1
|
Wang X, Li Y, Hao Y, Kang E, Han J, Zhang X, Li M, Zhang K, Yan L, Yang A, Niu Y, Kang X, Yan Z. Soil temperature and fungal diversity jointly modulate soil heterotrophic respiration under short-term warming in the Zoige alpine peatland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122778. [PMID: 39393334 DOI: 10.1016/j.jenvman.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/26/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024]
Abstract
Global warming has changed carbon cycling in terrestrial ecosystems, but it remains unclear how climate warming affects soil heterotrophic respiration (Rh). We conducted a field experiment in the Zoige alpine peatland to investigate the mechanism of how short-term warming affects Rh by examining the relationships between plant biomass, soil properties, soil microbial diversity, and functional groups and Rh. Our results showed that warming increased Rh after one growing season of warming. However, warming barely changed the bacterial functional groups involved in the carbon cycle predicted by the functional annotation analysis. According to the Mantel test, NO3- was found to be the primary determinant for bacterial and fungal communities. The results of the Structural Equation Model (SEM) indicate that soil temperature and fungal diversity jointly modulate Rh, suggesting that short-term warming may not affect Rh by altering the structural and functional composition of microorganisms, which provides new insight into the mechanisms of the effects of warming on Rh in terrestrial ecosystems.
Collapse
Affiliation(s)
- Xiaodong Wang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Yong Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Yanbin Hao
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Enze Kang
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinfeng Han
- The Management Bureau of Zoige Wetland National Nature Reserve, Zoige, 624500, China
| | - Xiaodong Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Meng Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Kerou Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Liang Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Ao Yang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Yuechuan Niu
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Kang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China.
| | - Zhongqing Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China.
| |
Collapse
|
2
|
Liu G, Gu Z, Li B. Can the artificial exogenous addition really cause an increasing carbon emission driven by microbial community in grassland ecosystems? Front Microbiol 2024; 15:1421325. [PMID: 39027112 PMCID: PMC11255779 DOI: 10.3389/fmicb.2024.1421325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Affiliation(s)
- Guanhong Liu
- Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing, China
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Ze Gu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Bingyi Li
- Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Liu C, Liu Z, Cui B, Yang H, Gao C, Chang M, Liu Y. Effects of returning peach branch waste to fields on soil carbon cycle mediated by soil microbial communities. Front Microbiol 2024; 15:1406661. [PMID: 38957617 PMCID: PMC11217190 DOI: 10.3389/fmicb.2024.1406661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
In recent years, the rise in greenhouse gas emissions from agriculture has worsened climate change. Efficiently utilizing agricultural waste can significantly mitigate these effects. This study investigated the ecological benefits of returning peach branch waste to fields (RPBF) through three innovative strategies: (1) application of peach branch organic fertilizer (OF), (2) mushroom cultivation using peach branches as a substrate (MC), and (3) surface mulching with peach branches (SM). Conducted within a peach orchard ecosystem, our research aimed to assess these resource utilization strategies' effects on soil properties, microbial community, and carbon cycle, thereby contributing to sustainable agricultural practices. Our findings indicated that all RPBF treatments enhance soil nutrient content, enriching beneficial microorganisms, such as Humicola, Rhizobiales, and Bacillus. Moreover, soil AP and AK were observed to regulate the soil carbon cycle by altering the compositions and functions of microbial communities. Notably, OF and MC treatments were found to boost autotrophic microorganism abundance, thereby augmenting the potential for soil carbon sequestration and emission reduction. Interestingly, in peach orchard soil, fungal communities were found to contribute more greatly to SOC content than bacterial communities. However, SM treatment resulted in an increase in the presence of bacterial communities, thereby enhancing carbon emissions. Overall, this study illustrated the fundamental pathways by which RPBF treatment affects the soil carbon cycle, providing novel insights into the rational resource utilization of peach branch waste and the advancement of ecological agriculture.
