of HRG-4. Briefly, germline GLB-18 in P0 generation can transgenerationally activate the downstream intestinal HRG-4/HRG-1/ATFS-1/HSP-6 pathway among offspring for controlling the transgenerational toxicity of PS-NPs. Findings in the present work strengthens the possible association of heme homeostasis signal changes with transgenerational nanoplastic toxicity within the organisms.
Collapse
Affiliation(s)
- Huanliang Liu
- Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China; Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Wu
- Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
30
|
Zhou R, Yu Y, Miao H, Zhao N, Bu Y, Zhang H. Contribution of differential alteration in oxidative stress and anti-oxidation related molecular signals to toxicity difference between atrazine and its main metabolites in nematodes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115340. [PMID: 37595346 DOI: 10.1016/j.ecoenv.2023.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
As a widely used herbicide, atrazine and its two main metabolites of deethylatrazine (DEA) and deisopropylatrazine (DIA) pose an exposure risk for both human beings and animals in the environment. In this study, Caenorhabditis elegans was selected as an in vivo model to compare the toxicity between atrazine and its main metabolites. Upon exposure from the larval stage L1 to adult day 3, both DEA and DIA showed less toxicity on locomotion and reproduction compared with atrazine at concentration of 0.001, 0.01 0.1 and 1 mg/L for parental generation. In addition, exposure to DEA and DIA at concentration of 0.1 mg/L also induced less transgenerational toxicity on locomotion than exposure to atrazine for both parental generation and offspring of F1-F4. Accordingly, exposure to DEA and DIA caused less ROS production and alteration in the expression of some genes (mev-1, gas-1, and clk-1) governing oxidative stress compared to atrazine. Meanwhile, DEA and DIA lead to less increase in expression of superoxide dismutase genes (sod-2 and sod-3) and SOD-3::GFP than atrazine. Moreover, atrazine and its two main metabolites differentially activated the daf-16 encoding FOXO transcriptional factor in insulin signaling pathway during the control of downstream target of SOD-3. Overall, our results highlighted the important role of oxidative stress and anti-oxidation related molecular signals in mediating toxicity of atrazine, DEA and DIA, which provided a novel explanation for the different toxicity between atrazine and its main metabolites.
Collapse
Affiliation(s)
- Rong Zhou
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yue Yu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Huan Miao
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Na Zhao
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; College of Oceanography, Hohai University, Nanjing 210024, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Houhu Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
31
|
Daghighi E, Shah T, Chia RW, Lee JY, Shang J, Rodríguez-Seijo A. The forgotten impacts of plastic contamination on terrestrial micro- and mesofauna: A call for research. ENVIRONMENTAL RESEARCH 2023; 231:116227. [PMID: 37244494 DOI: 10.1016/j.envres.2023.116227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Microplastics (MP) and nanoplastics (NP) contamination of the terrestrial environment is a growing concern worldwide and is thought to impact soil biota, particularly the micro and mesofauna community, by various processes that may contribute to global change in terrestrial systems. Soils act as a long-term sink for MP, accumulating these contaminants and increasing their adverse impacts on soil ecosystems. Consequently, the whole terrestrial ecosystem is impacted by microplastic pollution, which also threatens human health by their potential transfer to the soil food web. In general, the ingestion of MP in different concentrations by soil micro and mesofauna can adversely affect their development and reproduction, impacting terrestrial ecosystems. MP in soil moves horizontally and vertically because of the movement of soil organisms and the disturbance caused by plants. However, the effects of MP on terrestrial micro-and mesofauna are largely overlooked. Here, we give the most recent information on the forgotten impacts of MP contamination of soil on microfauna and mesofauna communities (protists, tardigrades, soil rotifers, nematodes, collembola and mites). More than 50 studies focused on the impact of MP on these organisms between 1990 and 2022 have been reviewed. In general, plastic pollution does not directly affect the survival of organisms, except under co-contaminated plastics that can increase adverse effects (e.g. tire-tread particles on springtails). Besides, they can have adverse effects at oxidative stress and reduced reproduction (protists, nematodes, potworms, springtails or mites). It was observed that micro and mesofauna could act as passive plastic transporters, as shown for springtails or mites. Finally, this review discusses how soil micro- and mesofauna play a key role in facilitating the (bio-)degradation and movement of MP and NP through soil systems and, therefore, the potential transfer to soil depths. More research should be focused on plastic mixtures, community level and long-term experiments.
