1
|
Li Y, Fan G, Gao Y, Chen W, Shi G, Tong F, Liu L, Zhou D. Wheat tends to accumulate higher levels of cadmium in the grains than rice under a wide range of soil pH and Cd concentrations: A field study on rice-wheat rotation farmland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125574. [PMID: 39725197 DOI: 10.1016/j.envpol.2024.125574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Dietary intake is a predominant pathway of human exposure to environmental Cadmium (Cd), but wheat (Triticum aestivum L.) has not received enough concerns for its risk of Cd contamination. A field survey of Cd-contaminated rice-wheat rotation farmlands in China provided detailed comparison of Cd accumulation capacity by rice and wheat grains. The results indicated that Cd-BCF of wheat grains (median values 0.42) were obviously higher than those of rice grains (median values 0.12) under wide soil Cd levels and pH ranges. Soil Cd levels rather than pH played a vital role on Cd accumulation by wheat grains, and high wheat grain Cd concentrations (0.12-0.13 mg kg⁻1) were even observed in mildly alkaline soil that normally have low Cd mobility. Dietary Cd exposure risks were assessed by the crop Cd exposure models considering different soil Cd content, pH and dietary structures of residents. The results indicated that the intake of wheat grains contributed 56.1-86.5% of total crop Cd exposure, with an increase in its contribution with the increase of soil pH. Residents favoring wheat would have a significant Cd exposure risk if consuming crops from soils with Cd levels above 0.41 mg kg⁻1, which was considerably lower than the current soil Cd risk screening value for alkaline soils (0.6 mg kg-1). Our findings indicate a high Cd accumulation capacity of wheat grains and consequent risk of dietary Cd exposure, which deserves further exploration on the correlation among soil Cd screening value, grain Cd limit value and its dietary exposure risk.
Collapse
Affiliation(s)
- Yuntao Li
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Guangping Fan
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yan Gao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Wei Chen
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Gaoling Shi
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Fei Tong
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lizhu Liu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Kimotho RN, Zheng X, Li F, Chen Y, Li X. A potent endophytic fungus Purpureocillium lilacinum YZ1 protects against Fusarium infection in field-grown wheat. THE NEW PHYTOLOGIST 2024; 243:1899-1916. [PMID: 38946157 DOI: 10.1111/nph.19935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
Fusarium diseases pose a severe global threat to major cereal crops, particularly wheat. Existing biocontrol strains against Fusarium diseases are believed to primarily rely on antagonistic mechanisms, but not widely used under field conditions. Here, we report an endophytic fungus, Purpureocillium lilacinum YZ1, that shows promise in combating wheat Fusarium diseases. Under glasshouse conditions, YZ1 inoculation increased the survival rate of Fusarium graminearum (Fg)-infected wheat seedlings from 0% to > 60% at the seedling stage, and reduced spikelet infections by 70.8% during anthesis. In field trials, the application of YZ1 resulted in an impressive 89.0% reduction in Fg-susceptible spikelets. While a slight antagonistic effect of YZ1 against Fg was observed on plates, the induction of wheat systemic resistance by YZ1, which is distantly effective, non-specific, and long-lasting, appeared to be a key contributor to YZ1's biocontrol capabilities. Utilizing three imaging methods, we confirmed YZ1 as a potent endophyte capable of rapid colonization of wheat roots, and systematically spreading to the stem and leaves. Integrating dual RNA-Seq, photosynthesis measurements and cell wall visualization supported the link between YZ1's growth-promoting abilities and the activation of wheat systemic resistance. In conclusion, endophytes such as YZ1, which exhibits non-antagonistic mechanisms, hold significant potential for industrial-scale biocontrol applications.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zheng
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Furong Li
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Yijun Chen
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofang Li
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| |
Collapse
|
3
|
Ju X, Zhou T, Liu H, Huang Y, Wu L, Wang W. Optimizing Soil Sampling for Accurately Prediction of the Potential Remediation-Effective Area in a Contaminated Agricultural Land. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:22. [PMID: 39096372 DOI: 10.1007/s00128-024-03911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/29/2024] [Indexed: 08/05/2024]
Abstract
To achieve food security in a contaminated agricultural land, the remediation areas usually need more samples to obtain accurate contamination information and implement appropriate measures. In this study, we propose an optimal encryption sampling design to instead of the detailed survey, which is determined by the variation of heavy metals and the technology capability of remediation, to guide soil sampling for accurately remediation in the potential remediation-effective areas (PRA). The coefficient of screening variation threshold (CSVT), considering spatial variation, technology capacity and acceptable error of sampling, together with the spatial cyclic statistics method of neighbourhood analysis, is introduced to identify and delineate the PRA. Both of the hypothetical analysis and application case studies are conducted to illustrate the advantages and disadvantages of the optimization. The results show that, compared with the detailed survey, the optimal design shows a lower overall accuracy due to its sparsely sampling at the clean area, but it exhibits a similar effect of accurately prediction in boundary delineation and further classification in the PRA in both simulation and application studies. This work provides an effective method for subsequent accurate remediation at the investigation stage and valuable insights into application combination of technology capacity and contaminated agricultural land investigation.
