1
|
Durkin A, Vinestock T, Guo M. Towards planetary boundary sustainability of food processing wastewater, by resource recovery & emission reduction: A process system engineering perspective. CARBON CAPTURE SCIENCE & TECHNOLOGY 2024; 13:None. [PMID: 39759871 PMCID: PMC11698304 DOI: 10.1016/j.ccst.2024.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 01/07/2025]
Abstract
Meeting the needs of a growing population calls for a change from linear production systems that exacerbate the depletion of finite natural resources and the emission of environmental pollutants. These linear production systems have resulted in the human-driven perturbation of the Earth's natural biogeochemical cycles and the transgression of environmentally safe operating limits. One solution that can help alleviate the environmental issues associated both with resource stress and harmful emissions is resource recovery from waste. In this review, we address the recovery of resources from food and beverage processing wastewater (FPWW), which offers a synergistic solution to some of the environmental issues with traditional food production. Research on resource recovery from FPWW typically focuses on technologies to recover specific resources without considering integrative process systems to recover multiple resources while simultaneously satisfying regulations on final effluent quality. Process Systems Engineering (PSE) offers methodologies able to address this holistic process design problem, including modelling the trade-offs between competing objectives. Optimisation of FPWW treatment and resource recovery has significant scope to reduce the environmental impacts of food production systems. There is significant potential to recover carbon, nitrogen, and phosphorus resources while respecting effluent quality limits, even when the significant uncertainties inherent to wastewater systems are considered. This review article gives an overview of the environmental challenges we face, discussed within the framework of the planetary boundary, and highlights the impacts caused by the agri-food sector. This paper also presents a comprehensive review of the characteristics of FPWW and available technologies to recover carbon and nutrient resources from wastewater streams with a particular focus on bioprocesses. PSE research and modelling advances are discussed in this review. Based on this discussion, we conclude the article with future research directions.
Collapse
Affiliation(s)
- Alex Durkin
- Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK
| | - Tom Vinestock
- Department of Engineering, King’s College London, WC2R 2LS, UK
| | - Miao Guo
- Department of Engineering, King’s College London, WC2R 2LS, UK
| |
Collapse
|
2
|
Verma P, Sirotiya V, Rathore R, Kumar A, Rai A, Soni U, Khalid M, Yadav KK, Vinayak V. A comprehensive review on microalgal chromium detoxification in tannery wastewater: Paving the way for biobased products. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2024; 190:240-255. [DOI: 10.1016/j.psep.2024.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Tatla HK, Ismail S, Khan MA, Dhar BR, Gupta R. Coupling hydrothermal liquefaction and anaerobic digestion for waste biomass valorization: A review in context of circular economy. CHEMOSPHERE 2024; 361:142419. [PMID: 38789051 DOI: 10.1016/j.chemosphere.2024.142419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
In light of the substantial global production of biomass waste, effective waste management and energy recovery solutions are of paramount importance. Hydrothermal liquefaction (HTL) and anaerobic digestion (AD) have emerged as innovative techniques for converting biomass waste into valuable resources. Their integration creates a synergistic framework that mitigates inherent limitations, leading to improved efficiency, enhanced product quality, and the comprehensive utilization of biomass. This review paper investigates the integration of HTL and AD, highlighting its significance and potential benefits as well as the optimal sequencing (HTL followed by AD and AD followed by HTL). The review encompasses experimental procedures, factors influencing both sequencing options, energy recovery characterizations, final product outcomes, as well as toxicological assessments and discussions on reduction. Additionally, it delves into the transition towards a circular bioeconomy and discusses the challenges and opportunities intrinsic to these processes. The findings presented in this review offer valuable insights to shape future research in this evolving field.
