1
|
Cai J, Mu X, Xue J, Chen J, Liu Z, Guo F. Mathematical Modeling of NaCl Scaling Development in Long-Distance Membrane Distillation for Improved Scaling Control. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3629. [PMID: 39124294 PMCID: PMC11313132 DOI: 10.3390/ma17153629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024]
Abstract
Membrane distillation is a novel membrane-based separation technology with the potential to produce pure water from high-salinity brine. It couples transport behaviors along the membrane and across the membrane. The brine in the feed is gradually concentrated due to the permeate flux across the membrane, which is a significant factor in initiating the scaling behavior on the membrane surface along the feed flow direction. It is of great interest to investigate and estimate the development of scaling on the membrane surface. This work specifically focuses on a long-distance membrane distillation process with a sodium chloride solution as the feed. A modeling approach has been developed to estimate the sodium chloride scaling development on the membrane surface along the flow direction. A set of experiments was conducted to validate the results. Based on mathematical simplification and analytical fitting, a simplified model was summarized to predict the initiating position of sodium chloride scaling on the membrane, which is meaningful for scaling control in industrial-scale applications of membrane distillation.
Collapse
Affiliation(s)
- Jingcheng Cai
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; (J.C.); (X.M.); (J.C.); (Z.L.)
| | - Xingsen Mu
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; (J.C.); (X.M.); (J.C.); (Z.L.)
| | - Jian Xue
- Guangdong Provincial Key Laboratory of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Jiaming Chen
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; (J.C.); (X.M.); (J.C.); (Z.L.)
| | - Zeman Liu
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; (J.C.); (X.M.); (J.C.); (Z.L.)
| | - Fei Guo
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; (J.C.); (X.M.); (J.C.); (Z.L.)
| |
Collapse
|
2
|
Patel RVP, Raval H. Comparative assessment of treatment technologies for minimizing reverse osmosis concentrate volume for industrial applications: A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:314-343. [PMID: 39007322 DOI: 10.2166/wst.2024.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/09/2024] [Indexed: 07/16/2024]
Abstract
Desalination of seawater, brackish water, and reclaimed water is becoming increasingly prevalent worldwide to supplement and diversify fresh water supplies. However, particularly for industrial wastewater, the need for environment-friendly and economically viable alternatives for concentrate management is the major impediment to deploying large-scale desalination. This review covers various strategies and technologies for managing reverse osmosis concentrate (ROC) and also includes their disposal, treatment, and potential applications. Developing energy-efficient, economical, and ecologically sound ROC management systems is essential if desalination and wastewater treatment are being implemented for a sustainable water future, particularly for industrial wastewater. The limitations and benefits of various concentrate management strategies are examined in this review. Moreover, it explores the potential of innovative technologies in reducing concentrate volume, enhancing water recovery, eliminating organic pollutants, and extracting valuable resources. This review critically discusses concentrate management approaches and technologies, including disposal, treatment, and reuse, including new technologies for reducing concentrate volume, boosting water recovery, eliminating organic contaminants, recovering valuable commodities, and minimizing energy consumption.
Collapse
Affiliation(s)
- Raj Vardhan Prasad Patel
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hiren Raval
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India E-mail:
| |
Collapse
|
3
|
Farid MU, Kharraz JA, Sun J, Boey MW, Riaz MA, Wong PW, Jia M, Zhang X, Deka BJ, Khanzada NK, Guo J, An AK. Advancements in Nanoenabled Membrane Distillation for a Sustainable Water-Energy-Environment Nexus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307950. [PMID: 37772325 DOI: 10.1002/adma.202307950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Indexed: 09/30/2023]
Abstract
The emergence of nano innovations in membrane distillation (MD) has garnered increasing scientific interest. This enables the exploration of state-of-the-art nano-enabled MD membranes with desirable properties, which significantly improve the efficiency and reliability of the MD process and open up opportunities for achieving a sustainable water-energy-environment (WEE) nexus. This comprehensive review provides broad coverage and in-depth analysis of recent innovations in nano-enabled MD membranes, focusing on their role in achieving desirable properties, such as strong liquid-repellence, high resistance to scaling, fouling, and wetting, as well as efficient self-heating and self-cleaning functionalities. The recent developments in nano-enhanced photothermal-catalytic applications for water-energy co-generation within a single MD system are also discussed. Furthermore, the bottlenecks are identified that impede the scale-up of nanoenhanced MD membranes and a future roadmap is proposed for their sustainable commercialiation. This holistic overview is expected to inspire future research and development efforts to fully harness the potential of nano-enabled MD membranes to achieve sustainable integration of water, energy, and the environment.