Collapse
Affiliation(s)
- Elaheh Daghighi
- BetterSoil e. V., Lise-Meitner-Straße 9, D-89081, Ulm, Germany
| | - Tufail Shah
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - R W Chia
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Research Institute for Earth Resources, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Research Institute for Earth Resources, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Andrés Rodríguez-Seijo
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia Do Solo, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas S/n, Ourense, 32004, Spain; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
32
|
Wu Y, Tan X, Shi X, Han P, Liu H. Combined Effects of Micro- and Nanoplastics at the Predicted Environmental Concentration on Functional State of Intestinal Barrier in Caenorhabditis elegans. TOXICS 2023; 11:653. [PMID: 37624159 PMCID: PMC10459583 DOI: 10.3390/toxics11080653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
The possible toxicity caused by nanoplastics or microplastics on organisms has been extensively studied. However, the unavoidably combined effects of nanoplastics and microplastics on organisms, particularly intestinal toxicity, are rarely clear. Here, we employed Caenorhabditis elegans to investigate the combined effects of PS-50 (50 nm nanopolystyrene) and PS-500 (500 nm micropolystyrene) at environmentally relevant concentrations on the functional state of the intestinal barrier. Environmentally, after long-term treatment (4.5 days), coexposure to PS-50 (10 and 15 μg/L) and PS-500 (1 μg/L) resulted in more severe formation of toxicity in decreasing locomotion behavior, in inhibiting brood size, in inducing intestinal ROS production, and in inducting intestinal autofluorescence production, compared with single-exposure to PS-50 (10 and 15 μg/L) or PS-500 (1 μg/L). Additionally, coexposure to PS-50 (15 μg/L) and PS-500 (1 μg/L) remarkably caused an enhancement in intestinal permeability, but no detectable abnormality of intestinal morphology was observed in wild-type nematodes. Lastly, the downregulation of acs-22 or erm-1 expression and the upregulation expressions of genes required for controlling oxidative stress (sod-2, sod-3, isp-1, clk-1, gas-1, and ctl-3) served as a molecular basis to strongly explain the formation of intestinal toxicity caused by coexposure to PS-50 (15 μg/L) and PS-500 (1 μg/L). Our results suggested that combined exposure to microplastics and nanoplastics at the predicted environmental concentration causes intestinal toxicity by affecting the functional state of the intestinal barrier in organisms.
Collapse
Affiliation(s)
| | | | | | | | - Huanliang Liu
- Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
33
|
Wang Y, Yuan X, Zhou R, Bu Y, Wang D. Combinational exposure to hydroxyatrazine increases neurotoxicity of polystyrene nanoparticles on Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163283. [PMID: 37019222 DOI: 10.1016/j.scitotenv.2023.163283] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
Using Caenorhabditis elegans as an animal model, we investigated combinational effect between 2-hydroxyatrazine (HA) and polystyrene nanoparticle (PS-NP) on function and development of D-type motor neurons. Exposure to HA (10 and 100 μg/L) alone caused decreases in body bend, head thrash, and forward turn and increase in backward turn. Exposure to 100 μg/L HA also caused neurodegeneration of D-type motor neurons. Moreover, combinational exposure to HA (0.1 and 1 μg/L) induced enhancement in PS-NP (10 μg/L) toxicity in inhibiting body bend, head thrash, and forward turn, and in increasing backward turn. In addition, combinational exposure to HA (1 μg/L) could result in neurodegeneration of D-type motor neurons in PS-NP (10 μg/L) exposed nematodes. Combinational exposure to HA (1 μg/L) and PS-NP (10 μg/L) increased expressions of crt-1, itr-1, mec-4, asp-3, and asp-4, which govern the induction of neurodegeneration. Moreover, combinational exposure to HA (0.1 and 1 μg/L) strengthened PS-NP (10 μg/L)-induced decreases in glb-10, mpk-1, jnk-1, and daf-7 expressions, which encode neuronal signals regulating response to PS-NP. Therefore, our results demonstrated the effect of combinational exposure to HA and nanoplastics at environmentally relevant concentrations in causing toxic effect on nervous system in organisms.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Xiaoan Yuan
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Rong Zhou
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
34
|
He W, Gu A, Wang D. Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans. TOXICS 2023; 11:511. [PMID: 37368611 DOI: 10.3390/toxics11060511] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Recently, the transgenerational toxicity of nanoplastics has received increasing attention. Caenorhabditis elegans is a useful model to assess the transgenerational toxicity of different pollutants. In nematodes, the possibility of early-life exposure to sulfonate-modified polystyrene nanoparticle (PS-S NP) causing transgenerational toxicity and its underlying mechanisms were investigated. After exposure at the L1-larval stage, transgenerational inhibition in both locomotion behavior (body bend and head thrash) and reproductive capacity (number of offspring and fertilized egg number in uterus) was induced by 1-100 μg/L PS-S NP. Meanwhile, after exposure to 1-100 μg/L PS-S NP, the expression of germline lag-2 encoding Notch ligand was increased not only at the parental generation (P0-G) but also in the offspring, and the transgenerational toxicity was inhibited by the germline RNA interference (RNAi) of lag-2. During the transgenerational toxicity formation, the parental LAG-2 activated the corresponding Notch receptor GLP-1 in the offspring, and transgenerational toxicity was also suppressed by glp-1 RNAi. GLP-1 functioned in the germline and the neurons to mediate the PS-S NP toxicity. In PS-S NP-exposed nematodes, germline GLP-1 activated the insulin peptides of INS-39, INS-3, and DAF-28, and neuronal GLP-1 inhibited the DAF-7, DBL-1, and GLB-10. Therefore, the exposure risk in inducing transgenerational toxicity through PS-S NP was suggested, and this transgenerational toxicity was mediated by the activation of germline Notch signal in organisms.