Collapse
Affiliation(s)
- Harveen Kaur Tatla
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Sherif Ismail
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mohd Adnan Khan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Rajender Gupta
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Nazeryzadeh N, Nikoo MR, Afzali SH. Long-term resilience in wastewater management: Optimizing treated wastewater allocation with a dynamic multi-agent approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121527. [PMID: 38909581 DOI: 10.1016/j.jenvman.2024.121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/26/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Water scarcity poses a significant challenge to sustainable development, necessitating innovative approaches to manage limited resources efficiently. Effective water resource management involves not just the conservation and distribution of freshwater supplies but also the strategic reuse of treated wastewater (TWW). This study proposes a novel approach for the optimal allocation of treated wastewater among three key sectors (user agents): agriculture, industry, and urban green space. Recognizing the intricate interplays among these sectors, System Dynamics (SD) and Agent-Based Modeling (ABM) were integrated in a Complex Adaptive System (CAS) to capture the interactions and feedback mechanisms inherent within treated wastewater allocation systems. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) serves as the optimization tool, enabling the identification of optimal allocation strategies across various management scenarios over a 25-year simulation period. Our research navigates the complexities of long-term resource management, accounting for each sector's evolving its objectives and guidelines along the whole system objectives and strategies. The outcomes demonstrate how treated wastewater can be effectively distributed to support economic and social equity -as the system objectives-while supporting agricultural and industrial growth and enhancing efficiency and social well-being -reflecting individual agent objectives-within the CAS framework. The research explores four distinct management scenarios, each prioritizing different sectors to address water resource management challenges. Notably, all four scenarios align with the strategies required by the ruler (government), providing strategic guidance to water resource managers for decision-making. The simulation results reveal a scenario where all sectors' demands are met, with Scenario 4 emerging as the most effective. Scenario 4 aligned with the objectives and guidelines of each sector, demonstrating significant improvements in the CY (Agriculture agent index; increased from 0.2 to 0.68), IGI (Industry agent index; increased from 1 to 1.63), and GAI (Urban Green Space agent index; increased from 1 to 1.23) indices over the 25-year simulation period. By providing a strategic blueprint for policymakers and stakeholders, this study contributes significantly to the discourse on sustainable water resource management, presenting a replicable model for similar contexts globally, where judicious allocation of treated wastewater is paramount for achieving harmony between human activity and ecological preservation.
Collapse
Affiliation(s)
- Najmeh Nazeryzadeh
- Department of Civil Engineering, School of Engineering, Shiraz University, Shiraz, Iran
| | - Mohammad Reza Nikoo
- Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Seied Hosein Afzali
- Department of Civil Engineering, School of Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
5
|
Ñañez KB, Rios Ramirez KD, Cordeiro de Oliveira OM, Reyes CY, Andrade Moreira ÍT. Removal of polycyclic aromatic hydrocarbons (PAHs) from produced water using the microalgae Chlorella vulgaris cultivated in mixotrophic and heterotrophic conditions. CHEMOSPHERE 2024; 356:141931. [PMID: 38614391 DOI: 10.1016/j.chemosphere.2024.141931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Chlorella vulgaris was cultivated for 15 days in 10 different treatments under mixotrophic and heterotrophic conditions, using wastewater from oil and poultry industries as the culture medium. The blends were made with produced water (PW), sterilized produced water (PWs), sterilized poultry wastewater (PoWs), sterilized seawater (SWs), and the addition of sodium nitrate to evaluate cell growth in treatments and the removal of PAHs. The heterotrophic condition showed more effective removal, having an initial concentration of 3.93 μg L-1 and a final concentration of 0.57 μg L-1 of total PAHs reporting 83%, during phycoremediation of (PW) than the mixotrophic condition, with an initial concentration of 3.93 μg L-1 and a final concentration of 1.96 and 43% removal for the PAHs. In the heterotrophic condition, the blend with (PWs + SWs) with an initial concentration of 0.90 μg L-1 and a final concentration of 0.32 μg L-1 had 64% removal of total PAHs compared to the mixotrophic condition with 37% removal having an initial concentration of 0.90 μg L-1 and a final concentration of 0.56 μg L-1. However, the best result in the mixotrophic condition was obtained using a blend of (PWs + PoWs) that had an initial cell concentration of 1.18 × 105 cells mL-1 and reached a final cell concentration of 4.39 × 105 cells mL-1, an initial concentration of 4.76 μg L-1 and a final concentration of 0.37 μg L-1 having a 92% total removal of PAHs. The biostimulation process increased the percentage of PAHs removal by 45% (PW) in the mixotrophic condition. This study showed that it is possible to allow an environmental remediation strategy that significantly reduces effluent toxicity and generates high value-added biomass in contaminated effluents rich in nutrients and carbon, based on a circular bioeconomy model.
Collapse
Affiliation(s)
- Katerine Botero Ñañez
- Federal University of Bahia, Geosciences Institute, R. Barão de Jeremoabo, s/n - Ondina, 40170-290, Salvador, BA, Brazil.