Collapse
Affiliation(s)
- Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Min-Wei Boey
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Adil Riaz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Xinning Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| |
Collapse
|
4
|
Kadi KE, Janajreh I, Abedrabbo S, Ali MI. Design of a multistage hybrid desalination process for brine management and maximum water recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17565-17577. [PMID: 36640235 DOI: 10.1007/s11356-023-25243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Hypersaline brine production from desalination plants causes huge environmental stress due to the untenable conventional discharge strategies. Particularly, brine production is expected to drastically increase in the coming few decades due to the increasing desalination capacity in attempts of forestalling water scarcity. Thereby, zero liquid discharge (ZLD) is a worth-considering solution for strategic brine management. ZLD or minimal liquid discharge (MLD) systems provide maximum water recovery with least or zero liquid waste generation and valuable salt production. In this work, a theoretical design of ZLD/MLD system is proposed for reverse osmosis (RO) brine management. Different scenarios are investigated utilizing multistage freeze desalination (FD) and its hybridization with multistage direct contact membrane distillation (DCMD), and eutectic freeze crystallization (EFC) technologies. The design is based on the experimental assessment of the indirect FD process at different feed salinities, i.e., 2 g/L to 155 g/L. FD experiments showed that ice quality is reduced at greater crystallinity levels and initial concentration. Moreover, a computational fluid dynamics (CFD) model is utilized to assess the performance of DCMD. A single DCMD module could produce 53 kg/(m2.h) of pure water operating with 69% thermal efficiency. Eventually, water recovery, water quality, as well as specific energy consumption (SEC) are evaluated for the whole system. Based on different configurations of the hybrid ZLD system, the proposed design can achieve water recovery between 40 and 93% with SEC range of 28-114 kWh/m3. Results also showed that the produced water quality exceeds drinkable water standards ( ≪ 500 mg/L). This work has provided great evidence in the practicality of ZLD/MLD systems for sustainable brine management.
Collapse
Affiliation(s)
- Khadije El Kadi
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Isam Janajreh
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| | - Sufian Abedrabbo
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mohamed Ibrahim Ali
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Christie KSS, McGaughey A, McBride SA, Xu X, Priestley RD, Ren ZJ. Membrane Distillation-Crystallization for Sustainable Carbon Utilization and Storage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16628-16640. [PMID: 37857373 PMCID: PMC10621001 DOI: 10.1021/acs.est.3c04450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Anthropogenic greenhouse gas emissions from power plants can be limited using postcombustion carbon dioxide capture by amine-based solvents. However, sustainable strategies for the simultaneous utilization and storage of carbon dioxide are limited. In this study, membrane distillation-crystallization is used to facilitate the controllable production of carbonate minerals directly from carbon dioxide-loaded amine solutions and waste materials such as fly ash residues and waste brines from desalination. To identify the most suitable conditions for carbon mineralization, we vary the membrane type, operating conditions, and system configuration. Feed solutions with 30 wt % monoethanolamine are loaded with 5-15% CO2 and heated to 40-50 °C before being dosed with 0.18 M Ca2+ and Mg2+. Membranes with lower surface energy and greater roughness are found to more rapidly promote mineralization due to up to 20% greater vapor flux. Lower operating temperature improves membrane wetting tolerance by 96.2% but simultaneously reduces crystal growth rate by 48.3%. Sweeping gas membrane distillation demonstrates a 71.6% reduction in the mineralization rate and a marginal improvement (37.5%) on membrane wetting tolerance. Mineral identity and growth characteristics are presented, and the analysis is extended to explore the potential improvements for carbon mineralization as well as the feasibility of future implementation.
Collapse
Affiliation(s)
- Kofi S. S. Christie
- Andlinger
Center for Energy and the Environment, Princeton
University, Princeton, New Jersey 08544, United States
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Allyson McGaughey
- Andlinger
Center for Energy and the Environment, Princeton
University, Princeton, New Jersey 08544, United States
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Samantha A. McBride
- Department
of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Xiaohui Xu
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Rodney D. Priestley
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton
Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| | - Zhiyong Jason Ren
- Andlinger
Center for Energy and the Environment, Princeton
University, Princeton, New Jersey 08544, United States
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Zhang X, Koirala R, Pramanik B, Fan L, Date A, Jegatheesan V. Challenges and advancements in membrane distillation crystallization for industrial applications. ENVIRONMENTAL RESEARCH 2023; 234:116577. [PMID: 37429399 DOI: 10.1016/j.envres.2023.116577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Membrane distillation crystallization (MDC) is an emerging hybrid thermal membrane technology that synergizes membrane distillation (MD) and crystallization, which can achieve both freshwater and minerals recovery from high concentrated solutions. Due to the outstanding hydrophobic nature of the membranes, MDC has been widely used in numerous fields such as seawater desalination, valuable minerals recovery, industrial wastewater treatment and pharmaceutical applications, where the separation of dissolved solids is required. Despite the fact that MDC has shown great promise in producing both high-purity crystals and freshwater, most studies on MDC remain limited to laboratory scale, and industrializing MDC processes is currently impractical. This paper summarizes the current state of MDC research, focusing on the mechanisms of MDC, the controls for membrane distillation (MD), and the controls for crystallization. Additionally, this paper categorizes the obstacles hindering the industrialization of MDC into various aspects, including energy consumption, membrane wetting, flux reduction, crystal yield and purity, and crystallizer design. Furthermore, this study also indicates the direction for future development of the industrialization of MDC.