Collapse
Affiliation(s)
- Wenmiao He
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Aihua Gu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China
| |
Collapse
|
35
|
Hua X, Cao C, Zhang L, Wang D. Activation of FGF signal in germline mediates transgenerational toxicity of polystyrene nanoparticles at predicted environmental concentrations in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131174. [PMID: 36913746 DOI: 10.1016/j.jhazmat.2023.131174] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastics in the environment could cause the ecological and health risks. Recently, the transgenerational toxicity of nanoplastic has been observed in different animal models. In this study, using Caenorhabditis elegans as an animal model, we aimed to examine the role of alteration in germline fibroblast growth factor (FGF) signal in mediating the transgenerational toxicity of polystyrene nanoparticle (PS-NP). Exposure to 1-100 μg/L PS-NP (20 nm) induced transgenerational increase in expressions of germline FGF ligand/EGL-17 and LRP-1 governing FGF secretion. Germline RNAi of egl-17 and lrp-1 resulted in resistance to transgenerational PS-NP toxicity, indicating the requirement of FGF ligand activation and secretion in formation of transgenerational PS-NP toxicity. Germline overexpression of EGL-17 increased expression of FGF receptor/EGL-15 in the offspring, and RNAi of egl-15 at F1 generation (F1-G) inhibited transgenerational toxicity of PS-NP exposed animals overexpressing germline EGL-17. EGL-15 functions in both the intestine and the neurons to control transgenerational PS-NP toxicity. Intestinal EGL-15 acted upstream of DAF-16 and BAR-1, and neuronal EGL-15 functioned upstream of MPK-1 to control PS-NP toxicity. Our results suggested the important role of activation in germline FGF signal in mediating the induction of transgenerational toxicity in organisms exposed to nanoplastics in the range of μg/L.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Chang Cao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Le Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|
36
|
Yang S, Li M, Kong RYC, Li L, Li R, Chen J, Lai KP. Reproductive toxicity of micro- and nanoplastics. ENVIRONMENT INTERNATIONAL 2023; 177:108002. [PMID: 37276763 DOI: 10.1016/j.envint.2023.108002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
Large-scale plastic pollution occurs in terrestrial and marine environments and degrades into microparticles (MP) and nanoparticles (NP) of plastic. Micro/nanoplastics (MP/NPs) are found throughout the environment and different kinds of marine organisms and can enter the human body through inhalation or ingestion, particularly through the food chain. MPs/NPs can enter different organisms, and affect different body systems, including the reproductive, digestive, and nervous systems via the induction of different stresses such as oxidative stress and endoplasmic reticulum stress. This paper summarizes the effects of MPs/NPs of different sizes on the reproduction of different organisms including terrestrial and marine invertebrates and vertebrates, the amplification of toxic effects between them through the food chain, the serious threat to biodiversity, and, more importantly, the imminent challenge to human reproductive health. There is a need to strengthen international communication and cooperation on the remediation of plastic pollution and the protection of biodiversity to build a sustainable association between humans and other organisms.
Collapse
Affiliation(s)
- Shaolong Yang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, PR China
| | - Mengzhen Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, PR China
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Lei Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, PR China.
| | - Jian Chen
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, PR China.
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, PR China.
| |
Collapse
|
37
|
Soares GC, Müller L, Josende ME, Ventura-Lima J. Biochemical and physiological effects of multigenerational exposure to spheric polystyrene microplastics in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69307-69320. [PMID: 37131009 DOI: 10.1007/s11356-023-27162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
Although studies have already shown the effects of exposure to microplastics (MP) in different species, the effects over generations in these individuals remain poorly understood. Therefore, the present study aimed to evaluate the effect of polystyrene MP (spherical, 1 μm) on the responses of the free-living nematode Caenorhabditis elegans in a multigenerational approach over five subsequent generations. MP concentrations of both 5 and 50 μg/L induced a detoxification response, increasing glutathione S-transferase (GST) activity and inducing the generation of reactive oxygen species (ROS) and lipid peroxidation (TBARS). MP also demonstrated the ability to accumulate in the animal's body during the 96 h of each generational exposure, and possibly, this constant interaction was the main reason for the decreased response in physiological parameters as in the exploratory behavior (body bending) of nematodes, and in the reproduction, being this last parameter most negatively affected during the five exposed generations, with a reduction of almost 50% in the last generation. These results emphasize the importance of multigenerational approaches, highlighting their advantage in the assessment of environmental contaminants.
Collapse
Affiliation(s)
- Gabriela Corrêa Soares
- Programa de Pós-Graduação em Ciências Fisiológicas - PPG-CF; Instituto de Ciências Biológicas - ICB, Universidade Federal do Rio Grande - FURG, Km 08, Rio Grande - RS, CEP, Avenida Itália, 96203-900, Brazil
| | - Larissa Müller
- Programa de Pós-Graduação em Ciências Fisiológicas - PPG-CF; Instituto de Ciências Biológicas - ICB, Universidade Federal do Rio Grande - FURG, Km 08, Rio Grande - RS, CEP, Avenida Itália, 96203-900, Brazil
| | - Marcelo Estrella Josende
- Programa de Pós-Graduação em Ciências Fisiológicas - PPG-CF; Instituto de Ciências Biológicas - ICB, Universidade Federal do Rio Grande - FURG, Km 08, Rio Grande - RS, CEP, Avenida Itália, 96203-900, Brazil
| | - Juliane Ventura-Lima
- Programa de Pós-Graduação em Ciências Fisiológicas - PPG-CF; Instituto de Ciências Biológicas - ICB, Universidade Federal do Rio Grande - FURG, Km 08, Rio Grande - RS, CEP, Avenida Itália, 96203-900, Brazil.