Collapse
Affiliation(s)
- Chenyu Liu
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, China
| | - Zhiling Liu
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, China
| | - Bofei Cui
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, China
| | - Haiqing Yang
- Fruit Industry Serve Center of Pinggu District, Beijing, China
| | - Chengda Gao
- College of Humanities and Urban-Rural Development, Beijing University of Agriculture, Beijing, China
| | - Mingming Chang
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, China
| | - Yueping Liu
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, China
- Key Laboratory for Northern Urban Agriculture Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
4
|
Guo P, Li S, Zhu J, Lu Q. Variation in soil bacterial community characteristics inside and outside the West Ordos National Nature Reserve, northern China. Front Microbiol 2024; 15:1404848. [PMID: 38919497 PMCID: PMC11196814 DOI: 10.3389/fmicb.2024.1404848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Nature reserves are crucial for protecting biological habitats and maintaining biodiversity. Soil bacterial community plays an irreplaceable role in the structure and function of ecosystem. However, the impact of nature reserves on soil bacterial communities is still unclear. To explore the effects of desert grassland nature reserve management on soil microbial communities, we compared the differences in soil bacterial community composition, α-diversity and community structure inside and outside a desert grassland nature reserve, and explored the correlation between soil bacterial communities and plant biomass and soil chemical index. We found that (1) the relative abundance of Acidobacteriota is highest in the soil both inside and outside the nature reserve in shrub grassland; (2) the Chao1 index of soil bacterial communities in the core protected zone and general control zone of the reserve was significantly higher than that outside the reserve (p < 0.05) in the shrub grassland. Similarly, in the herbaceous grassland, the Shannon index of soil bacterial communities was significantly higher in the core protected zone of the reserve than that outside the reserve (p < 0.05). (3) While we found no significant difference in soil bacterial community structure between inside and outside the reserve in the shrub grassland, we found that the soil bacterial community structure in the core protected zone was significantly different from that outside the reserve in the herbaceous grassland (p < 0.05); (4) we also found that higher plant productivity and soil nutrients promoted most soil dominant bacterial phyla, while higher soil pH and salinity inhibited most soil dominant bacterial phyla. Our findings thus help better understand the influencing factors of and the mechanisms behind variation in soil bacterial communities inside and outside desert grassland nature reserves.
Collapse
Affiliation(s)
- Pu Guo
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| | - Shuai Li
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, China
| | - Jinlei Zhu
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| | - Qi Lu
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
5
|
Xie L, Cheng J, Cao H, Yang F, Jiang M, Li M, Huang Q. Fast Bacterial Succession Associated with the Decomposition of Larix gmelinii Litter in Wudalianchi Volcano. Microorganisms 2024; 12:948. [PMID: 38792778 PMCID: PMC11123687 DOI: 10.3390/microorganisms12050948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
In order to understand the role of microorganisms in litter decomposition and the nutrient cycle in volcanic forest ecosystems, the dominant forest species Larix gmelinii in the volcanic lava plateau of the Wudalianchi volcano was considered as the research object. We analyzed the response of bacterial community structure and diversity to litter decomposition for 1 year, with an in situ decomposition experimental design using litter bags and Illumina MiSeq high-throughput sequencing. The results showed that after 365 days, the litter quality residual rate of Larix gmelinii was 77.57%, and the litter N, P, C:N, C:P, and N:P showed significant differences during the decomposition period (p < 0.05). The phyla Cyanobacteria and the genus unclassified_o_Chloroplast were the most dominant groups in early decomposition (January and April). The phyla Proteobacteria, Actinobacteriota, and Acidobacteriota and the genera Massilia, Pseudomonas, and Sphingomona were higher in July and October. The microbial communities showed extremely significant differences during the decomposition period (p < 0.05), with PCoa, RDA, and litter QRR, C:P, and N as the main factors driving litter bacteria succession. Microbial functional prediction analysis showed that Chloroplasts were the major functional group in January and April. Achemoheterotrophy and aerobic chemoheterotrophy showed a significant decrease as litter decomposition progressed.
