1
|
Liu M, Chen G, Xu L, He Z, Ye Y. Environmental remediation approaches by nanoscale zero valent iron (nZVI) based on its reductivity: a review. RSC Adv 2024; 14:21118-21138. [PMID: 38966811 PMCID: PMC11223516 DOI: 10.1039/d4ra02789b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
The fast rise of organic and metallic pollution has brought significant risks to human health and the ecological environment. Consequently, the remediation of wastewater is in extremely urgent demand and has received increasing attention. Nanoscale zero valent iron (nZVI) possesses a high specific surface area and distinctive reactive interfaces, which offer plentiful active sites for the reduction, oxidation, and adsorption of contaminants. Given these abundant functionalities of nZVI, it has undergone significant and extensive studies on environmental remediation, linking to various mechanisms, such as reduction, oxidation, surface complexation, and coprecipitation, which have shown great promise for application in wastewater treatment. Among these functionalities of nZVI, reductivity is particularly important and widely adopted in dehalogenation, and reduction of nitrate, nitro compounds, and metal ions. The following review comprises a short survey of the most recent reports on the applications of nZVI based on its reductivity. It contains five sections, an introduction to the theme, chemical reduction applications, electrolysis-assisted reduction applications, bacterium-assisted reduction applications, and conclusions about the reported research with perspectives for future developments. Review and elaboration of the recent reductivity-dependent applications of nZVI may not only facilitate the development of more effective and sustainable nZVI materials and the protocols for comprehensive utilization of nZVI, but may also promote the exploration of innovative remediation approaches based on its reductivity.
Collapse
Affiliation(s)
- Mingyue Liu
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| | - Gang Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| | - Linli Xu
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| | - Zhicai He
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| | - Yuyuan Ye
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| |
Collapse
|
2
|
Sun FS, Wang MM, Zhao XY, Huang QY, Liu CQ, Yu GH. Synergistic binding mechanisms of co-contaminants in soil profiles: Influence of iron-bearing minerals and microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123353. [PMID: 38219894 DOI: 10.1016/j.envpol.2024.123353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
In contaminated soil sites, the coexistence of inorganic and organic contaminants poses a significant threat to both the surrounding ecosystem and public health. However, the migration characteristics of these co-contaminants within the soil and their interactions with key components, including Fe-bearing minerals, organic matter, and microorganisms, remain unclear. This study involved the collection of a 4.3-m-depth co-contaminated soil profile to investigate the vertical distribution patterns of co-contaminants (namely, arsenic, cadmium, and polychlorinated biphenyls (PCBs)) and their binding mechanisms with environmental factors. The results indicated a notable downward accumulation of inorganic contaminants with increasing soil depth, whereas PCBs were predominantly concentrated in the uppermost layer. Chemical extraction and synchrotron radiation analysis highlighted a positive correlation between the abundance of reactive iron (FeCBD) and both co-contaminants and microbial communities in the contaminated site. Furthermore, Mantel tests and structural equation modeling (SEM) demonstrated the direct impacts of FeCBD and microbial communities on co-contaminants within the soil profile. Overall, these results provided valuable insights into the migration and transformation characteristics of co-contaminants and their binding mechanisms mediated by minerals, organic matter, and microorganisms.
Collapse
Affiliation(s)
- Fu-Sheng Sun
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, 300072, China
| | - Miao-Miao Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, 300072, China
| | - Xiang-Yang Zhao
- DeepBiome. Co. Ltd., No. 38 Debao Road, China (Shanghai) Pilot Free Trade Zone, Shanghai, 200031, China
| | - Qiao-Yun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, 300072, China
| | - Guang-Hui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Xu L, Tang Y, Liu S, Chen X, Wang Y, Liu Z, Qin Q, Fu D, Xu Y. Short-chain fatty acids facilitated long-term dechlorination of PCBs in Taihu Lake sediment microcosms: Evidence from PCB congener and microbial community analyses. CHEMOSPHERE 2023; 340:139935. [PMID: 37619750 DOI: 10.1016/j.chemosphere.2023.139935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/12/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Microbial reductive dechlorination hosts great promise as an in situ bioremediation strategy for polychlorinated biphenyls (PCBs) contamination. However, the slow dechlorination in sediments limits natural attenuation. Short-chain fatty acids, as preferred carbon sources and electron donors for dechlorinating microorganisms, might stimulate PCB dechlorination. Herein, two sets of short-chain fatty acids, sole acetate and a fatty acid mixture (acetate, propionate, and butyrate), were amended periodically into Taihu Lake (China) sediment microcosms containing nine PCB congeners (PCB5, 12, 64, 71, 105, 114, 149, 153, and 170) after 24 weeks of incubation. Short-chain fatty acids facilitated the long-term PCB dechlorination and the promoting effect of the fatty acid mixture compared favorably with that of sole acetate. By the end of 108 weeks, the total PCB mass concentrations in acetate amended and fatty acid mixture amended microcosms significantly declined by 7.6% and 10.3% compared with non-amended microcosms (P < 0.05), respectively. Short-chain fatty acids selectively favored the removal of flanked meta and single-flanked para chlorines. Notably, a rare ortho dechlorination pathway, PCB25 (24-3-CB) to PCB13 (3-4-CB), was enhanced. Supplementary fatty acids significantly increased reductive dehalogenases (RDase) gene pcbA5 instead of improving the growth of Dehalococcoides. These findings highlight the merits of low cost short-chain fatty acids on in situ biostimulation in treating PCBs contamination.