| |
Collapse
|
38
|
Hua X, Feng X, Hua Y, Wang D. Paeoniflorin attenuates polystyrene nanoparticle-induced reduction in reproductive capacity and increase in germline apoptosis through suppressing DNA damage checkpoints in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162189. [PMID: 36775158 DOI: 10.1016/j.scitotenv.2023.162189] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Due to high sensitivity to environmental exposures, Caenorhabditis elegans is helpful for toxicity evaluation and toxicological study of pollutants. Using this animal model, we investigated the reproductive toxicity of 20 nm polystyrene nanoparticle (PS-NP) in the range of μg/L and the following pharmacological intervention of paeoniflorin. After exposure from L1-larvae to young adults, 10-100 μg/L PS-NP could cause the reduction in reproductive capacity reflected by the endpoints of brood size and number of fertilized eggs in uterus. Meanwhile, the enhancements in germline apoptosis analyzed by AO staining and germline DNA damage as shown by alteration in HUS-1::GFP signals were detected in 10-100 μg/L PS-NP exposed nematodes, suggesting the role of DNA damage-induced germline apoptosis in mediating PS-NP toxicity on reproductive capacity. Following the exposure to 100 μg/L PS-NP, posttreatment with 25-100 mg/L paeoniflorin increased the reproductive capacity and inhibited both germline apoptosis and DNA damage. In addition, in 100 μg/L PS-NP exposed nematodes, treatment with 100 mg/L paeoniflorin modulated the expressions of genes governing germline apoptosis as indicated by the decrease in ced-3, ced-4, an egl-1 expressions and the increase in ced-9 expression. After exposure to 100 μg/L PS-NP, treatment with 100 mg/L paeoniflorin also decreased expressions of genes (cep-1, clk-2, hus-1, and mrt-2) governing germline DNA damage. Molecular docking analysis further demonstrated the binding potential of paeoniflorin with three DNA damage checkpoints (CLK-2, HUS-1, and MRT-2). Therefore, our data suggested the toxicity of PS-NP in the range of μg/L on reproductive capacity after exposure from L1-larvae to young adults, which was associated with the enhancement in DNA damage-induced germline apoptosis. More importantly, the PS-NP-induced reproductive toxicity on nematodes could be inhibited by the following paeoniflorin treatment.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Xiao Feng
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yingshun Hua
- Lintao Maternity and Child Health Center, Lintao 730500, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|
39
|
Liu X, Bao X, Qian G, Wang X, Yang J, Li Z. Acute effects of polystyrene nanoplastics on the immune response in Sepia esculenta larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106478. [PMID: 36905919 DOI: 10.1016/j.aquatox.2023.106478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
With extensive use of plastic products, microplastics (MPs, < 5 mm) and nanoplastics (NPs, < 1 μm) have become major pollutants in ecosystem, especially in marine environment. In recent years, researches on the impact of NPs on organisms have gradually increased. However, studies on the influence of NPs on cephalopods are still limited. Golden cuttlefish (Sepia esculenta), an important economic cephalopod, is a shallow marine benthic organism. In this study, the effect of acute exposure (4 h) to 50-nm polystyrene nanoplastics (PS-NPs, 100 μg/L) on the immune response of S. esculenta larvae was analyzed via transcriptome data. A total of 1260 DEGs were obtained in the gene expression analysis. The analyses of GO, KEGG signaling pathway enrichment, and protein-protein interaction (PPI) network were then performed to explore the potential molecular mechanisms of the immune response. Finally, 16 key immune-related DEGs were obtained according to the number of KEGG signaling pathways involved and the PPI number. This study not only confirmed that NPs had an impact on cephalopod immune response, but also provided novel insights for further unmasking the toxicological mechanisms of NPs.
Collapse
Affiliation(s)
- Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Gui Qian
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xumin Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China.
| |
Collapse
|
40
|
Zhang X, Li Y, Lei J, Li Z, Tan Q, Xie L, Xiao Y, Liu T, Chen X, Wen Y, Xiang W, Kuzyakov Y, Yan W. Time-dependent effects of microplastics on soil bacteriome. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130762. [PMID: 36638676 DOI: 10.1016/j.jhazmat.2023.130762] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Microplastic threats to biodiversity, health and ecological safety are adding to concern worldwide, but the real impacts on the functioning of organisms and ecosystems are obscure owing to their inert characteristics. Here we investigated the long-lasting ecological effects of six prevalent microplastic types: polyethylene (PE), polypropylene (PP), polyamide (PA), polystyrene (PS), polyethylene terephthalate (PET), and polyvinyl chloride (PVC) on soil bacteria at a 2 % (w/w) level. Due to the inertia and lack of available nitrogen of these microplastics, their effects on bacteriome tended to converge after one year and were strongly different from their short-term effects. The soil volumes around microplastics were very specific, in which the microplastic-adapted bacteria (e.g., some genera in Actinobacteria) were enriched but the phyla Bacteroidetes and Gemmatimonadetes declined, resulting in higher microbial nitrogen requirements and reduced organic carbon mineralization. The reshaped bacteriome was specialized in the genetic potential of xenobiotic and lipid metabolism as well as related oxidation, esterification, and hydrolysis processes, but excessive oxidative damage resulted in severe weakness in community genetic information processing. According to model predictions, microplastic effects are indirectly derived from nutrients and oxidative stress, and the effects on bacterial functions are stronger than on structure, posing a heavy risk to soil ecosystems.