Collapse
Affiliation(s)
- Lihong Xie
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China; (L.X.); (J.C.); (H.C.); (F.Y.); (M.J.)
| | - Jiahui Cheng
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China; (L.X.); (J.C.); (H.C.); (F.Y.); (M.J.)
| | - Hongjie Cao
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China; (L.X.); (J.C.); (H.C.); (F.Y.); (M.J.)
| | - Fan Yang
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China; (L.X.); (J.C.); (H.C.); (F.Y.); (M.J.)
| | - Mingyue Jiang
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China; (L.X.); (J.C.); (H.C.); (F.Y.); (M.J.)
| | - Maihe Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, CH-8903 Birmensdorf, Switzerland;
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
- School of Life Science, Hebei University, Baoding 071002, China
| | - Qingyang Huang
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China; (L.X.); (J.C.); (H.C.); (F.Y.); (M.J.)
| |
Collapse
|
6
|
Yu Y, Zhou Y, Janssens IA, Deng Y, He X, Liu L, Yi Y, Xiao N, Wang X, Li C, Xiao C. Divergent rhizosphere and non-rhizosphere soil microbial structure and function in long-term warmed steppe due to altered root exudation. GLOBAL CHANGE BIOLOGY 2024; 30:e17111. [PMID: 38273581 DOI: 10.1111/gcb.17111] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/12/2023] [Accepted: 12/01/2023] [Indexed: 01/27/2024]
Abstract
While there is an extensive body of research on the influence of climate warming on total soil microbial communities, our understanding of how rhizosphere and non-rhizosphere soil microorganisms respond to warming remains limited. To address this knowledge gap, we investigated the impact of 4 years of soil warming on the diversity and composition of microbial communities in the rhizosphere and non-rhizosphere soil of a temperate steppe, focusing on changes in root exudation rates and exudate compositions. We used open top chambers to simulate warming conditions, resulting in an average soil temperature increase of 1.1°C over a span of 4 years. Our results showed that, in the non-rhizosphere soil, warming had no significant impact on dissolved organic carbon concentrations, compositions, or the abundance of soil microbial functional genes related to carbon and nitrogen cycling. Moreover, soil microbial diversity and community composition remained largely unaffected, although warming resulted in increased complexity of soil bacteria and fungi in the non-rhizosphere soil. In contrast, warming resulted in a substantial decrease in root exudate carbon (by 19%) and nitrogen (by 12%) concentrations and induced changes in root exudate compositions, primarily characterized by a reduction in the abundance in alcohols, coenzymes and vitamins, and phenylpropanoids and polyketides. These changes in root exudation rates and exudate compositions resulted in significant shifts in rhizosphere soil microbial diversity and community composition, ultimately leading to a reduction in the complexity of rhizosphere bacterial and fungal community networks. Altered root exudation and rhizosphere microbial community composition therefore decreased the expression of functional genes related to soil carbon and nitrogen cycling. Interestingly, we found that changes in soil carbon-related genes were primarily driven by the fungal communities and their responses to warming, both in the rhizosphere and non-rhizosphere soil. The study of soil microbial structure and function in rhizosphere and non-rhizosphere soil provides an ideal setting for understanding mechanisms for governing rhizosphere and non-rhizosphere soil carbon and nitrogen cycles. Our results highlight the distinctly varied responses of soil microorganisms in the rhizosphere and non-rhizosphere soil to climate warming. This suggests the need for models to address these processes individually, enabling more accurate predictions of the impacts of climate change on terrestrial carbon cycling.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Zhou
- Department of Wildland Resources, Utah State University, Logan, Utah, USA
- Ecology Center, Utah State University, Logan, Utah, USA
| | - Ivan A Janssens
- Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaojia He
- The Administrative Center for China's Agenda 21, Beijing, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yin Yi
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Nengwen Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaodong Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Chao Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Chunwang Xiao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
7
|
Song W, Wang Y, Peng B, Yang L, Gao J, Xiao C. Structure and function of microbiomes in the rhizosphere and endosphere response to temperature and precipitation variation in Inner Mongolia steppes. FRONTIERS IN PLANT SCIENCE 2023; 14:1297399. [PMID: 38130486 PMCID: PMC10733484 DOI: 10.3389/fpls.2023.1297399] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Introduction Owing to challenges in the study of complex rhizosphere and endophytic microbial communities, the composition and function of such microbial communities in steppe ecosystems remain elusive. Here, we studied the microbial communities of the rhizosphere and endophytic microbes of the dominant plant species across the Inner Mongolian steppes using metagenomic sequencing and investigated their relationships with changes in mean annual temperature (MAT) and mean annual precipitation (MAP). Methods Metagenomic sequencing based on Illumina high-throughput sequencing, using the paired end method to construct a small fragment library for sequencing. Results Adaptation of root systems to the environment affected the composition and function of rhizosphere and endophytic microbial communities. However, these communities exhibited distinct community assembly and environmental adaptation patterns. Both rhizosphere and endophytic microbial communities can be divided into two unrelated systems based on their ecological niches. The composition and function of the rhizosphere microbial communities were mainly influenced by MAT, while those of the endophytic microbial communities were mainly influenced by MAP. MAT affected the growth, reproduction, and lipid decomposition of rhizosphere microorganisms, whereas MAP affected reverse transcription and cell wall/membrane/envelope biogenic functions of endophytic microorganisms. Conclusion Our findings reveal the composition and function of the rhizosphere and endophytic microbial communities in response to changes in MAP and MAT, which has important implications for future biogeography and climate change research.
