1
|
Huang W, Xu P, Li X, Huang Y, Sun H, Li W, Zhang M, Shi M, Yuan Y. Performance evaluation of the effect of humic acid on Anammox granular sludge: Apparent morphology, nitrogen removal and microbial community. J Environ Sci (China) 2024; 144:148-158. [PMID: 38802226 DOI: 10.1016/j.jes.2023.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 05/29/2024]
Abstract
Humic acid (HA) is a typical refractory organic matter, so it is of great significance to investigate its effect on the performance of Anammox granular sludge. When the dosage of HA ≤ 50 mg/L, HA promotes the total nitrogen removal rate (NRR) to 1.45 kg/(m3·day). When HA was between 50 and 100 mg/L, the NRR of Anammox was stable. At this time, the adsorption of HA causes the sludge to gradually turn from red to brown, but the activities of heme and enzymes showed that its capacity was not affected. When HA levels reached 250 mg/L, the NRR dropped to 0.11 kg/(m3·day). Moderate HA levels promoted the release of extracellular polymeric substance (EPS), but excessive HA levels lead to a decrease in EPS concentrations. HA inhibited Anammox activity, which indirectly hindered the transmission of substrate and accumulated substrate toxicity. Although HA promoted the increase of heterotrophic microbial abundance in Anammox system, the microbial diversity decreased gradually. With the increase of HA concentration, the abundance of Candidatus_Brocadia, the main functional microorganism of Anammox system, decreased gradually, while the abundance of Candidatus_Kuenenia increased gradually.
Collapse
Affiliation(s)
- Wenhui Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peiling Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Suzhou Tianjun Environmental Technology Limited Company, Suzhou 215011, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hao Sun
- Suzhou Hongyu Environmental Technology Company Limited by Shares, Suzhou 215011, China
| | - Wei Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mao Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miao Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
2
|
Wang S, Jiang T, Hao X, Dai Y, Yang J, Wang B. Enhanced and robust nitrogen removal using an integrated zeolite and partial denitrification anammox process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122381. [PMID: 39241588 DOI: 10.1016/j.jenvman.2024.122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/11/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Anammox has received increased attention due to its enhanced and cost-efficient approach to nitrogen removal. However, its practical application is complicated by strict influent NO2--N to NH4+-N ratio demands and an 11% nitrate production from the anammox process. This study was the first known research to propose and verify a system of zeolite integrated with partial denitrification and anammox (Z-PDA) in an up-flow anaerobic sludge bed (UASB) reactor. The enhanced and robust nitrogen removal resulted in an ultra-high nitrogen removal efficiency (NRE, 93.0 ± 2.0%). Zeolite adsorption and biological desorption of ammonium contributed to robust nitrogen removal with fluctuating influent NO2--N to NH4+-N ratios. Applying 16S rRNA gene sequencing found that Candidatus Brocadia and Thauera were the key bacteria responsible for anammox and partial denitrification (PD), respectively. Zeolite also acted as a biological carrier. This significantly enriched anammox bacteria with a higher relative abundance of Candidatus Brocadia, reaching 49.2%. Metagenomic analysis demonstrated that the multiple functional genes related to nitrogen removal (nrfA/H, narG/H/I) and the metabolic pathways (Biosynthesis of cofactors, the Two-component system, the Biosynthesis of nucleotide sugars, and Purine metabolism) ensured the resilience of the Z-PDA system despite influent fluctuations. Overall, this study provided novel insights into the impacts of zeolite in the PDA system. It described the fundamental mechanism of zeolite based on adsorption and biological desorption, and demonstrated a meaningful application of the anammox process in sewage treatment.