| | - Karen Daniela Rios Ramirez
- Federal University of Bahia, Geosciences Institute, R. Barão de Jeremoabo, s/n - Ondina, 40170-290, Salvador, BA, Brazil
| | | | - Claudia Yolanda Reyes
- University of the Amazon, Campus Porvenir street 17 Diagonal 17 with Carrera 3F, Florencia, CAQ, Colombia
| | - Ícaro Thiago Andrade Moreira
- Federal University of Bahia, Geosciences Institute, R. Barão de Jeremoabo, s/n - Ondina, 40170-290, Salvador, BA, Brazil
| |
Collapse
|
6
|
Torre A, Vázquez-Rowe I, Parodi E, Kahhat R. A multi-criteria decision framework for circular wastewater systems in emerging megacities of the Global South. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169085. [PMID: 38056636 DOI: 10.1016/j.scitotenv.2023.169085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Lima faces increasing water stress due to demographic growth, climate change and outdated water management infrastructure. Moreover, its highly centralized wastewater management system is currently unable to recover water or other resources. Hence, the primary aim of this study is to identify suitable wastewater treatment alternatives for both eutrophication mitigation and indirect potable reuse (IPR). For eutrophication mitigation, we examined MLE, Bardenpho, Step-feed, HF-MBR, and FS-MBR. For IPR, we considered secondary treatment+UF + RO + AOP or MBR + RO + AOP. These alternatives form part of a WWTP network at a district level, aiding Lima's pursuit of a circular economy approach. This perspective allows reducing environmental impacts through resource recovery, making the system more resilient to disasters and future water shortages. The methods used to assess these scenarios were Life Cycle Assessment for the environmental dimension; Life Cycle Costing for the economic perspective; and Multi-Criteria Decision Analysis to integrate both the quantitative tools aforementioned and qualitative criteria for social and techno-operational dimensions, which combined, strengthen the decision-making process. The decision-making steered towards Bardenpho for eutrophication abatement when environmental and economic criteria were prioritized or when the four criteria were equally weighted, while HF-MBR was the preferred option when techno-operational and social aspects were emphasized. In this scenario, global warming (GW) impacts ranged from 0.23 to 0.27 kg CO2eq, eutrophication mitigation varied from 6.44 to 7.29 g PO4- equivalent, and costs ranged between 0.12 and 0.17 €/m3. Conversely, HF-MBR + RO + AOP showed the best performance when IPR was sought from the outset. In the IPR scenario, GW impacts were significantly higher, at 0.46-0.51 kg CO2eq, eutrophication abatement was above 98 % and costs increased to ca. 0.44 €/m3.
Collapse
Affiliation(s)
- Andre Torre
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel 15088, Lima, Peru
| | - Ian Vázquez-Rowe
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel 15088, Lima, Peru.
| | - Eduardo Parodi
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel 15088, Lima, Peru
| | - Ramzy Kahhat
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel 15088, Lima, Peru
| |
Collapse
|
7
|
Zhang X, Fan Y, Hao T, Chen R, Zhang T, Hu Y, Li D, Pan Y, Li YY, Kong Z. Insights into current bio-processes and future perspectives of carbon-neutral treatment of industrial organic wastewater: A critical review. ENVIRONMENTAL RESEARCH 2024; 241:117630. [PMID: 37993050 DOI: 10.1016/j.envres.2023.117630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
With the rise of the concept of carbon neutrality, the current wastewater treatment process of industrial organic wastewater is moving towards the goal of energy conservation and carbon emission reduction. The advantages of anaerobic digestion (AD) processes in industrial organic wastewater treatment for bio-energy recovery, which is in line with the concept of carbon neutrality. This study summarized the significance and advantages of the state-of-the-art AD processes were reviewed in detail. The application of expanded granular sludge bed (EGSB) reactors and anaerobic membrane bioreactor (AnMBR) were particularly introduced for the effective treatment of industrial organic wastewater treatment due to its remarkable prospect of engineering application for the high-strength wastewater. This study also looks forward to the optimization of the AD processes through the enhancement strategies of micro-aeration pretreatment, acidic-alkaline pretreatment, co-digestion, and biochar addition to improve the stability of the AD system and energy recovery from of industrial organic wastewater. The integration of anaerobic ammonia oxidation (Anammox) with the AD processes for the post-treatment of nitrogenous pollutants for the industrial organic wastewater is also introduced as a feasible carbon-neutral process. The combination of AnMBR and Anammox is highly recommended as a promising carbon-neutral process for the removal of both organic and inorganic pollutants from the industrial organic wastewater for future perspective. It is also suggested that the AD processes combined with biological hydrogen production, microalgae culture, bioelectrochemical technology and other bio-processes are suitable for the low-carbon treatment of industrial organic wastewater with the concept of carbon neutrality in future.