Collapse
Affiliation(s)
- Wenchen Song
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
| | - Yao Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Bo Peng
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Linyan Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jian Gao
- Faculty of Resources and Environment, Baotou Teachers’ College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
| |
Collapse
|
8
|
Zhao S, Zhang A, Zhao Q, Dong Y, Su L, Sun Y, Zhu F, Hua D, Xiong W. The impact of main Areca Catechu root exudates on soil microbial community structure and function in coffee plantation soils. Front Microbiol 2023; 14:1257164. [PMID: 37928668 PMCID: PMC10623314 DOI: 10.3389/fmicb.2023.1257164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Coffee is an important cash crop worldwide, but it has been plagued by serious continuous planting obstacles. Intercropping with Areca catechu could alleviate the continuous planting obstacle of coffee due to the diverse root secretions of Areca catechu. However, the mechanism of Areca catechu root secretion in alleviating coffee continuous planting obstacle is still unclear. The changes of coffee rhizosphere soil microbial compositions and functions were explored by adding simulated root secretions of Areca catechu, the primary intercropping plant species (i.e., amino acids, plant hormone, organic acids, phenolic acids, flavonoids and sugars) in current study. The results showed that the addition of coffee root exudates altered soil physicochemical properties, with significantly increasing the availability of potassium and organic matter contents as well as promoting soil enzyme activity. However, the addition of plant hormone, organic acids, or phenolic acids led to a decrease in the Shannon index of bacterial communities in continuously planted coffee rhizosphere soil (RS-CP). The inclusion of phenolic acids specifically caused the decrease of fungal Shannon index. Plant hormone, flavonoids, phenolic acids, and sugars increased the relative abundance of beneficial bacteria with reduced bacterial pathogens. Flavonoids and organic acids increased the relative abundance of potential fungal pathogen Fusarium. The polyphenol oxidase, dehydrogenase, urease, catalase, and pH were highly linked with bacterial community structure. Moreover, catalase, pH, and soil-available potassium were the main determinants of fungal communities. In conclusion, this study highlight that the addition of plant hormone, phenolic acids, and sugars could enhance enzyme activity, and promote synergistic interactions among microorganisms by enhancing the physicochemical properties of RS-CP, maintaining the soil functions in coffee continuous planting soil, which contribute to alleviate the obstacles associated with continuous coffee cultivation.
Collapse
Affiliation(s)
- Shaoguan Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science, Wanning, China
- College of Agricultural Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, China
| | - Ang Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science, Wanning, China
| | - Qingyun Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science, Wanning, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Science, Sanya, China
| | - Yunping Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science, Wanning, China
| | - Lanxi Su
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science, Wanning, China
| | - Yan Sun
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science, Wanning, China
| | - Feifei Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science, Wanning, China
| | - Dangling Hua
- College of Agricultural Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Liu B, Dai Y, Cheng X, He X, Bei Q, Wang Y, Zhou Y, Zhu B, Zhang K, Tian X, Duan M, Xie X, Wang L. Straw mulch improves soil carbon and nitrogen cycle by mediating microbial community structure and function in the maize field. Front Microbiol 2023; 14:1217966. [PMID: 37533822 PMCID: PMC10391546 DOI: 10.3389/fmicb.2023.1217966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