Collapse
Affiliation(s)
- Lei Xu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Yanqiang Tang
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Sha Liu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Xi Chen
- Water Affairs Bureau of Nanjing Pukou District, Nanjing, 211899, China
| | - Ying Wang
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Zheming Liu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Qingdong Qin
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Yan Xu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
4
|
Cao X, Liu Q, Yue T, Zhang F, Liu L. Facile preparation of activated carbon supported nano zero-valent iron for Cd(Ⅱ) removal in aqueous environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116577. [PMID: 36323115 DOI: 10.1016/j.jenvman.2022.116577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Activated carbon-supported nano-zero-valent iron (nZVI@AC) is considered to be one of the most promising materials for in-situ remediation of pollutants in aqueous environment, while liquid phase reduction (LPR) is one of the most commonly used preparation methods for nZVI@AC. However, the complex operation and the requirement of various agents limit the practical application of the traditional liquid-phase reduction (TLPR). In this study, an improved liquid phase reduction method (ILPR) was proposed, which was characterized by solid-state dosing of reducing agents. Compared with TLPR, ILPR simplified the preparation process, while there was no requirement of polyethylene glycol and ethanol. When the Cd(II) removal efficiency was used as the evaluation index, the preferred parameters of ILPR were as follows: AC/FeSO4·7H2O mass ratio was 15:1; NaBH4 dosage was 8 g; ultrasonic time was 1 h; stirring time was 20 min. Moreover, the Cd(II) removal efficiency of nZVI@AC prepared by ILPR (nZVI@AC-I) was greater than 92.00%, which was superior to that of nZVI@AC prepared by TLPR (nZVI@AC-T). The characterization results showed that the pore parameters, surface functional groups and iron contents of nZVI@AC-I and nZVI@AC-T were basically the same. However, the distribution of iron-containing particles on the surface of nZVI@AC-I was more uniform. Furthermore, the Fe0 in nZVI@AC-I had a smaller particle size and a higher content. Overall, this study provided a promising approach for nZVI@AC preparation.
Collapse
Affiliation(s)
- Xingfeng Cao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Qiaojing Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Tiantian Yue
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Fengzhi Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
5
|
Tang Y, Chen J, Xiao Z, Liu Z, Xu L, Qin Q, Wang Y, Xu Y. Humin and biochar accelerated microbial reductive dechlorination of 2,4,6-trichlorophenol under weak electrical stimulation. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129671. [PMID: 36104900 DOI: 10.1016/j.jhazmat.2022.129671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The extracellular electron transfer (EET) is regarded as one of the crucial factors that limit the application of the bioelectrochemical system (BES). In this study, two different solid-phase redox mediators (RMs), biochar (1.2 g/L, T-B) and humin (1.2 g/L, T-H) were used for boosting the microorganisms accessing the electrons required for 2,4,6-TCP dechlorination under weak electrical stimulation (-0.278 V vs. Standard hydrogen electrode). BES with dissolved RM anthraquinone-2,6-disulfonate (AQDS 0.5 mmol/L, T-A) was used as a comparison. The results showed that dechlorination of 2,4,6-TCP could be greatly accelerated by biochar (1.78 d-1) and humin (1.50 d-1) than AQDS (0.24 d-1) and no RM control (T-M, 0.27 d-1). Moreover, phenol became the predominant dechlorination product in T-H (78.5 %) and T-B (63.0 %) instead of 4-CP in T-M (67.1 %) and T-A (89.8 %). Pseudomonas, Sulfurospirillum, Desulfuromonas, Dehalobacter, Anaeromyxobacter, and Dechloromonas belonging to Proteobacteria or Firmicutes rather than Chloroflexi might be responsible for the dechlorination activity. Notably, different RMs tended to stimulate distinct electroactive bacteria. Pseudomonas was the most abundant microorganism in T-M (41.92 %) and T-A (17.24 %), while Rhodobacter was most prevalent in T-H (20.04 %) and Azonexus was predominant in T-B (48.48 %). This study is essential in advancing the understanding of EET in BES for microbial degradation of organohalide contaminants under weak electrical stimulation.