Collapse
Affiliation(s)
- Xuyuan Zhang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha 410004, China; College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yong Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha 410004, China.
| | - Junjie Lei
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ziqian Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qianlong Tan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lingli Xie
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yunmu Xiao
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ting Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha 410004, China
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, IL 60484, USA
| | - Yafeng Wen
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenhua Xiang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha 410004, China
| | - Yakov Kuzyakov
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; Department of Agricultural Soil Science, University of Goettingen, 37077 Göttingen, Germany; Dept. of Soil Science of Temperate Ecosystems, University of Goettingen, 37077 Göttingen, Germany; Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Wende Yan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha 410004, China.
| |
Collapse
|
41
|
Gubert P, Gubert G, de Oliveira RC, Fernandes ICO, Bezerra IC, de Ramos B, de Lima MF, Rodrigues DT, da Cruz AFN, Pereira EC, Ávila DS, Mosca DH. Caenorhabditis elegans as a Prediction Platform for Nanotechnology-Based Strategies: Insights on Analytical Challenges. TOXICS 2023; 11:239. [PMID: 36977004 PMCID: PMC10059662 DOI: 10.3390/toxics11030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Nanotechnology-based strategies have played a pivotal role in innovative products in different technological fields, including medicine, agriculture, and engineering. The redesign of the nanometric scale has improved drug targeting and delivery, diagnosis, water treatment, and analytical methods. Although efficiency brings benefits, toxicity in organisms and the environment is a concern, particularly in light of global climate change and plastic disposal in the environment. Therefore, to measure such effects, alternative models enable the assessment of impacts on both functional properties and toxicity. Caenorhabditis elegans is a nematode model that poses valuable advantages such as transparency, sensibility in responding to exogenous compounds, fast response to perturbations besides the possibility to replicate human disease through transgenics. Herein, we discuss the applications of C. elegans to nanomaterial safety and efficacy evaluations from one health perspective. We also highlight the directions for developing appropriate techniques to safely adopt magnetic and organic nanoparticles, and carbon nanosystems. A description was given of the specifics of targeting and treatment, especially for health purposes. Finally, we discuss C. elegans potential for studying the impacts caused by nanopesticides and nanoplastics as emerging contaminants, pointing out gaps in environmental studies related to toxicity, analytical methods, and future directions.
Collapse
Affiliation(s)
- Priscila Gubert
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife 50670-901, Brazil
- Graduate Program in Biology Applied to Health, PPGBAS, Federal University of Pernambuco, Recife 50670-901, Brazil
- Graduate Program in Pure and Applied Chemistry, POSQUIPA, Federal University of Western of Bahia, Bahia 47808-021, Brazil
| | - Greici Gubert
- Postdoctoral Program in Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | | | - Isabel Cristina Oliveira Fernandes
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife 50670-901, Brazil
- Graduate Program in Biology Applied to Health, PPGBAS, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | - Bruna de Ramos
- Oceanography Department, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Milena Ferreira de Lima
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife 50670-901, Brazil
- Graduate Program in Biology Applied to Health, PPGBAS, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Daniela Teixeira Rodrigues
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | | | - Ernesto Chaves Pereira
- Postdoctoral Program in Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Daiana Silva Ávila
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
- Graduate Program in Biochemistry, Federal University of Pampa (UNIPAMPA), Uruguaiana 97501-970, Brazil
| | - Dante Homero Mosca
- Postdoctoral Program in Physics, Federal University of Paraná, Curitiba 80060-000, Brazil
| |
Collapse
|
42
|
Junaid M, Liu S, Chen G, Liao H, Wang J. Transgenerational impacts of micro(nano)plastics in the aquatic and terrestrial environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130274. [PMID: 36327853 DOI: 10.1016/j.jhazmat.2022.130274] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Plastic particles of diameters ranging from 1 to 1000 nm and > 1 µm to 5 mm are respectively known as nanoplastics and microplastics, and are collectively termed micro(nano)plastics (MNPs). They are ubiquitously present in aquatic and terrestrial environments, posing adverse multifaceted ecological impacts. Recent transgenerational studies have demonstrated that MNPs negatively impact both the exposed parents and their unexposed generations. Therefore, this review summarizes the available research on the transgenerational impacts of MNPs in aquatic and terrestrial organisms, induced by exposure to MNPs alone or in combination with other organic and inorganic chemicals. The most commonly reported transgenerational effects of MNPs include tissue bioaccumulation and transfer, affecting organisms' survival, growth, reproduction, and energy metabolism; inducing oxidative stress; enzyme and genetic responses; and causing tissue damage. Similarly, co-exposure to MNPs and chemicals (organic and inorganic pollutants) significantly impacts survival, growth, and reproduction and induces oxidative stress, thyroid disruption, and genetic toxicity in organisms. The characteristics of MNPs (degree of aging, size, shape, polymer type, and concentration), exposure type and duration (parental exposure vs. multigenerational exposure and acute exposure vs. chronic exposure), and MNP-chemical interactions are the main factors affecting transgenerational impacts. Selecting MNP properties based on their realistic environmental behavior, employing more diverse animal models, and considering chronic exposure and MNP-chemical mixture exposure are salient research prospects for an in-depth understanding of the transgenerational impacts of MNPs.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Guanglong Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
43
|