This study was conducted to investigate the capability of the microbial community characteristics and soil variables to promote carbon and nitrogen cycles in maize fields under straw mulch. We covered the surface soil of the maize field with different amounts of wheat straw (0 kg/ha, 2,250 kg/ha, and 4,500 kg/ha) and used 16S rRNA and ITS sequencing, Biology ECO-plate, traditional enzymology, TOC analyzer, and HPLC to measure bacterial and fungal community composition and functions, characteristics of microbial carbon source metabolism, carbon and nitrogen fraction, enzyme activity, and organic acid content in the maize rhizosphere and non-rhizosphere. The results indicated that short-term straw mulch insignificantly affected the alpha diversity of bacterial and fungal communities whereas significantly influenced their beta diversity. The results of functional prediction revealed that straw mulch considerably boosted the relative abundances of bacteria belonging to chemoheterotrophy, aerobic chemoheterotrophy, ureolysis, and nitrogen fixation and inhibited fermentation and nitrate reduction in maize rhizosphere soil. These processes primarily drove the C and N cycles in soil. Straw mulch also improved fungal saprotrophs by raising the proportion of Chaetomiaceae and Chaetosphaeriaceae. The Biology ECO-plate results illustrated that straw mulch weakened the metabolism capacity of microbial labile carbon resources. As a result, the labile C and N fractions were raised under straw mulch. Our results also showed that straw mulch primarily regulated the microbial community structure in rhizosphere soil by significantly decreasing Firmicutes and Ascomycota relative abundance while increasing Basidiomycota. The fungal community structure is more than bacterial for affecting soil microbial biomass carbon, readily oxidizable organic carbon, dissolved organic carbon, available nitrogen, ammonium, and nitrate directly and indirectly through malic acid content and cellulase, protease, and amylase activity. Overall, our findings imply that straw mulch might influence the bacterial and fungal community structures, thereby boosting the production of labile C and N components and accelerating the C and N cycle in maize fields.
Collapse
Affiliation(s)
- Bangyan Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Yisha Dai
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Xin Cheng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Xian He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Qicheng Bei
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany
| | - Yifan Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Yuling Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Bo Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Kangping Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Xiaoqin Tian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Meichun Duan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Xiaoyu Xie
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Longchang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Ng CWW, Liao JX, Lau SY, So PS, Hau BCH, Peprah-Manu D. Coupled effects of elevated CO 2 and biochar on microbial communities of vegetated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118136. [PMID: 37196620 DOI: 10.1016/j.jenvman.2023.118136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Soil microbial communities are important for plant growth and establishing healthy ecosystems. Although biochar is widely adopted as a sustainable fertilizer, its influence on soil ecological functions is still unclear, especially under climate change such as elevated carbon dioxide concentration (eCO2). This study explores the coupled effects between eCO2 and biochar on microbial communities in soil planted with tree seedlings of Schefflera heptaphylla. Root characteristics and soil microbial communities were examined and interpreted with statistical analysis. Results show that biochar application at ambient carbon dioxide concentration (aCO2) always improves plant growth, which is further promoted under eCO2. Similarly, β-glucosidase, urease and phosphatase activities are enhanced by biochar at aCO2 (p < 0.05). In contrast, only urease activity increases with biochar added at eCO2 (p < 0.05). The beneficial effects of biochar on soil enzyme activities become less significant at eCO2. Depending on biochar type, biochar can increase bacterial diversity and fungal richness at aCO2. However, at eCO2, biochar does not significantly affect microbial richness (p > 0.05) while microbial diversity is reduced by peanut shell biochar (p < 0.05). Owing to better plant growth under biochar application and eCO2, plants are likely to become more dominant in specializing the microbial communities that are favourable to them. In such community, the abundance of Proteobacteria is the greatest and increases after biochar addition at eCO2. The most abundant fungus also shifts from Rozellomycota to Ascomycota and Basidiomycota. These microbes can improve soil fertility. Even though the microbial diversity is reduced, using biochar at eCO2 can further promote plant growth, which in turn enhances carbon sequestration. Thus, biochar application can be an effective strategy to facilitate ecological restoration under climate change and relieve the problem of eCO2.