Collapse
Affiliation(s)
- Xinzheng Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yuqin Fan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tao Zhang
- College of Design and Innovation, Shanghai International College of Design & Innovation, Tongji University, Shanghai, 200092, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Dapeng Li
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Zhe Kong
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
8
|
Xue B, Guo X, Cao J, Yang S, Qiu Z, Wang J, Shen Z. The occurrence, ecological risk, and control of disinfection by-products from intensified wastewater disinfection during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165602. [PMID: 37478942 DOI: 10.1016/j.scitotenv.2023.165602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Increased disinfection of wastewater to preserve its microbiological quality during the coronavirus infectious disease-2019 (COVID-19) pandemic have inevitably led to increased production of toxic disinfection by-products (DBPs). However, there is limited information on such DBPs (i.e., trihalomethanes, haloacetic acids, nitrosamines, and haloacetonitriles). This review focused on the upsurge of chlorine-based disinfectants (such as chlorine, chloramine and chlorine dioxide) in wastewater treatment plants (WWTPs) in the global response to COVID-19. The formation and distribution of DBPs in wastewater were then analyzed to understand the impacts of these large-scale usage of disinfectants in WWTPs. In addition, potential ecological risks associated with DBPs derived from wastewater disinfection and its receiving water bodies were summarized. Finally, various approaches for mitigating DBP levels in wastewater and suggestions for further research into the environmental risks of increased wastewater disinfection were provided. Overall, this study presented a comprehensive overview of the formation, distribution, potential ecological risks, and mitigating approaches of DBPs derived from wastewater disinfection that will facilitate appropriate wastewater disinfection techniques selection, potential ecological risk assessment, and removal approaches and regulations consideration.
Collapse
Affiliation(s)
- Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China
| | - Jinrui Cao
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Shuran Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| |
Collapse
|
9
|
Xu Y, Zhang L, Chen J, Liu T, Li N, Xu J, Yin W, Li D, Zhang Y, Zhou X. Phosphorus recovery from sewage sludge ash (SSA): An integrated technical, environmental and economic assessment of wet-chemical and thermochemical methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118691. [PMID: 37536239 DOI: 10.1016/j.jenvman.2023.118691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Incineration is a promising disposal method for sewage sludge (SS), enriching more than 90% of phosphorus (P) in the influent into the powdered product, sewage sludge ash (SSA), which is convenient for further P recovery. Due to insufficient bioavailable P and enriched heavy metals (HMs) in SSA, it is limited to be used directly as fertilizer. Hence, this paper provides an overview of P transformation in SS incineration, characterization of SSA components, and wet-chemical and thermochemical processes for P recovery with a comprehensive technical, economic, and environmental assessment. P extraction and purification is an important technical step to achieve P recovery from SSA, where the key to all technologies is how to achieve efficient separation of P and HMs at a low economic and environmental cost. It can be clear seen from the review that the economics of P recovery from SSA are often weak due to many factors. For example, the cost of wet-chemical methods is approximately 5∼6 €/kg P, while the cost of recovering P by thermochemical methods is about 2∼3 €/kg P, which is slightly higher than the current P fertilizer (1 €/kg P). So, for now, legislation is significant for promoting P recovery from SSA. In this regard, the relevant experience in Europe is worth learning from countries that have not yet carried out P recovery from SSA, and to develop appropriate policies and legislation according to their own national conditions.
Collapse
Affiliation(s)
- Yao Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Longlong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jiao Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wenjun Yin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
10
|
Fang J. Environmental law, environmental policy stringency, and development of environmental technologies in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101234-101249. [PMID: 37648917 DOI: 10.1007/s11356-023-29023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
China's fast industrialization and economic expansion has led to environmental degradation, prompting the government to implement a slew of environmental regulations and laws. This article examines how China's stringent environmental policies and legislation have impacted the development of environmental technology. The study's panel of Chinese companies confirmed that more stringent regulations really spurred innovation in green technology. This research lends credence to the premise that stricter environmental regulations are helpful in inspiring the development of cleaner technology that may help mitigate environmental issues. Research also shows that tighter environmental legislation increases environmental policy's effect on technological development. According to these results, environmental law may improve the efficiency of environmental policy by providing a hospitable framework for the application of technological innovation. The findings of this research have significant implications for Chinese policymakers committed to fostering sustainable development. The need of rigorous environmental rules to support comprehensive environmental policies that promote the development of greener technology is emphasized. The results shed even more light on how crucial it is to enforce environmental laws in order to ensure that environmental policies are effectively implemented. In essence, this study contributes to the expanding body of knowledge on the link between environmental policy and technical advancement by illuminating the potential for China's environmental policy and law to work together to encourage sustainable development. China's investment in green tech research and development may mitigate the environmental damage caused by its rapid economic growth.
Collapse
Affiliation(s)
- Jun Fang
- School of Law, Zhongnan University of Economics and Law, Wuhan, 430073, Hubei, China.