Collapse
Affiliation(s)
- Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jiafeng Chen
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Yancheng City Planning and Research Information Center, Yancheng, Jiangsu 224000, China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Zheming Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lei Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qingdong Qin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yuqiao Wang
- Ctr Photoelectrochem & Devices, School of Chemistry and Chemistry Engineering, Southeast University, Nanjing, Jiangsu 211189, China
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
6
|
Su G, Wang Y, Ma B, Deng F, Lin D. Nanoscale zero-valent iron changes microbial co-occurrence pattern in pentachlorophenol-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129482. [PMID: 35785734 DOI: 10.1016/j.jhazmat.2022.129482] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Nanoscale zero-valent iron (nZVI) is a prominent nanomaterial for the remediation of organochlorine-contaminated soil and groundwater. However, a knowledge gap regarding the effects of the coexistence of nZVI and pollutants on soil microorganisms remains. Here, we studied the effects of nZVI on the microbial community structure, co-occurrence network, and keystone taxa in pentachlorophenol (PCP, a typical organochlorine pesticide) contaminated soils. The addition of nZVI (1000 mg/kg) had no obvious recovery effect on the microbial community structure of PCP-contaminated soil, but enhanced the connection and lowered the modularity of the microbial network. These changes were mainly present in the bacterial network rather than in the fungal or archaeal network. Moreover, the addition of nZVI increased the number of keystone taxa in the PCP-contaminated soil from 29 to 76. These keystone taxa are related to the degradation of organochlorine pollutants, carbon metabolism, and nitrogen metabolism and may thus be helpful in recovering soil ecological functions. These findings provide new insights into the interaction among nanomaterials, microorganisms, and pollutants.
Collapse
Affiliation(s)
- Gangping Su
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yanlong Wang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Bin Ma
- Institute of Soil, Water Resource, and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fucai Deng
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Deng Y, Zhang K, Zou J, Li X, Wang Z, Hu C. Electron shuttles enhanced the removal of antibiotics and antibiotic resistance genes in anaerobic systems: A review. Front Microbiol 2022; 13:1004589. [PMID: 36160234 PMCID: PMC9490129 DOI: 10.3389/fmicb.2022.1004589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The environmental and epidemiological problems caused by antibiotics and antibiotic resistance genes have attracted a lot of attention. The use of electron shuttles based on enhanced extracellular electron transfer for anaerobic biological treatment to remove widespread antibiotics and antibiotic resistance genes efficiently from wastewater or organic solid waste is a promising technology. This paper reviewed the development of electron shuttles, described the mechanism of action of different electron shuttles and the application of enhanced anaerobic biotreatment with electron shuttles for the removal of antibiotics and related genes. Finally, we discussed the current issues and possible future directions of electron shuttle technology.
Collapse
|
8
|
The behavior and mechanism of toxic Pb(II) removal by nanoscale zero-valent iron-carbon materials based on the oil refining byproducts. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Xu Y, Liu Z, Ma K, Qin Q. Facile synthesis of high iron content activated carbon-supported nanoscale zero-valent iron for enhanced Cr(VI) removal in aqueous solution. CHEMOSPHERE 2022; 291:132709. [PMID: 34718014 DOI: 10.1016/j.chemosphere.2021.132709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/29/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Nanoscale zero-valent iron (nZVI) based materials are considered as one of the most promising in situ remediation materials in the remediation of groundwater contaminated by a variety of pollutants. Supporting nZVI on activated carbon (AC) could reduce the aggregation of nZVI and lead to better utilization during application. The most used method for synthesizing nZVI/AC is liquid-phase reduction synthesis. However, the problem of nZVI shedding during the synthesis remains unsolved. In this study, an improved liquid-phase reduction synthesis method of nZVI/AC was developed. Compared to the conventional method, the improved method could significantly increase the Fe content of the obtain nZVI/AC (from 3.8% to 5.9%) and the utilization of reactant FeSO4·7H2O (from 49% to 77%) easily by changing the addition order and form of reactants, while using the same reaction precursors. The improved method reduced the shedding of nZVI from AC by taking advantage of the different solubility of FeSO4 in ethanol and water, and the different reactivity of NaBH4 in ethanol and water. The characterization results demonstrated that more nZVI was supported to the pores and outer surface of AC. The removal experiments of Cr(VI) (5.0 mg/L) from water showed that the nZVI/AC synthesized using the improved method exhibited better removal efficiency (85.6%) than that of the nZVI/AC synthesized using the conventional method (67.4%). These results suggested that selecting the appropriate solvent and optimizing the synthesis process may greatly improve the performance of nZVI-based materials.