Yang R, Ge P, Liu X, Chen W, Yan Z, Chen M. Chemical Composition and Transgenerational Effects on Caenorhabditis elegans of Seasonal Fine Particulate Matter. TOXICS 2023; 11:116. [PMID: 36850991 PMCID: PMC9964627 DOI: 10.3390/toxics11020116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
While numerous studies have demonstrated the adverse effects of fine particulate matter (PM) on human health, little attention has been paid to its impact on offspring health. The multigenerational toxic effects on Caenorhabditis elegans (C. elegans) were investigated by acute exposure. PM2.5 and PM1 samples were collected and analysed for their chemical composition (inorganic ions, metals, OM, PAHs) in different seasons from April 2019 to January 2020 in Lin'an, China. A higher proportion of organic carbon components (34.3%, 35.9%) and PAHs (0.0144%, 0.0200%) occupied the PM2.5 and PM1 samples in winter, respectively. PM1 in summer was enriched with some metal elements (2.7%). Exposure to fine PM caused developmental slowing and increased germ cell apoptosis, as well as inducing intestinal autofluorescence and reactive oxygen species (ROS) production. PM1 caused stronger toxic effects than PM2.5. The correlation between PM component and F0 generation toxicity index was analysed. Body length, germ cell apoptosis and intestinal autofluorescence were all highly correlated with Cu, As, Pb, OC and PAHs, most strongly with PAHs. The highest correlation coefficients between ROS and each component are SO42- (R = 0.743), Cd (R = 0.816) and OC (R = 0.716). The results imply that OC, PAHs and some transition metals play an important role in the toxicity of fine PM to C. elegans, where the organic fraction may be the key toxicogenic component. The multigenerational studies show that PM toxicity can be passed from parent to offspring, and gradually returns to control levels in the F3-F4 generation with germ cell apoptosis being restored in the F4 generation. Therefore, the adverse effects of PM on reproductive damage are more profound.
Collapse
|
44
|
Aliakbarzadeh F, Rafiee M, Khodagholi F, Khorramizadeh MR, Manouchehri H, Eslami A, Sayehmiri F, Mohseni-Bandpei A. Adverse effects of polystyrene nanoplastic and its binary mixtures with nonylphenol on zebrafish nervous system: From oxidative stress to impaired neurotransmitter system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120587. [PMID: 36336178 DOI: 10.1016/j.envpol.2022.120587] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Micro(nano)plastics generally co-exist with other chemicals in the environment, resulting in inevitable interaction and combined toxic effects on biota. Nevertheless, little is known regarding the interaction of nanoplastics (NPs) with other co-occurring insults. Hereby, we investigated single and combined effects of chronic exposure (45 days) to polystyrene nanoplastic particulates (PS-NPs) and nonylphenol (4-NP) on zebrafish nervous system. Multiple biomarkers concerning with oxidative-stress [catalase (CAT) activity and reduced glutathione (GSH) level], cholinergic system [Acetylcholinesterase (AchE) activity], glutamatergic system [glutamine synthetase (GS) and glutamate dehydrogenase (GDH) activities], energy metabolism [a-ketoglutarate dehydrogenase (a-KGDH) activity], and histological alterations were assessed. Both single and binary exposure to PS-NPs and 4-NP induced oxidative stress through reducing CAT activity and GSH level, in which a more sever effect was noticed in combined exposure. The AchE activity was significantly inhibited only in single treatment groups demonstrating antagonistic interaction between PS-NPs and 4-NP. Effects on GS activity was also alleviated in binary exposure as compared with single exposure to each contaminant. In addition, an increase in GDH activity was noticed in PS-NPs at 10 and 100 μg/L, and simultaneous presence of PS-NPs and 4-NP with a greater response were observed in combined treatments. PS-NPs and 4-NP either in separate or binary mixtures disrupted energy metabolism by deficiency of α-KGDH activity; however, co-exposure to PS-NPs and 4-NP induced more intense adverse impacts on this parameter. Furthermore, histological analysis revealed that 4-NP and PS-NPs, alone or in combination, reduced neural cells. These findings provide new insight into the neurotoxic effects of binary exposure to PS-NPs and 4-NP at environmentally relevant concentrations. Overall, our findings raise concerns about the presence and toxicity of nano-scale plastic particulates and highlight the importance of investigating the interaction of Micro(nano)plastics with other environmental irritants.
Collapse
Affiliation(s)
- Faezeh Aliakbarzadeh
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rafiee
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, and Zebra Fish Core Facility (ZFIN ID: ZDB-LAB-190117-2), Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Hamed Manouchehri
- Department of Aquaculture Science, Babol Branch, Islamic Azad University, Babol, Iran
| | - Akbar Eslami
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anoushiravan Mohseni-Bandpei
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Jiang W, Yan W, Tan Q, Xiao Y, Shi Y, Lei J, Li Z, Hou Y, Liu T, Li Y. The toxic differentiation of micro- and nanoplastics verified by gene-edited fluorescent Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159058. [PMID: 36179836 DOI: 10.1016/j.scitotenv.2022.159058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The increased emission and accumulation of micro- or nanoplastics (M-NPs) have posed a severely threaten to organisms in the environment. Though the toxicity of M-NPs has been observed in many species, the fundamental factors determining the biotoxicity are rarely expounded on. In this work, typical polystyrene (PS) M-NPs were set up with a multiparameter variation in size gradient, surface charge contrast and concentration variant, and evaluated by the Caenorhabditis elegans (C. elegans) model. From the endpoints of body length, brood size, survival rate and lifespan, an adverse effect was found on the growth and development of C. elegans caused by PSs. In general, the toxicity of PS was found to be concentrated- and size-dependent, with 100 nm positively charged nano-PS having the highest physio-toxicity. Monitoring by fluorescent imaging, it showed that positively charged nano-PS was mainly ingested and accumulated in the intestinal tract of C. elegans. In addition, the penetrated PS induced severe biological stress reactions with the increase of reactive oxygen species (ROS) and lipofuscin. Furthermore, the following expression of antioxidation-related enzymes was activated in vivo as indicated by the GFP-labelled C. elegans. All the results supplied visually toxic parameters of M-NPs to organisms, which sheds light on the biosecurity and ecological risks of M-NPs in the future.