Collapse
Affiliation(s)
- Shuo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Tan Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiang Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yu Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Jiayi Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
3
|
Zhou M, Wang J, Wang H, Ran X, Xue H, Liu C, Wang Y. Revealing the comprehensive impact of organic compounds on the partial nitrification-anammox system during incineration leachate treatment: metabolic hierarchy and adaptation. WATER RESEARCH 2024; 255:121534. [PMID: 38555785 DOI: 10.1016/j.watres.2024.121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Organics, as widespread pollutants in high-strength ammonia wastewater, typically exert adverse effects on the performance of partial nitrification-anammox (PNA) systems. However, the in-depth knowledge on how microbial consortia respond to these disturbances remains limited. In this study, we unveiled the evolution of complex organic matter flow and its impact on the metabolic hierarchy and adaptation of microbial consortia, employing multi-omics approaches, i.e., 16S amplicon sequencing, metagenomics, and metabolomics. In a two-stage PNA system sequentially treating synthetic wastewater and incineration leachate over 230 days, partial nitrification stayed stable (nitrite accumulation > 97%) while anammox efficiency dropped (nitrogen removal decreased from 86% to 78%). The phenomenon was revealed to be correlated with the evolution of dissolved organic matter (DOM) and xenobiotic organic compounds (XOCs). In the PN stage, ammonia-oxidizing bacteria (AOB) exhibited excellent adaptability through active metabolic regulation after treating leachate. Numerous heterotrophs proliferated to utilize DOM and XOCs, triggering a "boom" state evident in the glycerophospholipid metabolism. However, in the anammox stage, the competition between carbon fixation and central carbon metabolism within autotrophs and heterotrophs became evident. Increased biosynthesis costs inhibited the central metabolism (specific anammox activity decreased by 66%) and the Wood-Ljungdahl pathway of anammox bacteria (AnAOB) in the presence of recalcitrant organics. Additionally, the degradation of organics was limited, exhibiting a "bust" state. This study revealed the metabolic adaption and susceptibility of AOB and AnAOB in response to organics from the leachate, demonstrating the applicability of the two-stage configuration for treating high-strength wastewater containing abundant and diverse organics.
Collapse
Affiliation(s)
- Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Junjie Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Hao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China; Shanghai Youlin Zhuyuan Sewage Investment and Development Co. Ltd., Shanghai, 200125, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
4
|
Ma Y, Wang B, Li X, Wang S, Wang W, Peng Y. Enrichment of anammox biomass during mainstream wastewater treatment driven by achievement of partial denitrification through the addition of bio-carriers. J Environ Sci (China) 2024; 137:181-194. [PMID: 37980007 DOI: 10.1016/j.jes.2023.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 11/20/2023]
Abstract
Anammox is widely considered as the most cost-effective and sustainable process for nitrogen removal. However, how to achieve the enrichment of anammox biomass remains a challenge for its large-scale application, especially in mainstream wastewater treatment. In this study, the feasibility of enrichment of anammox biomass was explored through the realization of partial denitrification and the addition of bio-carriers. By using ordinary activated sludge, a sequencing batch reactor (SBR) followed by an up-flow anaerobic sludge bed (UASB) was operated at 25 ± 2°C for 214 days. The long-term operation was divided into five phases, in which SBR and UASB were started-up in Phases I and II, respectively. By eliminating oxygen and adjusting the inflow ratios in Phases III-V, advanced nitrogen removal was achieved with the effluent total nitrogen being 4.7 mg/L and the nitrogen removal efficiency being 90.5% in Phase V. Both in-situ and ex-situ activity tests demonstrated the occurrence of partial denitrification and anammox. Moreover, 16S rRNA high-throughput sequencing analysis revealed that Candidatus Brocadia was enriched from below the detection limit to in biofilms (0.4% in SBR, 2.2% in UASB) and the floc sludge (0.2% in SBR, 1.3% in UASB), while Thauera was mainly detected in the floc sludge (8.1% in SBR, 8.8% in UASB), which might play a key role in partial denitrification. Overall, this study provides a novel strategy to enrich anammox biomass driven by rapid achievement of partial denitrification through the addition of bio-carriers, which will improve large-scale application of anammox processes in mainstream wastewater treatment.
Collapse
Affiliation(s)
- Yuqing Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Xiaodi Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shuo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Wen Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Wang Z, Liang H, Yan Y, Li X, Zhang Q, Peng Y. Stimulating extracellular polymeric substances production in integrated fixed-film activated sludge reactor for advanced nitrogen removal from mature landfill leachate via one-stage double anammox. BIORESOURCE TECHNOLOGY 2024; 391:129968. [PMID: 37925083 DOI: 10.1016/j.biortech.2023.129968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Introducing carbon sources to achieve nitrogen removal from mature landfill leachate not only increases the costs and carbon emissions but also inhibits the activity of autotrophic bacteria. Thus, this study constructed a double anammox system that combines partial nitrification-anammox (PNA) and endogenous partial denitrification-anammox (EPDA) within an integrated fixed-film activated sludge (IFAS) reactor. In this system, PNA primarily contributes to nitrogen removal pathways, achieving a nitrite accumulation rate of 98.23%. The production of extracellular polymer substances (EPS) in the IFAS reactor is stimulated by introducing co-fermentation liquid. Through the utilization of EPS, the system effectively achieves EPDA with the nitrite transformation rate of 97.20%. Under the intermittent aeration operation strategy, EPDA combined with PNA and anammox in the oxic and anoxic stages enhanced the nitrogen removal efficiency of the system to 99.70 ± 0.12%. The functional genus Candidatus kuenenia became enriched in biofilm sludge, while Thauera and Nitrosomonas predominated in floc sludge.