Collapse
Affiliation(s)
- Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Zheming Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Kexin Ma
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Qingdong Qin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
10
|
Xu M, Xu RZ, Shen XX, Gao P, Xue ZX, Huang DC, Jin GQ, Li C, Cao JS. The response of sediment microbial communities to temporal and site-specific variations of pollution in interconnected aquaculture pond and ditch systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150498. [PMID: 34563908 DOI: 10.1016/j.scitotenv.2021.150498] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Sediment microbial communities play critical roles in the health of fish and the biogeochemical cycling of elements in aquaculture ecosystems. However, the response of microbial communities to temporal and spatial variations in interconnected aquaculture pond and ditch systems remains unclear. In this study, 61 sediment bacterial samples were collected over one year from 11 sites (including five ponds and six ditches) in a 30-year-old fish aquaculture farm. The 16S rRNA approach was used to determine the relative abundances of microbial communities in the sediment samples. The relationships among nutrients, heavy metals, and abundant microorganisms were analyzed. Our results showed that Proteobacteria, Bacteroides and Chloroflexi were the predominant phyla in the sediments of aquaculture pond, with average abundances of 36.33%, 18.60%, and 14.58%, respectively. The microbial diversity in aquaculture sediments was negatively correlated (P < 0.05) with the concentrations of total nitrogen and total phosphorus in sediments, indicating that the microbial diversity is highly associated with the remediation of nutrients in sediments. The sediment samples with high similarities were discovered by the t-distributed stochastic neighbor embedding (t-SNE) method. The site-specific correlations between specific microorganisms and heavy metals were explored. The network analysis revealed that the microbial diversities in aquaculture ponds were more stable than that in aquaculture ditches. The network analysis also illustrated that the microbial genera with low relative abundances may become key groups of microbial communities in sediment ecosystems. Our work deepens the understanding of the relationships between microbial communities and the spatiotemporal characteristics of surface water and sediments in aquaculture farms.
Collapse
Affiliation(s)
- Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Xiao-Xiao Shen
- College of Agricultural science and Engineering, Hohai University, Nanjing 210098, China
| | - Peng Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhao-Xia Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - De-Chun Huang
- Collaborative Innovation Center of World Water Valley and Water Ecological Civilization, Jiangning, Nanjing, PR China
| | - Guang-Qiu Jin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China.
| | - Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
11
|
Xu L, Liu S, Tang Y, Han X, Wang Y, Fu D, Qin Q, Xu Y. Long-Term Dechlorination of Polychlorinated Biphenyls (PCBs) in Taihu Lake Sediment Microcosms: Identification of New Pathways, PCB-Driven Shifts of Microbial Communities, and Insights into Dechlorination Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:938-950. [PMID: 34958198 DOI: 10.1021/acs.est.1c06057] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microbial reductive dechlorination of polychlorinated biphenyls (PCBs) is regarded as an alternative approach for in situ remediation and detoxification in the environment. To better understand the process of PCB dechlorination in freshwater lake sediment, a long-term (108 weeks) dechlorination study was performed in Taihu Lake sediment microcosms with nine parent PCB congeners (PCB5, 12, 64, 71, 105, 114, 149, 153, and 170). Within 108 weeks, the total PCBs declined by 32.8%, while parent PCBs declined by 84.8%. PCB dechlorinators preferred to attack meta- and para-chlorines, principally para-flanked meta and single-flanked para chlorines. A total of 58 dechlorination pathways were observed, and 20 of them were not in 8 processes, suggesting the broad spectrum of PCB dechlorination in the environment. Rare ortho dechlorination was confirmed to target the unflanked ortho chlorine, indicating a potential for complete dechlorination. PCBs drove the shifts of the microbial community structures, and putative dechlorinating bacteria were growth-linked to PCB dechlorination. The distinct jump of RDase genes ardA, rdh12, pcbA4, and pcbA5 was found to be consistent with the commencement of dechlorination. The maintained high level of putative dechlorinating phylum Chloroflexi (including Dehalococcoides and o-17/DF-1), genus Dehalococcoides, and four RDase genes at the end of incubation revealed the long-term dechlorination potential. This work provided insights into dechlorination potential for long-term remediation strategies at PCB-contaminated sites.
Collapse
Affiliation(s)
- Lei Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Sha Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Xuexin Han
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Ying Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dafang Fu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Qingdong Qin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|