Collapse
Affiliation(s)
- Xianhang Ju
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Tong Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hongyan Liu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Yufeng Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Longhua Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wenyong Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- Jiangsu Firefly Environmental Science and Technology Co. Ltd, Nanjing, 210008, China.
| |
Collapse
|
4
|
Chen K, Xue W, Di X, Sun T, Gao W, Sun Y. Effects of nitrogen forms on Cd uptake and tolerance in wheat seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 936:173451. [PMID: 38782266 DOI: 10.1016/j.scitotenv.2024.173451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Hydroponic experiment was conducted to explore the effects of two nitrogen (N) levels with five nitrate nitrogen (NO3--N) and ammonium nitrogen (NH4+-N) ratios on the growth status and Cd migration patterns of wheat seedlings under Cd5 and Cd30 level. Results showed that higher Cd were detrimental to the growth, absorption of K and Ca, expression of genes mediating NO3--N and NH4+-N transport, which also increased the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in shoots and roots of wheat seedlings. Higher N treatment alleviated the inhibitory effects of Cd stress on the biomass, root development, photosynthesis and increased the tolerance index of wheat seedlings. The ratio of NO3--N and NH4+-N was the main factor driving Cd accumulation in wheat seedlings, the combined application of NH4+-N and NO3--N was more conducive for the growth, nitrogen assimilation and Cd tolerance to the Cd stressed wheat seedlings. Increased NO3--N application rates significantly up-regulated the expression levels of TaNPF2.12, TaNRT2.2, increased NH4+-N application rates significantly up-regulated the expression levels of TaAMT1.1. The high proportion of NO3--N promoted the absorption of K, Ca and Cd in the shoots and roots of wheat seedlings, while NH4+-N was the opposite. Under low Cd conditions, the NO3--N to NH4+-N ratio of 1:1 was more conducive to the growth of wheat seedlings, under high Cd stress, the optimal of NO3--N to NH4+-N was 1:2 for inhibiting the accumulation of Cd in wheat seedlings. The results indicated that increasing NH4+-N ratio appropriately could inhibit wheat Cd uptake by increasing NH4+, K+ and Ca2+ for K and Ca channels, and promote wheat growth by promoting N assimilation process.
Collapse
Affiliation(s)
- Kexin Chen
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China.
| | - Xuerong Di
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Tao Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Wei Gao
- College of Resources and Environment, Henan Agricultural University, No.218 Ping'an Avenue, Zhengzhou 450046, Henan, China; Henan Key Lab of Soil Pollution Control & Remediation, Henan Agricultural University, No.218 Ping'an Avenue, Zhengzhou 450046, Henan, China.
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China.
| |
Collapse
|
5
|
Wang X, Zhai X, Lian J, Cheng L, Wang M, Huang X, Chen Y, Pan J, He Z, Yang X. Varietal responses to a soil amendment: Balancing cadmium mitigation and mineral biofortification in wheat production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171772. [PMID: 38499106 DOI: 10.1016/j.scitotenv.2024.171772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
The application of soil amendment (SA) and the cultivation of low Cd-accumulating varieties have been a widely favored strategy to enable the safe utilization of Cd-contaminated arable land. However, little has been reported on the reciprocal effects of SA on the Cd mitigation and nutritional quality of different wheat varieties. In this study, we evaluated the impact of an SA on agronomic traits, Cd accumulation, translocation and mineral nutrition of 12 wheat varieties in an acidic field with a Cd concentration of 0.46 mg/kg. The results showed that the SA significantly reduced soil DTPA Cd (42.3 %) and resulted in a slight decrease in wheat grain yield (4.24-9.72 %, average 7.62 %). Similarly, the SA significantly reduced grain Cd concentrations (average 61.65 %) while increased the concentrations of beneficial elements such as Mo and Se in all wheat varieties. However, this intervention also led to a reduction in the concentration of essential mineral elements (such as Ca, Fe, and Mn) in whole wheat grain and starchy endosperm, as well as a reduction in their proportion in the bran. Based on genotypic differences, Huaimai 33, Zhenmai 168, Sumai 188 and Yangmai 28 were considered to be the relatively most promising wheat varieties for achieving a balance among food safety, nutritional quality, and economic yield in this region. Taken together, this study highlights the varietal differences in Cd mitigation and mineral accumulation in different wheat varieties in response to the SA, offering new perspectives for phytoremediation and biofortification strategies for Cd-contaminated farmland.