| |
Collapse
|
11
|
Notarnicola B, Tassielli G, Renzulli PA, Di Capua R, Astuto F, Riela S, Nacci A, Casiello M, Testa ML, Liotta LF, Pastore C. Life Cycle Assessment of a system for the extraction and transformation of Waste Water Treatment Sludge (WWTS)-derived lipids into biodiesel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163637. [PMID: 37098396 DOI: 10.1016/j.scitotenv.2023.163637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
In recent years, the demand for biofuels has been growing exponentially, as has the interest in biodiesel produced from organic matrices. Particularly interesting, due to its economic and environmental advantages, is the use of the lipids present in sewage sludge as a raw material for the synthesis of biodiesel. The possible processes of this biodiesel synthesis, starting from lipid matter, are represented by the conventional process with sulfuric acid, by the process with aluminium chloride hexahydrate and by processes that use solid catalysts such as those consisting of mixed metal oxides, functionalized halloysites, mesoporous perovskite and functionalized silicas. In literature there are numerous Life Cycle Assessment (LCA) studies concerning biodiesel production systems, but not many studies consider processes that start from sewage sludge and that use solid catalysts. In addition, no LCA studies were reported on solid acid catalysts nor on those based on mixed metal oxides which present some precious advantages, over the homogeneous analogous ones, such as higher recyclability, prevention of foams and corrosion phenomena, and an easier separation and purification of biodiesel product. This research work reports the results of a comparative LCA study applied to a system that uses a solvent free pilot plant for the extraction and transformation of lipids from sewage sludge via seven different scenarios that differ in the type of catalyst used. The biodiesel synthesis scenario using aluminium chloride hexahydrate as catalyst has the best environmental profile. Biodiesel synthesis scenarios using solid catalysts are worse due to higher methanol consumption which requires higher electricity consumption. The worst scenario is the one using functionalized halloysites. Further future developments of the research require the passage from the pilot scale to the industrial scale in order to obtain environmental results to be used for a more reliable comparison with the literature data.
Collapse
Affiliation(s)
- B Notarnicola
- Ionian Department of Law, Economics and Environment, University of Bari Aldo Moro, Taranto, Italy
| | - G Tassielli
- Ionian Department of Law, Economics and Environment, University of Bari Aldo Moro, Taranto, Italy
| | - P A Renzulli
- Ionian Department of Law, Economics and Environment, University of Bari Aldo Moro, Taranto, Italy
| | - R Di Capua
- Ionian Department of Law, Economics and Environment, University of Bari Aldo Moro, Taranto, Italy.
| | - F Astuto
- Ionian Department of Law, Economics and Environment, University of Bari Aldo Moro, Taranto, Italy
| | - S Riela
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), V.le delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - A Nacci
- Chemistry Department, University of Bari Aldo Moro, Bari, Italy
| | - M Casiello
- Chemistry Department, University of Bari Aldo Moro, Bari, Italy
| | - M L Testa
- CNR - Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Palermo, Italy
| | - L F Liotta
- CNR - Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Palermo, Italy
| | - C Pastore
- CNR - Istituto di Ricerca Sulle Acque (CNR-IRSA), Bari, Italy
| |
Collapse
|
12
|
Wu Z, Ji S, Li YY, Liu J. A review of iron use and recycling in municipal wastewater treatment plants and a novel applicable integrated process. BIORESOURCE TECHNOLOGY 2023; 379:129037. [PMID: 37037337 DOI: 10.1016/j.biortech.2023.129037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Chemical methods are expected to play an increasingly important role in carbon-neutral municipal wastewater treatment plants. This paper briefly summarises the enhancement effects of using iron salts in wastewater and sludge treatment processes. The costs and environmental concerns associated with the widespread use of iron salts have also been highlighted. Fortunately, the iron recovery from iron-rich sludge provides an opportunity to solve these problems. Existing iron recovery methods, including direct acidification and thermal treatment, are summarised and show that acidification treatment of FeS digestate from the anaerobic digestion-sulfate reduction process can increase the iron and sulphur recycling efficiency. Therefore, a novel applicable integrated process based on iron use and recycling is proposed, and it reduces the iron salts dosage to 4.2 mg/L and sludge amount by 80%. Current experimental research and economic analysis of iron recycling show that this process has broad application prospects in resource recovery and sludge reduction.
Collapse
Affiliation(s)
- Zhangsong Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shenghao Ji
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
13
|
Joosten N, Wyrębak W, Schenning A, Nijmeijer K, Borneman Z. On the Performance of a Ready-to-Use Electrospun Sulfonated Poly(Ether Ether Ketone) Membrane Adsorber. MEMBRANES 2023; 13:543. [PMID: 37367747 DOI: 10.3390/membranes13060543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
Motivated by the need for efficient purification methods for the recovery of valuable resources, we developed a wire-electrospun membrane adsorber without the need for post-modification. The relationship between the fiber structure, functional-group density, and performance of electrospun sulfonated poly(ether ether ketone) (sPEEK) membrane adsorbers was explored. The sulfonate groups enable selective binding of lysozyme at neutral pH through electrostatic interactions. Our results show a dynamic lysozyme adsorption capacity of 59.3 mg/g at 10% breakthrough, which is independent of the flow velocity confirming dominant convective mass transport. Membrane adsorbers with three different fiber diameters (measured by SEM) were fabricated by altering the concentration of the polymer solution. The specific surface area as measured with BET and the dynamic adsorption capacity were minimally affected by variations in fiber diameter, offering membrane adsorbers with consistent performance. To study the effect of functional-group density, membrane adsorbers from sPEEK with different sulfonation degrees (52%, 62%, and 72%) were fabricated. Despite the increased functional-group density, the dynamic adsorption capacity did not increase accordingly. However, in all presented cases, at least a monolayer coverage was obtained, demonstrating ample functional groups available within the area occupied by a lysozyme molecule. Our study showcases a ready-to-use membrane adsorber for the recovery of positively charged molecules, using lysozyme as a model protein, with potential applications in removing heavy metals, dyes, and pharmaceutical components from process streams. Furthermore, this study highlights factors, such as fiber diameter and functional-group density, for optimizing the membrane adsorber's performance.