Collapse
Affiliation(s)
- Charles Wang Wai Ng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China.
| | - Jia Xin Liao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China.
| | - Sze Yu Lau
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China.
| | - Pui San So
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China.
| | - Billy Chi Hang Hau
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Daniel Peprah-Manu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China.
| |
Collapse
|
11
|
Feng J, Ru J, Song J, Qiu X, Wan S. Long-Term Daytime Warming Rather Than Nighttime Warming Alters Soil Microbial Composition in a Semi-Arid Grassland. BIOLOGY 2023; 12:biology12050699. [PMID: 37237512 DOI: 10.3390/biology12050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Climate warming has profoundly influenced community structure and ecosystem functions in the terrestrial biosphere. However, how asymmetric rising temperatures between daytime and nighttime affect soil microbial communities that predominantly regulate soil carbon (C) release remains unclear. As part of a decade-long warming manipulation experiment in a semi-arid grassland, we aimed to examine the effects of short- and long-term asymmetrically diurnal warming on soil microbial composition. Neither daytime nor nighttime warming affected soil microbial composition in the short term, whereas long-term daytime warming instead of nighttime warming decreased fungal abundance by 6.28% (p < 0.05) and the ratio of fungi to bacteria by 6.76% (p < 0.01), which could be caused by the elevated soil temperature, reduced soil moisture, and increased grass cover. In addition, soil respiration enhanced with the decreasing fungi-to-bacteria ratio, but was not correlated with microbial biomass C during the 10 years, indicating that microbial composition may be more important than biomass in modulating soil respiration. These observations highlight the crucial role of soil microbial composition in regulating grassland C release under long-term climate warming, which facilitates an accurate assessment of climate-C feedback in the terrestrial biosphere.
Collapse
Affiliation(s)
- Jiayin Feng
- School of Life Sciences, Hebei University, Baoding 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jingyi Ru
- School of Life Sciences, Hebei University, Baoding 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jian Song
- School of Life Sciences, Hebei University, Baoding 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xueli Qiu
- School of Life Sciences, Hebei University, Baoding 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Shiqiang Wan
- School of Life Sciences, Hebei University, Baoding 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
12
|
Bai T, Wang P, Qiu Y, Zhang Y, Hu S. Nitrogen availability mediates soil carbon cycling response to climate warming: A meta-analysis. GLOBAL CHANGE BIOLOGY 2023; 29:2608-2626. [PMID: 36744998 DOI: 10.1111/gcb.16627] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/10/2023] [Indexed: 05/31/2023]
Abstract
Global climate warming may induce a positive feedback through increasing soil carbon (C) release to the atmosphere. Although warming can affect both C input to and output from soil, direct and convincing evidence illustrating that warming induces a net change in soil C is still lacking. We synthesized the results from field warming experiments at 165 sites across the globe and found that climate warming had no significant effect on soil C stock. On average, warming significantly increased root biomass and soil respiration, but warming effects on root biomass and soil respiration strongly depended on soil nitrogen (N) availability. Under high N availability (soil C:N ratio < 15), warming had no significant effect on root biomass, but promoted the coupling between effect sizes of root biomass and soil C stock. Under relative N limitation (soil C:N ratio > 15), warming significantly enhanced root biomass. However, the enhancement of root biomass did not induce a corresponding C accumulation in soil, possibly because warming promoted microbial CO2 release that offset the increased root C input. Also, reactive N input alleviated warming-induced C loss from soil, but elevated atmospheric CO2 or precipitation increase/reduction did not. Together, our findings indicate that the relative availability of soil C to N (i.e., soil C:N ratio) critically mediates warming effects on soil C dynamics, suggesting that its incorporation into C-climate models may improve the prediction of soil C cycling under future global warming scenarios.
Collapse
Affiliation(s)
- Tongshuo Bai
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peng Wang
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yunpeng Qiu
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yi Zhang
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuijin Hu
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
13
|
D'Alò F, Zucconi L, Onofri S, Canini F, Cannone N, Malfasi F, Morais DK, Starke R. Effects of 5-year experimental warming in the Alpine belt on soil Archaea: Multi-omics approaches and prospects. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023. [PMID: 36999249 DOI: 10.1111/1758-2229.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
We currently lack a predictive understanding of how soil archaeal communities may respond to climate change, particularly in Alpine areas where warming is far exceeding the global average. Here, we characterized the abundance, structure, and function of total (by metagenomics) and active soil archaea (by metatranscriptomics) after 5-year experimental field warming (+1°C) in Italian Alpine grasslands and snowbeds. Our multi-omics approach unveiled an increasing abundance of Archaea during warming in snowbeds, which was negatively correlated with the abundance of fungi (by qPCR) and micronutrients (Ca and Mg), but positively correlated with soil water content. In the snowbeds transcripts, warming resulted in the enrichment of abundances of transcription and nucleotide biosynthesis. Our study provides novel insights into possible changes in soil Archaea composition and function in the climate change scenario.
