1
|
Niemczyk M, Wrzesiński P, Szyp-Borowska I, Krajewski S, Żytkowiak R, Jagodziński AM. Coping with extremes: Responses of Quercus robur L. and Fagus sylvatica L. to soil drought and elevated vapour pressure deficit. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174912. [PMID: 39038682 DOI: 10.1016/j.scitotenv.2024.174912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Climate change, particularly droughts and heat waves, significantly impacts global photosynthesis and forest ecosystem sustainability. To understand how trees respond to and recover from hydrological stress, we investigated the combined effects of soil moisture and atmospheric vapour pressure deficit (VPD) on seedlings of the two major European broadleaved tree species Fagus sylvatica (FS) and Quercus robur (QR). The experiment was conducted under natural forest gap conditions, while soil water availability was strictly manipulated. We monitored gas exchange (net photosynthesis, stomatal conductance and transpiration rates), nonstructural carbohydrates (NSC) concentration in roots and stomatal morphometry (size and density) during a drought period and recovery. Our comparative empirical study allowed us to distinguish and quantify the effects of soil drought and VPD on stomatal behavior, going beyond theoretical models. We found that QR conserved water more conservatively than FS by reducing transpiration and regulating stomatal conductance under drought. FS maintained higher stomatal conductance and transpiration at elevated VPD until soil moisture became critically low. QR showed higher intrinsic water use efficiency than FS. Stomata density and size also likely played a role in photosynthetic rate and speed of recovery, especially since QR with its seasonal adjustments in stomatal traits (smaller, more numerous stomata in summer leaves) responded and recovered faster compared to FS. Our focal species showed different responses in NSC content under drought stress and recovery, suggesting possible different evolutionary pathways in coping with stress. QR mobilized soluble sugars, while FS relied on starch mobilization to resist drought. Although our focal species often co-occur in mixed forests, our study showed that they have evolved different physiological, morphological and biochemical strategies to cope with drought stress. This suggests that ongoing climate change may alter their competitive ability and adaptive potential in favor of one of the species studied.
Collapse
Affiliation(s)
- Marzena Niemczyk
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland.
| | - Piotr Wrzesiński
- Dendrolab IBL, Department of Silviculture and Genetics of Forest Trees, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland
| | - Iwona Szyp-Borowska
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland
| | - Szymon Krajewski
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland
| | - Roma Żytkowiak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
2
|
Gumuła-Kawęcka A, Jaworska-Szulc B, Jefimow M. Climate change impact on groundwater resources in sandbar aquifers in southern Baltic coast. Sci Rep 2024; 14:11828. [PMID: 38783032 PMCID: PMC11116383 DOI: 10.1038/s41598-024-62522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Shallow coastal aquifers are vulnerable hydrosystems controlled by many factors, related to climate, seawater-freshwater interactions and human activity. Given on-going climate change, sea level rise and increasing human impact, it is especially true for groundwater resources situated in sandbars. We developed numerical models of unsaturated zone water flow for two sandbars in northern Poland: the Vistula Spit and the Hel Spit using HYDRUS-1D. The simulations were performed for three types of land use: pine forest, grass cover and bare soil, for 2024-2100 based on weather data and sea level rise forecasts for two emissions scenarios (RCP 4.5 and RCP 8.5). The results present prognosis of groundwater recharge, water table level and water content changeability in near-term (2023-2040), mid-term (2041-2060), and long-term period (2081-2100). Expected sea level rise and decreasing hydraulic gradient of the sandbar aquifers will probably cause in-land movement of the freshwater-saltwater interface, leading to significant decrease or complete salinization of groundwater resources. The study shows that holistic monitoring including groundwater level and salinization, sea level rise, and metheorological data (precipitation amount and variability, temperature) is crucial for sustainable management of vulnerable aquifers located in sandbars.
Collapse
Affiliation(s)
- Anna Gumuła-Kawęcka
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland.