Collapse
Affiliation(s)
- Xin Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia
| | - Ravi Koirala
- Mechanical and Automotive Engineering, School of Engineering, RMIT University, Bundoora, VIC, 3083, Australia
| | - Biplob Pramanik
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia
| | - Linhua Fan
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia
| | - Abhijit Date
- Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia; Mechanical and Automotive Engineering, School of Engineering, RMIT University, Bundoora, VIC, 3083, Australia
| | - Veeriah Jegatheesan
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
7
|
Demirbas A, Karsli B, Ocsoy I. Facile Synthesis of Hybrid Nanoflowers Using Glycine and Phenylalanine and Investigation of Their Catalytic Activity. Chem Biodivers 2023; 20:e202300743. [PMID: 37438322 DOI: 10.1002/cbdv.202300743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
In the context of the proposed work, two different amino acids (Glycine, Phenylalanine) have interacted with copper ions in a phosphate buffer (PBS) in place of enzymes. This interaction resulted in the nucleation of copper phosphate crystals and the formation of flower-shaped amino acid-copper hybrid nanostructures (AA-hNFs), which grew through self-assembly. While Cu (II) ions in the structure of AA-hNFs were used as Fenton's agent for the catalytic activity. SEM, energy dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy measurements were used to define the AA-hNFs' characterisation. The peroxidase-like activities of AA-hNFs were investigated by UV/VIS spectrophotometer. Metal nanoparticles have peroxidase-like activity. A class of enzymes known as peroxidases is able to catalyze the conversion of hydrogen peroxide into hydroxyl radicals. These radicals also take part in electron transfers with substrates, which results in color during oxidation. When cupric oxide nanoparticles are added to the peroxidase substrate while H2 O2 is present, a blue color product with a maximum absorbance at=652 nm can result, demonstrating the catalytic activity of a peroxidase. The morphology and composition of AA-hNFs were carefully characterized and the synthesized parameters were optimized systematically. Results showed that the nanoparticles were dispersed with an average diameter of 7-9 μm and indicated a uniform flower shape. The results of the investigation are anticipated to significantly advance a number of technical and scientific sectors.
Collapse
Affiliation(s)
- Ayse Demirbas
- Department of Seafood Processing Technology, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Turkey
| | - Baris Karsli
- Department of Seafood Processing Technology, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
8
|
Zheng L, Li C, Zhang C, Kang S, Gao R, Wang J, Wei Y. Mixed scaling deconstruction in vacuum membrane distillation for desulfurization wastewater treatment by a cascade strategy. WATER RESEARCH 2023; 238:120032. [PMID: 37146399 DOI: 10.1016/j.watres.2023.120032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Mineral scaling is one key obstacle to membrane distillation in hypersaline wastewater desalination, but the scaling or fouling mechanism is poorly understood. Addressing this challenge required revealing the foulants layer formation process. In this work, the scaling process was deconstructed with a cascade strategy by stepwise changing the composition of the synthetic desulfurization wastewater. The flux decline curves presented a 3-stage mode in vacuum membrane distillation (VMD). Heterogeneous nucleation of CaMg(CO3)2, CaF2, and CaCO3 was the main incipient scaling mechanism. Mg-Si complex was the leading foulant in 2nd-stage, during which the scaling mechanism shifted from surface to bulk crystallization. The flux decreased sharply for the formation of a thick and compacted scaling layer by the bricklaying of CaSO4 and Mg-Si-BSA complexes in the 3rd-stage. Bulk crystallization was identified as the key scaling mechanism in VMD for the high salinity and concentration multiple. The organic matter had an anti-scaling effect by changing the bulk crystallization. Humic acids (HA) and colloidal silica also contributed to incipient scaling for the high affinity to membrane, bovine serum albumin (BSA) acting as the cement of Mg-Si complexes. Mg altered the Si scaling from polymerization to Mg-Si complex formation, which significantly influence the mixed scaling mechanism. This work deconstructed the mixed scaling process and illuminated the role of main foulants, filling in the knowledge gap on the mixed scaling mechanism in VMD for hypersaline wastewater treatment and recovery.
Collapse
Affiliation(s)
- Libing Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Lehrstuhl für Technische Chemie II and Center for Water and Environmental Research (ZWU), Universität Duisburg-Essen, Essen 45117, Germany; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Chenlu Li
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chun Zhang
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sai Kang
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Gao
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Guo H, Gao H, Yan A, Lu X, Wu C, Gao L, Zhang J. Treatment to surfactant containing wastewater with membrane distillation membrane with novel sandwich structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161195. [PMID: 36581298 DOI: 10.1016/j.scitotenv.2022.161195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Surfactant containing wastewater widely exists in textile industry, which hardly to be treated by membrane technology due to its high in salinity and wetting potential. In this study, PVDF membrane was modified by constructing a PDMS-SiO2-PDMS "sandwich" structure on top of its surface via coating to achieve resistance to surfactant induced wetting. The "sandwich" layer was optimized based on the membrane performance during membrane distillation. Compared to the pristine PVDF membrane with contact angle of 92°, the water contact angle of the membrane with a "sandwich" layer of 0.44 μm increased to 153°. For the feed contained 0.5 wt% NaCl and 0.25 wt% surfactant, there was no membrane wetting occurred during the experiment period using the membrane with a "sandwich" structure, in comparison to the pristine PVDF membrane being wetted from beginning. For a challenge experiment to the developed membrane lasting for 100 h using a surfactant containing feed, there is no wetting sign observed and the stable flux is 20 kg·m-2·h-1.