Collapse
Affiliation(s)
- Zhaozhi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Haoran Liang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ying Yan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
6
|
Zhou L, Chen J, Zhang X, Zhu Z, Wu Z, Zhang K, Wang Y, Wu P, Zhang X. Efficient nitrogen removal from municipal wastewater by an autotrophic-heterotrophic coupled anammox system: The up-regulation of key functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166359. [PMID: 37595900 DOI: 10.1016/j.scitotenv.2023.166359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The metabolic pathways based on key functional genes were innovatively revealed in the autotrophic-heterotrophic coupled anammox system for real municipal wastewater treatment. The nitrogen removal performance of the system was stabilized at 88.40 ± 3.39 % during the treatment of real municipal wastewater. The relative abundances of the nitrification functional genes ammonia oxidase (amoA/B/C), hydroxylamine oxidoreductase (hao), and nitrite oxidoreductases (nxrA/B) were increased by 1.2-2.4 times, and these three nitrification functional genes were mostly contributed by Nitrospira that dominated the efficient nitrification of the system. The relative abundance of anammox bacteria Candidatus Brocadia augmented from 0.35 % to 0.75 %, accompanied with the increased expression of hydrazine synthase (hzs) and hydrazine dehydrogenase (hdh), resulting in the major role of anammox (81.24 %) for nitrogen removal. The expression enhancement of the functional genes nitrite reductase (narG/H, napA/B) that promoted partial denitrification (PD) of the system weakened the adverse effects of the sharp decline in the population of PD microbe Thauera (from 5.7 % to 2.2 %). The metabolic module analysis indicated that the carbon metabolism pathways of the system mainly included CO2 fixation and organic carbon metabolism, and the stable enrichment of autotrophic bacteria ensured stable CO2 fixation. Furthermore, the enhanced expression of the glucokinases (glk, GCK, HK, ppgk) and the abundant pyruvate kinase (PK) achieved stable hydrolysis ability of organic carbon metabolism function of the system. This study offers research basics to practical application of the mainstream anammox process.
Collapse
Affiliation(s)
- Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, PR China.
| | - Xingxing Zhang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
7
|
Al-Hazmi HE, Mohammadi A, Hejna A, Majtacz J, Esmaeili A, Habibzadeh S, Saeb MR, Badawi M, Lima EC, Mąkinia J. Wastewater reuse in agriculture: Prospects and challenges. ENVIRONMENTAL RESEARCH 2023; 236:116711. [PMID: 37487927 DOI: 10.1016/j.envres.2023.116711] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Sustainable water recycling and wastewater reuse are urgent nowadays considering water scarcity and increased water consumption through human activities. In 2015, United Nations Sustainable Development Goal 6 (UN SDG6) highlighted the necessity of recycling wastewater to guarantee water availability for individuals. Currently, wastewater irrigation (WWI) of crops and agricultural land appears essential. The present work overviews the quality of treated wastewater in terms of soil microbial activities, and discusses challenges and benefits of WWI in line with wastewater reuse in agriculture and aquaculture irrigation. Combined conventional-advanced wastewater treatment processes are specifically deliberated, considering the harmful impacts on human health arising from WWI originating from reuse of contaminated water (salts, organic pollutants, toxic metals, and microbial pathogens i.e., viruses and bacteria). The comprehensive literature survey revealed that, in addition to the increased levels of pathogen and microbial threats to human wellbeing, poorly-treated wastewater results in plant and soil contamination with toxic organic/inorganic chemicals, and microbial pathogens. The impact of long-term emerging pollutants like plastic nanoparticles should also be established in further studies, with the development of standardized analytical techniques for such hazardous chemicals. Likewise, the reliable, long-term and extensive judgment on heavy metals threat to human beings's health should be explored in future investigations.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188, Karlstad, Sweden.