Collapse
Affiliation(s)
- Federica D'Alò
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, Viterbo, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, Viterbo, Italy
- Institute of Polar Sciences, National Research Council of Italy (CNR-ISP), Messina, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, Viterbo, Italy
| | - Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, Viterbo, Italy
| | - Nicoletta Cannone
- Department of Science and High Technology, Insubria University, Como, CO, Italy
| | - Francesco Malfasi
- Department of Science and High Technology, Insubria University, Como, CO, Italy
| | - Daniel Kumazawa Morais
- Biological Institute of São Paulo - Vila Mariana, São Paulo, Brazil
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Robert Starke
- Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic
| |
Collapse
|
14
|
Zhou SYD, Lie Z, Liu X, Zhu YG, Peñuelas J, Neilson R, Su X, Liu Z, Chu G, Meng Z, Yan J, Liu J. Distinct patterns of soil bacterial and fungal community assemblages in subtropical forest ecosystems under warming. GLOBAL CHANGE BIOLOGY 2023; 29:1501-1513. [PMID: 36448266 DOI: 10.1111/gcb.16541] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/18/2022] [Indexed: 05/26/2023]
Abstract
Climate change globally affects soil microbial community assembly across ecosystems. However, little is known about the impact of warming on the structure of soil microbial communities or underlying mechanisms that shape microbial community composition in subtropical forest ecosystems. To address this gap, we utilized natural variation in temperature via an altitudinal gradient to simulate ecosystem warming. After 6 years, microbial co-occurrence network complexity increased with warming, and changes in their taxonomic composition were asynchronous, likely due to contrasting community assembly processes. We found that while stochastic processes were drivers of bacterial community composition, warming led to a shift from stochastic to deterministic drivers in dry season. Structural equation modelling highlighted that soil temperature and water content positively influenced soil microbial communities during dry season and negatively during wet season. These results facilitate our understanding of the response of soil microbial communities to climate warming and may improve predictions of ecosystem function of soil microbes in subtropical forests.
Collapse
Affiliation(s)
- Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Zhiyang Lie
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xujun Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Josep Peñuelas
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Barcelona, Spain
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, Scotland, UK
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhanfeng Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guowei Chu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ze Meng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
15
|
Qu ZL, Li XL, Ge Y, Palviainen M, Zhou X, Heinonsalo J, Berninger F, Pumpanen J, Köster K, Sun H. The impact of biochar on wood-inhabiting bacterial community and its function in a boreal pine forest. ENVIRONMENTAL MICROBIOME 2022; 17:45. [PMID: 36042528 PMCID: PMC9429645 DOI: 10.1186/s40793-022-00439-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/22/2022] [Indexed: 05/31/2023]
Abstract
Biochar is considered to be a possible means of carbon sequestration to alleviate climate change. However, the dynamics of the microbial community during wood decomposition after biochar application remain poorly understood. In this study, the wood-inhabiting bacterial community composition and its potential functions during a two-year decomposition period after the addition of different amounts of biochar (0.5 kg m-2 and 1.0 kg m-2), and at different biochar pyrolysis temperatures (500 °C and 650 °C), in a boreal Scots pine forest, were analyzed using Illumina NovaSeq sequencing combined with Functional Annotation of Prokaryotic Taxa (FAPROTAX). The results showed that the wood decomposition rates increased after biochar addition to the soil surface in the second year. Treatment with biochar produced at high temperatures increased the diversity of wood-inhabiting bacteria more than that produced at low temperatures (P < 0.05). The wood-inhabiting bacterial diversity and species richness decreased with decomposition time. The biochar treatments changed the wood-inhabiting bacterial community structure during the decomposition period. The pyrolysis temperature and the amount of applied biochar had no effect on the bacterial community structure but shifted the abundance of certain bacterial taxa. Similarly, biochar application shifted the wood-inhabiting bacterial community function in the first year, but not in the second year. The wood-inhabiting bacterial community and function were affected by soil pH, soil water content, and soil total nitrogen. The results provide useful information on biochar application for future forest management practices. Long-term monitoring is needed to better understand the effects of biochar application on nutrient cycling in boreal forests.