Collapse
Affiliation(s)
- Hanyu Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Haifu Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - An Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xiaolong Lu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Chunrui Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Li Gao
- ISILC, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia; South East Water Corporation, PO Box 2268, Seaford, Victoria 3198, Australia
| | - Jianhua Zhang
- ISILC, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia.
| |
Collapse
|
10
|
Alessandro F, Macedonio F, Drioli E. Plasmonic Phenomena in Membrane Distillation. MEMBRANES 2023; 13:254. [PMID: 36984641 PMCID: PMC10058825 DOI: 10.3390/membranes13030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Water scarcity raises important concerns with respect to human sustainability and the preservation of important ecosystem functions. To satisfy water requirements, seawater desalination represents one of the most sustainable solutions. In recent decades, membrane distillation has emerged as a promising thermal desalination process that may help to overcome the drawbacks of traditional desalination processes. Nevertheless, in membrane distillation, the temperature at the feed membrane interface is significantly lower than that of the bulk feed water, due to the latent heat flux associated with water evaporation. This phenomenon, known as temperature polarization, in membrane distillation is a crucial issue that could be responsible for a decay of about 50% in the initial transmembrane water flux. The use of plasmonic nanostructures, acting as thermal hotspots in the conventional membranes, may improve the performance of membrane distillation units by reducing or eliminating the temperature polarization problem. Furthermore, an efficient conversion of light into heat offers new opportunities for the use of solar energy in membrane distillation. This work summarizes recent developments in the field of plasmonic-enhanced solar evaporation with a particular focus on solar-driven membrane distillation applications and its potential prospects.
Collapse
|
11
|
Zhou H, Ju P, Hu S, Shi L, Yuan W, Chen D, Wang Y, Shi S. Separation of Hydrochloric Acid and Oxalic Acid from Rare Earth Oxalic Acid Precipitation Mother Liquor by Electrodialysis. MEMBRANES 2023; 13:162. [PMID: 36837666 PMCID: PMC9964671 DOI: 10.3390/membranes13020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
In this study, the hydrochloric acid from rare earth oxalic acid precipitation mother liquor was separated by electrodialysis (ED) with different anion exchange membranes, including selective anion exchange membrane (SAEM), polymer alloy anion exchange membrane (PAAEM), and homogenous anion exchange membrane (HAEM). In addition to actual wastewater, nine types of simulated solutions with different concentrations of hydrochloric acid and oxalic acid were used in the experiments. The results indicated that the hydrochloric acid could be separated effectively by electrodialysis with SAEM from simulated and real rare earth oxalic acid precipitation mother liquor under the operating voltage 15 V and ampere 2.2 A, in which the hydrochloric acid obtained in the concentrate chamber of ED is of higher purity (>91.5%) generally. It was found that the separation effect of the two acids was related to the concentrations and molar ratios of hydrochloric acid and oxalic acid contained in their mixtures. The SEM images and ESD-mapping analyses indicated that membrane fouling appeared on the surface of ACS and CSE at the diluted side of the ED membrane stack when electrodialysis was used to treat the real rare earth oxalic acid precipitation mother liquor. Fe, Yb, Al, and Dy were found in the CSE membrane section, and organic compounds containing carbon and sulfur were attached to the surface of the ACS. The results also indicated that the real rare earth precipitation mother liquor needed to be pretreated before the separation of hydrochloric acid and oxalic acid by electrodialysis.
Collapse
Affiliation(s)
- Hengcheng Zhou
- College of Resources and Environment, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Peihai Ju
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Shaowei Hu
- Technology Center of Angang Steel Co., Ltd., Anshan 114009, China
| | - Lili Shi
- College of Resources and Environment, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Wenjing Yuan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Dongdong Chen
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Yujie Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaoyuan Shi
- College of Resources and Environment, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
12
|
Huang Z, He C, Dong F, Su K, Yuan S, Hu Z, Wang W. Granular activated carbon and exogenous hydrogen enhanced anaerobic digestion of hypersaline phenolic wastewater via syntrophic acetate oxidation and hydrogenotrophic methanogenesis. BIORESOURCE TECHNOLOGY 2022; 365:128155. [PMID: 36272682 DOI: 10.1016/j.biortech.2022.128155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
High salinity in phenolic wastewater inhibited anaerobes' metabolic activity, thereby affecting the anaerobic biotransformation of phenol. In this study, granular activated carbon (GAC) coupled with exogenous hydrogen (H2) was used to enhance the anaerobic digestion of phenol. The GAC/H2 group's accumulative methane production, coenzyme F420 concentration, and interspecies electron transfer system activity increased by 24 %, 53 %, and 16 %, respectively, compared with the control group. In the floc sludge of the GAC/H2 group, the relative abundance of syntrophic acetate-oxidizing bacteria such as Syntrophus and Syntrophorhabdus were 18.7 % and 1.1 % at genus level, respectively, which were around 93.5 and 7.5 times of that of the controlgroup. Moreover, Acinetobacter (77.6 %), Methanobacterium (44.0 %), and Methanosarcina (34.2 %) were significantly enriched on the GAC surface in GAC/H2 group. Therefore, the coupling of GAC and H2 provided a novel attempt at anaerobic digestion of hypersaline phenolic wastewater via syntrophic acetate oxidation and hydrogenotrophic methanogenesis pathway.
Collapse
Affiliation(s)
- Zhiqiang Huang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Chunhua He
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui JianZhu University, Hefei 230601, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Fang Dong
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Kuizu Su
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Shoujun Yuan
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China.
| |
Collapse
|
13
|
Chimanlal I, Nthunya LN, Quist-Jensen C, Richards H. Membrane distillation crystallization for water and mineral recovery: The occurrence of fouling and its control during wastewater treatment. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1066027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Membrane distillation crystallization (MDC) is an emerging technology envisaged to manage challenges affecting the desalination industry. This technology can sustainably treat concentrated solutions of produced water and industrially discharged saline wastewater. Simultaneous recovery of clean water and minerals is achieved through the integration of crystallization to membrane distillation (MD). MDC has received vast research interest because of its potential to treat hypersaline solutions. However, MDC still faces challenges in harnessing its industrial applications. Technically, MDC is affected by fouling/scaling and wetting thereby hindering practical application at the industrial level. This study reviews the occurrence of membrane fouling and wetting experienced with MDC. Additionally, existing developments carried out to address these challenges are critically reviewed. Finally, prospects suggesting the sustainability of this technology are highlighted.