| | - Aleksander Hejna
- Institute of Materials Technology, Poznan University of Technology, Poznań, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), 24449, Arab League St, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
8
|
Wu Z, Ji S, Li YY, Liu J. A review of iron use and recycling in municipal wastewater treatment plants and a novel applicable integrated process. BIORESOURCE TECHNOLOGY 2023; 379:129037. [PMID: 37037337 DOI: 10.1016/j.biortech.2023.129037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Chemical methods are expected to play an increasingly important role in carbon-neutral municipal wastewater treatment plants. This paper briefly summarises the enhancement effects of using iron salts in wastewater and sludge treatment processes. The costs and environmental concerns associated with the widespread use of iron salts have also been highlighted. Fortunately, the iron recovery from iron-rich sludge provides an opportunity to solve these problems. Existing iron recovery methods, including direct acidification and thermal treatment, are summarised and show that acidification treatment of FeS digestate from the anaerobic digestion-sulfate reduction process can increase the iron and sulphur recycling efficiency. Therefore, a novel applicable integrated process based on iron use and recycling is proposed, and it reduces the iron salts dosage to 4.2 mg/L and sludge amount by 80%. Current experimental research and economic analysis of iron recycling show that this process has broad application prospects in resource recovery and sludge reduction.
Collapse
Affiliation(s)
- Zhangsong Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shenghao Ji
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
9
|
Huang J, Wang C, Zhang S, Han X, Feng R, Li Y, Huang X, Wang J. Optimizing nitrogenous organic wastewater treatment through integration of organic capture, anaerobic digestion, and anammox technologies: sustainability and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27410-6. [PMID: 37261686 DOI: 10.1007/s11356-023-27410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
With China's recent commitment to reducing carbon emissions and achieving carbon neutrality, anaerobic digestion and anaerobic ammonium oxidation (anammox) have emerged as promising technologies for treating nitrogenous organic wastewater. Anaerobic digestion can convert organic matter into volatile fatty acids (VFAs), methane, and other chemicals, while anammox can efficiently remove nitrogen with minimal energy consumption. This study evaluates the principles and characteristics of enhanced chemical flocculation and bioflocculation, as well as membrane separation, for capturing organic matter. Additionally, the paper evaluates the production of acids and methane from anaerobic digestion, exploring the influence of various factors and the need for control strategies. The features, challenges, and concerns of partial nitrification-anammox (PN/A) and partial denitrification-anammox (PD/A) are also outlined. Finally, an integrated system that combined organic capture, anaerobic digestion, and anammox is proposed as a sustainable and effective solution for treating nitrogenous organic wastewater and recovering energy and resources.
Collapse
Affiliation(s)
- Jianming Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
| | - Shujun Zhang
- Beijing Drainage Group Co. Ltd (BDG), Beijing, 100022, China
| | - Xiaoyu Han
- Beijing Drainage Group Co. Ltd (BDG), Beijing, 100022, China
| | - Rongfei Feng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Yang Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiaoyan Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| |
Collapse
|
10
|
Yu Y, Chen G, Yu D, Qiu Y, Li S, Guo E. Novel nitrogen removal process in marine aquaculture wastewater treatment using Enteromorpha ferment liquid as carbon. BIORESOURCE TECHNOLOGY 2023; 377:128913. [PMID: 36934904 DOI: 10.1016/j.biortech.2023.128913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The process performance of partial denitrification of a novel anaerobic fermentation integrated fixed-film activated sludge (IFAS-AFPD) of Enteromorpha was studied. The response surface method was used to determine the optimal reaction conditions, and the operation experiment was carried out under the optimal conditions. The results showed that the nitrogen removal effect was the best when the salinity was 12.2 g•L-1, the Carbon-Nitrogen ratio (C/N) was 4, the pH was 8.5, and the Nitrite Accumulation Rate, Nitrate Removal Rate, Chemical Oxygen Demand Utilization Rate could reach 77%, 89% and 51%. Experimental results have shown that the NAR of the Enteromorpha ferment liquid system could be maintained at about 74%, which was noteworthy higher than that of the sodium acetate (CH3COONa) system at 42%; Microbial community analysis showed that Enteromorpha ferment liquid was more beneficial to the growth of Bacteroidetes than CH3COONa.