Collapse
Affiliation(s)
- Wenxi Jiang
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wende Yan
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qianlong Tan
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yunmu Xiao
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yang Shi
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Junjie Lei
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ziqian Li
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yuanyuan Hou
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Liu
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yong Li
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
46
|
Pérez-Reverón R, Álvarez-Méndez SJ, González-Sálamo J, Socas-Hernández C, Díaz-Peña FJ, Hernández-Sánchez C, Hernández-Borges J. Nanoplastics in the soil environment: Analytical methods, occurrence, fate and ecological implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120788. [PMID: 36481462 DOI: 10.1016/j.envpol.2022.120788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Soils play a very important role in ecosystems sustainability, either natural or agricultural ones, serving as an essential support for living organisms of different kinds. However, in the current context of extremely high plastic pollution, soils are highly threatened. Plastics can change the chemical and physical properties of the soils and may also affect the biota. Of particular importance is the fact that plastics can be fragmented into microplastics and, to a final extent into nanoplastics. Due to their extremely low size and high surface area, nanoplastics may even have a higher impact in soil ecosystems. Their transport through the edaphic environment is regulated by the physicochemical properties of the soil and plastic particles themselves, anthropic activities and biota interactions. Their degradation in soils is associated with a series of mechanical, photo-, thermo-, and bio-mediated transformations eventually conducive to their mineralisation. Their tiny size is precisely the main setback when it comes to sampling soils and subsequent processes for their identification and quantification, albeit pyrolysis coupled with gas chromatography-mass spectrometry and other spectroscopic techniques have proven to be useful for their analysis. Another issue as a consequence of their minuscule size lies in their uptake by plants roots and their ingestion by soil dwelling fauna, producing morphological deformations, damage to organs and physiological malfunctions, as well as the risks associated to their entrance in the food chain, although current conclusions are not always consistent and show the same pattern of effects. Thus, given the omnipresence and seriousness of the plastic menace, this review article pretends to provide a general overview of the most recent data available regarding nanoplastics determination, occurrence, fate and effects in soils, with special emphasis on their ecological implications.
Collapse
Affiliation(s)
- Raquel Pérez-Reverón
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Sergio J Álvarez-Méndez
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna (ULL), Avda. Astrofísico Francisco Sánchez, s/n, 38206 La Laguna, Tenerife, Spain; Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Cristina Socas-Hernández
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Avenida Catalunya, 21, 46020, Valencia, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Cintia Hernández-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Forense y Legal y Parasitología, Área de Medicina Preventiva y Salud Pública, Escuela Politécnica Superior de Ingeniería, Sección de Náutica, Máquinas y Radioelectrónica Naval, Universidad de La Laguna (ULL), Vía Auxiliar Paso Alto 2, 38001, Santa Cruz de Tenerife, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain.
| |
Collapse
|
47
|
Zhao Y, Chen J, Wang R, Pu X, Wang D. A review of transgenerational and multigenerational toxicology in the in vivo model animal Caenorhabditis elegans. J Appl Toxicol 2023; 43:122-145. [PMID: 35754092 DOI: 10.1002/jat.4360] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
A large number of pollutants existing in the environment can last for a long time, and their potential toxic effects can transfer from parents to their offspring. Thus, it is necessary to investigate the toxicity of environmental pollutants across multigenerations and the underlying mechanisms in organisms. Due to its short life cycle and sensitivity to environmental exposures, Caenorhabditis elegans is an important animal model for toxicity assessment of environmental pollutants across multigenerations. In this review, we introduced the transgenerational and multigenerational toxicity caused by various environmental pollutants in C. elegans. Moreover, we discussed the underlying mechanisms for the observed transgenerational and multigenerational toxicity of environmental contaminants in C. elegans.
Collapse
Affiliation(s)
- Yunli Zhao
- Medical School, Southeast University, Nanjing, China.,School of Public Health, Bengbu Medical College, Bengbu, China
| | - Jingya Chen
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Rui Wang
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Xiaoxiao Pu
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
48
|
Liu X, Bao X, Wang X, Li C, Yang J, Li Z. Time-dependent immune injury induced by short-term exposure to nanoplastics in the Sepia esculenta larvae. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108477. [PMID: 36494033 DOI: 10.1016/j.fsi.2022.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Marine organisms are threatened by various environmental contaminants, and nanoplastics (NPs) is one of the most concerned. Studied have shown that NPs has a certain impact on marine organisms, but the specific molecular mechanism is still unclear. At present, researches on the effect of NPs on marine life mostly focus on crustaceans, gastropods, and bivalves. In this study, cephalopod Sepia esculenta larvae were first used to investigate the potential immune response molecular mechanisms caused by PS-NPs (50 nm, 50 mg/L) short-term exposure (4 and 24 h). Through S. esculenta larvae transcriptome profile of gene expression analysis, 548 and 1990 genes showed differential expression at 4 and 24 h after NPs exposure, respectively. GO and KEGG enrichment analysis were performed to find immune related DEGs. Then, the interaction relationship between the immune related DEGs after NPs exposure was known through the constructed protein-protein interaction network. 20 hub genes were found on the base of KEGG pathway numbers involved and protein-protein interaction numbers. This research supply valuable genes for the study of cephalopod immune response caused by NPs, which can help us further uncover the molecular mechanisms of organism against NPs.