Collapse
|
14
|
Ravichandran SR, Venkatachalam CD, Sengottian M, Sekar S, Subramaniam Ramasamy BS, Narayanan M, Gopalakrishnan AV, Kandasamy S, Raja R. A review on fabrication, characterization of membrane and the influence of various parameters on contaminant separation process. CHEMOSPHERE 2022; 306:135629. [PMID: 35810863 DOI: 10.1016/j.chemosphere.2022.135629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/23/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
In most developing countries, the availability of drinking water is a major problem. This creates the need for treatment of wastewater, reusability of water, etc. The membrane technology has its place in the market for treating such water. This review compares polymeric membrane fabrication techniques, characteristics, and factors responsible for effective membrane separation for different materials. Although extensive knowledge is available on membrane fabrication, fabricating a membrane is still more challenging, which is more prone to antifouling properties. The competency in different fabrication methods like phase inversion, interfacial polymerization, stretching, track etching and electrospinning are elucidated in the current study. Further, the challenges and adaptability of different application fabrication methods are studied. Important surface parameters like surface wettability, roughness, surface tension, pore size, surface charge, surface functional group and pure water flux are analyzed for different polymeric membranes. In addition, the properties responsible for fouling the membrane are also covered in detail. Flow direction and velocity are the main factors that characterize a membrane's antifouling nature. Antifouling separation can still be achieved by characterizing feed properties such as pH, temperature, diffusivity, ion concentration, and surface content. Understanding fouling properties is a key to progress in membrane technology to develop an effective membrane separation.
Collapse
Affiliation(s)
| | | | - Mothil Sengottian
- Department of Chemical Engineering, Kongu Engineering College, Perundurai, Tamilnadu, India
| | - Sarath Sekar
- Department of Food Technology, Kongu Engineering College, Perundurai, Tamilnadu, India
| | | | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai 105, Tamil Nadu, India
| | | | | | - Rathinam Raja
- Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chromepet, Chennai, 600 044, India
| |
Collapse
|
15
|
A novel Cu-BTC@PVA/PVDF Janus membrane with underwater-oleophobic/hydrophobic asymmetric wettability for anti-fouling membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Lazarenko NS, Golovakhin VV, Shestakov AA, Lapekin NI, Bannov AG. Recent Advances on Membranes for Water Purification Based on Carbon Nanomaterials. MEMBRANES 2022; 12:915. [PMID: 36295674 PMCID: PMC9606928 DOI: 10.3390/membranes12100915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Every year the problem of water purification becomes more relevant. This is due to the continuous increase in the level of pollution of natural water sources, an increase in the population, and sharp climatic changes. The growth in demand for affordable and clean water is not always comparable to the supply that exists in the water treatment market. In addition, the amount of water pollution increases with the increase in production capacity, the purification of which cannot be fully handled by conventional processes. However, the application of novel nanomaterials will enhance the characteristics of water treatment processes which are one of the most important technological problems. In this review, we considered the application of carbon nanomaterials in membrane water purification. Carbon nanofibers, carbon nanotubes, graphite, graphene oxide, and activated carbon were analyzed as promising materials for membranes. The problems associated with the application of carbon nanomaterials in membrane processes and ways to solve them were discussed. Their efficiency, properties, and characteristics as a modifier for membranes were analyzed. The potential directions, opportunities and challenges for application of various carbon nanomaterials were suggested.
Collapse
|
17
|
Herrero-Gonzalez M, Ibañez R. Technical and Environmental Feasibilities of the Commercial Production of NaOH from Brine by Means of an Integrated EDBM and Evaporation Process. MEMBRANES 2022; 12:885. [PMID: 36135904 PMCID: PMC9505344 DOI: 10.3390/membranes12090885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Electrodialysis with bipolar membranes (EDBMs) is a technology that offers a great potential for the introduction of the principles of a circular economy in the desalination industry, by providing a strategy for the recovery of HCl and NaOH from brine via the process of seawater reverse osmosis (SWRO). Both chemicals are widely employed in desalination facilities, however NaOH presents a special interest due to its higher requirements and cost. Nevertheless, the standard commercial concentrations that are commonly employed in the facilities cannot be obtained using the state of the art EDBM technology itself. Therefore, the aim and main purpose of this work is to prove the technical and environmental feasibilities of a new approach to produce commercial NaOH (50%wt.) from SWRO brine by means of an integrated process of EDBMs followed by a triple effect evaporation. The global process has been technically evaluated in terms of the specific energy consumption (SEC) (kWh·kg-1 NaOH) and the environmental sustainability performance has been analyzed by its carbon footprint (CF) (kg CO2-eq.·kg-1 NaOH). The influence of the current density, and the power source in the EDBM stage have been evaluated on a laboratory scale while the influence of the feed stream concentration in the evaporation stage has been obtained through simulations using Aspen Plus. The lowest SEC of the integrated process (SECOV), 31.1 kWh·kg-1 NaOH, is obtained when an average current density of 500 A·m-2, provided by a power supply (grid mix), is applied in the EDBM stage. The environmental burdens of the integrated process have been quantified by achieving reductions in the CF by up to 54.7% when solar photovoltaic energy is employed as the power source for EDBMs, with a value of 5.38 kg CO2-eq.·kg-1 NaOH. This study presents a great potential for the introduction of the principles of a circular economy in the water industry through the recovery of NaOH from the high salinity waste stream generated in SWRO facilities and opens the possibility of the reuse of NaOH by its self-supply in the desalination plant.