Collapse
Affiliation(s)
- Niki Joosten
- Membrane Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Weronika Wyrębak
- Membrane Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Albert Schenning
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Kitty Nijmeijer
- Membrane Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Zandrie Borneman
- Membrane Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
14
|
John Jeya Kamaraj JJ, Annamalai P, Stephen Tamil LD, Muthu SP, Perumalsamy R, Valdes H. Enhanced Photocatalytic Degradation of ZnTiO3/Polycarbazole (PCz) Composite Towards Toxic Azo Dye. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-022-07570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Mannina G, Gulhan H, Ni BJ. Water reuse from wastewater treatment: The transition towards circular economy in the water sector. BIORESOURCE TECHNOLOGY 2022; 363:127951. [PMID: 36108940 DOI: 10.1016/j.biortech.2022.127951] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Water is crucial for economic development since it interacts with the agricultural, production, and energy sectors. However, the increasing demand and climate change put pressure on water sources. This paper argued the necessity of using reclaimed water for irrigation within the scope of a circular economy. The barriers (i.e., technological and economic, institutional/regulatory, and social) to water reuse practices were revealed. Lessons on how to overcome the barriers were learned from good practices. The roadmaps adopted in the European Union for the transition towards the circular economy were reviewed. It has been observed that these roadmaps are generally on the circularity of solid wastes. However, water is too important for the economy to be ignored in the transition towards circular economy. Research needs and perspective for a comprehensive roadmap to widen water-smart solutions such as water reuse were drawn.
Collapse
Affiliation(s)
- Giorgio Mannina
- Engineering Department - Palermo University, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy.
| | - Hazal Gulhan
- Engineering Department - Palermo University, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy; Environmental Engineering Department, Civil Engineering Faculty, Istanbul Technical University, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
16
|
Cosenza A, Gulhan H, Maida CM, Mannina G. Nutrient recovery from wastewater treatment by ultrafiltration membrane for water reuse in view of a circular economy perspective. BIORESOURCE TECHNOLOGY 2022; 363:127929. [PMID: 36096330 DOI: 10.1016/j.biortech.2022.127929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The study aims to recover nitrogen from wastewater by employing ultrafiltration membrane in water reuse for agriculture purpose. To such aim, a new reclaimed water quality index (RWQI) is proposed and applied including an innovative protocol for its assessment. Specifically, the influence of filtration and backwashing times for an ultrafiltration system aimed to nutrient recovery has been analyzed. The final goal was to pin down the trade-off between operation costs and effluent quality. Results show that backwashing time play a crucial role in reducing the operation costs; indeed, low values (i.e., 0.5 min) lead to an increase in the number of required chemical cleanings and consequently operation costs (namely, up to 0.042 €/m3). The compromise among effluent quality and operation costs has been obtained for 7 min and 1 min, filtration and backwashing, respectively.
Collapse
Affiliation(s)
- Alida Cosenza
- Engineering Department - Palermo University, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy
| | - Hazal Gulhan
- Engineering Department - Palermo University, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy; Environmental Engineering Department, Civil Engineering Faculty, Istanbul Technical University, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey.