Collapse
Affiliation(s)
- Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, PR China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Xumin Wang
- College of Life Sciences, Yantai University, Yantai, 264005, PR China
| | - Chengbo Li
- School of Pharmacy, Binzhou Medical University, Yantai, PR China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| |
Collapse
|
49
|
Macko M, Antoš J, Božek F, Konečný J, Huzlík J, Hegrová J, Kuřitka I. Development of New Health Risk Assessment of Nanoparticles: EPA Health Risk Assessment Revised. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:20. [PMID: 36615930 PMCID: PMC9823543 DOI: 10.3390/nano13010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The concentration of nanoparticles in the ambient air can lead to induced toxicities; however, it appears that nanoparticles’ unique properties are completely omitted when assessing health risks. This paper aims to enhance the EPA health risk assessment by incorporating two new variables that consider the size of nanoparticles: the toxicity multiplier and the size multiplier. The former considers the qualitative aspect of the size of particles within a concentration, whilst the latter takes into account the effects associated with the number of particles of the specific i-th size distribution interval. To observe the impact of the new variables, a case study was performed. The studied element was cadmium, which was measured using ICP-MS to discover concentrations of size fractions, ranging from <15.1 to <9830 nm. Next, the cadmium concentration is assessed using both the current state-of-the-art method and the proposed method with adjustments. Based on the new approach, the final risk was 1.1 × 10−5, which was almost 24 times higher compared with the current method. The contribution of nanoparticles to the risk value grew from barely 6% to an alarming 88%. Therefore, the enhanced method can lead to more realistic results when assessing the health risks of nanoparticles.
Collapse
Affiliation(s)
- Michal Macko
- Centre of Polymer Systems, Tomas Bata University in Zlin, třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Jan Antoš
- Centre of Polymer Systems, Tomas Bata University in Zlin, třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - František Božek
- Faculty of Logistics and Crisis Management, Tomas Bata University in Zlin, Studentské nám. 1532, 686 01 Uherské Hradiště, Czech Republic
| | - Jiří Konečný
- Faculty of Logistics and Crisis Management, Tomas Bata University in Zlin, Studentské nám. 1532, 686 01 Uherské Hradiště, Czech Republic
| | - Jiří Huzlík
- Transport Research Centre, Division of Sustainable Transport and Transport Structures Diagnostics, Líšeňská 33a, 619 00 Brno, Czech Republic
| | - Jitka Hegrová
- Transport Research Centre, Division of Sustainable Transport and Transport Structures Diagnostics, Líšeňská 33a, 619 00 Brno, Czech Republic
| | - Ivo Kuřitka
- Centre of Polymer Systems, Tomas Bata University in Zlin, třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| |
Collapse
|
50
|
Qiao R, Mortimer M, Richter J, Rani-Borges B, Yu Z, Heinlaan M, Lin S, Ivask A. Hazard of polystyrene micro-and nanospheres to selected aquatic and terrestrial organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158560. [PMID: 36087672 DOI: 10.1016/j.scitotenv.2022.158560] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Plastics contamination in the environment is a major concern. Risk assessment of micro- and nanoplastics (MPL and NPL) poses significant challenges due to MPL and NPL heterogeneity regarding compositional polymers, particle sizes and morphologies in the environment. Yet, there exists considerable toxicological literature on commercial polystyrene (PS) micro- and nanospheres. Although such particles do not directly represent the environmental MPL and NPL, their toxicity data should be used to advance the hazard assessment of plastics. Here, toxicity data of PS micro- and nanospheres for microorganisms, aquatic and terrestrial invertebrates, fish, and higher plants was collected and analyzed. The evaluation of 294 papers revealed that aquatic invertebrates were the most studied organisms, nanosized PS was studied more often than microsized PS, acute exposures prevailed over chronic exposures, the toxicity of PS suspension additives was rarely addressed, and ∼40 % of data indicated no organismal effects of PS. Toxicity mechanisms were mainly studied in fish and nematode Caenorhabditis elegans, providing guidance for relevant studies in higher organisms. Future studies should focus on environmentally relevant plastics concentrations, wide range of organisms, co-exposures with other pollutants, and method development for plastics identification and quantification to fill the gap of bioaccumulation assessment of plastics.
Collapse
Affiliation(s)
- Ruxia Qiao
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jelizaveta Richter
- National Institute of Chemical Physics and Biophysics, Laboratory of Environmental Toxicology, Tallinn 12618, Estonia
| | - Bárbara Rani-Borges
- Institute of Science and Technology, São Paulo State University, UNESP, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil; Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Zhenyang Yu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Margit Heinlaan
- National Institute of Chemical Physics and Biophysics, Laboratory of Environmental Toxicology, Tallinn 12618, Estonia.
| | - Sijie Lin
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Angela Ivask
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia.
| |
Collapse
|