| | - Beata Jaworska-Szulc
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Maciej Jefimow
- Institute of Environmental Protection - National Research Institute, Warsaw, Poland
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
3
|
Giberti GS, von Arx G, Giovannelli A, du Toit B, Unterholzner L, Bielak K, Carrer M, Uhl E, Bravo F, Tonon G, Wellstein C. The admixture of Quercus sp. in Pinus sylvestris stands influences wood anatomical trait responses to climatic variability and drought events. FRONTIERS IN PLANT SCIENCE 2023; 14:1213814. [PMID: 38034580 PMCID: PMC10687546 DOI: 10.3389/fpls.2023.1213814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Introduction Forests are threatened by increasingly severe and more frequent drought events worldwide. Mono-specific forests, developed as a consequence of widespread management practices established early last century, seem particularly susceptible to global warming and drought compared with mixed-species forests. Although, in several contexts, mixed-species forests display higher species diversity, higher productivity, and higher resilience, previous studies highlighted contrasting findings, with not only many positive but also neutral or negative effects on tree performance that could be related to tree species diversity. Processes underlying this relationship need to be investigated. Wood anatomical traits are informative proxies of tree functioning, and they can potentially provide novel long-term insights in this regard. However, wood anatomical traits are critically understudied in such a context. Here, we assess the role of tree admixture on Pinus sylvestris L. xylem traits such as mean hydraulic diameter, cell wall thickness, and anatomical wood density, and we test the variability of these traits in response to climatic parameters such as temperature, precipitation, and drought event frequency and intensity. Methods Three monocultural plots of P. sylvestris and three mixed-stand plots of P. sylvestris and Quercus sp. were identified in Poland and Spain, representing Continental and Mediterranean climate types, respectively. In each plot, we analyzed xylem traits from three P. sylvestris trees, for a total of nine trees in monocultures and nine in mixed stands per study location. Results The results highlighted that anatomical wood density was one of the most sensitive traits to detect tree responses to climatic conditions and drought under different climate and forest types. Inter-specific facilitation mechanisms were detected in the admixture between P. sylvestris and Quercus sp., especially during the early growing season and during stressful events such as spring droughts, although they had negligible effects in the late growing season. Discussion Our findings suggest that the admixture between P. sylvestris and Quercus sp. increases the resilience of P. sylvestris to extreme droughts. In a global warming scenario, this admixture could represent a useful adaptive management option.
Collapse
Affiliation(s)
- Giulia Silvia Giberti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano - Bozen, Bolzano, Italy
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Alessio Giovannelli
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale Ricerche, Sesto Fiorentino, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Ben du Toit
- Department of Forest and Wood Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Lucrezia Unterholzner
- Department of Land Environment Agriculture and Forestry, University of Padova, Legnaro, Italy
- Chair of Forest Growth and Woody Biomass Production, Technische Universität Dresden, Tharandt, Germany
| | - Kamil Bielak
- Department of Silviculture, Institute of Forest Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Marco Carrer
- Department of Land Environment Agriculture and Forestry, University of Padova, Legnaro, Italy
| | - Enno Uhl
- School of Life Sciences, Chair for Forest Growth and Yield Science, Technical University of Munich (TUM), Freising, Germany
- Bavarian State Institute of Forestry (LWF), Freising, Germany
| | - Felipe Bravo
- Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR). Escuela Técnica Superior de Ingenierías Agrarias de Palencia, Universidad de Valladolid, Palencia, Spain
| | - Giustino Tonon
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano - Bozen, Bolzano, Italy
| | - Camilla Wellstein
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano - Bozen, Bolzano, Italy
| |
Collapse
|
4
|
Guo W, Huang S, Huang Q, She D, Shi H, Leng G, Li J, Cheng L, Gao Y, Peng J. Precipitation and vegetation transpiration variations dominate the dynamics of agricultural drought characteristics in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165480. [PMID: 37463624 DOI: 10.1016/j.scitotenv.2023.165480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023]
Abstract
Agricultural drought posing a significant threat to agricultural production is subject to the complex influence of ocean, terrestrial and meteorological multi-factors. Nevertheless, which factor dominating the dynamics of agricultural drought characteristics and their dynamic impact remain equivocal. To address this knowledge gap, we used ERA5 soil moisture to calculate the standardized soil moisture index (SSI) to characterize agricultural drought. The extreme gradient boosting model was then adopted to fully examine the influence of ocean, terrestrial and meteorological multi-factors on agricultural drought characteristics and their dynamics in China. Meanwhile, the Shapley additive explanation values were introduced to quantify the contribution of multiple drivers to drought characteristics. Our analysis reveals that the drought frequency, severity and duration in China ranged from 5-70, 2.15-35.02 and 1.76-31.20, respectively. Drought duration is increasing and drought intensity is intensifying in southeast, north and northwest China. In addition, potential evapotranspiration is the most significant driver of drought characteristics at the basin scale. Regarding the dynamic evolution of drought characteristics, the percentages of raster points for drought duration and severity with evapotranspiration as the dominant factor are 30.7 % and 32.7 %, and the percentages with precipitation are 35.3 % and 35.0 %, respectively. Precipitation in northern regions has a positive effect on decreasing drought characteristics, while in southern regions, evapotranspiration dominates the dynamics in drought characteristics due to increasing vegetation transpiration. Moreover, the drought severity is exacerbated by the Atlantic Multidecadal Oscillation in the Yangtze and Pearl River basins, while the contribution of the North Atlantic Oscillation to the drought duration evolution is increasing in the Yangtze River basin. Generally, this study sheds new insights into agricultural drought evolution and driving mechanism, which are beneficial for agricultural drought early warning and mitigation.