Collapse
|
18
|
Tan G, Xu D, Zhu Z, Zhang X, Li J. Tailoring pore size and interface of superhydrophobic nanofibrous membrane for robust scaling resistance and flux enhancement in membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Tóth AJ, Fózer D, Mizsey P, Varbanov PS, Klemeš JJ. Physicochemical methods for process wastewater treatment: powerful tools for circular economy in the chemical industry. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the chemical industry, a typical problem is the appropriate treatment of the process wastewaters. The biological treatment cannot be usually applied because of the high content of organochemical compounds. However, phsycicochemical methods can significantly contribute to the proper treatment of the process wastewater and usually also allows the recovery of the polluting materials. This phenomenon opens the application area of physicochemical methods for the treatment of process wastewater and can contribute not only to the aims of the circular economy but also to the zero liquid discharge. Besides literature studies, authors’ own results and innovations have been also presented. The treatment strategy for pharmaceutical process wastewater is reviewed in detail, which also serves to point out that hybrid methods can be usually efficient to solve the primary goal–maximum recovery and reuse of polluting materials.
Collapse
Affiliation(s)
- András József Tóth
- Department of Chemical and Environmental Process Engineering , Budapest University of Technology and Economics , HU 1111, Műegyetem rkp. 3 , Budapest , Hungary
| | - Dániel Fózer
- Division for Sustainability, Department of Technology, Management and Economics , Technical University of Denmark , Produktionstorvet, Building, 424, DK-2800 Kgs , Lyngby , Denmark
| | - Péter Mizsey
- Institute of Chemistry , University of Miskolc , HU 3515, Egyetemváros C/1 108 , Miskolc , Hungary
| | - Petar Sabev Varbanov
- Sustainable Process Integration Laboratory SPIL, NETME Centre, Faculty of Mechanical Engineering , Brno University of Technology VUT Brno , Technická 2896/2, 616 69 , Brno , Czech Republic
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory SPIL, NETME Centre, Faculty of Mechanical Engineering , Brno University of Technology VUT Brno , Technická 2896/2, 616 69 , Brno , Czech Republic
| |
Collapse
|
20
|
Effect of Fulvic Acid in Landfill Leachate Membrane Concentrate on Evaporation Process. Processes (Basel) 2022. [DOI: 10.3390/pr10081592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Landfill leachate membrane concentrate (LLMC) poses risks to the environment and is commonly treated by evaporation. As the main component of the dissolved organic matter in LLMC, fulvic acid (FA) was selected as a representative to investigate its effect on evaporation and the removal efficiency by pretreatment in this study. According to the water quality indexes and three-dimensional fluorescence spectra of LLMC samples collected from five landfills in China, the concentration of total organic carbon in LLMC was 700–2500 mg·L−1, in which FA accounted for 50–85%. The boiling point and viscosity of the configured FA-NaCl-Na2SO4 solution both increased significantly when FA was concentrated 20 times (approximately 30,000 mg·L−1). Due to the presence of FA, the violent frothing phenomenon appeared at above 70 °C in evaporation, and the solubility of CaSO4·2H2O in FA-NaCl-Na2SO4 solution was significantly lower than that without FA. All these results indicated that the high FA concentration in LLMC could lead to decreased heat transfer coefficient and evaporation capacity during evaporation. Therefore, the softening pretreatment including the addition of Ca(OH)2, Na2CO3, and coagulants was employed to reduce the hardness and FA concentration. After the softening experiments, the removal efficiency of FA was >95% for the configured LLMC sample, while for the actual LLMC sample collected from landfills, the removal efficiency of FA and chemical oxygen demand could reach >80% and about 30%, respectively. The remaining concentration of FA in LLMC was about 200 mg·L−1, and the recovery efficiency of clean water could be 90% in the evaporation process. This research has important guiding significance for the evaporation treatment of LLMC.
Collapse
|
21
|
Hao W, Gao T, Shi W, Zhao M, Huang Z, Ren H, Ruan W. Coagulation removal of dissolved organic matter (DOM) in nanofiltration concentrate of biologically treated landfill leachate by ZrCl 4: Performance, mechanism and coagulant recycling. CHEMOSPHERE 2022; 301:134768. [PMID: 35500625 DOI: 10.1016/j.chemosphere.2022.134768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Coagulation treatment is often applied for removing the residual refractory dissolved organic matter (DOM) in biologically treated landfill leachate nanofiltration concentrate (LLNC) before discharge or further desalination treatment. However, the DOM removal efficiency by traditional coagulant needs to be improved, and two problems including the coagulant loss and difficulty in disposal of coagulation sludge need to be resolved. Based on this practical demand, a new coagulant ZrCl4 was adopted for LLNC treatment for the first time. The results showed that, ZrCl4 was better than the traditional coagulants (FeCl3 and AlCl3) for DOM removal. Under the optimal condition of pH 6.0 and ZrCl4 dosage of 5.0 mM, the DOC content, UV254 and chromaticity of the LLNC reduced by 73.32%, 83.17% and 93.59%, respectively. All of the coagulants tested in this study could efficiently remove the hydrophobic and high molecular organics. There was an obvious difference between them for removal of hydrophobic, and small or medium molecular organics, and ZrCl4 was more effective. This might be due to the stronger negative charge neutralization capacity and larger floc size of ZrCl4, which was beneficial for DOM combination and adsorption. The loss of zirconium was only 2.11%, which was much lower than that of iron and aluminum. Furthermore, being recycled for 3 times after coagulant regeneration, the recovered zirconium coagulant showed no obvious difference with the original ZrCl4 for DOM removal, indicating the disposal problem of the produced coagulation sludge can be resolved. This study could provide a promising method for LLNC treatment.