Collapse
Affiliation(s)
- Xin Wang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xu Zhai
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Liping Cheng
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Miao Wang
- Hangzhou City University, Hangzhou 310058, China
| | - Xiwei Huang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonglong Chen
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Pan
- Agricultural and Rural Bureau of Changxing County, Zhejiang Province, Huzhou 323000, China
| | - Zhenli He
- Department of Soil, Water and Ecosystem Sciences, Indian River Research and Education Center, University of Florida-IFAS, Fort Pierce, FL 34945, USA
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Huang Q, Di X, Liu Z, Zhao L, Liang X, Yuebing S, Qin X, Xu Y. Mercapto-palygorskite efficiently immobilizes cadmium in alkaline soil and reduces its accumulation in wheat plants: A field study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115559. [PMID: 37820475 DOI: 10.1016/j.ecoenv.2023.115559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Cadmium (Cd) contamination in wheat fields has become a major environmental issue in many regions of the world. Mercapto-palygorskite (MPAL) is a high-performance amendment that can effectively immobilize Cd in alkaline wheat soil. However, MAPL as an in-situ Cd immobilization strategy for alkaline wheat soil remains to be evaluated on a field-scale and the underlying mechanisms requires further evaluation. Here, MPAL were used as soil amendment to evaluate their immobilization efficiency on Cd-contaminated alkaline soil in the field experiments. The field experiments showed that MPAL application significantly reduced wheat grain Cd concentration from 0.183 mg/kg to 0.056 mg/kg, with Cd concentration in wheat grain treated with MPAL all falling below the limit value of 0.1 mg/kg as defined in China's food safety standard (GB 2762-2022). The maximal immobilization efficiency of MPAL on soil Cd figured out by diethylenetriaminepentaacetic acid (DTPA) extraction was 61.5%. The mechanisms involved in Cd immobilization by MPAL were mainly related to the enhanced sorption of Cd onto Fe oxides, and the removal of amorphous or free Fe oxides from soil had a substantial impact on Cd immobilization efficiency by MPAL. Furthermore, the antagonistic effect between Mn and Cd uptake may also contribute to the reduction of wheat Cd accumulation after MPAL application. The current research can provide theoretical and technical support for the large-scale application of MPAL in Cd-contaminated wheat fields.
Collapse
Affiliation(s)
- Qingqing Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Xuerong Di
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Zhijun Liu
- Hebei Huakan Zihuan Survey Co., Ltd, Chengde 067000, China
| | - Lijie Zhao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Xuefeng Liang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Sun Yuebing
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Xu Qin
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| | - Yingming Xu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| |
Collapse
|
7
|
Han H, Wu X, Hui R, Xia X, Chen Z, Yao L, Yang J. Synergistic effects of Cd-loving Bacillus sp. N3 and iron oxides on immobilizing Cd and reducing wheat uptake of Cd. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119303. [PMID: 35430313 DOI: 10.1016/j.envpol.2022.119303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Iron oxides and microorganisms are important soil components that profoundly affect the transformation and bioavailability of heavy metals in soils. Here, batch and pot experiments were conducted to investigate the immobilization mechanisms of Cd by Cd-loving Bacillus sp. N3 and ferrihydrite (Fh) as well as their impacts on Cd uptake by wheat and bacterial community composition in wheat rhizospheric soil. The results showed that the combination of strain N3 with Fh could immobilize more Cd compared to strain N3 and Fh, respectively. Furthermore, strain N3 facilitated Cd retention on Fh, which synergistically reduced the concentration of DTPA extracted Cd in the soil and decreased Cd content (57.1%) in wheat grains. Moreover, inoculation with strain N3 increased the complexity of the co-occurrence network of the bacterial community in rhizospheric soil, and the abundance of beneficial bacteria with multipel functions including heavy metal immobilization, dissimilatory iron reduction, and plant growth promotion. Overall, this study demonstrated the enrichment of strain N3 and iron oxides, together with increased soil pH, synergistically immobilized soil Cd, which strongly suggested inoculation with Cd-loving strains could be a promising approach to immobilize Cd and reduce wheat uptake of Cd, particular for soils rich in iron oxides.
Collapse
Affiliation(s)
- Hui Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Xuejiao Wu
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Ruiqing Hui
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Xing Xia
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhaojin Chen
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Lunguang Yao
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
8
|
Zhou M, Li Z. Recent Advances in Minimizing Cadmium Accumulation in Wheat. TOXICS 2022; 10:toxics10040187. [PMID: 35448448 PMCID: PMC9025478 DOI: 10.3390/toxics10040187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/14/2023]
Abstract
Cadmium (Cd), a toxic heavy metal, affects the yield and quality of crops. Wheat (Triticum aestivum L.) can accumulate high Cd content in the grain, which poses a major worldwide hazard to human health. Advances in our understanding of Cd toxicity for plants and humans, different parameters influencing Cd uptake and accumulation, as well as phytoremediation technologies to relieve Cd pollution in wheat have been made very recently. In particular, the molecular mechanisms of wheat under Cd stress have been increasingly recognized. In this review, we focus on the recently described omics and functional genes uncovering Cd stress, as well as different mitigation strategies to reduce Cd toxicity in wheat.
Collapse
Affiliation(s)
- Min Zhou
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
- Correspondence: (M.Z.); (Z.L.)
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
- Correspondence: (M.Z.); (Z.L.)
| |
Collapse
|