Collapse
Affiliation(s)
- Yiming Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, PR China.
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yanling Qiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Songjie Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Enhui Guo
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
11
|
Kang D, Zhao X, Wang N, Suo Y, Yuan J, Peng Y. Redirecting carbon to recover VFA to facilitate biological short-cut nitrogen removal in wastewater treatment: A critical review. WATER RESEARCH 2023; 238:120015. [PMID: 37146394 DOI: 10.1016/j.watres.2023.120015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Wastewater treatment plants (WWTPs) are facing a great challenge to transition from energy-intensive to carbon-neutral and energy-efficient systems. Biological nutrient removal (BNR) can be severely impacted by carbon limitation, particularly for wastewater with a low carbon-to-nitrogen (C/N) ratio, which can significantly increase the operational costs. Waste activated sludge (WAS) is a valuable byproduct of WWTPs, as it contains high levels of organic matter that can be utilized to improve BNR management by recovering and reusing the fermentative volatile fatty acids (VFAs). This review provides a comprehensive examination of the recovery and reuse of VFAs in wastewater management, with a particular focus on advancing the preferable biological short-cut nitrogen removal process for carbon-insufficient municipal wastewaters. First, the method of carbon redirection for recovering VFAs was reviewed. Carbon could be captured through the two-stage A/B process or via sludge fermentation with different sludge pretreatment and process control strategies to accelerate sludge hydrolysis and inhibit methanogens to enhance VFA production. Second, VFAs can support the metabolism of autotrophic N-cycling microorganisms involved in wastewater treatment, such as AOB, NOB, anammox, and comammox bacteria. However, VFAs can also cause inhibition at high concentrations, leading to the partition of AOB and NOB; and can promote partial denitrification as an efficient carbon source for heterotrophic denitrifiers. Third, the lab- and pilot-scale engineering practices with different configurations (i.e., A2O, SBR, UASB) were summarized that have shown the feasibility of utilizing the fermentate to achieve superior nitrogen removal performance without the need for external carbon addition. Lastly, the future perspectives on leveraging the relationships between mainstream and sidestream, nitrogen and phosphorus, autotrophs and heterotrophs were given for sustainable and efficient BNR management.
Collapse
Affiliation(s)
- Da Kang
- Department of Environmental Engineering, National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, China
| | - Xuwei Zhao
- Department of Environmental Engineering, National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, China
| | - Nan Wang
- Department of Environmental Engineering, National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, China
| | - Yirui Suo
- Department of Environmental Engineering, National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, China
| | - Jiawei Yuan
- Department of Environmental Engineering, National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, China
| | - Yongzhen Peng
- Department of Environmental Engineering, National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, China.
| |
Collapse
|
12
|
Li D, Chen H, Gao X, Zhang J. Establishment and optimization of partial nitrification/anammox/partial nitrification/anammox (PN/A/PN/A) process based on multi-stage ammonia oxidation: Using response surface method as a tool. BIORESOURCE TECHNOLOGY 2022; 361:127722. [PMID: 35917857 DOI: 10.1016/j.biortech.2022.127722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The presence of nitrite-oxidizing bacteria (NOB) when treating low-strength ammonia wastewater was a challenge in the application of the PN/A process. The partial nitrification/ANAMMOX/partial nitrification/ANAMMOX (PN/A/PN/A) process based on multiple oxidations of ammonia was proposed to solve this problem. The influence of independent variables such as nitrite concentration was analyzed based on the response surface method (RSM). The model showed that nitrite concentration has an adverse impact on ammonia removal efficiency and nitrite accumulation rate. The model provided optimal parameters for the PN/A/PN/A process: the dissolved oxygen concentration was 0.60 mg/L, and the cycle duration was 90 min. Advanced nitrogen removal was achieved by maintaining the nitrite concentration below 10.0 mg/L. The nitrogen removal efficiency was 81.44 ± 4.15 %, and the nitrogen removal rate was 0.18 ± 0.02 kg N/(m3⋅d). Potential functions of microorganisms were analyzed by functional annotation of prokaryotic taxa (FAPROTAX) and the correlation network analysis was performed.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Hao Chen
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Xin Gao
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|