Collapse
Affiliation(s)
- Wenwen Guo
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Shengzhi Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| | - Qiang Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Dunxian She
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Haiyun Shi
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guoyong Leng
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ji Li
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Liwen Cheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Yuejiao Gao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Jian Peng
- Department of Remote Sensing, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany; Remote Sensing Centre for Earth System Research, Leipzig University, Talstr. 35, 04103, Leipzig, Germany
| |
Collapse
|
5
|
Gumuła-Kawęcka A, Jaworska-Szulc B, Szymkiewicz A, Gorczewska-Langner W, Angulo-Jaramillo R, Šimůnek J. Impact of climate change on groundwater recharge in shallow young glacial aquifers in northern Poland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162904. [PMID: 36933729 DOI: 10.1016/j.scitotenv.2023.162904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/24/2023] [Accepted: 03/12/2023] [Indexed: 05/06/2023]
Abstract
We investigated the influence of climate change in the period 1951-2020 on shallow aquifers in the Brda and Wda outwash plains (Pomeranian Region, Northern Poland). There was a significant temperature rise (0.3 °C/10 years), which accelerated after 1980 (0.66 °C/10 years). Precipitation became increasingly irregular - extremely rainy years occurred right after or before extremely dry years, and intensive rainfall events became more frequent after 2000. The groundwater level decreased over the last 20 years, even though the average annual precipitation was higher than in the previous 50 years. We carried out numerical simulations of water flow in representative soil profiles for the years 1970-2020 using the HYDRUS-1D model, developed and calibrated during our earlier work at an experimental site in the Brda outwash plain (Gumuła-Kawęcka et al., 2022). We used a relationship between the water head and flux at the bottom of the soil profiles (the third-type boundary condition) to reproduce groundwater table fluctuations caused by recharge variability in time. The calculated daily recharge showed a decreasing linear trend for the last 20 years (0.05-0.06 mm d-1/10 years), and dropping trends in water table level and soil water content in the entire profile of vadose zone. Field tracer experiments were performed to estimate impact of extremely rain events on water flux in vadose zone. The results suggest that tracer travel times are strongly determined by water content in the unsaturated zone which is determined by precipitation amount in span of weeks, rather than extremely high precipitation events.
Collapse
Affiliation(s)
- Anna Gumuła-Kawęcka
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Beata Jaworska-Szulc
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Adam Szymkiewicz
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Wioletta Gorczewska-Langner
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Rafael Angulo-Jaramillo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518 Vaulx-enVelin, France
| | | |
Collapse
|
6
|
Abstract
Observed changes in hydrological conditions indicate the need for economical use of water. This pertains to water management on a national scale, river basins and drainage systems. The outflow of water can be extensively regulated after various forms of retention in the catchment. The water level regulators presented herein enable the damming of water in drainage networks and the adjacent ground. Their advantages include their simple structure and operation principles and also the ability to adapt to currently existing devices in sub-irrigation systems. Laboratory tests were conducted to determine the hydraulic characteristics and operating conditions of three innovative regulator solutions. They focused on changing water damming heights by the closure of successively placed beams in order to obtain the required water level in the given hydrometeorological conditions. The structures of the regulators were made of plastics and rectilinear fillings for securing S-type excavations and elements of sheet piling with a developed shape in the plan of U and Z types, offering advantages compared to traditional materials (with respect to installation, operation and durability). All tested regulators were characterized by the effective flow Qe, caused by water leaks due to the lack of tightness of the regulator elements. The regulator with rectilinear beams of S-type closures offered the highest effective flow, which was 4 ÷ 5 times higher than in other regulators. U- and Z-type regulators were better at facilitating the regulation of the water table and the flow than the S rectilinear regulator. This led to both: the greater tightness of connections and the use of an overflow with a developed crest in the plan. The U and Z controllers had the highest hydraulic efficiency, expressed as the flow increase coefficient, at overflow layer heights of up to 5.0 cm. For tested fillings larger than 5.0 cm, U-type beams with a cylindrical corner shape had a lower flow increase coefficient (kq = 1.25) than Z-type beams with an angular corner shape, for which kq ∈ <1.35 ÷ 1.38>.
Collapse
|
7
|
The Lower Havel River Region (Brandenburg, Germany): A 230-Year-Long Historical Map Record Indicates a Decrease in Surface Water Areas and Groundwater Levels. WATER 2022. [DOI: 10.3390/w14030480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Instrumental data show that the groundwater and lake levels in Northeast Germany have decreased over the past decades, and this process has accelerated over the past few years. In addition to global warming, the direct influence of humans on the local water balance is suspected to be the cause. Since the instrumental data usually go back only a few decades, little is known about the multidecadal to centennial-scale trend, which also takes long-term climate variation and the long-term influence by humans on the water balance into account. This study aims to quantitatively reconstruct the surface water areas in the Lower Havel Inner Delta and of adjacent Lake Gülpe in Brandenburg. The analysis includes the calculation of surface water areas from historical and modern maps from 1797 to 2020. The major finding is that surface water areas have decreased by approximately 30% since the pre-industrial period, with the decline being continuous. Our data show that the comprehensive measures in Lower Havel hydro-engineering correspond with groundwater lowering that started before recent global warming. Further, large-scale melioration measures with increasing water demands in the upstream wetlands beginning from the 1960s to the 1980s may have amplified the decline in downstream surface water areas.
Collapse
|