| | - Carmelo Massimo Maida
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Italy
| | - Giorgio Mannina
- Engineering Department - Palermo University, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy
| |
Collapse
|
17
|
Rai A, Sirotiya V, Mourya M, Khan MJ, Ahirwar A, Sharma AK, Kawatra R, Marchand J, Schoefs B, Varjani S, Vinayak V. Sustainable treatment of dye wastewater by recycling microalgal and diatom biogenic materials: Biorefinery perspectives. CHEMOSPHERE 2022; 305:135371. [PMID: 35724717 DOI: 10.1016/j.chemosphere.2022.135371] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Discharge of untreated or partially treated toxic dyes containing wastewater from textile industries into water streams is hazardous for environment. The use of heavy metal(s) rich dyes, which are chemically active in azo and sulfur content(s) has been tremendously increasing in last two decades. Conventional physical and chemical treatment processes help to eliminate the dyes from textile wastewater but generates the secondary pollutants which create an additional environmental problem. Microalgae especially the diatoms are promising candidate for dye remediation from textile wastewater. Nanoporous diatoms frustules doped with nanocomposites increase the wastewater remediation efficiency due to their adsorption properties. On the other hand, microalgae with photosynthetic microbial fuel cell have shown significant results in being efficient, cost effective and suitable for large scale phycoremediation. This integrated system has also capability to enhance lipid and carotenoids biosynthesis in microalgae while simultaneously generating the bioelectricity. The present review highlights the textile industry wastewater treatment by live and dead diatoms as well as microalgae such as Chlorella, Scenedesmus, Desmodesmus sp. etc. This review engrosses applicability of diatoms and microalgae as an alternative way of conventional dye removal techniques with techno-economic aspects.
Collapse
Affiliation(s)
- Anshuman Rai
- Department of Biotechnology, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133203, India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Anil K Sharma
- Department of Biotechnology, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133203, India
| | - Rajeev Kawatra
- Forensic Science Laboratory, Haryana, Madhuban, Karnal, 132037, India
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
18
|
Deka R, Shreya S, Mourya M, Sirotiya V, Rai A, Khan MJ, Ahirwar A, Schoefs B, Bilal M, Saratale GD, Marchand J, Saratale RG, Varjani S, Vinayak V. A techno-economic approach for eliminating dye pollutants from industrial effluent employing microalgae through microbial fuel cells: Barriers and perspectives. ENVIRONMENTAL RESEARCH 2022; 212:113454. [PMID: 35597291 DOI: 10.1016/j.envres.2022.113454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells are biochemical factories which besides recycling wastewater are electricity generators, if their low power density can be scaled up. This also adds up to work on many factors responsible to increase the cost of running a microbial fuel cell. As a result, the first step is to use environment friendly dead organic algae biomass or even living algae cells in a microbial fuel cell, also referred to as microalgal microbial fuel cells. This can be a techno-economic aspect not only for treating textile wastewater but also an economical way of obtaining value added products and bioelectricity from microalgae. Besides treating wastewater, microalgae in its either form plays an essential role in treating dyes present in wastewater which essentially include azo dyes rich in synthetic ions and heavy metals. Microalgae require these metals as part of their metabolism and hence consume them throughout the integration process in a microbial fuel cell. In this review a detail plan is laid to discuss the treatment of industrial effluents (rich in toxic dyes) employing microbial fuel cells. Efforts have been made by researchers to treat dyes using microbial fuel cell alone or in combination with catalysts, nanomaterials and microalgae have also been included. This review therefore discusses impact of microbial fuel cells in treating wastewater rich in textile dyes its limitations and future aspects.
Collapse
Affiliation(s)
- Rahul Deka
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Shristi Shreya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Anshuman Rai
- MMU, Deemed University, School of Engineering, Department of Biotechnology, Ambala, Haryana,133203, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Justine Marchand
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India.
| |
Collapse
|
19
|
Membrane Water Treatment for Drinking Water Production from an Industrial Effluent Used in the Manufacturing of Food Additives. MEMBRANES 2022; 12:membranes12080742. [PMID: 36005657 PMCID: PMC9412253 DOI: 10.3390/membranes12080742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
Abstract
An integrated membrane process for treatment of effluents from food additive manufacturing was designed and evaluated on a laboratory scale. The principal focus was water recovery with the possibility of its reuse as potable water. The industrial effluent presented high content of dyes and salts. It was red in color and presented brine characteristics. The whole effluent was fed into the integrated process in continuous flow. The steps of the process are as follows: sedimentation (S), adsorption by activated carbon (AC), ion exchange using resins (IEXR), and reverse osmosis (RO) (S–AC–IEXR–RO). The effect of previous operations was evaluated by stress-rupture curves in packaged columns of AC and IEXR, membrane flux, and fouling dominance in RO. Fouling was evaluated by way of the Silt Density Index and membrane resistance examination during effluent treatment. The integrated membrane process provided reclaimed water with sufficiently high standards of quality for reuse as potable water. AC showed a high efficiency for color elimination, reaching its rupture point at 20 h and after 5L of effluent treatment. IEXR showed capacity for salt removal, providing 2.2–2.5 L of effluent treatment, reaching its rupture point at 11–15 h. As a result of these previous operations and operating conditions, the fouling of the RO membrane was alleviated, displaying high flux of water: 20–18 L/h/m2 and maintaining reversible fouling dominance at a feed flow rate of 0.5–0.7 L/h. The characteristics of the reclaimed water showed drinking water standards