Collapse
Affiliation(s)
- Weibo Hao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Tong Gao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hongyan Ren
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
22
|
Yadav A, Patel RV, Vyas BG, Labhasetwar PK, Shahi VK. Recovery of CaSO4 and NaCl from sub-soil brine using CNT@MOF5 incorporated poly(vinylidene fluoride-hexafluoropropylene) membranes via vacuum-assisted distillation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Li WP, Paing AT, Chow CA, Qua MS, Mottaiyan K, Lu K, Dhalla A, Chung TS, Gudipati C. Scale Up and Validation of Novel Tri-Bore PVDF Hollow Fiber Membranes for Membrane Distillation Application in Desalination and Industrial Wastewater Recycling. MEMBRANES 2022; 12:573. [PMID: 35736279 PMCID: PMC9229717 DOI: 10.3390/membranes12060573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023]
Abstract
Novel tri-bore polyvinylidene difluoride (PVDF) hollow fiber membranes (TBHF) were scaled-up for fabrication on industrial-scale hollow fiber spinning equipment, with the objective of validating the membrane technology for membrane distillation (MD) applications in areas such as desalination, resource recovery, and zero liquid discharge. The membrane chemistry and spinning processes were adapted from a previously reported method and optimized to suit large-scale production processes with the objective of translating the technology from lab scale to pilot scale and eventual commercialization. The membrane process was successfully optimized in small 1.5 kg batches and scaled-up to 20 kg and 50 kg batch sizes with good reproducibility of membrane properties. The membranes were then assembled into 0.5-inch and 2-inch modules of different lengths and evaluated in direct contact membrane distillation (DCMD) mode, as well as vacuum membrane distillation (VMD) mode. The 0.5-inch modules had a permeate flux >10 L m−2 h−1, whereas the 2-inch module flux dropped significantly to <2 L m−2 h−1 according to testing with 3.5 wt.% NaCl feed. Several optimization trials were carried out to improve the DCMD and VMD flux to >5 L m−2 h−1, whereas the salt rejection consistently remained ≥99.9%.
Collapse
Affiliation(s)
- Weikun Paul Li
- Separation Technologies Applied Research and Translation Center (START), Nanyang Technological University—NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (W.P.L.); (A.T.P.); (C.A.C.); (M.S.Q.); (K.M.); (A.D.)
| | - Aung Thet Paing
- Separation Technologies Applied Research and Translation Center (START), Nanyang Technological University—NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (W.P.L.); (A.T.P.); (C.A.C.); (M.S.Q.); (K.M.); (A.D.)
| | - Chin Ann Chow
- Separation Technologies Applied Research and Translation Center (START), Nanyang Technological University—NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (W.P.L.); (A.T.P.); (C.A.C.); (M.S.Q.); (K.M.); (A.D.)
| | - Marn Soon Qua
- Separation Technologies Applied Research and Translation Center (START), Nanyang Technological University—NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (W.P.L.); (A.T.P.); (C.A.C.); (M.S.Q.); (K.M.); (A.D.)
| | - Karikalan Mottaiyan
- Separation Technologies Applied Research and Translation Center (START), Nanyang Technological University—NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (W.P.L.); (A.T.P.); (C.A.C.); (M.S.Q.); (K.M.); (A.D.)
| | - Kangjia Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore;
| | - Adil Dhalla
- Separation Technologies Applied Research and Translation Center (START), Nanyang Technological University—NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (W.P.L.); (A.T.P.); (C.A.C.); (M.S.Q.); (K.M.); (A.D.)
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore;
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chakravarthy Gudipati
- Separation Technologies Applied Research and Translation Center (START), Nanyang Technological University—NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (W.P.L.); (A.T.P.); (C.A.C.); (M.S.Q.); (K.M.); (A.D.)
| |
Collapse
|
24
|
Qua MS, Zhao Y, Zhang J, Hernandez S, Paing AT, Mottaiyan K, Zuo J, Dhalla A, Chung TS, Gudipati C. Novel Sandwich-Structured Hollow Fiber Membrane for High-Efficiency Membrane Distillation and Scale-Up for Pilot Validation. MEMBRANES 2022; 12:423. [PMID: 35448394 PMCID: PMC9032867 DOI: 10.3390/membranes12040423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023]
Abstract
Hollow fiber membranes were produced from a commercial polyvinylidene fluoride (PVDF) polymer, Kynar HSV 900, with a unique sandwich structure consisting of two sponge-like layers connected to the outer and inner skin layers while the middle layer comprises macrovoids. The sponge-like layer allows the membrane to have good mechanical strength even at low skin thickness and favors water vapor transportation during vacuum membrane distillation (VMD). The middle layer with macrovoids helps to significantly reduce the trans-membrane resistance during water vapor transportation from the feed side to the permeate side. Together, these novel structural characteristics are expected to render the PVDF hollow fiber membranes more efficient in terms of vapor flux as well as mechanical integrity. Using the chemistry and process conditions adopted from previous work, we were able to scale up the membrane fabrication from a laboratory scale of 1.5 kg to a manufacturing scale of 50 kg with consistent membrane performance. The produced PVDF membrane, with a liquid entry pressure (LEPw) of >3 bar and a pure water flux of >30 L/m2·hr (LMH) under VMD conditions at 70−80 °C, is perfectly suitable for next-generation high-efficiency membranes for desalination and industrial wastewater applications. The technology translation efforts, including membrane and module scale-up as well as the preliminary pilot-scale validation study, are discussed in detail in this paper.