Collapse
Affiliation(s)
- Zhao-Lei Qu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiao-Li Li
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Ge
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Marjo Palviainen
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, 00014, Helsinki, Finland
| | - Xuan Zhou
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, 70211, Kuopio, Finland
| | - Jussi Heinonsalo
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, 00014, Helsinki, Finland
| | - Frank Berninger
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, 70211, Kuopio, Finland
| | - Jukka Pumpanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, 70211, Kuopio, Finland
| | - Kajar Köster
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, 70211, Kuopio, Finland
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, 00014, Helsinki, Finland.
| |
Collapse
|
16
|
Yu Y, Liu L, Zhao J, Wang S, Zhou Y, Xiao C. The Diversity of Soil Bacteria and Fungi Under Altered Nitrogen and Rainfall Patterns in a Temperate Steppe. Front Microbiol 2022; 13:906818. [PMID: 35774466 PMCID: PMC9238322 DOI: 10.3389/fmicb.2022.906818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
Abstract
The response of soil microorganisms to altered nitrogen (N) and rainfall patterns plays an important role in understanding ecosystem carbon and nitrogen cycling processes under global change. Previous studies have separately focused on the effects of N addition and rainfall on soil microbial diversity and community composition. However, the combined and interactive impact of N addition and rainfall on soil microbial diversity and function mediated by plant and soil processes have been poorly investigated for grassland ecosystems. Here, we conducted a field experiment with simulated N addition (N addition: 10 g N m–2yr–1) and altered rainfall pattern [control, rainfall reduction (compared to control –50%); rainfall addition (compared to control + 50%)] to study their interactive effects on soil microbial diversity and function in a temperate steppe of Inner Mongolia. Our results showed that N addition and rainfall addition significantly increased soil bacterial diversity, and the bacterial diversity was positively correlated with soil microbial biomass nitrogen, inorganic nitrogen, and Stipa krylovii root exudate C:N ratio, Allium polyrhizum root exudate C and N, and A. polyrhizum root exudate C:N ratio. N addition and rainfall reduction significantly reduced fungal diversity, which correlated closely with soil microbial biomass carbon and the C:N ratio of A. polyrhizum root exudates. Bacteria were mainly eutrophic r-strategists, and the responses of bacterial function guilds to the interaction between N addition and rainfall pattern were not significant. However, the arbuscular mycorrhizal fungi (AMF), in the functional classification of fungi, were significantly reduced under the condition of N addition and rainfall reduction, and the absolute abundance of the phylum Glomeromycota increased under rainfall addition, suggesting that AMFs are sensitive to altered N and rainfall patterns over short timescales (1 year). Collectively, our results have important implications for understanding the plant–soil–microbe system of grasslands under climate change.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lu Liu
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jianing Zhao
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Shuchen Wang
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yijun Zhou
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Yijun Zhou,
| | - Chunwang Xiao
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- *Correspondence: Chunwang Xiao,
| |
Collapse
|
17
|
Biodiversity and Ecosystem Function under Simulated Gradient Warming and Grazing. PLANTS 2022; 11:plants11111428. [PMID: 35684201 PMCID: PMC9182780 DOI: 10.3390/plants11111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Biodiversity and ecosystem functions and their relationship with environmental response constitute a major topic of ecological research. However, the changes in and impact mechanisms of multi-dimensional biodiversity and ecosystem functions in continuously changing environmental gradients and anthropogenic activities remain poorly understood. Here, we analyze the effects of multi-gradient warming and grazing on relationships between the biodiversity of plant and soil microbial with productivity/community stability through a field experiment simulating multi-gradient warming and grazing in alpine grasslands on the Tibetan Plateau. We show the following results: (i) Plant biodiversity, soil microbial diversity and community productivity in alpine grasslands show fluctuating trends with temperature gradients, and a temperature increase below approximately 1 °C is beneficial to alpine grasslands; moderate grazing only increases the fungal diversity of the soil surface layer. (ii) The warming shifted plant biomass underground in alpine grasslands to obtain more water in response to the decrease in soil moisture caused by the temperature rise. Community stability was not affected by warming or grazing. (iii) Community stability was not significantly correlated with productivity, and environmental factors, rather than biodiversity, influenced community stability and productivity.
Collapse
|