Collapse
|
20
|
Peng L, Lou W, Xu Y, Yu S, Liang C, Alloul A, Song K, Vlaeminck SE. Regulating light, oxygen and volatile fatty acids to boost the productivity of purple bacteria biomass, protein and co-enzyme Q10. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153489. [PMID: 35122839 DOI: 10.1016/j.scitotenv.2022.153489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Purple non‑sulfur bacteria (PNSB) possess significant potential for bioresource recovery from wastewater. Effective operational tools are needed to boost productivity and direct the PNSB biomass towards abundant value-added substances (e.g., protein and co-enzyme Q10, CoQ10). This study aimed to investigate the impact of light, oxygen and volatile fatty acids (VFAs) on PNSB growth (i.e., Rhodobacter sphaeroides) and productivity of protein and CoQ10. Overall, the biomass yields and specific growth rates of PNSB were in the ranges of 0.57-1.08 g biomass g-1 CODremoved and 0.48-0.71 d-1, respectively. VFAs did not influence the biomass yield, yet acetate and VFA mixtures enhanced the specific growth rate with a factor of 1.2-1.5 compared to propionate and butyrate. The most PNSB biomass (1.08 g biomass g-1 CODremoved and 0.71 d-1) and the highest biomass quality (protein content of 609 mg g-1 dry cell weight (DCW) and CoQ10 content of 13.21 mg g-1 DCW) were obtained in the presence of VFA mixtures under natural light and microaerobic (low light alternated with darkness; dissolved oxygen (DO) between 0.5 and 1 mg L-1) conditions (vs. light anaerobic and dark aerobic cultivations). Further investigation on VFAs dynamics revealed that acetate was most rapidly consumed by PNSB in the individual VFA feeding (specific uptake rate of 0.76 g COD g-1 DCW d-1), while acetate as a co-substrate in the mixed VFAs feeding might accelerate the consumption of propionate and butyrate through providing additional cell metabolism precursor. Enzymes activities of succinate dehydrogenase and fructose-1,6-bisphosphatase as well as the concentration of photo pigments confirmed that light, oxygen and VFAs regulated the key enzymes in the energy metabolism and biomass synthesis to boost PNSB growth. These results provide a promising prospect for utilization of fermented waste stream for the harvest of PNSB biomass, protein and CoQ10.
Collapse
Affiliation(s)
- Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| | - Wenjing Lou
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Siwei Yu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Abbas Alloul
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
21
|
Guo Y, Sanjaya EH, Rong C, Wang T, Luo Z, Chen H, Wang H, Hanaoka T, Sakemi S, Ito M, Kobayashi S, Kobayashi M, Li YY. Treating the filtrate of mainstream anaerobic membrane bioreactor with the pilot-scale sludge-type one-stage partial nitritation/anammox process operated from 25 to 15 °C. BIORESOURCE TECHNOLOGY 2022; 351:127062. [PMID: 35351558 DOI: 10.1016/j.biortech.2022.127062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
At ambient temperature condition, the one-stage partial nitritation/anammox (PNA) process has been successfully adopted to treat the filtrate from the mainstream anaerobic membrane bioreactor (AnMBR). However, there is no investigation of the performance of this process at low-temperature condition. In this study, the nitrogen removal performance of a pilot-scale PNA reactor at the temperature of 15 °C for treating the filtrate of a mainstream AnMBR was investigated. The nitrogen removal rate of 0.09 kg/m3/d and the nitrogen removal efficiency of 37.6% were achieved. The anammox reaction was the rate-limiting step of the nitrogen removal. Nitrogen removal was attributed in part to denitrification activity. The microbial community analysis confirmed that the main functional bacteria comprised of genus Nitrosomonas and genus Kuenenia. In sum, this research demonstrated the applicability of PNA process for mainstream AnMBR filtrate treatment to some extent and enriched the related knowledge.
Collapse
Affiliation(s)
- Yan Guo
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Eli Hendrik Sanjaya
- Department of Chemistry, State University of Malang (Universitas Negeri Malang), Jl. Semarang No. 5, Malang, East Java 65145, Indonesia
| | - Chao Rong
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Tianjie Wang
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Zibin Luo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science & Technology, Changsha 410004, PR China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science & Technology, Changsha 410004, PR China
| | - Taira Hanaoka
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd, 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Shinichi Sakemi
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd, 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Masami Ito
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Shigeki Kobayashi
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Masumi Kobayashi
- Separation and Aqua Chemicals Department, Mitsubishi Chemical Corporation, Gate City Osaki East Tower, 11-2 Osaki 1-chome Shinagawa-Ku, Tokyo 141-0032, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
22
|
Wang Q, Fang K, He C, Wang K. Ammonia removal from municipal wastewater via membrane capacitive deionization (MCDI) in pilot-scale. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|