Collapse
Affiliation(s)
- Marn Soon Qua
- Separation Technologies Applied Research and Translation Centre (START), Nanyang Technological University–NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (M.S.Q.); (Y.Z.); (J.Z.); (S.H.); (A.T.P.); (K.M.); (A.D.)
| | - Yan Zhao
- Separation Technologies Applied Research and Translation Centre (START), Nanyang Technological University–NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (M.S.Q.); (Y.Z.); (J.Z.); (S.H.); (A.T.P.); (K.M.); (A.D.)
| | - Junyou Zhang
- Separation Technologies Applied Research and Translation Centre (START), Nanyang Technological University–NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (M.S.Q.); (Y.Z.); (J.Z.); (S.H.); (A.T.P.); (K.M.); (A.D.)
| | - Sebastian Hernandez
- Separation Technologies Applied Research and Translation Centre (START), Nanyang Technological University–NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (M.S.Q.); (Y.Z.); (J.Z.); (S.H.); (A.T.P.); (K.M.); (A.D.)
| | - Aung Thet Paing
- Separation Technologies Applied Research and Translation Centre (START), Nanyang Technological University–NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (M.S.Q.); (Y.Z.); (J.Z.); (S.H.); (A.T.P.); (K.M.); (A.D.)
| | - Karikalan Mottaiyan
- Separation Technologies Applied Research and Translation Centre (START), Nanyang Technological University–NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (M.S.Q.); (Y.Z.); (J.Z.); (S.H.); (A.T.P.); (K.M.); (A.D.)
| | - Jian Zuo
- Food, Chemical and Biotechnology Singapore Institute of Technology, Singapore 637141, Singapore;
| | - Adil Dhalla
- Separation Technologies Applied Research and Translation Centre (START), Nanyang Technological University–NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (M.S.Q.); (Y.Z.); (J.Z.); (S.H.); (A.T.P.); (K.M.); (A.D.)
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 637141, Singapore
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chakravarthy Gudipati
- Separation Technologies Applied Research and Translation Centre (START), Nanyang Technological University–NTUitive Pte Ltd., Nanyang Technological University, Singapore 637141, Singapore; (M.S.Q.); (Y.Z.); (J.Z.); (S.H.); (A.T.P.); (K.M.); (A.D.)
| |
Collapse
|
25
|
Tapia-Quirós P, Montenegro-Landívar MF, Reig M, Vecino X, Saurina J, Granados M, Cortina JL. Integration of Nanofiltration and Reverse Osmosis Technologies in Polyphenols Recovery Schemes from Winery and Olive Mill Wastes by Aqueous-Based Processing. MEMBRANES 2022; 12:339. [PMID: 35323814 PMCID: PMC8954601 DOI: 10.3390/membranes12030339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
Abstract
More sustainable waste management in the winery and olive oil industries has become a major challenge. Therefore, waste valorization to obtain value-added products (e.g., polyphenols) is an efficient alternative that contributes to circular approaches and sustainable environmental protection. In this work, an integration scheme was purposed based on sustainable extraction and membrane separation processes, such as nanofiltration (NF) and reverse osmosis (RO), for the recovery of polyphenols from winery and olive mill wastes. Membrane processes were evaluated in a closed-loop system and with a flat-sheet membrane configuration (NF270, NF90, and Duracid as NF membranes, and BW30LE as RO membrane). The separation and concentration efficiency were evaluated in terms of the total polyphenol content (TPC), and by polyphenol families (hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids), using high-performance liquid chromatography. The water trans-membrane flux was dependent on the trans-membrane pressure for the NF and RO processes. NF90 membrane rejected around 91% of TPC for the lees filters extracts while NF270 membrane rejected about 99% of TPC for the olive pomace extracts. Otherwise, RO membranes rejected more than 99.9% of TPC for both types of agri-food wastes. Hence, NF and RO techniques could be used to obtain polyphenol-rich streams, and clean water for reuse purposes.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10–14, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - María Fernanda Montenegro-Landívar
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10–14, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mònica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10–14, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10–14, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Centro de Investigación en Tecnologías, Energía y Procesos Industriales (CINTECX), Chemical Engineering Department, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (J.S.); (M.G.)
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (J.S.); (M.G.)
| | - José Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10–14, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Water Technology Centre (CETAQUA), Carretera d’Esplugues 75, 08940 Cornellà de Llobregat, Spain
| |
Collapse
|
26
|
Experimental study and numerical optimization for removal of methyl orange using polytetrafluoroethylene membranes in vacuum membrane distillation process. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Structural tailoring of ceria nanoparticles for fabricating fouling resistant nanocomposite membranes with high flux distillation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127858] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|